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ABSTRACT 

The behavioral modeling of a separately excited direct current (DC) motor as a prime 

mover for a doubly-fed induction machine (DFIM) is studied in this thesis. The output 

torque of the DC motor is computed in the simulation under controlled parameters. The 

input to the DFIM, used as a doubly-fed induction generator (DFIG), is taken from the 

DC motor. In theory, the combination of the two machines can be used to emulate 

various wind patterns and their expected electrical returns for a given DFIM-based wind 

turbine. 

A Simulink model was created to appropriately emulate the operation of the DC 

machine. That model was then incorporated into an existing model of a DFIM. The 

resulting simulations are compared to system operating data to determine if machine 

speed is being correctly modeled. The speeds determined by the simulator accurately 

track those that are gathered from lab data. 

Operating speeds of the system were mapped to historical wind speeds in a 

geographical area. Output power of the DC motor for the different operating speeds was 

calculated and plotted. The data confirmed the theory of the proportionality of the 

rotational output power of a DC motor.  
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EXECUTIVE SUMMARY 

The theory of the separately excited direct current (DC) motor as a means to create a 

simulated model of the machine is explored in this thesis. This model is used as an input 

to a doubly-fed induction generator (DFIG) model. The model is expected to provide a 

more accurate evaluation of system behavior than was previously utilized in earlier 

research on this system because the earlier research did not include a detailed model of a 

DC machine as is the case in the lab hardware. 

The separately excited DC motor was investigated to develop the equations 

necessary to produce the model. Once the required equations were understood, the model 

was designed using the Simulink program. This model of the DC motor was incorporated 

within a larger simulation of a DFIG system with the DC motor acting as the prime 

mover.   

Test runs were completed in the lab using the operational setup. Speed runs were 

conducted with commanded speed beginning at 1,441 revolutions per minute (RPM) and 

then shifting to 1,981 RPM. The data from these runs was output to a file that could be 

incorporated into Matlab.   

Next, the simulation of the overall DFIG system was run using the same 

commanded speed changes. A plot was constructed of the operational speed of the 

simulation versus time. The model was tested for validity by collecting data from lab 

experimentation and then comparing the data to the output of the model. The resulting 

speed testing plot comparing measured and simulated data is shown in Figure 1. 
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Figure 1.   Measured and simulated system RPM vs. time. 

The comparison of simulated speed and the measured speed of the system is 

shown in Figure 1. The simulation results and the results obtained from the operational 

data for the experimental run for speed are closely matched. 

The power data was also gathered from the operational runs. The armature input 

power from the DC motor model and that of the actual machine are shown in Figure 2. 

The steady state values of the Simulink analysis closely approximate those from the 

machine run. The machine model does not contain enough detail to fully simulate the 

drop in power at the transition in speed, but the dip in the simulated power is similar to 

that observed in the measurements. 
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Figure 2.   Measured and simulated input power vs. time. 

Next, the average monthly wind speeds for a particular area were scaled to 

operational rotational speeds of the DC motor. The output power was computed using the 

simulated model. The correlation between the operational speed of the DC motor and the 

output power was confirmed. The plots of the scaled speed and the corresponding output 

power are shown in Figures 3 and 4, respectively. Each plot begins with the values for 

January at the left and shifts months every four seconds. The conversion of the wind 

speed to a particular power level depends on the design of the turbine/gearbox/generator, 

and no specific hardware is being represented in this thesis. 
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Figure 3.   Simulated average DC motor speed by month for wind turbine in Norfolk. 

 

Figure 4.   Simulated average DC motor output power by month for Norfolk. 
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In summary, a model of the separately excited DC motor was created using 

Simulink. The motor model responded predictably and accurately to changes in speed. 

The input power also responded accordingly leading to a predictable output power of the 

system. This will allow for future research to build upon the model to perform further 

analysis of the DFIG system at the Naval Postgraduate School. 
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I. INTRODUCTION AND BACKGROUND INFORMATION  

A. BACKGROUND 

Per the Energy Policy Act of 2005, the United States government is requiring that 

federal agencies, including the Department of Defense (DoD), actively increase their 

usage of renewable energy sources. By the year 2025, the DoD is required to produce or 

procure at least 25% of its total facility energy from these sources [1]. Meeting this goal 

requires an investment in various forms of technology to produce and implement 

renewable sources. 

Wind power is a potential source of energy that the DoD should exploit. This 

would be of great help in achieving the goals of The Energy Policy Act. Wind technology 

can provide a proven method of renewable energy.   

Doubly-fed induction generators (DFIG) are often used in wind power generation 

to supply power to a grid [2]. The turbine blades are connected to a gearbox that provides 

input torque to a DFIG. A typical DFIG system is shown in Figure 5.   

 

Figure 5.   DFIG connected to wind turbine, from [2].  
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The Naval Postgraduate School has developed a wind power emulator that 

replaces the turbine and associated gearbox with a direct current (DC) motor. A 

simulation was created with this project to predict and explain its operation [3]. This 

setup is displayed in Figure 6. 

 

Figure 6.   DFIG connected to DC motor, from [4]. 

B. OBJECTIVE 

The objective of this thesis is to provide better predictions of the operational 

speed and input torque of the machines through modeling of the DC machine. The initial 

simulations in Matlab used a torque constant as input into the modeled DFIG [2]. While 

this method is more than sufficient for studies of the electrical output of the DFIG itself, 

it does not accurately predict the torque of the DC machine, particularly when 

transitioning between different speeds. The hypothesis is that creating a full model of a 

DC machine using Matlab and Simulink and providing input to the Simulink model of 

the DFIG will provide a greater level of predictability of system behavior.   

Verifying the relationship between output power and speed was a secondary goal 

of the study.   Theoretically, the DC motor can be used to model the output power and 
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torque provided by turbine blading and the gearbox [2]. The goal is to model the 

rotational output power through the use of Simulink and prove the interconnection 

between power and speed. 

C. APPROACH 

The first step in this thesis was to understand the operation of the DC machine 

that was to be used. The machine in question was a separately-excited DC motor. By 

leveraging previous studies, a mathematical model of the DC motor was created. 

References [4], [5], [6], and [7] were used to gather this information. Next, the model of 

the separately-excited DC motor was created using Simulink. The model of the DC motor 

was then implemented as a replacement for the constant torque input in the DFIG 

Simulink model [2]. Machine speed data, including a change in operating speed, and 

output power data were obtained from equipment operation in the lab. This data was 

compared to the predicted speed and predicted output power from the simulation to 

validate the simulation accuracy. 

D. THESIS ORGANIZATION 

The theory of operation for the separately excited DC motor is covered in Chapter 

II. The equations for the field and armature voltages and currents, torque, and power are 

presented. The Lab-Volt 8211 DC Motor/Generator is employed, as part of an operating 

DFIG system, to provide output data for later analysis. A representative model of the 

Lab-Volt DC motor is created in Simulink as part of an overall DFIG system [2]. The 

output data of the model is compared to the actual output of the motor to determine 

accuracy of the simulation.   

A wind profile from a particular geographic area is discussed in Chapter III. The 

wind speeds of this profile are mapped to motor operating speeds for the simulated DC 

machine. The output power of the machine is computed by the simulation based on the 

different speeds of operation. 
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Conclusions are drawn about the testing results in Chapter IV. The validity of the 

created model for simulations of the DFIG system is reviewed. Some possibilities for 

future work to build upon this topic are also presented. 
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II. SIMULATED DC MACHINE ANALYSIS 

A. INTRODUCTION 

The equations that define a DC motor are reviewed in this section [5]. Using 

values determined from previous research on this machine, we created a model using 

Matlab’s Simulink software. The model, used as the prime mover for the DFIG 

simulation, is evaluated using a specific operational profile. The speed output is 

compared to the output of the actual machinery running the same profile to test the 

validity of the model. 

B. DC MOTOR EQUATIONS     

1. Basic DC Motor Theory 

DC motors have been used for many years, and the characteristics of these 

machines are well understood. The overall principle behind the operation is quite simple. 

A current-carrying conductor, in the presence of a magnetic field, experiences a force that 

is perpendicular to both the current and the direction of the magnetic field. Using this 

knowledge to produce a practical DC motor is difficult. 

Figure 7 is a representation of a simple DC machine [5]. The stator poles are 

wound with field windings, while the rotor has its own coil. A commutator, made up of 

two semicircular copper segments, is mounted at the end of the rotor. The terminals of 

the rotor coil are connected to the copper segment. Voltage is supplied to the rotor from a 

stationary circuit via carbon brushes, which causes a current to flow through the rotor 

coils. The commutator allows for current to be supplied in a consistent direction so that 

the application of electrical torque on the rotor forces rotation in the same direction at all 

times [5].   
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Figure 7.   Elementary 2-pole DC machine, from [5]. 

The commutating action causes the rotor coils to appear as a stationary winding 

with respect to the field. The magnetic axis of the rotor windings always appears 

perpendicular to that of the stator windings. Because of this, there is no induction of 

voltages in one winding due to a time rate of change of current in the other [5].   
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The equations are derived in [5] to generate an equation matrix in the form of 

Equation Chapter 2 Section 1          

 
0FFf

f f

a a
r aAF AA

dr Lv idt
dv iL r L
dt

ω

 
    
    

        
  

+
=

+
, (2.1) 

where fv  and av  are the field and the armature voltages, respectively, fr  and ar  are the 

field and armature resistances, respectively, and fi  and ai are the field and armature 

currents, respectively. Rotor speed is rω . The self-inductance of the armature and the 

field windings are represented by AAL  and FFL , respectively. The mutual inductance 

between the armature windings and the field windings is represented by AFL . From [5], 

the electric torque eT  is calculated through the mutual inductance of the motor and the 

armature and field currents as 

 .e aAF fT L i i=  (2.2) 

Equation (2.2) is used to compute the torque that is supplied to the DFIG system through 

the Simulink program. 

2. DC Motor Equations for Separately-Excited Windings 

The DC motor used for the purposes of this study had separate winding excitation. 

This simply means that a field rheostat is located in the field circuit allowing for 

adjustment of the field current. Figure 8, from [5], shows an equivalent separately excited 

DC motor circuit with the field rheostat designated as xr . 
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Figure 8.   Equivalent circuit for separately excited DC machine, from [5]. 

The value of the field rheostat resistance must be taken into account when performing 

calculations to determine motor operating characteristics. 

C. OVERVIEW OF EQUIPMENT CONFIGURATION 

A representation of the physical system setup is shown in Figure 9. The 

specifications of the Lab-Volt motor used for this study are found in Appendix A. The 

rotor of the DC motor is connected to the rotor of the DFIG to provide input torque for 

the system.   

The field programmable gate array (FPGA) is configured to receive various data 

from the operating machinery. The output of data is relayed from the machinery to the 

controlling personal computer via a universal serial bus connection. The data can be 

retrieved and analyzed further at a later time.  

An oscilloscope is connected to provide data analysis during the lab 

experimentation. It is used to measure the various voltages and currents of interest for the 

DFIG. The oscilloscope is also used to export data from the operational experiments.   
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Figure 9.   Equipment setup in lab, from [3] 

D. SIMULINK MODEL 

Equations 2.1 and 2.2 were used to create the model of the DC machine in 

Simulink. Measurements were taken with a multimeter to determine the field resistance 

for the DFIG system. The measured and calculated values for armature resistance and 

mutual inductance were taken from [4]. Rotor speed was initially commanded to 1,440 

revolutions per minute (RPM) and then increased to 1,980 RPM. No method was readily 

available to test for armature and field self-inductance values. Instead, a nominal value is 

assumed for both the armature and field self-inductance based on information from [5]. 

The values used throughout the simulation process are shown in Table 1.  
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Table 1.   Values for variables used in DC motor model. 

Values for Simulation Variables 

,f sourcev  170 V 

,a sourcev  170 V 

fr  6.4 Ω  

ar  8.5 Ω 

rω  Varied between 151 and 207 radians/second  

FFL  30 H 

AAL  Initially 180H; reduced to 30 H 

AFL  Initially 3 H, reduced to 2.25 H 

,f refi  0.3125 A 

,a refi  1.25 A 

 

 

The next step in the process was to build the Simulink model of the DC motor. 

The equations for field voltage and armature voltage were obtained from (2.1), to get 

 f
f f f FF

di
v r i L

dt
= +  (2.3) 

and 

 a
a r AF f a a AA

div L i r i L
dt

ω= + + . (2.4) 

The field voltage and armature voltage equations were then rearranged to solve for the 

field current and the armature current, respectively, to yield 

 1 ( )f f f f
FF

i v r i dt
L

= −∫  (2.5) 

and 

 1 ( )a a r AF f a a
AA

i v L i r i dt
L

ω= − −∫ . (2.6) 

Next, Simulink was used to model the motor based on (2.5) and (2.6). Once the separate 

equations were assembled, the interconnected functions were joined to create a model of 

a separately-excited DC machine. The torque equation was also produced using 
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connections to the mutual inductance, field current, and armature current. The overall 

model for the DC motor is shown in Figure 10. 

 

  

Figure 10.   DC motor model in Simulink. 

The field current circuit is located in the upper part of Figure 10. The field current 

is sent into an amplifier representing field resistance. The value of that product is sent to 

a negative node on a summing junction where it is added to the field voltage. The output 

of this summing junction is multiplied by the reciprocal of the self-inductance of the field 

and subsequently integrated to generate the field current value. Field current is then fed 

into a proportional integral controller with both values for the gains set to one. The 

reference field current is set to 0.3125 A in accordance with the DFIG system. The output 

of the controller is supplied through an amplifier representing the nominal voltage 

setpoint of 170 V for the field voltage. 



 12 

The armature current was designed in a manner similar to the field current circuit 

and is located in the lower section of Figure 10. The product junction multiplies the field 

current, the mutual inductance, and the rotor speed. That output is, in turn, subtracted 

from the value of the armature voltage. The product of the armature resistance and the 

armature current is also subtracted from armature voltage at the first summation junction. 

The armature voltage is rate limited in order to prevent instantaneous changes in voltage. 

This allows for more a more accurate behavioral model of rotor input power by allowing 

for a delay reduction in power during the transient. The remainder of the circuit is 

identical to the field current circuit with the exception of the value for the reference 

armature current (1.25 A). 

The machine output torque is calculated at the center of Figure 10 in accordance 

with (2.2). The torque is defined as the variable dcT  for the drawing. 

The calculation for the armature electrical input power is located on the right edge 

of Figure 10. The formula [5] 

 a ain iP v=  (2.7) 

is used to determine the input power into the rotor of the DC motor, where inP  is 

electrical input power to the DC motor armature. The armature losses  are found from [5] 

 2
2

a ai r iP r=  (2.8) 

where 2i rP  is  defined as the armature losses. The armature losses are computed on 

Figure 10 near the center of the diagram. Next, 2i rP is subtracted from inP  to compute a 

more realistic value for the machine output power that takes into account armature losses 

for the DC motor. The resulting equation is  

 2out in i rP P P= − , (2.9) 

where outP  is the final computed mechanical output power for the simulation.   
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E. MODEL VALIDATION FOR ARMATURE AND FIELD CURRENTS 

The armature and field currents were extracted as data from the operating 

machinery. The measured values were then compared to the simulated values for 

accuracy. This step was done to ensure that the simulation was commanding and 

outputting the values expected before continuing on to more complex calculations. 

Figure 11 is a plot of the measured and simulated armature and field currents during a 

transition between 1,441 RPM and 1,981 RPM. 

 

 

Figure 11.   Measured and simulated armature and field currents. 

The values of both simulated currents correspond well with the operational data. 

The computation of armature current and field current was found to be accurate. 

Parameters such as input power and machine speed were simulated with the 

understanding that the currents were correctly modeled.  
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F. MODEL VALIDATION FOR SPEED 

1. Comparison between Operational Data and Simulated Data 

In order to validate the accuracy of the circuit model constructed in Simulink, data 

from the DFIG system in the lab was taken. The system was operated using a specific 

speed profile. The speed data was extracted from the system and subsequently 

implemented into the Matlab code for the DFIG system [2] found in Appendix B. This 

operational speed data was plotted for future comparison as seen in Figure 12. 

 

 
Figure 12.   Measured system RPM vs. time. 

The system is initially commanded to operate at a speed of 1,441 RPM. Thirteen seconds 

later, the requested speed is raised. The DFIG system settles at a new speed of 1,981 

RPM. 
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The simulation was adjusted to reflect the magnitude and duration of the speeds in 

the operational portion. The torque constant was removed from the simulation, and the 

input torque to the DFIG was connected to the output of the DC motor model. The 

overall model of the DFIG system, including the separately excited DC motor, is shown 

in Appendix C. The simulation was executed and speed data was collected and plotted. 

The plot of the simulated speed data for the test runs is displayed in Figure 13. 

 

 

Figure 13.   Simulated system RPM vs. time.  
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The measured data and the simulated data were plotted together on the same 

graph to provide for easier analysis. This yielded the data pictured in Figure 14. 

 

 

Figure 14.   Measured and simulated system RPM vs. time. 

2. Results  

The data from the simulation compares very favorably with the operational speed. 

The simulated system responds more rapidly to the change in speed; however, there is 

little difference between the two operating sets at any point during the run. 

The difference in response time is likely due to rapid response of the simulation 

versus the actual machine. The model constructed in Simulink is an ideal machine. 
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 While inertia is accounted for in the data measured in earlier experiments, not all losses 

were accounted for. These particular components of the DC motor operation mute the 

response when compared to an ideal system. 

G. MODEL VALIDATION FOR ELECTRICAL INPUT POWER 

1. Comparison between Operational Data and Simulated Data 

The next step was validation of the simulation for the electrical input power to the 

armature of the DC motor. Input power was measured for the DC motor armature while 

operating the DFIG under the same conditions as the speed runs. The power, in watts, 

versus the time, in seconds, was plotted on the graph shown in Figure 15.   

 

 

Figure 15.   Measured input power of DC motor vs. time. 
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The simulation was set to plot the output power data corresponding to the same 

set of conditions. Figure 16 is a display of the power input to the rotor versus time for the 

Simulink model. Both plots were placed on the same axes, found in Figure 17, for 

comparative analysis. 

 

 

Figure 16.   Simulated input power of DC motor vs. time. 
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Figure 17.   Measured and simulated input power vs. time. 

2. Results 

The simulated armature input power tracks well with the actual power profile 

supplied to the armature of the DC motor. However, the simulation assumes ideal 

characteristics. The change in speed causes a significant drop in input power (about 20%) 

before the power rises to a new, higher level. This drop-off, while present in the 

simulation, is not as pronounced. This is most likely caused by the simulation being able 

to respond instantaneously to changes in operational parameters, whereas the actual 

system cannot. The effect was produced in the simulation by adding a rate limiter at the 

output of the armature voltage to mute the response. The rate limiter prevented the drop 

in armature current from causing the voltage to surge to a higher value instantaneously.    

During analysis, the armature self-inductance value in the simulation was lowered 

to 30 H. The result was a more rapid response to the change in speed. This alteration 

provided for a model that more accurately mimicked the machine behavior.  
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H. MODELING MECHANICAL OUTPUT POWER  

After modeling the input power, attention was turned to creating an accurate 

simulation of the mechanical output power. Finding the output power required a 

theoretical approach due to the unavailability of the required equipment to measure the 

torque at the rotor. Therefore, certain assumptions were made to estimate the value of the 

output. 

Windage and friction losses are present in any spinning machine [5]. However, 

there was no way to directly measure these values. The losses for the DC machine were 

considered to be limited to armature losses for this study. While not completely accurate, 

the simulated output is a much more realistic value for machine output power than 

assuming 100% efficiency between rotor input power and mechanical output power. The 

plot of the modeled output power, in watts, versus time, in seconds, for the speed 

transition between 1,441 and 1,981 RPM is found in Figure 18. 

 

 

Figure 18.   Simulated output power of DC motor. 
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The output power is noticeably lower than the armature input power in Figure 17 when 

analyzing the same time period. Consideration of the armature losses causes this 

reduction. 

I. CHAPTER SUMMARY 

In this chapter, the DC motor operational theory was reviewed. The theory of 

operation was used as a basis to model a DC motor that was used as a torque input to a 

DFIG system simulation. Data was gathered from the operational system and compared 

to the simulation to determine whether system operation speed could be accurately 

predicted. Experimentation showed that the emulated speed was consistent with actual 

system operation.   

The input power was also discussed. The resulting comparison found the 

simulation to accurately model of the rotational output power during steady state 

conditions. Transitions in speed caused disturbances in the input power that were not 

fully accounted for by the model. Overall, the model matches the operation of the 

machinery well. The next section uses this model to determine output power of the DC 

motor based on operating speeds derived from wind patterns within a particular region. 
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III. MODELING WIND PROFILES  

A. INTRODUCTION 

Speed prediction has been shown to be accurate in our wind power emulator. The 

motor emulator can now be used to model the wind profiles of different geographic 

locations. The DC motor replaces the turbine and gearbox that act as the prime mover for 

a commercial wind turbine. By mapping the wind speeds in an area to the particular RPM 

of the DC machine, a particular wind profile of a region can be generated. 

B. MAPPING STRATEGY FOR WIND SPEED TO DC MOTOR SPEED 

1. Overview 

The process of determining the mapping procedure for wind speed to DC motor 

shaft RPM is covered in this section. The methodologies of assigning the numerical 

values of speed to the machine as well as the selection of the geographic area are 

discussed. 

2. Geographic Area Selection 

The geographic area was selected based on two factors. The first requirement was 

that the area be of significance to the DoD. This was done to tailor the research toward 

the goals of [1].   

The second factor taken into consideration was the availability of wind speed data 

for the area. There are several military installations located throughout the nation. Not all 

of them have a significant amount of historical wind speed data readily available. 

Viewing the problem from these two perspectives led to choosing Norfolk, 

Virginia as the area of study. There is a large amount of data archived by the National 

Climatic Data Center [6]. The data focused on for this study was the average wind speed. 

The information was held by the National Climatic Data Center was compiled over a 54-

year period. The monthly and annual average wind speeds are present.    
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The monthly data from [6] is presented in Table 2. Average wind speed is given 

in miles per hour (MPH). 

Table 2.   Monthly wind speed averages for Norfolk, Virginia, from [6]. 

Norfolk, Virginia 

Month Average Wind Speed (MPH) 

January 11.4 

February  11.8 

March 12.3 

April 11.8 

May 10.4 

June 9.7 

July 8.9 

August 8.8 

September 9.6 

October 10.2 

November 10.3 

December 10.9 

 

The maximum average wind speed, by month, occurs in March at 12.3 MPH. The 

minimum average wind speed is 8.8 MPH in August. It was necessary to develop a 

mapping scheme that was able to encompass all of these speeds. 

3. Mapping Strategy 

The machine speed for commercial wind turbines is varied according to the wind 

speed. As a result, maximum power conversion is performed at all speeds. The ideal 
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machine speed for a particular turbine and gearbox combination follows a peak power 

curve as a function of wind speed and turbine speed [2]. To simplify the model, the 

curved was linearized.   

It was decided to set the maximum motor speed equal to a wind speed of 13 

MPH. The motor speed was then scaled for the average monthly wind speed 

proportionally using  

 2000 RPM
13 MPHo MRPM S= ×  (2.10) 

where ORPM is the operating speed for the system in RPM and MS is the average 

monthly wind speed in MPH. The results of the scaling are found in Table 3. 

Table 3.   Scaling of monthly average wind speed in Norfolk, Virginia, to motor RPM. 

Month MS  ORPM  

January 11.4 1754 
February 11.8 1815 
March 12.3 1892 
April 11.8 1815 
May 10.4 1600 
June 9.7 1492 
July 8.9 1369 

August 8.8 1354 
September 9.6 1477 

October 10.2 1569 
November 10.3 1585 
December 10.9 1677 

 

The value of ORPM  was rounded to the nearest whole number to facilitate easier 

calculations. Information from this data set was used as part of the validation of the 

simulation as a model for wind speed. 
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4. Simulation of Different Wind Speeds 

The motor speeds derived from the mapping were input into the simulation to 

replicate the different average wind speeds across each month in Norfolk. The associated 

output power levels for the machine speeds were plotted. In Figure 19, ORPM  is plotted 

versus time for each month. The simulation speed begins at 1,754 RPM to represent the 

month of January. Every four seconds, ORPM  is shifted to that of each subsequent 

month.   

 

Figure 19.   Simulated average DC motor speed by month for wind turbine in Norfolk. 

5. Simulation of Output Power Based on Wind Speeds 

The output power produced by the simulation was graphed in Figure 20.   
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Figure 20.   Simulated average DC motor output power by month for Norfolk.  

The changes in power are organized in the same manner as the changes in speed. 

The power begins with the value corresponding to the month of January. The value of 

ORPM  is adjusted every four seconds according the month represented. This led to the 

variations in power level seen in the plot. The steady state power at each change in speed 

indicates the predicted output power of the machine for that speed.  

6. Analysis of Simulated Speed and Power 

The plots contained within this chapter illustrate the scenarios of speed and power 

production. The correlation between the speed of operation and the mechanical output 

power was proven through the data plots. Simulated monthly power was almost directly 

proportional to the speed.   
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The plot of power does not instantly jump to the final value based on the speed. 

This is due to the rate limiter installed in the circuit for the voltage. The behavioral traits 

of the machine are shown on the graph and, therefore, it takes a finite amount of time to 

reach a new output power. The transition time of four seconds allows the model to reach 

a steady state value of power for the given speed before transitioning to the next value. 

C. CHAPTER SUMMARY 

In this chapter, a mapping strategy was devised for converting wind speed to 

rotational speed of the DC motor. The simulation was run using the mapped speeds as a 

basis for commanded speed changes. Output power of the machine was calculated based 

on the simulated operating speeds.   

The correlation between the rotational speed and mechanical output power of the 

DC machine was proven. This model can now be adjusted for specific scenarios in 

operational speed. Conclusions to the study and further research options are discussed in 

the next chapter. 
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IV. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

In this thesis, the theory behind the operation of DC motors was reviewed. 

Understanding of this theory allowed for the creation of a Simulink model representing a 

separately excited DC motor. Testing was completed to validate the model outputs of 

speed and rotational power. Using wind speeds mapped to the RPM of the machine, we 

showed how the output power of the DC motor varied with the speed of the machine.   

B. FUTURE RESEARCH  

The DC motor used can be modeled in greater detail. Slew rate limiting of the 

applied armature voltage was added and improved the prediction of the simulation 

compared to the measured results. The physics behind this behavioral model should be 

explored further. This would allow for a more accurate profile of the machine that models 

the responses more faithfully. 

A separate study should also measure the output of the DFIG to compare against 

the output of the DC motor. The relationship between the two should be detailed. The 

theoretical output of a larger system, such as those used in wind turbines, can be scaled 

from the data obtained.  

Future work should also include matching the DC machine to specific wind 

turbine blades and gearboxes. The output power in this thesis uses a linearized model to 

convert wind speed to machine speed. For an actual wind turbine, the ideal operating 

points are based on a curve [2]. By modeling the curve, behavior of a specific 

combination of turbine blades and gearbox can be analyzed. 
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APPENDIX A  

Lab-Volt DC Machine 
 

 

This machine can be run independently as a DC motor or a DC generator. The armature, 

shunt field, and series field windings are terminated separately on the faceplate to permit 

long and short shunt as well as cumulatively and differentially   compounded   motor   

and   generator connections. This machine is fitted with exposed movable brushes to 

allow students to study the effect of armature reaction and commutation while the 

machine is operating under load. An independent, circuit-breaker protected, shunt-field 

rheostat is mounted on the faceplate for motor speed control or generator output voltage 

adjustment. 
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Model 8211 – DC Motor/Generator 120/208 V – 60 Hz 220/380 V – 50 Hz 240/415 V – 50 Hz 

Power Requirement 120/208 V 220/380 V 240/415 V 

Rating  Motor Output Power 

Generator Output Power 

Armature Voltage 

Shunt Field Voltage 

Full Load Speed 

Full Load Motor Current 

Full Load Generator Current 

175 W 

120 W 110 W 120 W 

120 V – DC 220 V – DC 240 V – DC 

120 V – DC 220 V – DC 240 V – DC 

1800 r/min 1500 r/min 1500 r/min 

2.8 A 1.3 A 1.1 A 

1 A 0.5 A 0.5 A 

Physical Characteristics Dimensions (H x W x D) 

Net Weight 

308 x 291 x 440 mm (12.1 x 11.5 x 17.3 in) 

14.1 kg (31 lb) 
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APPENDIX B 

Simulink Model Files 

 
Figure 21.   Overall DFIG system, from [3]. 



 34 

 
Figure 22.   Induction Machine of Overall DFIG system, from [3].
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Figure 23.   Subsystem of Induction Machine, from [3]. 

 
 

Figure 24.   Inverse Ks transformation in Subsystem, from [3]. 
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Figure 25.   Inverse Ks transformation1 in Subsystem, from [3]. 
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Figure 26.   Subsystem1 of Induction Machine, from [3]. 

 

 
Figure 27.   Subsystem2 of Induction Machine, from [3]. 
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Figure 28.   Subsystem3 of Induction Machine, from [3]. 

 

 
Figure 29.   Stator of Subsystem3, from [3]. 
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Figure 30.   Stator1 of Subsystem3, from [3]. 

 
Figure 31.   Inverse Kr transformation of Induction Machine, from [3]. 
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Figure 32.   Psi_dr of Induction Machine, from [3]. 

 

 
Figure 33.   Psi_ds of Induction Machine, from [3]. 

 

 
Figure 34.   Psi_md of Induction Machine, from [3]. 
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Figure 35.   Psi_mq of Induction Machine, from [3]. 

 
Figure 36.   Psi_qr of Induction Machine, from [3]. 

 
Figure 37.   Psi_qs of Induction Machine, from [3]. 
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Figure 38.   Rotor controller of Induction Machine, from [3].
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Figure 39.   AC source of Rotor Controller, from [3]. 

 

 
Figure 40.   Ks transformation of Rotor Controller, from [3]. 
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Figure 41.   Inverse trans of Rotor Controller, from [3]. 

 
 

 
Figure 42.   Rotor currents of Induction Machine, from [3]. 
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Figure 43.   Rotor currents1 of Induction Machine, from [3]. 

 
 

 
Figure 44.   Torque of Induction Machine, from [3]. 

 
 
 
 
 
 
 
 
 



 46 

 
 
 
 
 
 
 
 

 
 

Figure 45.   Input torque of Overall DFIG system. 
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Figure 46.   Separately excited DC motor of input torque. 
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Figure 47.   Inverse Kr transformation of Overall DFIG system, from [3]. 
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Figure 48.   Inverse Ks transformation of Overall DFIG system, from [3]. 

 
Figure 49.   Torque equation of Overall DFIG system, from [3]. 
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APPENDIX C 

Matlab M-Files 
 

Plot_recorder_update.m 
 
% Jonathan Hines Jan12 
clear all; 
omega_b = 2*pi*60; 
  
%------------------------------------------------- 
omegar_ic = omega_b*0.8;    %1441 RPM; used for initial tests 
omega2=omega_b*0.3; 
  
omega_jan=367;               %used for monthly power data; replace in 
model 
omega_feb=0.035*omega_jan; 
omega_mar=0.044*omega_jan; 
omega_apr=-0.044*omega_jan; 
omega_may=-0.123*omega_jan; 
omega_jun=-0.062*omega_jan; 
omega_jul=-0.070*omega_jan; 
omega_aug=-0.009*omega_jan; 
omega_sep=0.070*omega_jan; 
omega_oct=0.052*omega_jan; 
omega_nov=0.009*omega_jan; 
omega_dec=0.052*omega_jan; 
  
sim asynchronous_gen_backupgio_hines_thesis;    %connect input torque 
load data3; 
delay_time=-.0045-.0005; 
  
%load data3; 
%---------------------------------------------------------------------- 
%Plots 
  
  
figure(1);  %Speed plot measured and simulated 
plot(timedataold',ch8_final,'b','linewidth',2);  
hold on;                                         
plot(speed_sim(:,1)-30,speed_sim(:,2),'g','linewidth',2) 
hold off;                                        
axis([0 30 1400 2000]); 
%title('Measured and Simulated Speed');   
legend('RPM Measured','RPM Simulated', 'Location', 'NorthWest'); 
ylabel('Machine Speed (RPM)'); 
xlabel('Time(Seconds)'); 
grid; 
  
figure(2);  % Input Power plot measured and simulated 
plot(ScopeData14(:,1)-30,ScopeData14(:,2),'g','linewidth',2); 
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hold on;                                         
plot(time_dc,dc_machine_power,'b','linewidth',2); 
hold off;                                          
axis ([0 30 110 220]); 
%title('Rotor Input Power of DC Motor'); 
legend('Simulated Input Power', 'Measured Input Power', 
'Location','NorthWest'); 
ylabel('Input Power (Watts)'); 
xlabel('Time (Seconds)'); 
grid; 
  
%----------------------------------------------------------------------
---- 
%Connect the monthly summation block in the induction machine model 
  
figure(3);                             %Monthly speed figure  
plot(speed_sim(:,1)-30,speed_sim(:,2),'g','linewidth',2) 
axis([0 48 1300 1900]); 
%title('Simulated Average DC Motor Speed Scaled by Monthly Norfolk Wind 
Speeds'); 
legend('RPM_{O} For Simulated Wind Speed', 'Location', 'NorthEast'); 
ylabel('Machine Speed (RPM)'); 
xlabel('Time(Seconds)'); 
grid; 
  
figure(4); %Monthly Power Figure 
plot(power_out(:,1)-30,power_out(:,2),'g','linewidth',2); 
axis ([0 48 110 180]); 
%title('Simulated Mechanical Output Power of DC Motor Scaled by Monthly 
Norfolk Winds Speeds'); 
legend('Output Power by Month for Norfolk', 'Location','NorthEast'); 
ylabel('Output Power (Watts)'); 
xlabel('Time (Seconds)'); 
grid; 
%----------------------------------------------------------------------
---- 
plot_exp_data_newscope; 
  
figure(5);  %Armature and Field Currents 
plot(ia_plot(:,1)-30,ia_plot(:,2), 'g', 'linewidth',4); %Simulated Ia 
hold on; 
plot(datavec_ch4(:,1)+13.8,ch4_smooth,'b'); %Measured Armature Current 
plot(if_plot(:,1)-30, if_plot(:,2), 'c', 'linewidth',4); %Simulated If 
plot(datavec(:,1)+13.8,ch2_smooth,'m'); %Measured Field Current 
hold off; 
axis([12.5 15 0.2 1.4]); 
%title('Simulated and Measured Armature and Field Currents');  
legend('Simulated Armature Current', 'Measured Armature 
Current','Simulated Field Current', 'Measured Field Current', 
'Location', 'East'); 
ylabel('Current (Amperes)'); 
xlabel('Time (Seconds)'); 
grid; 
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figure(6);  %Output Power plot 
plot(power_out(:,1)-30,power_out(:,2),'g','linewidth',2);                                       
axis ([0 30 110 200]); 
%title('Simulated Mechanical Output Power of DC Motor'); 
legend('Simulated Output Power', 'Location','NorthWest'); 
ylabel('Output Power (Watts)'); 
xlabel('Time (Seconds)'); 
grid; 
  
figure(7);  %Speed plot measured 
plot(timedataold',ch8_final,'b','linewidth',2);                                         
axis([0 30 1400 2000]);   
%title('Measured Speed');  
legend('RPM Measured', 'Location', 'NorthWest');  
ylabel('Machine Speed (RPM)'); 
xlabel('Time(Seconds)'); 
grid; 
  
figure(8);  %Speed plot simulated                                         
plot(speed_sim(:,1)-30,speed_sim(:,2),'g','linewidth',2) 
axis([0 30 1400 2000]);   
%title('Simulated Speed');  
legend('RPM Simulated', 'Location', 'NorthWest');  
ylabel('Machine Speed (RPM)'); 
xlabel('Time(Seconds)'); 
grid; 
  
figure(9);  % Input Power plot Simulated 
plot(ScopeData14(:,1)-30,ScopeData14(:,2),'g','linewidth',2);                                      
axis ([0 30 110 220]); 
%title('Simulated Rotor Input Power of DC Motor');  
legend('Simulated Input Power', 'Location', 'NorthWest'); 
ylabel('Input Power (Watts)'); 
xlabel('Time (Seconds)'); 
grid; 
  
figure(10);  % Input Power plot Measured 
plot(time_dc,dc_machine_power,'b','linewidth',2);                                         
axis ([0 30 110 220]); 
%title('Measured Rotor Input Power of DC Motor');  
legend('Measured Input Power', 'Location', 'NorthWest'); 
ylabel('Input Power (Watts)'); 
xlabel('Time (Seconds)'); 
grid; 
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initial_vars_asynchronous_gen.m, from [3] 
 
%initial_vars_asynchronous_gen 
  
omega_b = 2*pi*60; 
% omega2=-omega_b*1/14; 
tstep=.0008; 
tstop=60; 
twopiby3 = 2*pi/3; 
poles = 4; 
polesby2J = poles/2/(2.04e-3*1.5); %Inertia from Nytko thesis    
Kpgain_speed=.033*2; 
Kigain_speed=.0033*4; 
Kpgain=15/2*10;    % Divide by 2 becuae Vdc=60 is half of 120 in the 
FPGA program 
Kigain=2/2*40; 
%Parameters from Edwards thesis work for DFIG 
rs=12; 
rr = 4; 
Xls =9; 
Xm =180*0.6;    % no load 
Xm =180*0.7;    % with generation 
Xlr = 9+omega_b*400e-6; 
  
rsbyXls = rs/Xls; 
rrbyXlr = rr/Xlr; 
Xaq = 1/(1/Xm+1/Xls+1/Xlr); 
Xad = Xaq; 
XaqbyXls = Xaq/Xls; 
XaqbyXlr = Xaq/Xlr; 
XadbyXls = Xad/Xls; 
XadbyXlr = Xad/Xlr; 
V_phase = 220*sqrt(2)/sqrt(3);  %Peak value used in Simulink for source 
model 
  
% omegar_ic = omega_b*13/14; 
psi_qsic=0; 
psi_dsic=0; 
psi_qric=0; 
psi_dric=0; 
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shift_time2.m from [3] 
 
%shift_time2 
  
function [data]= shift_time2 (z15_LSB, z15_MSB, z16_LSB, z16_MSB, 
data_size) 
 
    z15_new_LSB=uint8(zeros(data_size,1)); 
    z15_new_MSB=uint8(zeros(data_size,1)); 
    index=0; 
    for ii=1:data_size 
        if z15_MSB(ii)>=2^7 
        index=index+1; 
            z15_new_MSB(ii)=z15_MSB(ii)-2^7; 
            if z15_new_MSB(ii)>=2^6 
        index=index+1; 
                z15_new_MSB(ii)=z15_new_MSB(ii)-2^6; 
            end 
        elseif z15_MSB(ii)>=2^6 
                z15_new_MSB(ii)=z15_MSB(ii)-2^6; 
        else 
        z15_new_MSB(ii)=z15_MSB(ii); 
        end 
    end 
    index=0; 
    for ii=1:data_size 
        if z15_LSB(ii)>=2^7 
        index=index+1; 
            z15_new_LSB(ii)=z15_LSB(ii)-2^7; 
            if z15_new_LSB(ii)>=2^6 
        index=index+1; 
                z15_new_LSB(ii)=z15_new_LSB(ii)-2^6; 
            end 
        elseif z15_LSB(ii)>=2^6 
                z15_new_LSB(ii)=z15_LSB(ii)-2^6; 
        else 
        z15_new_LSB(ii)=z15_LSB(ii); 
        end 
    end 
    %channel 16 
    z16_new_LSB=uint8(zeros(data_size,1)); 
    z16_new_MSB=uint8(zeros(data_size,1)); 
    index=0; 
    for ii=1:data_size 
        if z16_MSB(ii)>=2^7 
        index=index+1; 
            z16_new_MSB(ii)=z16_MSB(ii)-2^7; 
            if z16_new_MSB(ii)>=2^6 
        index=index+1; 
                z16_new_MSB(ii)=z16_new_MSB(ii)-2^6; 
            end 
        elseif z16_MSB(ii)>=2^6 
                z16_new_MSB(ii)=z16_MSB(ii)-2^6; 
        else 
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        z16_new_MSB(ii)=z16_MSB(ii); 
        end 
    end 
    index=0; 
    for ii=1:data_size 
        if z16_LSB(ii)>=2^7 
        index=index+1; 
            z16_new_LSB(ii)=z16_LSB(ii)-2^7; 
            if z16_new_LSB(ii)>=2^6 
        index=index+1; 
                z16_new_LSB(ii)=z16_new_LSB(ii)-2^6; 
            end 
        elseif z16_LSB(ii)>=2^6 
                z16_new_LSB(ii)=z16_LSB(ii)-2^6; 
        else 
        z16_new_LSB(ii)=z16_LSB(ii); 
        end 
    end 
  data15=(double(z15_new_LSB)+double(z15_new_MSB)*2^6); 
  data16=(double(z16_new_LSB)+double(z16_new_MSB)*2^6)*2^12; 
  data=((data15+data16)-(data15(1)+data16(1)))*2^17/25e6; 
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shift2alj.m, from [3] 
 
%shift2alj 
  
function [data]= shiftb2 (z_LSB, z_MSB,data_size) 
 
  
    z_new_LSB=uint8(zeros(data_size,1)); 
    z_new_MSB=uint8(zeros(data_size,1)); 
    index=0; 
    for ii=1:data_size 
        if z_MSB(ii)>=2^7 
        index=index+1; 
            z_new_MSB(ii)=z_MSB(ii)-2^7; 
            if z_new_MSB(ii)>=2^6 
        index=index+1; 
                z_new_MSB(ii)=z_new_MSB(ii)-2^6; 
            end 
        elseif z_MSB(ii)>=2^6 
                z_new_MSB(ii)=z_MSB(ii)-2^6; 
        else 
        z_new_MSB(ii)=z_MSB(ii); 
        end 
    end 
    index=0; 
    for ii=1:data_size 
        if z_LSB(ii)>=2^7 
        index=index+1; 
            z_new_LSB(ii)=z_LSB(ii)-2^7; 
            if z_new_LSB(ii)>=2^6 
        index=index+1; 
                z_new_LSB(ii)=z_new_LSB(ii)-2^6; 
            end 
        elseif z_LSB(ii)>=2^6 
                z_new_LSB(ii)=z_LSB(ii)-2^6; 
        else 
        z_new_LSB(ii)=z_LSB(ii); 
        end 
    end 
    for ii=1:data_size 
        if z_new_MSB(ii) >= 2^5 
            data(ii)=(double(z_new_LSB(ii))+double(z_new_MSB(ii))*2^6-
double(2^12)); 
        else 
            data(ii)=(double(z_new_LSB(ii))+double(z_new_MSB(ii))*2^6); 
        end 
    end 
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plot_exp_data_newscope.m, from [3] 
 
% EC3150 - Laboratory - G.Oriti, Jul '09  
% This file acquires the data vector from the oscilloscope 
% and plots it versus time 
% It also plots the spectrum of the input data vector using the fft 
  
data_in=xlsread('Tek_CH2_Wfm.csv'); 
data_in_ch3=xlsread('Tek_CH3_Wfm.csv'); 
data_in_ch4=xlsread('Tek_CH4_Wfm.csv'); 
len = length(data_in); 
datavec=data_in(15:len,1:2); 
datavec_ch3=data_in_ch3(15:len,1:2); 
datavec_ch4=data_in_ch4(15:len,1:2); 
  
ch2_smooth=(datavec(:,2)+[datavec(2:len-14,2);0])/2; 
ch3_smooth=(datavec_ch3(:,2)+[datavec_ch3(2:len-14,2);0])/2; 
ch4_smooth=(datavec_ch4(:,2)+[datavec_ch4(2:len-14,2);0])/2; 
figure(1); 
% plot(datavec(:,1),datavec(:,2),'b:'); 
plot(datavec(:,1),ch2_smooth,'m'); 
hold on; 
% plot(datavec_ch3(:,1),datavec_ch3(:,2)/10-15,'g'); 
% plot(datavec_ch4(:,1),datavec_ch4(:,2),'r'); 
%plot(datavec_ch3(:,1),ch3_smooth/10-15,'k'); 
plot(datavec_ch4(:,1),ch4_smooth,'b'); 
hold off; 
title('DC Machine measurements during step change in speed'); 
xlabel('time [s]'); 
grid on 
legend('I_f_i_e_l_d','I_a','Location','NorthEast'); 
axis([-1 1 0 4]); 
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Data_crunching.m from [3] 
 
%data_crunching 
  
  
%post-processing and plotting data 
%processing channel 1 data 
z_LSB1a=z(:,1); 
z_MSB1a=z(:,2); 
z_LSB1b=z(:,1+32); 
z_MSB1b=z(:,2+32); 
z_LSB1c=z(:,1+32+32); 
z_MSB1c=z(:,2+32+32); 
z_LSB1d=z(:,1+32+32+32); 
z_MSB1d=z(:,2+32+32+32); 
z_LSB1e=z(:,1+16); 
z_MSB1e=z(:,2+16); 
z_LSB1f=z(:,1+32+16); 
z_MSB1f=z(:,2+32+16); 
z_LSB1g=z(:,1+32+32+16); 
z_MSB1g=z(:,2+32+32+16); 
z_LSB1h=z(:,1+32+32+32+16); 
z_MSB1h=z(:,2+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB1(8*ii-7)  =z_LSB1a(ii); 
    z_LSB1(8*ii-6)  =z_LSB1e(ii); 
    z_LSB1(8*ii-5)  =z_LSB1b(ii); 
    z_LSB1(8*ii-4)  =z_LSB1f(ii); 
    z_LSB1(8*ii-3)  =z_LSB1c(ii); 
    z_LSB1(8*ii-2)  =z_LSB1g(ii); 
    z_LSB1(8*ii-1)  =z_LSB1d(ii); 
    z_LSB1(8*ii)    =z_LSB1h(ii); 
    z_MSB1(8*ii-7)  =z_MSB1a(ii); 
    z_MSB1(8*ii-6)  =z_MSB1e(ii); 
    z_MSB1(8*ii-5)  =z_MSB1b(ii); 
    z_MSB1(8*ii-4)  =z_MSB1f(ii); 
    z_MSB1(8*ii-3)  =z_MSB1c(ii); 
    z_MSB1(8*ii-2)  =z_MSB1g(ii); 
    z_MSB1(8*ii-1)  =z_MSB1d(ii); 
    z_MSB1(8*ii)    =z_MSB1h(ii); 
end 
  
ch1_data= shiftb2alj (z_LSB1, z_MSB1, totalpoints*4); 
ch1_final=ch1_data/2^2; 
  
%processing channel 4 data 
gain1=1/(1/3000+1/200000)/(1/(1/3000+1/200000)+56000*2)*1.05; 
z_LSB4a=z(:,7); 
z_MSB4a=z(:,8); 
z_LSB4b=z(:,7+32); 
z_MSB4b=z(:,8+32); 
z_LSB4c=z(:,7+32+32); 
z_MSB4c=z(:,8+32+32); 



 60 

z_LSB4d=z(:,7+32+32+32); 
z_MSB4d=z(:,8+32+32+32); 
z_LSB4e=z(:,7+16); 
z_MSB4e=z(:,8+16); 
z_LSB4f=z(:,7+32+16); 
z_MSB4f=z(:,8+32+16); 
z_LSB4g=z(:,7+32+32+16); 
z_MSB4g=z(:,8+32+32+16); 
z_LSB4h=z(:,7+32+32+32+16); 
z_MSB4h=z(:,8+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB4(8*ii-7)  =z_LSB4a(ii); 
    z_LSB4(8*ii-6)  =z_LSB4e(ii); 
    z_LSB4(8*ii-5)  =z_LSB4b(ii); 
    z_LSB4(8*ii-4)  =z_LSB4f(ii); 
    z_LSB4(8*ii-3)  =z_LSB4c(ii); 
    z_LSB4(8*ii-2)  =z_LSB4g(ii); 
    z_LSB4(8*ii-1)  =z_LSB4d(ii); 
    z_LSB4(8*ii)    =z_LSB4h(ii); 
    z_MSB4(8*ii-7)  =z_MSB4a(ii); 
    z_MSB4(8*ii-6)  =z_MSB4e(ii); 
    z_MSB4(8*ii-5)  =z_MSB4b(ii); 
    z_MSB4(8*ii-4)  =z_MSB4f(ii); 
    z_MSB4(8*ii-3)  =z_MSB4c(ii); 
    z_MSB4(8*ii-2)  =z_MSB4g(ii); 
    z_MSB4(8*ii-1)  =z_MSB4d(ii); 
    z_MSB4(8*ii)    =z_MSB4h(ii); 
end 
  
ch4_data= shiftb2alj (z_LSB4, z_MSB4, totalpoints*4); 
ch4_final=ch4_data/2^2; 
%processing channel 5 data 
z_LSB5a=z(:,9); 
z_MSB5a=z(:,10); 
z_LSB5b=z(:,9+32); 
z_MSB5b=z(:,10+32); 
z_LSB5c=z(:,9+32+32); 
z_MSB5c=z(:,10+32+32); 
z_LSB5d=z(:,9+32+32+32); 
z_MSB5d=z(:,10+32+32+32); 
z_LSB5e=z(:,9+16); 
z_MSB5e=z(:,10+16); 
z_LSB5f=z(:,9+32+16); 
z_MSB5f=z(:,10+32+16); 
z_LSB5g=z(:,9+32+32+16); 
z_MSB5g=z(:,10+32+32+16); 
z_LSB5h=z(:,9+32+32+32+16); 
z_MSB5h=z(:,10+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB5(8*ii-7)  =z_LSB5a(ii); 
    z_LSB5(8*ii-6)  =z_LSB5e(ii); 
    z_LSB5(8*ii-5)  =z_LSB5b(ii); 
    z_LSB5(8*ii-4)  =z_LSB5f(ii); 
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    z_LSB5(8*ii-3)  =z_LSB5c(ii); 
    z_LSB5(8*ii-2)  =z_LSB5g(ii); 
    z_LSB5(8*ii-1)  =z_LSB5d(ii); 
    z_LSB5(8*ii)    =z_LSB5h(ii); 
    z_MSB5(8*ii-7)  =z_MSB5a(ii); 
    z_MSB5(8*ii-6)  =z_MSB5e(ii); 
    z_MSB5(8*ii-5)  =z_MSB5b(ii); 
    z_MSB5(8*ii-4)  =z_MSB5f(ii); 
    z_MSB5(8*ii-3)  =z_MSB5c(ii); 
    z_MSB5(8*ii-2)  =z_MSB5g(ii); 
    z_MSB5(8*ii-1)  =z_MSB5d(ii); 
    z_MSB5(8*ii)    =z_MSB5h(ii); 
end 
ch5_data= shiftb2alj (z_LSB5, z_MSB5, totalpoints*4); 
ch5_final=ch5_data/2^2; 
%processing channel 6 data 
gain2=1/(1/6800+1/200000)/(1/(1/6800+1/200000)+120000*2)*1.05;  %DC 
sensor gain 
gainI=3/1000*330;           %current sensor gain 
z_LSB6a=z(:,11); 
z_MSB6a=z(:,12); 
z_LSB6b=z(:,11+32); 
z_MSB6b=z(:,12+32); 
z_LSB6c=z(:,11+32+32); 
z_MSB6c=z(:,12+32+32); 
z_LSB6d=z(:,11+32+32+32); 
z_MSB6d=z(:,12+32+32+32); 
z_LSB6e=z(:,11+16); 
z_MSB6e=z(:,12+16); 
z_LSB6f=z(:,11+32+16); 
z_MSB6f=z(:,12+32+16); 
z_LSB6g=z(:,11+32+32+16); 
z_MSB6g=z(:,12+32+32+16); 
z_LSB6h=z(:,11+32+32+32+16); 
z_MSB6h=z(:,12+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB6(8*ii-7)  =z_LSB6a(ii); 
    z_LSB6(8*ii-6)  =z_LSB6e(ii); 
    z_LSB6(8*ii-5)  =z_LSB6b(ii); 
    z_LSB6(8*ii-4)  =z_LSB6f(ii); 
    z_LSB6(8*ii-3)  =z_LSB6c(ii); 
    z_LSB6(8*ii-2)  =z_LSB6g(ii); 
    z_LSB6(8*ii-1)  =z_LSB6d(ii); 
    z_LSB6(8*ii)    =z_LSB6h(ii); 
    z_MSB6(8*ii-7)  =z_MSB6a(ii); 
    z_MSB6(8*ii-6)  =z_MSB6e(ii); 
    z_MSB6(8*ii-5)  =z_MSB6b(ii); 
    z_MSB6(8*ii-4)  =z_MSB6f(ii); 
    z_MSB6(8*ii-3)  =z_MSB6c(ii); 
    z_MSB6(8*ii-2)  =z_MSB6g(ii); 
    z_MSB6(8*ii-1)  =z_MSB6d(ii); 
    z_MSB6(8*ii)    =z_MSB6h(ii); 
end 
ch6_data= shiftb2alj (z_LSB6, z_MSB6, totalpoints*4); 
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ch6_final=ch6_data/2^6; 
%processing channel 7 data 
z_LSB7a=z(:,13); 
z_MSB7a=z(:,14); 
z_LSB7b=z(:,13+32); 
z_MSB7b=z(:,14+32); 
z_LSB7c=z(:,13+32+32); 
z_MSB7c=z(:,14+32+32); 
z_LSB7d=z(:,13+32+32+32); 
z_MSB7d=z(:,14+32+32+32); 
z_LSB7e=z(:,13+16); 
z_MSB7e=z(:,14+16); 
z_LSB7f=z(:,13+32+16); 
z_MSB7f=z(:,14+32+16); 
z_LSB7g=z(:,13+32+32+16); 
z_MSB7g=z(:,14+32+32+16); 
z_LSB7h=z(:,13+32+32+32+16); 
z_MSB7h=z(:,14+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB7(8*ii-7)  =z_LSB7a(ii); 
    z_LSB7(8*ii-6)  =z_LSB7e(ii); 
    z_LSB7(8*ii-5)  =z_LSB7b(ii); 
    z_LSB7(8*ii-4)  =z_LSB7f(ii); 
    z_LSB7(8*ii-3)  =z_LSB7c(ii); 
    z_LSB7(8*ii-2)  =z_LSB7g(ii); 
    z_LSB7(8*ii-1)  =z_LSB7d(ii); 
    z_LSB7(8*ii)    =z_LSB7h(ii); 
    z_MSB7(8*ii-7)  =z_MSB7a(ii); 
    z_MSB7(8*ii-6)  =z_MSB7e(ii); 
    z_MSB7(8*ii-5)  =z_MSB7b(ii); 
    z_MSB7(8*ii-4)  =z_MSB7f(ii); 
    z_MSB7(8*ii-3)  =z_MSB7c(ii); 
    z_MSB7(8*ii-2)  =z_MSB7g(ii); 
    z_MSB7(8*ii-1)  =z_MSB7d(ii); 
    z_MSB7(8*ii)    =z_MSB7h(ii); 
end 
ch7_data= shiftb2alj (z_LSB7, z_MSB7, totalpoints*4); 
ch7_final=ch7_data/2^6; 
  
%processing channel 8 data 
z_LSB8a=z(:,15); 
z_MSB8a=z(:,16); 
z_LSB8b=z(:,15+32); 
z_MSB8b=z(:,16+32); 
z_LSB8c=z(:,15+32+32); 
z_MSB8c=z(:,16+32+32); 
z_LSB8d=z(:,15+32+32+32); 
z_MSB8d=z(:,16+32+32+32); 
z_LSB8e=z(:,15+16); 
z_MSB8e=z(:,16+16); 
z_LSB8f=z(:,15+32+16); 
z_MSB8f=z(:,16+32+16); 
z_LSB8g=z(:,15+32+32+16); 
z_MSB8g=z(:,16+32+32+16); 
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z_LSB8h=z(:,15+32+32+32+16); 
z_MSB8h=z(:,16+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB8(8*ii-7)  =z_LSB8a(ii); 
    z_LSB8(8*ii-6)  =z_LSB8e(ii); 
    z_LSB8(8*ii-5)  =z_LSB8b(ii); 
    z_LSB8(8*ii-4)  =z_LSB8f(ii); 
    z_LSB8(8*ii-3)  =z_LSB8c(ii); 
    z_LSB8(8*ii-2)  =z_LSB8g(ii); 
    z_LSB8(8*ii-1)  =z_LSB8d(ii); 
    z_LSB8(8*ii)    =z_LSB8h(ii); 
    z_MSB8(8*ii-7)  =z_MSB8a(ii); 
    z_MSB8(8*ii-6)  =z_MSB8e(ii); 
    z_MSB8(8*ii-5)  =z_MSB8b(ii); 
    z_MSB8(8*ii-4)  =z_MSB8f(ii); 
    z_MSB8(8*ii-3)  =z_MSB8c(ii); 
    z_MSB8(8*ii-2)  =z_MSB8g(ii); 
    z_MSB8(8*ii-1)  =z_MSB8d(ii); 
    z_MSB8(8*ii)    =z_MSB8h(ii); 
end 
ch8_data= shiftb2alj (z_LSB8, z_MSB8, totalpoints*4); 
ch8_final=ch8_data; 
  
%processing channel 2 and 3 data to create time vector 
  
%processing channel 2 data 
z_LSB2a=z(:,3); 
z_MSB2a=z(:,4); 
z_LSB2b=z(:,3+32); 
z_MSB2b=z(:,4+32); 
z_LSB2c=z(:,3+32+32); 
z_MSB2c=z(:,4+32+32); 
z_LSB2d=z(:,3+32+32+32); 
z_MSB2d=z(:,4+32+32+32); 
z_LSB2e=z(:,3+16); 
z_MSB2e=z(:,4+16); 
z_LSB2f=z(:,3+32+16); 
z_MSB2f=z(:,4+32+16); 
z_LSB2g=z(:,3+32+32+16); 
z_MSB2g=z(:,4+32+32+16); 
z_LSB2h=z(:,3+32+32+32+16); 
z_MSB2h=z(:,4+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB2(8*ii-7)  =z_LSB2a(ii); 
    z_LSB2(8*ii-6)  =z_LSB2e(ii); 
    z_LSB2(8*ii-5)  =z_LSB2b(ii); 
    z_LSB2(8*ii-4)  =z_LSB2f(ii); 
    z_LSB2(8*ii-3)  =z_LSB2c(ii); 
    z_LSB2(8*ii-2)  =z_LSB2g(ii); 
    z_LSB2(8*ii-1)  =z_LSB2d(ii); 
    z_LSB2(8*ii)    =z_LSB2h(ii); 
    z_MSB2(8*ii-7)  =z_MSB2a(ii); 
    z_MSB2(8*ii-6)  =z_MSB2e(ii); 
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    z_MSB2(8*ii-5)  =z_MSB2b(ii); 
    z_MSB2(8*ii-4)  =z_MSB2f(ii); 
    z_MSB2(8*ii-3)  =z_MSB2c(ii); 
    z_MSB2(8*ii-2)  =z_MSB2g(ii); 
    z_MSB2(8*ii-1)  =z_MSB2d(ii); 
    z_MSB2(8*ii)    =z_MSB2h(ii); 
end 
%processing channel 3 data 
z_LSB3a=z(:,5); 
z_MSB3a=z(:,6); 
z_LSB3b=z(:,5+32); 
z_MSB3b=z(:,6+32); 
z_LSB3c=z(:,5+32+32); 
z_MSB3c=z(:,6+32+32); 
z_LSB3d=z(:,5+32+32+32); 
z_MSB3d=z(:,6+32+32+32); 
z_LSB3e=z(:,5+16); 
z_MSB3e=z(:,6+16); 
z_LSB3f=z(:,5+32+16); 
z_MSB3f=z(:,6+32+16); 
z_LSB3g=z(:,5+32+32+16); 
z_MSB3g=z(:,6+32+32+16); 
z_LSB3h=z(:,5+32+32+32+16); 
z_MSB3h=z(:,6+32+32+32+16); 
  
for ii=1:totalpoints/2 
    z_LSB3(8*ii-7)  =z_LSB3a(ii); 
    z_LSB3(8*ii-6)  =z_LSB3e(ii); 
    z_LSB3(8*ii-5)  =z_LSB3b(ii); 
    z_LSB3(8*ii-4)  =z_LSB3f(ii); 
    z_LSB3(8*ii-3)  =z_LSB3c(ii); 
    z_LSB3(8*ii-2)  =z_LSB3g(ii); 
    z_LSB3(8*ii-1)  =z_LSB3d(ii); 
    z_LSB3(8*ii)    =z_LSB3h(ii); 
    z_MSB3(8*ii-7)  =z_MSB3a(ii); 
    z_MSB3(8*ii-6)  =z_MSB3e(ii); 
    z_MSB3(8*ii-5)  =z_MSB3b(ii); 
    z_MSB3(8*ii-4)  =z_MSB3f(ii); 
    z_MSB3(8*ii-3)  =z_MSB3c(ii); 
    z_MSB3(8*ii-2)  =z_MSB3g(ii); 
    z_MSB3(8*ii-1)  =z_MSB3d(ii); 
    z_MSB3(8*ii)    =z_MSB3h(ii); 
end 
  
timedataold= shift_time2 (z_LSB2, z_MSB2, z_LSB3, z_MSB3, 
totalpoints*4); 

timedata=[0:(2^11-1)]/25e6*2^12; 
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