
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS UNDERWATER VEHICLE PLANNING
FOR INFORMATION EXPLOITATION

by

Adam Wiseman

March 2012

Thesis Co-Advisors: Douglas Horner
Oleg Yakimenko

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

4–4–2012 Master’s Thesis 2010-04-01—2012-03-30

Autonomous Underwater Vehicle Planning for Information Exploitation

Adam Wiseman

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A

The ability of an Autonomous Underwater Vehicle (AUV) to dynamically plan safe routes and maneuvers in dangerous
environments is directly relevant for the future of the use of AUVs in the exploration and exploitation of the underwater
environment, specifically the littorals and inland waters. This thesis builds upon the existing body of knowledge of the
REMUS AUV dynamics and kinematics and develops a control scheme for a real-time optimized vehicle trajectory that will
permit continuous and autonomous collection and exploitation of external sensor data, which will facilitate full 360-degree,
2-dimensional mapping of the underwater environment surrounding the vehicle while preventing the vehicle from coming into
contact with mapped objects in the water. The developed control schema will seek to generate a trajectory in real-time that
optimizes a key parameter of interest, the Information Gain, while minimizing a specified cost function of constraints, such as
kinematic limits and obstacle avoidance criteria.

Unclassified Unclassified Unclassified UU 117

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

AUTONOMOUS UNDERWATER VEHICLE PLANNING FOR INFORMATION
EXPLOITATION

Adam Wiseman
Lieutenant, United States Navy

B.S., Engineering Management, University of Arizona, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2012

Author: Adam Wiseman

Approved by: Douglas Horner
Thesis Co-Advisor

Oleg Yakimenko
Thesis Co-Advisor

Knox Millsaps
Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The ability of an Autonomous Underwater Vehicle (AUV) to dynamically plan safe routes and
maneuvers in dangerous environments is directly relevant for the future of the use of AUVs
in the exploration and exploitation of the underwater environment, specifically the littorals
and inland waters. This thesis builds upon the existing body of knowledge of the REMUS
AUV dynamics and kinematics and develops a control scheme for a real-time optimized vehicle
trajectory that will permit continuous and autonomous collection and exploitation of external
sensor data, which will facilitate full 360-degree, 2-dimensional mapping of the underwater en-
vironment surrounding the vehicle while preventing the vehicle from coming into contact with
mapped objects in the water. The developed control schema will seek to generate a trajectory in
real-time that optimizes a key parameter of interest, the Information Gain, while minimizing a
specified cost function of constraints, such as kinematic limits and obstacle avoidance criteria.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement. 2

1.3 Literature Review . 4

1.4 Thesis Organization . 6

2 Information Theoretics 7
2.1 Probabilistic Measures . 7

2.2 Entropy and Information Gain . 9

2.3 Occupancy Grids . 10

3 Direct Method of Inverse Dynamics in the Virtual Domain 15
3.1 Problem Formulation. 15

3.2 Trajectory Generation . 16

3.3 The Virtual Domain . 18

3.4 Inverse Dynamics . 20

3.5 Reference Function Coefficients . 21

3.6 Discretization. 22

3.7 Optimization . 23

4 Algorithm Implementation and Testing 27
4.1 Problem Setup . 27

4.2 Direct Methods Problem Formulation 30

4.3 Inverse Dynamics . 37

4.4 Path Probabilistic Analysis . 38

vii

4.5 Optimization Scheme (fminsearch) 45

5 Data Analysis and Findings 47
5.1 Scenario 1: No obstacles . 47

5.2 Scenario 2: One Obstacle . 50

5.3 Scenario 3: Two Obstacles, North-facing Starting Pose 56

5.4 Computational Performance . 59

6 Conclusions and Recommendations 67
6.1 Conclusions . 67

6.2 Recommendations for Future Work 68

Appendix 73

A MATLAB Code 73
A.1 Main Function: Main_opt.m . 73

A.2 Trajectory Generation and Optimization Function: trajectory.m 79

A.3 Reference Function Generation Function: RefFuncs.m 87

A.4 Sensor Model Generator Function: SensorModelGeneration.m 88

A.5 Sonar Sweep and Imaging Function: sweep.m 92

A.6 Occupancy Grid Updater and Information Gain Calculation Function: OGupdate.m 94

A.7 Heuristics Violation Analysis Function: HeurViolArea.m 96

A.8 Avoidance Penalty Analysis Function: Avoidance.m 98

Initial Distribution List 101

viii

List of Figures

Figure 2.1 Binary Entropy . 10

Figure 2.2 Sensor Model Probability Distribution Functions 12

Figure 4.1 Overall Trajectory Generation and Optimization Routine 28

Figure 4.2 Randomly Generated Endpoints (red circles are the endpoints, black star
is the start point; pink circle is the time horizon arc, blue rectangle is the
test tank) . 29

Figure 4.3 Information Gain Heat Map for ψ f = −45◦ (NED) Red colors indicate
higher IG values, blue colors indicate lower IG values 31

Figure 4.4 Three Dimensional Map of Information Gain for ψ f =−45◦ (NED) Red
colors indicate higher IG values, blue colors indicate lower IG values . 32

Figure 4.5 Trajectory Angles in the Horizontal Plane 38

Figure 4.6 Sample Cumulative Sonar Image . 40

Figure 4.7 Sensor Model Probability Distribution Functions 41

Figure 4.8 Sample Occupancy Grid . 42

Figure 4.9 Heuristic Boundaries, represented by the red-dashed lines. The blue rect-
angle represents the test tank walls; the pink square is an obstacle in the
tank; The red box represents the sonar cone of the FLS. 44

Figure 5.1 Scenario 1, All Runs, Initial Pose . 49

Figure 5.2 Scenario 1, Run 1 Trajectory . 50

Figure 5.3 Scenario 1, Run 2 Trajectory . 51

Figure 5.4 Scenario 1, Run 3 Trajectory . 52

ix

Figure 5.5 Scenario 1, Run 3 Occupancy Grid 53

Figure 5.6 Scenario 1, Run 3 vmax Violation . 54

Figure 5.7 Scenario 1, Run 3 ψ̇max Violation . 54

Figure 5.8 Scenario 2, Run 1 Trajectory . 55

Figure 5.9 Scenario 2, Run 2: Vehicle hits object in tank 56

Figure 5.10 Scenario 2, Run 2 Occupancy Grid 57

Figure 5.11 Scenario 3, All Runs, Initial Pose . 58

Figure 5.12 Scenario 3, Run 1 Trajectory . 59

Figure 5.13 Scenario 3, Run 2 Trajectory . 60

Figure 5.14 Scenario 3, Run 2 vmax Violation . 61

Figure 5.15 Scenario 3, Run 2 ψ̇max Violation . 61

Figure 5.16 Final Near-Optimal Vehicle Trajectory 62

Figure 5.17 Occupancy Grid for Near-Optimal Trajectory 63

Figure 5.18 Vehicle Orientation at Several Points Along Final Near-Optimal Trajec-
tory . 64

Figure 5.19 MATLAB Profiler Output for Final Optimal Trajectory Run 65

x

List of Tables

Table 2.1 Occupancy Grid Equation Terms . 11

Table 4.1 Kinematic Constraints . 33

Table 4.2 Cost Function Components . 46

Table 5.1 Variable Parameter Initial Guess Values for Scenario 1 48

Table 5.2 Cost Function Weighting Coefficients for Scenario 1 48

Table 5.3 Variable Parameter Initial Guess Values for Scenario 2 50

Table 5.4 Cost Function Weighting Coefficients for Scenario 2 51

Table 5.5 Formulas for Added β and Explored Space Cost Function Penalties . . 53

Table 5.6 Variable Parameter Initial Guess Values for Scenario 3 58

Table 5.7 Cost Function Weighting Coefficients for Scenario 3 58

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgements

First and foremost, I thank God for getting me through this with my sanity mostly intact.

Words cannot express my gratitude towards my wife and my rock, Selena. Her patient tol-
erance for my stress-induced moods, unflagging support of me in my many frustrations, and
exceptional ability to take care of the home front during the many, many hours I spent at school
toiling away on this thesis were an absolutely essential ingredient to my success in this endeavor.
I simply cannot fathom how I could have done this without her.

I would like to thank Prof. Doug Horner for his patience with my shortcomings, his understand-
ing during my misunderstandings, and his willingness to push me forward, out of my comfort
zone, into uncharted territory despite my consternation and apprehension.

Finally, I thank Prof. Oleg Yakimenko for his abundant help. His willingness to spend many
hours helping me through the toughest times, even on the weekends, debugging routines, check-
ing code, and fixing my mistakes were critical to my success.

So, from the bottom of my heart, thank you Prof. Yakimenko, thank you Prof. Horner, and most
of all, THANK YOU SELENA.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

The ocean is a vast and ever-changing environment. It presents significant challenges for those
that seek to explore and exploit it. Much of it is unknown and unexplored, and even much of
the known areas can be inhospitable and downright hostile to human intrusion. It has been said
that we know more about outer space than our own oceans [1]; yet it remains one of mankind’s
most vital and heavily exploited environments [2]. Ships have plied the seas for exploration,
merchant trade, and military operations for millennia, but until the last century, what lie below
the surface of the sea remained in the realm of myth and fantasy. While merchant mariners
remain largely content to safely ply the navigable waters on the surface with little concern
as to what lies below, the undersea environment is of great interest to scientists, engineers,
and military planners and operators. To that end, great strides have been made in exploring
this undersea world, from the deepest abysses to the shallow littorals and inland waterways
connected therewith. As evidenced by recent funding, research and development priorities, the
Navy has significant interest in exploring these shallow water environments [3].

1.1 Motivation
Dominance of the shallow waters of the littorals and inland waters is a vital concern for Mar-
itime Component Commanders. Amphibious operations, Naval Surface Gunfire Support mis-
sions, Special Operations, submarine strike packages, near-shore and inshore reconnaissance,
mine countermeasures, riverine combat, and waterway defense are just a few of the Naval op-
erations that exploit this waterspace. To enable such dominance, the Commander must have
the tools at his disposal to safely and completely explore unknown areas, investigate and map
underwater features, and locate and counter submerged mines. Remotely Operated Vehicles
(ROV’s) and Autonomous Underwater Vehicles (AUVs) are being used extensively in fields of
underwater cartography, exploration, salvage, and oceanographic research [4]. In recent years,
the Navy has recognized their extreme utility in meeting the aforementioned needs in the context
of military planning and operations. Just as Unmanned Aerial Vehicles have seen widespread
use in similar roles by Air and Ground Commanders, AUV systems are rapidly becoming the
go-to tool for Maritime Commanders to meet their unique needs in the littorals. Some of the
AUV’s attributes include:

1

Human Safety –Since AUVs are unmanned, the risk to human operators is reduced. Addi-
tionally, they can be used in roles traditionally performed by human divers, thus further
eliminating the risk to the Navy’s valuable human capital.

Flexible –Modern AUVs are designed and constructed with modularity in mind, allowing them
to be outfitted with sensors, actuators, and tools to accomplish a wide variety of missions.

Mobile –Many AUV systems (vehicle and associated support equipment) are small enough to
fit into the bed of a pickup truck or onto a helicopter, and are man-portable, allowing them
to be quickly delivered just about anywhere they are needed. Additionally, their small size
allows them to maneuver in spaces or areas inaccessible by manned underwater vehicles.

Autonomous –By definition, AUVs are autonomous, meaning that once set upon it’s mission,
no human control or intervention is required to accomplish the mission, resulting in lower
manpower requirements, almost zero risk of danger to human operators, and much higher
cost savings.

Low Cost –Cost savings over traditional means for accomplishing the stated objectives are
reached by use of Commercial Off-The-Shelf (COTS) technologies, reduction of man-
power requirements, size, and modularity. Further, the minimal amount of support equip-
ment required for many AUVs is far less than that of a comparably capable ROV, further
reducing costs.

1.2 Problem Statement
The Navy is interested in making AUVs more autonomous. In general, AUV autonomy is
defined by the ability of the vehicle to interpret it’s environment and plan trajectories that best
adhere to the mission objectives. It is characterized by four distinct aspects:

Internal Representation of the Environment - the spatial mapping, or "Environmental Map",
of objects and obstacles in the environment in which the vehicle is operating

Path Planning - creating a path to follow; two types of path planning: deliberative, where
the path is planned based on known information stored in the Environmental Map; and
reactive, where the vehicle detects objects or obstacles not already existing in the Envi-
ronmental Map and plans a path to avoid them

Path Following - Path planning results in a trajectory that the vehicle is trying to follow. This
provides direction to the controls, which then drives the vehicle along the path.

Sensory processing -As new sensory information is obtained, such as position and other raw
sensory data, it is fed back into the loop to localize the vehicle and update the World map.

2

Reactive obstacle detection is an example of a behavior exhibiting greater autonomy. The ex-
ternal representation of the AUV environment could be a map with the water depths and known
features and obstacles. The path planning module uses this information to plan a path. This
path must be calculated by considering the limitations in the AUVs maneuverability. Finally,
sensors such as a forward looking sonar provide imagery regarding the environment forward
of the AUV. Computer vision techniques are used on the images and pertinent information is
extracted and entered into the map. This feedback loop continues through the entire deployment
cycle and must be accomplished in near real-time. [5]

For this thesis, I am interested persistent AUV autonomy. This is ability of the AUV to remain
deployed for longer periods of time. The specific concept of operations is to put the vehicle
into a suspended sleep state. All primary systems are shut down to conserve battery life with
the exception of a communications or sensing device and the computer to run them. Before the
AUV goes into this sleep mode, it surveys the area. During the survey it is looking for objects
readily detected by the forward looking sonar.

The AUV is eventually awakened via communications or sensory detection. The first objec-
tive is to localize the position of the AUV. Due to limitations in positive ballast and oceanic
conditions, the AUV may have drifted along the ocean floor. For tactical and safety reasons,
it is preferable not to surface the AUV for a GPS fix. The goal is for the AUV to efficiently
search the area for the navigational fixes that were surveyed prior to the sleep mode. This thesis
addresses the path planning necessary for such a behavior. The goal is to develop an informa-
tion theoretic search plan for the AUV to detect the survey sites taking into consideration the
uncertainty associated with vehicle position due to drift.

This thesis describes an optimal two-dimensional exploratory path-planning schema for the
REMUS AUV1 that utilizes well known and understood concepts of probabilistic analysis
(Bayesian inference) and information theoretics (entropic information, divergence measures,
etc.) for analyzing and quantifying the information gain achieved by an onboard organic sensor.
It is this latter subject of information analysis that is of key importance to this thesis. Rigorous
analysis will be given to determining the information gain achieved by the autonomous system
in the course of following various candidate trajectories. Information gain, in the context of the

1Although the methodologies explored by this thesis have been developed for use on the REMUS AUV, they
are obviously not limited to use on this vehicle, and may certainly be more generally applied, with minimal effort
or modification, to use in path planning for practically any autonomous agent operating under similar conditions
and constraints.

3

present problem being addressed, represents a quantitative and qualitative measure of the situa-
tional awareness and utility of the data models being collected and developed within the system.
This information gain will be utilized as the primary optimized parameter in the exploratory path
planning and optimization routine. For this, the author will employ a contemporary approach
to trajectory generation and optimization known as Direct Method of the Inverse Dynamics in
the Virtual Domain (hereafter referred to as DM-IDVD), that not only ensures complete ex-
ploratory coverage of the unknown underwater space in which the vehicle operates, but allows
real-time, near-optimal trajectory generation within the performance constraints of off the shelf
computing and control systems widely used on autonomous vehicles.

1.3 Literature Review
Path planning is one of the most rigorously studied problems in the field of robotics. Numerous
techniques, methodologies, and algorithms exist to process sensor information and plan a tra-
jectory to direct an agent (e.g. vehicle, robotic device, etc.) from an initial state to a final state
subject to dynamic, kinematic, environmental, configurational, or other constraints. The algo-
rithms and guidance laws produced by such methodologies address such issues as localization,
track following, cross-track error control, obstacle avoidance, and trajectory optimization. Of
key importance to the efficacy of almost all of these methodologies, as applied to an autonomous
vehicle, is the means by which the information gathered by the agent’s onboard sensor(s) is col-
lected, measured, quantified, analyzed, and applied.

1.3.1 Trajectory Generation
In the context of the REMUS AUV, many path planning methods have been explored. Most
earlier works focused on simplified path planning problems such as contour following and ob-
stacle avoidance. Van Reet explored contour following techniques utilizing logic-based gra-
dient methods [6]. Heminger [7] and Healey [8] developed reactive obstacle avoidance tech-
niques which used Gaussian Potential Functions for obstacle avoidance. Furukawa worked on
an obstacle avoidance routine that combined a spline addition planner with a look-ahead pitch
controller [9]. While sufficient for simplified mission tasks, these approaches have intrinsic
limitations and drawbacks when applied to more complex scenarios, including sub-optimality,
computational intensity, ambiguity in situational awareness, and sensitivity to error.

The Direct Methods approach seeks to mitigate these issues, and of late, much attention here at
NPS has been given to applying this technique to autonomous system navigation. Recent work
includes that of Yakimenko, Horner, Pratt, and Kragelund. Horner and Yakimenko were the

4

first to incorporate Direct Methods into the obstacle avoidance path planning framework. Their
2007 paper [5] utilized sensor data in a closed feedback loop and a known environmental map
to provide the situational awareness to the DM-IDVD algorithm. The algorithm then generated
a near-optimal trajectory for navigation and obstacle avoidance, updating in real time along the
vehicle’s path. Yakimenko then expanded on this paper in 2008 [10], incorporating the DM-
IDVD method into a formulation of a more generalized approach to real-time, near-optimal,
obstacle avoidance, 3D spatial trajectories. Furthering the research into applying the DM-IDVD
approach to AUV navigation was the paper by Yakimenko, Horner and Pratt which detailed a
control algorithm for autonomously deploying and recovering AUVs [11]. In this paper, the
authors apply the DM-IDVD method to calculating trajectory of an AUV out of (deployment)
or into (recovery) a submerged docking apparatus, reducing the AUVs dependency on the host
surface vessel or swimmers. What each of these approaches had in common is their use of
known a priori information of the environment for localization and navigation. The DM-IDVD
method was applied, more or less, to the task of obstacle avoidance or waypoint navigation.

1.3.2 Sensor Information Processing
As alluded to previously, the methods and techniques by which sensor data is analyzed and
applied is absolutely key to the efficacy of any path planning algorithm. The methodology ex-
plored by this thesis utilizes existing techniques for handling a sonar image input and converting
that image into a probabilistic model of the environment. Extensive use is made of McChes-
ney’s work [12] with manipulating the sonar image collected by the REMUS vehicle’s onboard
blazed array sonar sensor2. In his thesis, McChesney processes a three-dimensional sonar im-
age by first developing noise and signal confidence probability models of the sonar sensor itself,
and then applies a probabilistic update process to develop a three dimensional spatial model of
the underwater environment. This spatial model is constructed by way of an Occupancy Grid
(OG). The Bayesian probabilistic methods used to build and update the OG have been rigor-
ously explored and presented by Elfes [13] and Noykov [14]. The exact method whereby the
collected sonar image is used to develop the OG will be discussed in detail in Chapter 2.

In this thesis, information gain (IG) is the key informational parameter under consideration.
To that end, it must be clarified that the information stored in the OG is merely a means to
an end. As our primary concern is with determining how much information is gained by the

2While the McChesney thesis deals with feature reconstruction in three dimensions using both horizontal and
vertical elements of the BlueView sonar package installed onboard the REMUS vehicle, this thesis will work in
two dimensions only, dealing with the horizontal plane.

5

system for a given candidate trajectory, a means must be utilized with which we can analyze the
gain, or divergence, in cumulative information between discrete consecutive updates of the OG.
The tools used in the methodology explored by this thesis come from the field of Information
Theoretics. Much use is made of the concepts of divergence measures, entropic information,
and Fisher information, as presented in the context of autonomous agent path planning in the
Levine thesis [15]. Although Levine applies these concepts to a very different approach to path
planning (Rapidly-exploring Random Trees), they are equally apropos for the approach used in
this thesis.

1.4 Thesis Organization
Chapter 2 of this thesis will discuss the generalized information theoretics and probabilistic
methods that will be used to process, update, and quantify the sonar-sensor information. I
will first describe the conditional probabilistic process of Bayesian inference. This process
will then be applied to the formulation of the Occupancy Grid (OG) and the update process.
Next, the critical foundational concepts of information theoretic measures will be discussed. It
will cover entropic information (conditional entropy), divergence measures (Kullback-Leibler
divergence), information gain, and Fisher information matrices.

Chapter 3 provides a generalized discussion of the Direct Methods approach. It is the path
planning methodology used for the thesis. Chapter 4 will tie the concepts and methods discussed
in the previous two chapters into a complete path planning routine. First, the methods and
techniques by which the simulated sonar image is processed into an environmental spatial model
is discussed. Then the process by which the probabilistic measures of entropy and information
gain are quantified are elaborated upon. Next, the constraints on the states, controls, and their
derivatives will be defined. Optimization parameters and the concomitant cost functions which
incorporate the previously discussed information metrics will then be developed. The candidate
trajectory reference functions will be presented, followed by a discussion of parameterization
of the reference functions in the virtual domain. Initial and final conditions on the fixed and
variable parameters of the reference functions will then be established. The inverse dynamic
equations are then developed. Finally, with all the pieces in place, the optimization routine
will be discussed and analyzed. The remaining chapters cover the analysis of the results, the
findings therein, and finally, the conclusion including a brief discussion of opportunities for
further research relevant to this thesis topic.

6

CHAPTER 2:
Information Theoretics

As stated in Chapter 1, the ultimate goal of the approach developed by this thesis is to produce
an optimal trajectory that maximizes the information gain achieved by that trajectory. Before
examining the Direct Methods process in detail and describing the approach developed by the
author, a primer on some of the basic information theoretic measures employed in the author’s
method. In this chapter, a few of these measures will be reviewed. Bayesian inference is a
key component of the probabilistic analysis performed during the analysis and quantification of
the received sonar image and the construction of the corresponding occupancy grid. Entropic
information is an important metric in determining the value of the information received by the
system. Divergence measures, such as information gain, enable the quantification of increase in
knowledge gained during the process, and as stated before, are key parameters for optimization.

2.1 Probabilistic Measures
2.1.1 Basic Probability Concepts
Before discussing Bayesian inference itself, some basic probabilistic concepts must be eluci-
dated. Let consider a random variable X , and let x denote any specific value that X may be. For
example, if we consider a simple coin flip, where X is the random variable that represents the
side of the coin that turns up from the flip, then the possible values of x are heads or tails. The
probability that X has a value of x is given by

P(X = x), (2.1)

and is typically shortened to pX(x), or simply p(x). So for the example of the coin flip, the
probability that heads turns up is indicated by p(X = heads), and the probability of tails turning
up is p(X = tails). For a “fair" coin, where there is equal probability of achieving either result,
p(X = heads) = p(X = tails) = 1

2 . Furthermore, discrete probabilities always sum to unity,
thus ∑x p(X = x) = 1 [16].

A joint distribution of X and Y is one in which p(x,y) = p(X = x and Y = y), which describes
the probability of the event where X = x and Y = y simultaneously. If neither random variable

7

depends on the other for their respective values, we call the random variables independent, such
that p(x,y) = p(x)p(y).

Conditional probabilities are another form of probabilistic measure that give us information
about the likely value of one random variable given known information about another. In other
words, a conditional probability is the probability that random variable X takes on a value of x

given that we know another random variable Y has a value of y. Such probabilities are usually
denoted

p(X = x|Y = y), (2.2)

or more commonly
pX |Y (x|y) = p(x|y). (2.3)

This is a key fundamental concept, as it will be heavily utilized in the Bayesian inference process
to be discussed in the next section. Furthermore, if p(y)> 0, then

p(x|y) = p(x,y)
p(y)

, (2.4)

and if X and Y are independent as defined above, we get

p(x|y) = p(x)p(y)
p(y)

= p(x). (2.5)

This then leads to one last concept relevant to Bayesian inference, the Law of Total Probability:
If X and Y are independent, and Y is a set of mutually exclusive and exhaustive events (meaning
only one event can occur at a time, and all possible events are contained in the set), then for any
other event X ,

p(x) = p(x|y1)p(y1)+ p(x|y2)p(y2)+ · · ·+ p(x|yn)p(yn) = ∑
y

p(x|y)p(y) (2.6)

in the discrete case. As we will see in the next section, this law forms the denominator of the
Bayesian Inference equation.

2.1.2 Bayesian Inference
Bayesian inference is the core concept of Bayesian decision theory in which information re-
garding the current state of a random variable is inferred from prior knowledge of states of that
random variable and present observations. It allows us to iteratively update the specific current,

8

or posterior, probability distribution of a random variable based on observational conditional
probabilities of certain events, and knowledge of the previous, or prior probability distribution.
Bayesian inference is defined by Bayes rule. Let X be a random variable with possible value, or
state, x drawn randomly from a set of possible values, χ . Before any observations are made, the
knowledge of x is given entirely by the prior probability distribution p(x). We model observa-
tions of the system as random variable Y that take on values of y. Given such observations (e.g.
sensor data), we may infer the value of x from that of y by way of the Bayes rule equation:

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)

∑
x′

p(y|x′)p(x′)
(2.7)

Here, p(x|y) is called the posterior probability distribution and p(y|x) is called the inverse

conditional probability. This latter component essentially describes the probability of receiving
value y given a specific value of x, for example, the likelihood that a specific state x value,
represented here by x′, causes a specific sensor measurement value of y.

2.2 Entropy and Information Gain
As previously stated, the objective of this thesis is to plan a trajectory that optimizes the in-
formation gain achieved by that trajectory. In order to quantify this information gain, we must
first describe the measure that it is predicated on, the information entropy. In the context of
information theoretic measures, the entropy of a random variable X , denoted H, is essentially a
measure of the amount of uncertainty associated with the values of X . It is the expectation of
the information that each value of the random variable carries, and is defined mathematically
by equation (2.8) [17]. If X can take on any value x from set of possible values χ , and p(x) is
the probability of X assuming value x, then the entropy of X is given as

H(X) = EX [I(x)] =−∑
x∈χ

p(x) log p(x). (2.8)

where I(x) is the self information of x, given by I(x) = log p(x), which represents the entropy
contribution carried by each value of x. [17]

In the special case where random variable X can only take on two possible values, such as the
case in the coin flip example, the entropy function simplifies to the binary entropy function

given by (2.9) [17]:
Hb =−p log2 p− (1− p) log2(1− p) (2.9)

9

Figure 2.1: Binary Entropy

This function is plotted in Figure 2.1. In this figure, we can see that the maximum entropy
occurs where the probability that X = 1 (P(X = 1)) is 0.5. (Note that since this is a binary
function, where X can only equal 1 or 0, then if P(X = 1) = 0.5, then P(X = 0) = 0.5.) This
probability value for maximum binary entropy will be used to initialize the occupancy grid
discussed in Section 2.3.

Information Gain, also known as Kullback–Leibler divergence, is a measure of the difference
between two probability distributions: a “true" probability distribution p(X), and an “assumed"
distribution, q(X). If we initially assume that the distribution of values x of random variable
X is given by q(X), when the actual correct distribution is p(X), then the difference measure
between the two distributions is given by the Kullback–Leibler divergence, defined as

DKL(p(x)‖q(x)) = ∑
x∈X
−p(x) logq(x)− (−p(x) log p(x)) = ∑

x∈X
p(x) log

p(x)
q(x)

(2.10)

If q(x) represents our prior belief of the probability that X = x, and subsequent observations
(or measurements) reveal a true, or correct, probability distribution p(x), then the information
gain measures how far from the true distribution our initial belief was. Thus by observing and
measuring a probabilistic quantity (i.e. random variable) and updating the probability distribu-
tion, then those observations carry information about that quantity causing us to increase our
knowledge about that quantity, and this gain is quantified as the information gain.

2.3 Occupancy Grids
As robotic sensors are never perfectly accurate, and are thus typically modeled probabilistically,
a means for generating a high-confidence spatial map of the sensed environment based on this

10

Table 2.1: Occupancy Grid Equation Terms

POcc P[s(C) = Occ|{r}t+1]
Probability that a cell is occupied given
the current and all previous measurements

P1 P[s(C) = Occ|{r}t]
Probability that a cell is occupied given
all previous measurements

P2 P[s(C) = Emp|{r}t]
Probability that a cell is empty given all
previous measurements

P3 P[rt+1|s(C) = Occ]
Probability of receiving the current mea-
surement given that the cell is occupied

P4 P[rt+1|s(C) = Emp]
Probability of receiving the current mea-
surement given that the cell is empty

sensor data must be developed based on probabilistic concepts. Elfes developed an iterative
method based on Bayesian inference that discretizes the spatial map into a grid of cells. The
goal is to determine whether each cell is occupied or empty. The occupancy probability of each
cell given all previous measurements is then given by

P[s(C) = Occ|{r}t+1] =
P[rt+1|s(C) = Occ] ·P[s(C) = Occ|{r}t]

∑
∀s(C)

P[rt+1|s(C)] ·P[s(C)|{r}t
(2.11)

where

rt+1 : The current measurement

s(C) : State of the cell ([Occ]upied or [Emp]ty)

{r}t : All measurements up to time t

Expanding the summation in the denominator, and subbing in short variable names from column
1 of Table 2.1, the Bayesian update equation for the occupancy grid cells then becomes

POcc =
P3 ·P1

P4 ·P2+P3 ·P1
(2.12)

From (2.12), we can see that we initially have 4 unknown variables that we must account for.
These unknowns are summarized in Table 2.1 [12]. However, recall that the states may only
have two possible states, Occupied or Empty, so P[s(C) = Occ|{r}t]+P[s(C) = Emp|{r}t] = 1.
So we can substitute 1− P[s(C) = Occ|{r}t] for P[s(C) = Emp|{r}t], thereby reducing the
number of variables required to be calculated for each cell to three. The last two components of
Table 2.1 are predicated on the probability distributions of the sensor model employed. These

11

Figure 2.2: Sensor Model Probability Distribution Functions

sensor models probability distributions are typically determined experimentally. An example
of the probability distributions for the sonar sensor employed on the NPS REMUS vehicle
can be seen in Figure 2.2. The second and third components represent the prior probability

distributions of occupancy data already existing in the occupancy grid for each cell.

Equation (2.12) represents the iterative process that occurs for each cell during each subsequent
collection of sensor data. Thus an initial value is required for the occupancy probability of each
cell. Since it is assumed that at time t = 0 we know nothing of the occupancy probability, a value
that represents this lack of knowledge, or information is needed. Recalling from Section 2.2 that
this lack of knowledge can be quantified by the informational entropy, we initialize all cells of
the OG to a value corresponding to maximum entropy. As there are only two possible values that
the cells can take, both being exclusive and exhaustive, and since the unconditional probabilities
of the cell taking each of these values are equal, then the corresponding maximum entropy is
0.5 (see Section 2.2).

To illustrate the process, consider an example in which a cell begins with an unknown occu-
pancy state. The prior probability that the cell is occupied, P[s(C) = Occ|{r}t], is 0.6, and
P[s(C) = Emp|{r}t] = 1−P[s(C) = Occ|{r}t] = 0.4. Now a sonar sweep across this cell re-
ceives a return signal, rt+1, with a value of 3000. From the sensor probability density functions
in Figure 4.7, the corresponding values for P[rt+1|s(C) = Occ] and P[rt+1|s(C) = Emp] are

12

approximately 0.01 and 0.001 respectively. Now, substituting these values into (2.12):

P[s(C) = Occ|{r}t+1] = POcc =
0.01 ·0.6

0.001 · (1−0.6)+0.01 ·0.6
= 0.9375

we achieve the posterior occupancy probability of the cell conditioned on the value of the sonar
signal received, which in this case is equal to 0.9375. Each cell is then updated in the same
manner using the prior occupancy probabilities and updated with the sensor model probability
values based on new sensor measurements for each sweep.

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 3:
Direct Method of Inverse Dynamics in the Virtual

Domain

This chapter describes a method, known as the Direct Method of Inverse Dynamics in the Vir-

tual Domain (DM-IDVD), whereby a set of candidate spatial trajectories for an autonomous
agent is generated in real-time for short-term maneuvers of the agent. The trajectories are gen-
erated by way of chosen reference functions that consist of linear functions of the parameters of
the system. They are then subjected to an optimization routine that seeks to minimize a given
cost function by way of built in or predeveloped minimization computational routines or algo-
rithm, such as fminsearch MATLAB function, or the Hookes-Jeeves minimization algorithm.
The DM-IDVD process results in the efficient solution of a two-point boundary value problem
representing the trajectory that is optimal in both the chosen optimization parameter and the set
of constraints based on vehicle kinematics, obstacle avoidance criteria, etc. The efficiency of
the routine allows for real-time trajectory optimization within the computational capabilities of
most modern autonomous systems. [18]

3.1 Problem Formulation
The DM-IDVD process begins by assuming that there exists a set of admissible trajectories
described by the state vector z(t):

z(t) = [z1(t), z2(t), . . . ,zr(t)]T ∈ S

S = {z(t) ∈ Zr ⊂ Er}, t ∈ bt0, t f c

All trajectories in the set must satisfy

1. the system of ordinary differential equations (typically defined by the vehicle kinematics):

żi = fi(t,z,u,c), i = 1,2, . . . ,r

where u is the vector of controls given by u(t) = {u1(t),u2(t), ...,ul(t)}T , l < r, u ∈U l ⊂
E l , and c is the vector of vehicle technical characteristics given by c = {c1,c2, ...,cp}T ,
c ∈Cp ⊂ E p;

15

2. initial and final conditions on the states and controls3:

z(t0)≡ z0 ∈ S0, S0{z0 ∈ Zr ⊂ Er} (3.1)

u(t0)≡ u0 ∈ R0, R0 = {u0 ∈U l ⊂ E l} (3.2)

z(t f)≡ z f ∈ S f , S f {z f ∈ Zr ⊂ Er} (3.3)

u(t f)≡ u f ∈ R f , R f = {u f ∈U l ⊂ E l} (3.4)

3. constraints on:
(a) state space:

η(t,z) = {η1(t,z),η2(t,z), . . . ,ηw(t,z)}T ≥ 0 (3.5)

(b) controls:
ξ (t,z,u) = {ξ1(t,z,u),ξ2(t,z,u), . . . ,ξv(t,z,u)}T ≥ 0 (3.6)

(c) and their derivatives:

π(t,z,u, u̇) = {π1(t,z,u, u̇),π2(t,z,u, u̇), . . . ,πσ (t,z,u, u̇)}T ≥ 0 (3.7)

Given the set of trajectories satisfying these requirements, the objective then is to determine
the best (near-optimal) trajectory zopt(t) from within the set and that trajectory’s corresponding
controls uopt(t) that minimize some cost function J. [18]

3.2 Trajectory Generation
The next step in the Direct Methods process is to express the candidate trajectories of the states
as a differentially flat function of some abstract parameter τ . (This virtual parameter, typi-
cally referred to as the virtual arc, will be discussed in more detail in Section 3.3.) Since
the main idea of direct methods is to consider the solution as a finite set of variables (func-
tions) [18], we first assume that the admissible functions can be expressed as an infinite power
series zi(τ) = ∑

∞
k=0 aikτk, a Fourier series zi(τ) = ai0/2+∑

∞
k=1(aik coskτ +bik sinkτ), or more

generally, by any series function of the form zi(τ) = ∑
∞
k=1 aikϕik(τ) where ϕik(τ) is any suit-

able basis function. In fact, the chosen reference functions may be any combination of basis
functions (e.g. monomials, trigonometric functions, etc.) so long as the set of trajectories gen-
erated by them meet the requirements in the preceding section. Direct methods then simplify

3Although this definition declares the terminal parameters as completely defined, in reality, they may not be.
In this case, these "free variables" may be added to the set of optimization parameters (OP’s).

16

the problem by considering the solutions to be functions of finite series vice infinite. The solu-
tion in this case is then merely a function of a set of unknown coefficients. That is to say that
zi(τ) = f (ai0,ai1, . . . ,aim,bio,bi1, . . . ,bin,τ), where i is the state parameter index and m and n

are the orders of the basis functions.

Consider, for instance the general 3D case where the coordinate state vector for an autonomous
agent is given by x = [x(τ),y(τ),z(τ)]. The candidate trajectories of the agent can be expressed
as a polynomial of degree N:

xi(τ)≡ Pi(τ) =
N

∑
k=0

aikτ
k (3.8)

where x1(τ)≡ x(τ),x2(τ)≡ y(τ), and x3(τ)≡ z(τ). The degree N of the polynomial is depen-
dent on the number of boundary conditions that must be satisfied so that all coefficients aik are
determined algebraically instead of being varied. The variable τ is left as a varied parameter.
In general, the minimum order n of polynomial required is determined by the orders of the time
derivatives of the initial and final coordinates (d0 and d f respectively):

n = d0 +d f +1 (3.9)

Boundary conditions at the initial and final (terminal) points of the desired trajectory that must
be satisfied typically include constraints on initial and final position, velocity, and acceleration,
i.e. xio,x′io,x

′′
io,xi f ,x′i f ,x

′′
i f [19]. In the case that each of these represents a given boundary

condition to be satisfied, then the minimum order N of polynomial P in (3.8) is 5, since d0 =

d f = 2. Thus all of the coefficients of P will be uniquely defined by these boundary conditions,
leaving τ as the only varied parameter. Of course, if needed, higher order derivatives may be
added to meet desired states at initial and/or final points. This simply requires increasing the
polynomial degree by the number of additional constraint derivative orders. For example, fixing
the final jerk x′′′i f at zero (as is the case in many terminal trajectory problems) increases d f by 1,
requiring a polynomial of order 6.

Thus far, we have considered the virtual arc τ as the only varied parameter. This, however,
limits the flexibility of our reference functions, as it provides only one optimization variable for
varying our reference trajectories within the set of admissible trajectories. Greater flexibility
may be achieved in our reference trajectory by increasing the number of varied parameters to
be considered in the optimization routine. This can be accomplished by "fictitious" boundary
conditions at the end points. For example, to increase the flexibility in the reference trajectories

17

of the 3D terminal trajectory case discussed above, we may add a 3rd order derivative x′′′0 f , or
jerk constraint, to the initial point. Thus d0 becomes 3, and N = d0+d f +1 = 7. This additional
"fictitious" derivative can now be used as a varied parameter, giving us greater control over the
shape of the candidate trajectories.

3.3 The Virtual Domain
We now turn our attention to the reason behind parameterizing the reference functions with re-
spect to an arbitrary, or virtual parameter τ . Up to this point, we have only concerned ourselves
with the flexibility of the trajectory reference function itself. We must now consider why pa-
rameterizing the reference functions with respect to time t actually limits our flexibility. Let us
consider what would happen if this were indeed the case by analyzing the speed profile of the
resulting time-parameterized trajectory. In this case, the speed at any time t along the trajectory
would be given by

V (t) =
√

u(t)2 + v(t)2 +w(t)2 =
√

ẋ2 + ẏ2 + ż2 =
√

Ṗ2
x + Ṗ2

y + Ṗ2
z (3.10)

Thus for any candidate spatial trajectory given by P, we have a single unique and unalterable
speed profile along that trajectory. This is undesirable since we might want to be able to vary
the speed profile independently of the spatial trajectory. By parameterizing the trajectory with
respect to an abstract argument, in this case the virtual arc parameter τ(τ 6= t), we introduce
a speed factor that allows for just such independence between speed and the spatial trajectory.
This speed factor λ is given by

λ (τ) =
dτ

dt
, (3.11)

which is essentially the virtual speed. Now since

ẋi(τ) =
dxi(τ)

dt
=

dxi(τ)

dτ

dτ

dt
= x′i(τ)λ (τ), (3.12)

we have
V (τ) = λ (τ)

√
x′(τ)2 + y′(τ)2 + z′(τ)2 = λ (τ)

√
P′2x +P′2y +P′2z (3.13)

Thus by varying the speed factor λ , we’re able to vary the speed profile independently of the
spatial trajectory.

The reason that the capability to vary the speed profile is desirable warrants further discussion.
In most cases, the minimum and maximum speeds of a vehicle are constrained by Vmax and

18

Vmin. In the case of the time-dependent speed given by (3.10), the direct correlation between
the spatial trajectory and speed along the trajectory means that the speed constraints will also
constrain the spatial trajectory, severely limiting our set of candidate trajectories. Computing
the trajectories in the τ domain, however, allows us to satisfy these constraints by adjusting
λ (τ) without directly affecting the spatial trajectory, such that

Vmin ≤ λ (τ)
√

P′2x +P′2y +P′2z ≤Vmax.

Likewise, consider possible constraints on centrifugal acceleration ac f = kV 2, where k is the
curvature of the trajectory. Here again, solving in the time domain ties the spatial trajectory
directly to speed V , and thus ac f . Moving to the τ domain, however, allows us to again satisfy
this constraint independently of the spatial trajectory by adjusting λ (τ), since

ac f (τ) = k(τ)V 2(τ) = k(τ)λ 2(τ)(P′2x +P′2y +P′2z)≤ ac f
max.

Yakimenko [20] makes note of some important points concerning this virtual parameterization.
First, if the virtual arc length τ f is on the order of physical path length s f , then the virtual speed
λ (τ) will be correspondingly congruent with the physical speed along the trajectory. Thus if
we set λ0 equal to V0, we can expect τ f ∼ s f . This conclusion enables us to make a sound
initial guess on τ f during the optimization portion of the routine. Second, we can see from the
relationship between τ and time given by equation (3.11) that time can be expressed as

t =
∫

τ

0

dτ

λ (τ)
.

Thus varying the speed factor λ (τ) not only changes the speed profile, but the time scale as well.
Finally, we can use the relationship between the virtual domain and time domain in equation
(3.11) to determine the derivatives in the time domain of any time-variant parameter [21]. Given
parameter ζ , the first and second time-derivatives of this parameter are

ζ̇ (τ) =
dζ

dτ

dτ

dt
= ζ

′(τ)λ (τ) and ζ̈ (τ) = λ (λ ′ζ ′+λζ
′′) (3.14)

We may then invert equation (3.14) to transfer the boundary conditions from the time domain
into the τ domain:

ζ
′ =

ζ̇

λ
and ζ

′′ =
ζ̈

λ 2 −
λ ′ζ̇

λ
(3.15)

19

3.4 Inverse Dynamics
Once the set of candidate trajectories has been computed, the next step in the DM-IDVD routine
is to compute the components of the state vector and the controls vector at discrete points along
each candidate trajectory. In so doing, not only do we ensure that the constraints of (3.5)–(3.7)
are not violated, but we also explicitly return the controls required to follow each candidate
trajectory. What we are essentially doing is computing the time-histories of the states and
controls along the trajectory. This is accomplished by way of inverting the dynamic equations
of motion for the vehicle. Let us again consider the case of a simple 6 Degree of Freedom
(6DOF) vehicle operating in 3D cartesian space. Suppose the kinematics of the vehicle are
given by  ẋ(t)

ẏ(t)

ż(t)

= u
bR

 u(t)

v(t)

w(t)

 (3.16)

where u
bR is the rotation matrix from the body frame {b} to the NED local tangent plane frame

{u}, and is defined by two Euler angles, pitch (θ(t)) and yaw (ψ(t)) (for simplicity, we will
neglect roll angle (φ(t)):

u
bR =

 cosψ(t)cosθ(t) −sinψ(t) cosψ(t)sinθ(t)

sinψ(t)cosθ(t) cosψ(t) sinψ(t)sinθ(t)

−sinθ(t) 0 cosθ(t)

 (3.17)

Before applying inverse dynamics, we must transfer (3.16) to the τ domain (assuming a constant
surge velocity U0):

λ (τ)

 x′(τ)

y′(τ)

z′(τ)

= u
bR

 U0

v(τ)

w(τ)

 (3.18)

If we also assume that pitch angle is small enough such that sinθ(t)≈ 0 and cosθ(t)≈ 0, (3.17)
becomes

u
bR(τ) =

 cosψ(τ) −sinψ(τ) 0
sinψ(τ) cosψ(τ) 0

0 0 1

 (3.19)

Note that as all kinematic parameters and equations have now been converted to the τ domain,
for simplicity the notation for functional τ-dependency will be hereafter omitted. Inverting the

20

kinematic equations (3.16) produces the following inverse dynamics equation: U0

v

w

= λ

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


 x′

y′

z′

 (3.20)

The remaining inverse dynamics equations are arrived at by solving (3.20) for the three un-
known parameters, v, w, and ψ . By inspection, we can readily ascertain that

w = λ z′, (3.21)

whereas the solutions for the other two unknown parameters are not as easily achieved. By way
of a geometric analysis of the scalar product of the vectors on the right hand side of (3.20), we
arrive at the following solutions for v and ψ:

v =
√

λ 2(x′2 + y′2)−U2
0 (3.22)

and
ψ = Ψ− tan−1 v/λ

U0/λ
= Ψ− tan−1 v

U0
(3.23)

where
Ψ = tan−1 y′

x′
. (3.24)

With the kinematic equations thusly inverted, we are now able to verify that the constraints on
these states are not violated by the candidate trajectories.

3.5 Reference Function Coefficients
States at the boundary conditions are now evaluated so that we may determine the coefficients
of the reference functions (3.8). Initial and final conditions on the coordinates (xi0 and xi f) are
given by equations (3.1) and (3.3). Known or given boundary conditions on velocity compo-
nents of surge, sway, and heave define the first-order τ-derivatives of the coordinate states (x′i0,
x′i f) by way of (3.18):  x′0; f

y′0; f

z′0; f

=
u
bR0; f

λ0; f

 U0

v0; f

w0; f

 (3.25)

21

where the initial and final values of yaw required to determine u
bR0; f above are given by (3.23):

ψ0; f = Ψ0− tan−1 v0; f

U0
(3.26)

and those for pitch are found by:

θ0; f = γ0 + tan−1 −w0; f√
U2

0 + v2
0; f

. (3.27)

The second order derivatives at the initial point (x′′i0) are typically provided by vehicle motion
sensors (accelerometers), although they may be explicitly stated as a given initial condition,
while the final second order derivatives (x′′i f) are usually given as defined desired final con-
ditions on acceleration. Likewise, the initial and final higher order derivatives required by the
chosen reference functions are are either assigned "guessed" values if they represent the variable
parameters (OP’s), or are explicitly given as dictated by the constraints on trajectory behavior
or constraints on the controls at the initial and terminal points. All of the derivatives must be
converted into the τ domain as required by the method describe above. With all necessary
states and their τ derivatives have been defined for the initial and terminal points, along with
guesses for the variable parameters (including τ f), the coefficients are then found by solving
the appropriate system of equations defined by (3.8) for these coefficients.

3.6 Discretization
In order to numerically calculate the remaining states over the length of the virtual arc from
τ = 0 to τ = τ f , it is necessary to discretize the trajectory into N evenly spaced points (in the τ

domain) with intervals of
∆τ =

τ f

N−1
, (3.28)

such that
τ j = τ j−1 +∆τ, j = 2, . . . ,N, (τ1 = 0). (3.29)

The ∆t for each interval may now be determined:

∆t j−1 = sqrt
(x j− x j−1)

2 +(y j− y j−1)
2 +(z j− z j−1)

2

U2
0 + v2

j−1 +w2
j−1

, j = 1, . . . ,N (3.30)

22

The speed factor λ for each interval by way of the discrete version of (3.11):

λ j =
∆τ

∆t j−1
(3.31)

The value of λ in (3.25) may be assumed to be any reasonable value, such as λ0; f = 1, since
this value merely scales the virtual domain. In other words, the higher the value assigned to λ ,
the larger the resulting value of τ f . This result is due to the time-virtual domain relationships
given by (3.11) and (3.13). Thus we can see that λ0; f

τ f
= U0

s f
, where s f is the total physical path

length along the trajectory. [10] Once the trajectory has been discretized and λ j for each point
computed by (3.31), we may compute the states and controls at all intermediate point at each
time stamp along the trajectory by way of the inverse dynamic equations determined previously
((3.21) through (3.23) in the 6DOF 3D vehicle case above). In some cases, numeric analysis
may be required to calculate the time derivatives of certain parameters in order to perform
constraint checks on these parameters. Such is the case with Ψ in the 3D example case above,
where we must numerically differentiate (3.24) in order to check a given constraint on Ψ such
as |Ψ̇(t)| ≤ Ψ̇max. The net result is a time-history of the states and controls at uniform discrete
points along the trajectory.

3.7 Optimization
Obviously, the whole of the entire above process generates the necessary set of trajectories sub-
ject to (3.1) to (3.4), we must now turn our attention to satisfying the constraints given by (3.5)
through (3.7), along with any optimization parameters required by the situation. As the goal of
Direct Methods is to determine a single near-optimal trajectory subject to these constraints and
OPs, we must invoke some sort of optimization routine that will optimize a defined performance
index and penalty (cost) function. This routine will accept the set of trajectories (more precisely,
the state and control time histories), constraints, and OPs as input, and output the trajectory that
most closely (near-optimally) satisfies the given requirements.

Let us first consider the cost function. We desire that our solution trajectory meet certain re-
quirements or not violate certain constraints. The cost function is how we quantify such con-
straint violations or satisfaction of requirements. The cost function determines how much a
given constraint or requirement is violated, and calculates an associated penalty value. Let’s
consider, for example, an example of an Unmanned Underwater Vehicle (UUV), defined by the
equations discussed previously in the 6DOF 3D case. Suppose we place the obvious constraints

23

on vehicle depth z (measured in the NED coordinate frame)

zmin < z j < 0, (3.32)

pitch θ

|θ(t)| ≤ θmax, (3.33)

and yaw rate ψ̇

|ψ̇(t)| ≤ ψ̇max. (3.34)

Penalties for each may be expressed as

min
j
(0;z j− zmin)

2

min
j
(0;−z j)

2

max
j

(0; |θ j|−θ j max)
2 and

max
j

(0; |ψ̇ j|−ψ j max)
2.

(3.35)

The resulting cost function multiplies these by a related scaling (weighting) parameter k:

∆ =
[
kz,kz,kθ ,kψ̇

]


min
j
(0;z j− zmin)

2

min
j
(0;−z j)

2

max
j

(0;
∣∣θ j
∣∣−θ j max)

2

max
j

(0;
∣∣ψ̇ j
∣∣− ψ̇ j max)

2


(3.36)

Other parameters that may be penalized subject to minimums and/or maximums might be speed
components (umin < u j < umax, vmin < v j < vmax, etc.), bank angle (|φ j|< φmax), or the controls
(|δ j| ≤ δmax), as well as their derivatives (actuator dynamics) (|δ̇ j| ≤ δ̇max).

The performance index factors in those parameters that are to be minimized or maximized based
on the specific requirements of the problem, such as final time t f , or some other parameter spe-
cific to the application, such as in the case with this thesis, Information Gain. In this case, since
we will attempt to maximize the IG, the performance index for IG will simply be a weighting
factor wig times the actual calculated value for IG.

24

Once the overall cost function and performance index is formulated, optimization proceeds by
utilizing some optimization algorithm, such as those mentioned at the beginning of this chapter.
An example of this, and the method chosen for use in this thesis, is the fminsearch algorithm in
MATLAB. Optimization is achieved by inputing initial guesses for the variable (optimization)
parameters, choosing the required number of iterations, and running the fminsearch algorithm
on the function that contains the trajectory generation code, the inverse dynamics calculations,
and the combined cost function/performance index (hereafter referred to simply as PI). The rou-
tine then seeks to minimize the PI by varying values of the "guessed" optimization parameters.
The end result is a solution containing the final guesses for the OP’s and the time-histories of
the states/controls corresponding to the near-optimal (minimized) PI.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:
Algorithm Implementation and Testing

This chapter describes the path planning algorithm for the REMUS AUV developed for this the-
sis. The algorithm implements the previously described concepts of Direct Methods, Bayesian
inference, probabilistic analysis, occupancy grids, and information gain. The algorithm takes
a known "world map" of the environment as input, as well as user specified constraints and
boundary conditions on the vehicle’s kinematic and spatial parameters. The net result is a tra-
jectory that satisfies the specified constraints on the vehicle and optimizes the information gain
achieved by the vehicle’s sensors. Figure 4.1 shows a simplified block diagram of the routine.
The orange box is the DM-IDVD path planning and optimization routine. The white box within
this box constitutes the optimization loop that is run within the optimization function. The gray
bubble corresponding to the gray box in the optimization loop displays the probabilistic analysis
subroutine, which performs the sonar imaging, occupancy grid updating, information gain cal-
culation, heuristics violation analysis, and obstacle avoidance subroutine. Each component will
be further described in this chapter. The entire routine is run using a set of MATLAB scripts and
functions developed by the author specifically for this thesis, as well as a couple of off-the-shelf
scripts sourced from the Mathworks website which offer simple functionality for specific tasks
(such as generating a Bresenham line in the sonar sweep and obstacle avoidance subroutines).
All of the pertinent MATLAB code used in this thesis is presented in Appendix A.

4.1 Problem Setup
The simulation environment chosen for this thesis was the testing tank located in the basement
of Halligan Hall on the campus of the Naval Postgraduate School. The tank measures approx-
imately 10 meters by 20 meters by 2 meters deep. The tank is modeled in MATLAB in matrix
form for the purposes of generating simulated sonar images and the occupancy grid. All posi-
tional coordinates of the vehicle are analyzed with respect to the center of gravity of the vehicle,
which, for the sake of simplicity, corresponds to the vertical (z-axis) center of rotation.

As will be discussed in Section 4.2.1, the simulation was run with the vehicle starting with a
known and fixed set of initial conditions on position and heading. While the choice for the
initial state is completely arbitrary, that for the final condition is not. In theory, the number of
candidate endpoints is quasi-infinite, bounded only by the constraints of the test space which,

27

Figure 4.1: Overall Trajectory Generation and Optimization Routine

in the case of this thesis, is the test tank. Although the simulation constrains the trajectories of
the vehicle to the confines of the test tank, a means must be addressed by which an endpoint of
the set of candidate trajectories evaluated by the direct methods routine may be chosen from the
quasi-infinite set of endpoints. Thus another constraint, a time horizon (TH), is incorporated.
The TH is a notional period of time over which we will limit the vehicles motion and perform
the required analysis. All trajectories of the candidate trajectory sets will be confined to the set
of endpoints that the vehicle can possibly reach given constraints on it’s surge (u) and sway (v)
velocities. Since umax is greater than vmax for the REMUS vehicle, the set of possible endpoints
is confined to lie within an arc represented by the TH multiplied by the umax. A graphical
representation of the random endpoints can be seen in Figure 4.2.

Now, while it is possible to implement the DM-IDVD trajectory optimization routine with free
endpoint coordinates given as variable parameters, the computational requirements for such a
routine would be exponentially increased, as this also leaves the first order time derivatives of
the coordinates at the endpoints free to vary as well. Thus this approach is not feasible for this
application, especially given the computational burden already placed on the resources by the
subordinate components of the routine added to the standard DM-IDVD algorithm by this thesis
(i.e. the sonar imaging, probabilistic analysis, and information theoretics). Thus, when setting

28

Figure 4.2: Randomly Generated Endpoints (red circles are the endpoints, black star is the start point;
pink circle is the time horizon arc, blue rectangle is the test tank)

up the problem, it became necessary to further constrain the endpoint coordinates to a smaller
region. In order to accomplish this, an initial analysis of the information space was performed
to determine where the endpoints are that achieve the greatest information gain for simple tra-
jectories. This was accomplished by generating a set of random endpoints that lie within the
confines defined by the tank walls and the TH arc. A simplified iterative routine was run that
traverses the vehicle from the fixed starting point to each of the random end points. Each end-
point trajectory was also iterated over a fixed number for randomly generated final yaw angles
(ψ f), in order to maximize our knowledge of the information space over all variable parameters.
A map of the information space for each value of ψ f was generated by evaluating the informa-
tion gain achieved along that specific trajectory. A simplified algorithmic representation of this
method is shown in Algorithm 1. The resulting map is a 3D representation of IG as a function
of the endpoint coordinates for each value of ψ f . Two dimensionally, an example of this can
be seen in Figure 4.3. This figure is a "heat map" where each cell of the figure represents

29

Algorithm 1 Information Space Initial Analysis Algorithm
1. For i = 1 to number for random ψ f ’s

2. Generate empty IG Array
3. For k = 1 to number of random endpoints

4. Generate straight-line trajectory between start and endpoint(k)
5. At each discrete point along trajectory:

6. Perform sonar sweep subroutine to generate sonar image
7. Run OG Update subroutine on sonar image
→ Update OG
→ Calculate IG at this point and add it to previous IG value

8. Store cumulative IG(k) value in cell corresponding to endpoint(k)
9. end loop

10. end loop

a cartesian coordinate and the value information gain of each coordinate is represented by a
color, with cooler colors representing lower values and hotter colors representing higher values.
A 3D version of this information gain mapping can be seen in Figure 4.4. By inspection of this
IG mapping for each of the values of ψ f , it became clear that maximal information gain was
achieved with trajectories terminating in the Southwest corner of the TH-constrained operating
space. Thus the values for the final coordinates are placed in this general location throughout the
rest of the algorithm testing. In a real-world application where this a priori data is not achiev-
able, other methods, such as heuristic evaluations, known-space-constrained explorations, etc.,
may be used to determine the desired end point.

4.2 Direct Methods Problem Formulation
4.2.1 Definition of States, Constraints, and Boundary Conditions
As discussed in Section 3.1, the first step was to define the vehicle state vector, controls, and
equations of motion in state space form. As this thesis analyzes only two-dimensional trajecto-
ries in the horizontal plane, the state vector x was defined as

x(t) = [x(t),y(t),ψ(t),u(t),v(t)]T , (4.1)

and the corresponding ordinary differential equations of motion are[
ẋ(t)

ẏ(t)

]
= u

bR

[
u(t)

v(t)

]
(4.2)

30

Figure 4.3: Information Gain Heat Map for ψ f =−45◦ (NED) Red colors indicate higher IG values,
blue colors indicate lower IG values

where u
bR is given by

u
bR(t) =

[
cosψ(t) −sinψ(t)

sinψ(t) cosψ(t)

]
(4.3)

The controls vector is given by
u = [nprop,n f lt ,nslt] (4.4)

where nprop, n f lt , and nslt are the controls (thrusts) on the main propeller, forward lateral cross-
body thruster, and stern lateral cross-body thruster, respectively. Next, the boundary conditions
at the initial and final points were defined. The initial pose of the vehicle was arbitrarily defined

31

Figure 4.4: Three Dimensional Map of Information Gain for ψ f = −45◦ (NED) Red colors indicate
higher IG values, blue colors indicate lower IG values

with a fixed starting point and heading:

x(t = 0)≡ x0 = xinit

y(t = 0)≡ y0 = yinit

ψ(t = 0)≡ ψ0 = psiinit

32

where xinit , yinit , and psiinit are the values for these parameters specified in the main MATLAB
script (see Appendix A). Likewise, the final pose is defined by:

x(t = t f)≡ x f = x f inal

y(t = t f 0)≡ y f = y f inal

ψ(t = t f)≡ ψ f = psi f inal

While the value used for psi f inal was initially chosen somewhat arbitrarily in the interest of
simplifying the problem (and later implemented as a variable parameter), as discussed in Sec-
tion 4.1, the choice of values for x f inal and y f inal is not arbitrary. These values were chosen
based on the initial information space analysis described in that section.

Kinematic constraints of the vehicle were sourced from Doherty [22]:

Table 4.1: Kinematic Constraints

Constraint Value
Max Surge Velocity (vmax) 2.88 m/s
Max Sway Velocity (umax) 0.5 m/s

Max Yaw Rate (ψ̇max) 14.5 deg/sec

4.2.2 Reference Functions
The first step in the DM-IDVD process, represented by the first block in Figure 4.1, is to choose
the reference functions for the key spatial parameters of the trajectory. The key parameters
of concern in this case were Euclidean spatial coordinates x and y, and yaw angle ψ . Thus
reference functions for these parameters were developed. Additionally, a reference function
for the speed factor λ was also chosen to allow for maximum flexibility in the speed profile
along the trajectory. As discussed in Section 3.3, the reference functions are parameterized
in the virtual domain as a function of the virtual parameter τ . The reference function for
the coordinates xi (i = {1,2}, so x ≡ x1 and y ≡ x2) are shown in equation (4.5) below. The
chosen reference function for the spatial coordinates is a third order polynomial combined with
two trigonometric sine functions. The addition of the sine functions increases the flexibility in
varying the curvature of the resulting trajectory. This reference function is then differentiated
twice to allow the final acceleration in each coordinate to be varied. (The resulting cosine

33

terms in the second equation of (4.5) arise from the first derivative of the sine terms in the first
equation.)

xi(τ̄) : Pi(τ̄) = ai
0 +ai

1τ̄ +ai
2τ̄

2 +ai
3τ̄

3 +bi
1 sin(πτ̄)+bi

2 sin(2πτ̄)

x′i(τ̄) : τ f Pi
′(τ̄) = ai

1 +2ai
2τ̄ +3ai

3τ̄
2 +πbi

1 cos(πτ̄)+2πbi
2 cos(2πτ̄)

x′′i(τ̄) : τ
2
f Pi
′′(τ̄) = 2ai

2 +6ai
3τ̄−π

2bi
1 sin(πτ̄)+4π

2bi
2 sin(2πτ̄)

(4.5)

where
τ̄ =

τ

τ f

The parameter τ̄ is used as opposed to τ in order to simplify the process of solving for the
coefficients at τ0 and τ f in the sine and cosine components of the reference function. The
same parameter was used for all of the reference functions for consistency, despite the lack of
trigonometric terms in the ψ and λ reference functions. The next steps given by equations (4.6)
and (4.7) substitute τ0 and τ f for τ into (4.5) to develop the matrix equation (4.8). (Note that
although equations (4.6) through (4.8) are those for the x coordinate, those for y are of the same
form.)

x(τ̄)|τ=0 : x0 = ax
0

x′(τ̄)|τ=0 : τ f x′0 = ax
1 +πbx

1 +2πbx
2

x′′(τ̄)|τ=0 : τ
2
f x′′0 = 2ax

2

(4.6)

x(τ̄)|τ=τ f : x f = ax
0 +ax

1 +ax
2 +ax

3

x′(τ̄)|τ=τ f : τ f x′f = ax
1 +2ax

2 +3ax
3−πbx

1 +2πbx
2

x′′(τ̄)|τ=τ f : τ
2
f x′′f = 2ax

2 +6ax
3

(4.7)

34

The above equations are then put into matrix form as seen in (4.8):

⇒



1 0 0 0 0 0
0 1 0 0 π 2π

0 0 2 0 0 0
1 1 1 1 0 0
0 1 2 3 −π 2π

0 0 2 6 0 0





ax
0

ax
1

ax
2

ax
3

bx
1

bx
2


=



x0

x′0τ f

x′′0τ2
f

x f

x′f τ f

x′′f τ2
f


(4.8)

The following boundary conditions, as well as the initial guesses for the varied parameters
x′′f and y′′f are then substituted into (4.8) and the reference function coefficients are solved for
(second step of DM-IDVD illustrated by the second block of Figure 4.1).

x0 = xinit x f = x f inal

x′0 = 0 x′f = 0 (4.9)

x′′0 = 0 x′′f = var

y0 = yinit y f = y f inal

y′0 = 0 y′f = 0 (4.10)

y′′0 = 0 y′′f = var

where xinit , x f inal , yinit , and y f inal are the chosen trajectory start point and end point values
discussed in Section 4.2.1. The reference function for ψ was chosen to be a simple fifth order
polynomial. Since it was desired to vary the initial and final second derivatives of ψ , a fifth order
polynomial was necessary due to the requirement given by (3.9). The development process of
the reference function including solving for the coefficients is identical to that described above.

Reference Function for ψ:

ψ(τ̄) = Pψ(τ̄) = aψ

0 +aψ

1 τ̄ +aψ

2 τ̄
2 +aψ

3 τ̄
3 +aψ

4 τ̄
4 +aψ

5 τ̄
5

ψ
′(τ̄) = τ f Pψ

′(τ̄) = aψ

1 +2aψ

2 τ̄ +3aψ

3 τ̄
2 +4aψ

4 τ̄
3 +5aψ

5 τ̄
4

ψ
′′(τ̄) = τ

2
f Pψ
′′(τ̄) = 2aψ

2 +6aψ

3 τ̄ +12aψ

4 τ̄
2 +20aψ

5 τ̄
3

(4.11)

35

As before, τ0 and τ f are substituted into (4.11) to get the system of equations corresponding to
the boundaries:

ψ(τ̄)|τ=0 : ψ0 = aψ

0

ψ
′(τ̄)|τ=0 : τ f ψ

′
0 = aψ

1

ψ
′′(τ̄)|τ=0 : τ

2
f ψ
′′
0 = 2aψ

2

(4.12)

ψ(τ̄)|τ=τ f : ψ f = aψ

0 +aψ

1 +aψ

2 +aψ

3 +aψ

4 +aψ

5

ψ
′(τ̄)|τ=τ f : τ f ψ

′
f = aψ

1 +2aψ

2 +3aψ

3 +4aψ

4 +5aψ

5

ψ
′′(τ̄)|τ=τ f : τ

2
f ψ
′′
f = 2aψ

2 +6aψ

3 +12aψ

4 +20aψ

5

(4.13)

⇒



1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 1 1 1 1 1
0 1 2 3 4 5
0 0 2 6 12 20





aψ

0

aψ

1

aψ

2

aψ

3

aψ

4

aψ

5


=



ψ0

ψ ′0τ f

ψ ′′0τ2
f

ψ f

ψ ′ f τ f

ψ ′′ f τ2
f


(4.14)

The boundary conditions on ψ and the first and second derivatives are:

ψ0 = psiinit ψ f = psi f inal

ψ
′
0 = 0 ψ

′
f = 0 (4.15)

ψ
′′
0 = var ψ

′′
f = var

where, as before, the values for psiinit and psi f inal were developed in Section 4.2.1, and the
initial and final second derivatives are left as varied parameters. As with x and y, these bound-
ary conditions along with the initial guesses on ψ ′′0 and ψ ′′f are substituted into (4.14) and the
coefficients solved for.

The reference function for the speed factor λ is of the exact same form as that for ψ , and is
identically developed, and thus will not be described in detail here. The boundary conditions
on λ are also of the same form, with λ0 = laminit and λ f = lam f inal being set equal to one.

36

This allows for a direct correspondence between the speed factor and initial and final speeds, as
discussed in Section 3.3. The initial and final first derivatives of λ are set to zero, and the initial
and final second derivatives are variable parameters.

4.3 Inverse Dynamics
Once the reference functions are fully developed as functions of τ as discussed in the preceding
section, they are evaluated over τ = [0; τ f]. The result is a fully defined and discretized tra-
jectory in x, y, and ψ , with the necessary τ-domain derivatives being evaluated concomitantly.
The next step, illustrated by the third block of Figure 4.1, is to compute the remaining states
and controls via inverse dynamics. Values for heading (Ψ), path angle (β), surge velocity (u),
sway velocity (v), total speed (V), and time (t), as well as the time derivatives of the angles are
calculated at each discrete point k along the trajectory by the following set of inverse dynamic
equations:

∆τ =
τ f

k−1
τ(1) =0

τ(k > 1) =τ(k−1)+∆τ

dt =
2∆τ

λ (k−1)+λ (k)

t(1) =0

t(k > 1) =t(k−1)+dt

Ψ(k) = tan−1(
x′(k)
y′(k)

)

β (k) =Ψ(k)−ψ(k)

V (k) =λ (k)
√

(x′(k))2 +(y′(k))2

u(k) =V (k)sin(β (k))

v(k) =V (k)cos(β (k))

(4.16)

37

Figure 4.5: Trajectory Angles in the Horizontal Plane

and the time derivatives of the angles are calculated by

Ψ
′(k) =

x′(k)y′′(k)− y′(k)x′′(k)
(y′(k))2 +(x′(k))2

Ψ̇(k) =λ (k)Ψ′(k)

ψ̇(k) =λ (k)ψ ′(k)

β̇ =Ψ̇− ψ̇

(4.17)

The angular relationships are arrived at by the motion dynamics of the vehicle in the horizontal
plane. Consider Figure 4.5. In this figure, V is the velocity vector of the vehicle in the NED
local tangent plane (LTP), and u and v are the surge and sway velocities respectively. The yaw
angle ψ is defined as the direction that the positive x-axis of the vehicle in the body centered
frame {b} makes with the Northerly axis of the LTP. The heading angle Ψ is the angle between
the North axis of the LTP and the velocity vector V . β is defined as the angle between the the
velocity vector and the positive x-axis of the vehicle in {b}. Thus β = Ψ−ψ .

4.4 Path Probabilistic Analysis
The probabilistic analysis portion of the routine occurs immediately after the inverse dynamics
calculations. It consists of several subroutines that are executed at each discrete point along each

38

trajectory. This part takes as inputs the vector of coordinate values (x,y) of the geometric center
of the vehicle along the entire trajectory, and the corresponding vector of yaw angles ψ for each
point. It executes subroutine functions at each point for performing a sonar sweep, updating the
occupancy grid, and calculating information gain, as well as performing the necessary analyses
for heuristics violations and obstacle avoidance.

4.4.1 Generating the Sonar Image
In order to generate a simulated sonar image of the environment, a "World Model" was first
constructed to represent the spatial environment that the vehicle was to be operated in. For this
thesis, that environment was to be a model of the Center for Autonomous Vehicles Research
(CAVR) water test tank located in the basement of Halligan Hall on the NPS campus. This open
top tank measures approximately 10 meters by 20 meters. The tank is modeled in MATLAB
with a simple matrix. The matrix cell values at and outside the tank walls have a value of 1,
while those inside the walls (representing water space) have a value of 0. The sonar image
is generated by a MATLAB function that performs a sonar sweep against the World Model
(sweep.m). The sonar sweep function casts a single sonar ray along a Bresenham line that has
a length equal to the effective range of the sonar. If all World Model cells along this ray hold
a value of zero, then the function chooses a random value from an equally distributed range of
possible signal strength values for a “no-object-in-beam" condition. Conversely, if a cell with
a value of 1 is found along the ray, then the function chooses a random value from an equally
distributed range of possible signal strength values for a “no-object-in-beam" condition. The
ranges for “object-in-beam" and “no-object-in-beam" signal strength values are bounded by the
minimum and maximum likely signal strengths for each condition. In the “object-in-beam"
case, the function then determines the World Model matrix coordinates for the first cell along
the ray with a value of 1, and stores the returned signal value in the Sonar Image matrix cell
corresponding to the same coordinates of the World Model. This ray-tracing routine is repeated
for a discrete number of rays about the entire swath of the sonar sensor, which, for the FLS
on the REMUS, is ±45◦ of the bow. An example of the generated cumulative sonar image,
with one object in the tank, is shown in Figure 4.6. This image is a compendium of all of the
individual sonar images developed for each sonar sweep for the entire trajectory.

4.4.2 Updating the Occupancy Grid
The occupancy grid is initialized as a matrix with the same dimensions as the given World
Model, with all cells assigned the value of 0.5 (see Section 2.3). It is then updated at each point

39

Figure 4.6: Sample Cumulative Sonar Image

along the trajectory by an OG update subroutine (OGupdate.m). This function takes the sonar
image generated in the previous subroutine and performs the Bayesian inference described in
Section 2.3 and defined by equation (2.12) to update the occupancy probability of each cell. In
order to obtain P[rt+1|s(C) = Occ] and P[rt+1|s(C) = Emp], a probabilistic model of the sensor
must first be built. This is performed by yet another subroutine function (SensorModelGenera-

tion.m). In this function, the probabilities that a given sensor value is obtained given either an
“object-in-beam" or “no-object-in-beam" state are modeled as continuous probability density
functions (pdf). Each of these models was generated based on data from McChesney4. The
pdf’s for the sonar sensor model are plotted in figure Figure 4.7. The occupancy grid updater
processes each individual cell of the sonar image and determines the P[rt+1|s(C) = Occ] and

4McChesney utilized histogram models for sensor modeling. Continuous pdf’s were used in this thesis due to
the lack of availability of his histogram data and insufficient time for actual in-tank sensor data collection. For the
objectives of this thesis, the models used are deemed sufficient for proof-of-concept testing.

40

Figure 4.7: Sensor Model Probability Distribution Functions

P[rt+1|s(C) = Emp] based on the signal value stored in the cell and the probability value of re-
ceiving this signal value based on the generated sensor model. The remaining unknown variable
in equation (2.12), P[s(C) = Occ|{r}t], is the previous occupancy probability value of that cell.
The newly calculated occupancy probability value for this cell will then be the prior value for
the next iteration of the Bayesian inference. Thus as more sonar sweeps across each cell happen,
the occupancy probability for each cell is constantly being updated, eventually converging on
the actual occupancy state of the cells. In this way, the occupancy grid is constantly increasing
in confidence. A sample occupancy grid, based on the data used to produce the sonar image in
Figure 4.6 is shown in Figure 4.8.

4.4.3 Calculating Information Gain
The same function that updates the occupancy grid also calculates the incremental information
gain at each step. As the occupancy probability of each cell is continually resolved by the
Bayesian inference, our knowledge of the actual state of each cell is constantly increasing, while
the information entropy is correspondingly decreasing. By applying the concepts discussed in
sections 2.1.2 and 2.2 the amount of change of probability values of each cell at each iteration
directly corresponds to the information gain achieved during that iteration. The information
gain is thus calculated during each update as the difference between the prior and posterior

41

Figure 4.8: Sample Occupancy Grid

occupancy probabilities of each cell. The net information gain over the entire trajectory is then
the cumulative sum of the information gain achieved over every iteration for all cells.

4.4.4 Heuristic Boundaries
At the start of the routine, the vehicle starts with no information about its environment. Even
after the first sonar sweep, the only knowledge it has is a low-confidence probabilistic estimate
of what lies in the sonar cone of that initial sweep. In order to allow for freedom of motion at this
beginning phase of the path, certain assumptions must be made about the region immediately
surrounding the vehicle.

In this vein, an initial “box" of free space is established around the vehicle so that it may
maneuver through unknown space until sufficient data has been collected to permit normal
exploration-based maneuvering based on collected data. The heuristic bounding box assumes

42

that the walls detected during the initial sonar sweep extend beyond the edges of the sonar cone
by a fixed amount sufficient to allow for an assumption of no objects or obstacles in a path
traveling to the immediate left or right of the vehicle. The forward looking sonar dictates a bias
towards forward exploratory motion, thus heuristic boundaries astern of the vehicle originate at
the sternmost point of the vehicle. With these considerations in mind, one side of the heuristic
bounding box at the vehicle’s stern is defined as a North-South line in the local tangent plane
(LTP) frame originating at the sternmost point of the vehicle and extending in the N-axis direc-
tion corresponding to that of the N-axis component of the vehicle centerline vector. The other
stern-side is similarly defined in the E-W direction in the LTP. The remaining two sides are sub-
ject to the shape of whatever is seen during the initial sonar sweep, and thus are more difficult
to explicitly define. It should be noted that if a secondary sensory system were utilized, such as
a side-scan sonar, the augmented sensory coverage to the port and starboard side of the AUV
would likely provide sufficient information about the adjacent environment at the start of the
routine such that these heuristic boundaries would be unnecessary for an AUV with cross-body
thrusters.

In the case of this thesis, however, the vehicle starts in a corner of the tank, so the first assump-
tion above is applied to the walls of the tank seen during the initial scan. The remaining two
(forward) heuristic boundaries are then defined by extending the lines of the walls seen by the
sonar beyond the sonar cone. These lines originate at the corner where the right and upper tank
walls meet, extending beyond the initial sonar spread and terminating where the left and lower
boundaries intersect with the walls. The resulting boundaries form a box that can be seen as
the red dotted lines in Figure 4.9. These boundaries are used in two ways. First, the occu-
pancy grid cells along the heuristic boundaries at the walls are initialized to a value of 0.75,
vice 0.5. Increasing this initial value reduces the possible information gain achieved by sensing
the walls within the heuristic bounding box, thus weighting subsequent explorations away from
these wall sections. Basically since we are already assuming the existence of the wall along
the boundaries, we want the information gain accrued when sensing these walls to be smaller
than that achieved by exploring unknown areas. Second, the boundaries at the stern of the ve-
hicle are used to penalize the vehicle for backing down into unknown (unexplored) territory.
At the outset, the area astern of the vehicle that lies beyond the stern heuristic boundaries is
completely unknown, and so there obviously exists the possibility for obstacles or obstructions
in those regions. Any generated trajectory that causes the vehicle to back down into this space

43

Figure 4.9: Heuristic Boundaries, represented by the red-dashed lines. The blue rectangle represents
the test tank walls; the pink square is an obstacle in the tank; The red box represents the sonar cone
of the FLS.

before it has been explored is penalized proportionally to the extent by which the stern violates
this boundary. The penalty function for this will be discussed further in Section 4.5.

4.4.5 Obstacle Avoidance
An obstacle avoidance subroutine is necessary to prevent the vehicle from coming into contact
with any obstacles or objects in the water. Since a vehicle with cross-body thrusters, such as
the NPS REMUS, is capable of significant lateral translation, it is not sufficient to base the
avoidance criteria simply on obstacles ahead of the vehicle. Thus a method was developed that
circumscribes a circular “avoidance perimeter" about the centroid of the vehicle with a radius
equal to the length of the vehicle. Each trajectory is then analyzed at each point along the
path for any intrusion of known object boundaries within this intrusion perimeter. The penalty
assigned to this intrusion is proportional to the penetration depth into the perimeter. The data
used for “known" objects is sourced from the OG, meaning that only objects or obstacles that
have been “seen" by the sonar are used in this analysis. This fact, combined with the sideslip
capability of the vehicle, led to the requirement for two other subroutines that bias the trajectory
into explored space, and limit the amount of sideslip into unexplored space. These subroutines
will be discussed further in Section 5.2.

44

4.5 Optimization Scheme (fminsearch)
The routine now proceeds with the optimization portion of the DM-IDVD process. A cost
function (CF) that calculates penalties for violating given constraints is calculated, as well as a
performance index (PI) of the optimized parameter, information gain. As stated previously, the
entire calculative routine is evaluated within MATLAB’s fminsearch() algorithm. This function
is a gradient-free minimization routine that seeks to find a local minimum of the input function.
In the case of the DM-IDVD routine, the input function f (x) (trajectory.m), consists of all
calculations examined thus far, and terminates with the calculation of the proceeding CF and PI.
The value to be minimized is thus the arithmetic sum of these two trajectory function outputs.
The fminsearch function also requires an initial guess on the neighborhood of values for the
variable parameters in the input function. It then iterates by varying the values of these variable
parameters until either the local minimum of the function value f (x) maximum (user-specified)
number of iterations is reached. Values are also specified for the convergence tolerance for both
f (x) and x.

4.5.1 Cost Functions and Performance Index
Penalties in the cost function were initially specified for the final time, yaw rate, surge velocity,
sway velocity, heuristics violations, and allision avoidance:

Time: Penalty for exceeding desired trajectory time. This desired time is spec-
ified as the time horizon TH. Since this isn’t a critical penalty, a lower
relative weighting factor is assigned to it.

ψ̇: Penalty for exceeding max yaw rate.

u: Penalty for exceeding max surge velocity.

v: Penalty for exceeding max sway velocity.

Heuristics Violation: Penalty for violating heuristics boundaries. This prevents backing into
the unknown region astern of the vehicle at the start of the trajectory.

Allision Avoidance: Object/obstacle proximity penalty. The closer the path comes to an ob-
ject or obstacle, the higher this penalty. This is based on a specified
avoidance radius centered on the vehicle centroid.

45

Table 4.2: Cost Function Components
Penalty Formula
Time CostT = (time(end)−T H)2

ψ̇ Fineψ̇ = max([0,(abs(ψ̇)− ψ̇max)])
2

u Fineu = max([0,(abs(u)−umax)])
2

v Finev = max([0,(abs(v)− vmax)])
2

Heuristics Violation CostH =ViolArea∗

Allision Avoidance CostAP = AP∗∗

Notes: *–ViolArea is the calculated are between the lower heuristic boundary and the arc swept by the vehicle’s

stern in violation of this boundary. **–AP is the calculated by a subroutine that assigns a cumulative penalty of

all of the individual proximity violations at each point along the trajectory, which are directly proportional to the

magnitude of the incursion of the object into a circle described about the vehicle centroid with a given avoidance

radius.

Table 4.2 show the formulas used in calculating the penalties in the cost function.

The performance index is simply the inverse of the cumulative information gain for the gener-
ated trajectory, and is calculated as CostIG = 1

IG . The inverse is used to maintain consistency
with the other cost functions in that it is desired to minimize each within the fminsearch func-
tion. Thus minimizing the inverse of IG means that IG will, in fact, be maximized.

Each of these CF/PI factors is multiplied by a weighting factor and summed. This sum of prod-
ucts is the value that is actually minimized by the fminsearch function. Once the minimal value
is found, the "optimal" trajectory that produced it is returned, including all state parameters (x,
y, and psi), as well as the states and controls calculated by the inverse dynamics. These outputs
are the final product of the routine–an optimal trajectory that satisfies all constraints imposed
on the problem and maximizes the optimization parameter, Information Gain.

46

CHAPTER 5:
Data Analysis and Findings

The routine described in Chapter 4 was built and run entirely in the MATLAB computing envi-
ronment. All pertinent MATLAB functions and scripts are contained in Appendix A on page 73.
The following sections discuss the numerical results of the simulation, as well as the resulting
trajectories for three simulation scenarios of the REMUS vehicle in the test tank with zero, one,
and two obstacles in the path of the vehicle. Constraints on surge (umax), sway (vmax), and yaw
rate (ψ̇max) were sourced from Doherty [22]. Initial guesses on the varied parameters and their
corresponding final optimal values for the trajectory generation runs are shown in the corre-
sponding tables for each set of runs. Prior to running the full simulation, the initial guesses
were made empirically by running several simulation runs with a reduced set of cost functions
(IG, EV excluded) to validate the trajectory generation routine. The final values for the varied
parameters were used as a baseline for subsequent complete optimization runs. These values
were adjusted as required until consistent results at the end points were observed. The simu-
lation was then run repeatedly, varying the initial guesses of the variable parameters as well as
the values for the weighting factors for the cost functions and performance index. The resulting
state and kinematic parameters were then observed, and any adjustments required to amelio-
rate or minimize constraint violations were made to the weighting factors. This process was
repeated until a satisfactory trajectory was obtained.

The following sections discuss the three scenarios analyzed: no object in the tank, one object
in the tank, and two objects in the tank. Three representative runs from each scenario are
discussed, including the values for the variable parameters and weighting coefficients, as well
as the results for each run.

5.1 Scenario 1: No obstacles
The set of runs for the first scenario were made with no obstacles in the tank. Values for the
pertinent variable parameters for each run are shown in Table 5.1. The values for the weighting
factors for each run are shown in Table 5.2.

47

Table 5.1: Variable Parameter Initial Guess Values for Scenario 1
1 2 3 4 5 6 7 8 9 10

Run 1 10 1 0.7854 0.5 2.3562 0.126 -0.054 0.0017 0.0009 -1.5708 rad
Run 2 10 1 0.7854 0.5 -0.7854 0.2 -0.05 0.017 0.0009 -1.5708
Run 3 10 1 0.7854 0.5 -0.7854 0.126 -0.054 0.017 0.0009 -1.5708

Variable Parameter Key:

1. Virtual Arc Length (τ f)
2. Magnitude of final acceleration (m/s2)
3. Direction of final acceleration (radians)
4. Magnitude of initial acceleration (m/s2)
5. Direction of initial acceleration (radians)
6. Initial yaw acceleration (ψ ′′i) (rad/s2)
7. Final yaw acceleration (ψ ′′f) (rad/s2)
8. Initial λ ′′

9. Final λ ′′

10. Final yaw angle (radians)

Table 5.2: Cost Function Weighting Coefficients for Scenario 1
1 2 3 4 5 6 7 8

Run 1 1 10 1 10 1 10 1 1
Run 2 1 10 1 100 10 10 1 1
Run 3 1 10 1 10 100 1 1 1

Weighting Factor Key:

1. Time
2. Yaw Rate (ψ̇)
3. Surge Velocity (u)
4. Sway Velocity (v)
5. β

6. Heuristics Violation
7. Allision Avoidance
8. Explored Space

The set of runs of the full routine for scenario 1 were done with the vehicle initially positioned
in the upper right section of the tank. The center of the vehicle was positioned one and a half ve-

48

Figure 5.1: Scenario 1, All Runs, Initial Pose

hicle lengths from both the top and right (East) walls of the tank, and the yaw angle was chosen
to be +45◦ from due North, thus pointing the vehicle at the corner of the tank, as illustrated in
Figure 5.1. This pose was chosen to simplify the heuristics assumptions and to put the vehicle
into the maximally constrained initial state. The end point was then chosen to conform to the
initial information space analysis discussed in Section 4.1. The probabilistic analysis portion of
the routine, which included the sonar imaging subroutines, Bayesian inference, occupancy grid
updating, heuristics analysis, and obstacle avoidance subroutines, was found to be quite compu-
tationally intensive, causing very long run times for a sufficient number of iterations. Because
of this, the runs were initially performed without the probabilistic analysis of information gain
to allow for quick validation of the basic setup of the algorithm. With no object in the tank,
and no probabilistic analysis, the routine initially generated unsatisfactory trajectories. Without
the sonar imaging and resulting occupancy grid, there was no capability for allision avoidance.
Thus several of the initially generated trajectories actually crossed the boundaries of the tank
walls before reaching the final point. Run 1 of this set is an example of this result, as seen in Fig-
ure 5.2. The values for the varied parameters and CF weighting coefficients were then adjusted
and another set of runs were made. The trajectory for Run 2, illustrated in Figure 5.3, resulted
in trajectories that remained within the confines of the tank, but violated constraints. With the
trajectories at least now remaining within the tank, the probabilistic analysis subroutines were

49

Figure 5.2: Scenario 1, Run 1 Trajectory

reimplemented back into the overall routine, and another set of runs was performed. Again,
the CF weighting factors were repeatedly adjusted in an attempt to eliminate any constraint vi-
olations, however this was not achieved in this scenario. Figure 5.4 shows the best trajectory
achieved for the initial conditions in this scenario, and the corresponding occupancy grid can
be seen in Figure 5.5. Figure 5.6 shows the violation of the max sway velocity (v), while Fig-
ure 5.7 shows the max yaw rate violation for this run. Subsequent attempts to ameliorate this
problem failed to generate a fully satisfactory trajectory that met all constraints.

5.2 Scenario 2: One Obstacle
The set of runs for the second scenario were made with a single obstacle in the tank placed in
the nominal path of the vehicle. Values for the pertinent variable parameters for each run are
shown in Table 5.3. The values for the weighting factors for each run are shown in Table 5.4.

Table 5.3: Variable Parameter Initial Guess Values for Scenario 2
1 2 3 4 5 6 7 8 9 10

Run 1 10 1 0.7854 0.5 2.3562 0.126 -0.054 0.0017 0.0009 -1.5708
Run 2 10 1 0.7854 0.5 -0.7854 0.126 -0.054 0.0017 0.0009 -1.5708

50

Figure 5.3: Scenario 1, Run 2 Trajectory

Table 5.4: Cost Function Weighting Coefficients for Scenario 2
1 2 3 4 5 6 7 8

Run 1 1 10 1 10 1 10 1 1
Run 2 1 10 1 10 100 10 1 1

Although no satisfactory runs were made in the initial scenario, an attempt was made to continue
testing with a single obstacle in the tank, in the hopes that further adjustments to the pertinent
parameters combined with an obstacle in the tank would drive down the constraint violations.
Initial conditions on the vehicle position and pose for the first two runs of this scenario were
the same as those for the first scenario, illustrated in Figure 5.1. Figure 5.8 shows an example
of the resulting trajectory with the parameters set as indicated in Tables 5.3 and 5.4. As seen in
this figure, the generated trajectory starts in the Easterly direction. Numerous attempts made to
modify the initial guesses for the initial acceleration angle to eliminate this behavior were fruit-
less. Trajectories that were forced to start in the Northwesterly direction continued to violate
kinematic constraints.

When the initial guesses on the variable parameters were adjusted to force the start of the tra-
jectory away from the corner, the algorithm repeatedly generated trajectories that caused some
degree of allision with the obstacle during its transit to the final point. Most of these trajectories

51

Figure 5.4: Scenario 1, Run 3 Trajectory

were predominantly side-slip trajectories, with little surge velocity. Inspection of the resulting
penalties revealed an unusual result: the value of the allision avoidance penalty was zero. Upon
viewing the generated sonar images and trajectory animation, the reason became clear–in order
to satisfy constraints on time and side slip, the generated trajectories were fairly close to linear
trajectories between the initial and final point, with a small amount of curvature. However, due
to constraints on maximum yaw rate, the vehicle was not able to slew around to the point where
the object was in the sonar field of view. Thus the vehicle was not “seeing" the obstacle at all.
Figure 5.9 illustrates one such trajectory in which the stern of the vehicle actually allides with
the object in the tank. Looking at the occupancy grid for this run shown in Figure 5.10, it is
clear that the vehicle never even saw the obstacle. Two new penalties were then added to the
cost function to account for this. First, a penalty on β , the angle between the yaw angle and
heading, was specified. This fine penalizes the trajectory any time the magnitude of β (|β |) is
greater than 45◦. This tries to keep the heading of the vehicle within±45◦ of the positive x-axis
of the vehicle, thus favoring trajectories that “drive into" the sonar cone. Upon implementation
of this, however, it was noted that, due to the flexibility of the trajectory in side-slip allowed by
the cross body thrusters, the algorithm may still generate trajectories that travel in a direction
parallel to one side of the sonar cone (i.e. β ≈ 45◦) at some point along the trajectory. Thus
an obstacle might still lie in the path of the vehicle, and the sonar would never see it. So a

52

Figure 5.5: Scenario 1, Run 3 Occupancy Grid

second additional cost function penalty was added to favor trajectories that caused the centroid
of the vehicle5 to only traverse through "explored space" that has been swept by the sonar. The
formulas used for these penalties are given in Table 5.5.

Table 5.5: Formulas for Added β and Explored Space Cost Function Penalties
Penalty Formula

β Fineβ = max([0,(abs(β)−βmax)])
2

Explored Space CostEV = 1/(1+EV ∗)

5The centroid was chosen for simplicity of calculation within the routine. In theory, any point aft of the centroid
along the vehicle centerline would be sufficient to impart a “moment" on the vehicle that would help "steer" it into
explored territory.

53

Figure 5.6: Scenario 1, Run 3 vmax Violation

Figure 5.7: Scenario 1, Run 3 ψ̇max Violation

Notes:*–EV is calculated by a separate subroutine that determines if, and by how far, the vehicle centroid lies

outside of areas on the OG that have values not equal to 0.5, and thus have been swept by the sonar.

As before, some amount of adjusting of the weighting coefficient for these cost function terms
was performed. However, satisfactory results were never obtained. The addition of the two ad-
ditional penalties caused even more “competition" between the components of the cost function,
and finding the right balance of weighting coefficient values proved to be incredibly difficult.
Continued adjustments of the initial guesses on the variable parameters, especially those on ψi′′
and the direction of initial acceleration, failed to sufficiently ameliorate this behavior. It seemed

54

Figure 5.8: Scenario 2, Run 1 Trajectory

that it may be physically impossible to start with the given initial pose of the vehicle and steer
around an obstacle to a final point that lie to the SouthWest of the vehicle, while minimizing
violations of the set of physical constraints on u, v, and ψ̇ , as well as the heuristics. Further ad-
justments to the initial guesses on the variable parameters did improve the situation somewhat,
but the generated trajectories still ended up being unsatisfactory.

Careful consideration was given to the reason for the failure of the algorithm to generate satis-
factory trajectories. Clues were found when adjusting the weighting coefficient on each physical
constraint during attempts to reduce violations of these constraints. For example, increasing the
coefficient for the sway velocity to bring v within the vmax constraints consistently caused a
larger violation of the constraint on ψ̇ . This lent credence to the hypothesis that the initial con-
ditions were far too geometrically restrictive. Essentially, this meant that, with the initial pose
of the vehicle facing the corner, it was practically physically impossible for the vehicle to tra-
verse from the starting pose and position to the arbitrary final point. Thus the initial conditions
were modified such that the vehicle was initially placed in a pose at the same starting coordi-
nates, but facing due North. Promising results were obtained when starting from this pose, as
the constraint violations immediately became much smaller, and so experimentation was then
continued with this new starting pose.

55

Figure 5.9: Scenario 2, Run 2: Vehicle hits object in tank

5.3 Scenario 3: Two Obstacles, North-facing Starting Pose
With the initial conditions now given by the North-facing starting pose, as shown in Figure 5.11,
satisfactory results were eventually obtained for the single-obstacle case. The next step was to
place two obstacles in the tank to determine if the algorithm would generate a satisfactory trajec-
tory between both obstacles while optimizing the information gain. The same values from the
immediately preceding runs were used for the initial values for the weighting coefficients and
variable parameters. Additionally, the resulting animated plot of all of the initial two-obstacle
runs revealed that the vehicle favored an initial rotation to starboard (clockwise), leading to
many of these large violations. No amount of adjustment of either the weighting coefficients or
variable parameter initial guesses eliminated this behavior. Again, the vehicle seemed to be too
tightly physically constrained. The relatively short distance of just a few meters between the
start point and end point, combined with the extra obstacle to contend with, proved too restric-
tive for the algorithm to handle given the physical constraints imposed on the vehicle. Again,
another change was made to the boundary conditions, this time at the end point. The time hori-
zon was increased to allow for a larger final range of motion, and the trajectory end point was
adjusted accordingly, towards the West end of the tank. The two obstacles were moved such
that they allowed for a sufficient impediment to travel between the start and end point. With this
revised setup, the simulation was run, and the results were immediately clear–greatly reduced

56

Figure 5.10: Scenario 2, Run 2 Occupancy Grid

physical constraint violations, and no allision with any object or wall. An example of an early
run from this scenario can be seen in Figure 5.12. As before, initial testing resulted in some
non-zero violation penalties. Most significant in the early runs were the fact that the vehicle
still alluded with the upper obstacle.

Subsequent runs with adjusted values for the variable parameter initial guesses and weighting
factors continued to improve the resulting trajectory and CF penalty values. An example of
a better run can be seen in Figure 5.13. The vehicle successfully avoids both obstacles, but
constraints in both v and ψ were still significant, as seen in Figure 5.14 (v), and Figure 5.15
(ψ).

57

Figure 5.11: Scenario 3, All Runs, Initial Pose

Although the initial results of runs using the revised initial setup, with the Northward vehicle
pose and increased trajectory length, were promising, they still did not meet the requirements
for success. Physical constraints were still violated, and the performance index penalty was not
low enough (approx. 4×10−4). As before, adjustments were made to the weighting coefficients
until satisfactory results were finally obtained. Values for the variable parameter initial guesses
and weighting coefficients can be seen in Table 5.6 and Table 5.7.

Table 5.6: Variable Parameter Initial Guess Values for Scenario 3
1 2 3 4 5 6 7 8 9 10

Run 1 10 1 0.7854 0.05 -2.3562 0.126 -0.054 0.0017 0.0009 -1.5708
Run 2 15 0.5 -0.7854 0.5 2.3562 -0.5 -0.054 0.0017 0.0009 -1.5708
Run 3 15 0.5 0 0.25 2.3562 -0.1 -0.054 0.0017 0.0009 -1.5708

Table 5.7: Cost Function Weighting Coefficients for Scenario 3
1 2 3 4 5 6 7 8

Run 1 1 10 1 10 1000 10 1 1
Run 2 1 1 1 10 1 1 1 1
Run 3 1 100 1 10000 1 1 0.01 10

Figure 5.16 displays the final near-optimal trajectory of the vehicle. The initial point is in-
dicated by the red star to the upper right. As can be seen, the vehicle successfully navigates

58

Figure 5.12: Scenario 3, Run 1 Trajectory

towards the defined end point without alliding with the fixed obstacles or the walls of the tank.
Figure 5.17 shows the corresponding occupancy grid for the final successful run. Although this
trajectory successfully navigated the trajectory with no constraint violations and an optimized
PI, examining Figure 5.17 reveals that the sonar didn’t actually “see" the lower obstacle from a
planning perspective. From Figure 5.18, we can see that the vehicle, constrained in yaw rate,
was not able to slew around sufficiently to sweep the sonar across the lower obstacle. A more
complex trajectory with different values on the constraints would be required to see this obsta-
cle. However, given that the algorithm successfully generated a trajectory that satisfied all of
the requirements, notably the constraints and performance index optimization, this trajectory is
deemed to be a valid near-optimal trajectory for the given conditions.

5.4 Computational Performance
One major issue that was readily apparent during the entire process was the computational in-
tensity of the routine. Specifically, the subroutines associated with the sonar sweep, occupancy
grid updater, and obstacle avoidance were especially intensive in both cpu cycles and memory
requirements. Figure 5.19 shows output of the built in MATLAB profiler for the top 20 func-
tions used in executing the entire algorithm routine. The profiler profiles every line of code as
it runs and documents number of function calls, self time, and overhead time. By inspection, it

59

Figure 5.13: Scenario 3, Run 2 Trajectory

is readily apparent that just a few of the subroutine functions utilize a lions share of the com-
putational time, and the impact is significant. In the final run that generated the satisfactory
trajectory detailed in this section, the total computation time was 50 seconds6. As seen in the
profiler output, 40% was used for the occupancy grid calculations (OGupdate), 37% for the
sonar imaging (sweep), and 21% was used in the obstacle avoidance subroutine (Avoidance).

6All runs were performed in MATLAB 7.12.0.635 (R2011a) 32bit, on a PC running Microsoft Windows XP
Professional with a 2.66GHz Intel Core2 Duo CPU with 3.25GB of RAM. Attempts were made to run the algorithm
on an NPS distributed computing cluster, however, the MATLAB license on the cluster prevents actual distributed
computing, and so minimal performance gains were actually realized.

60

Figure 5.14: Scenario 3, Run 2 vmax Violation

Figure 5.15: Scenario 3, Run 2 ψ̇max Violation

61

Figure 5.16: Final Near-Optimal Vehicle Trajectory

62

Figure 5.17: Occupancy Grid for Near-Optimal Trajectory

63

Figure 5.18: Vehicle Orientation at Several Points Along Final Near-Optimal Trajectory

64

Figure 5.19: MATLAB Profiler Output for Final Optimal Trajectory Run

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

CHAPTER 6:
Conclusions and Recommendations

6.1 Conclusions
As seen in Chapter 5, valid results were obtained for the problem of generating an optimal
trajectory that not only optimized the key parameter of interest, Information Gain, but also
satisfied all constraints imposed on the trajectory, such as kinematic and obstacle avoidance
constraints. However, the stated goal of generating these optimal trajectories in real time may be
jeopardized by the computational intensity of the algorithm. As discussed in Section 5.4, just a
few MATLAB routines occupied a significant share of the computation time. These subroutines
are key to the sonar imaging, probabilistic analysis of information gain, and obstacle avoidance.
As each of these routines performs numerous calculations sequentially on individual cells of
large matrices, some computational rigor is expected. An important aspect to consider, however,
is that much of the intensive computation being performed by MATLAB in the simulation
environment will actually be done by dedicated hardware on the REMUS vehicle. For example,
the sonar imaging that consumed so much computation time in MATLAB will be performed by
the Blueview FLS and it’s dedicated image processing hardware. This alone would drastically
reduce the load on the algorithm itself. Similar gains would likely be achieved by other aspects
of the hardware on the vehicle, especially given that compiled code runs orders of magnitude
faster than MATLAB interpreted code.

A key observation made during the algorithm test and evaluation phase of this thesis was the
sensitivity of the trajectory to the adjustments made to the weighting coefficients and variable
parameter initial guesses. Many adjustments had to be made to several of these parameters
in order to generate physically valid trajectories for each scenario. In some cases, adjusting a
weighting coefficient to minimize one penalty resulted in an increase in another penalty. An
example of this is when adjustments made to reduce the β violation penalty resulted in higher
yaw rates, increasing the ψ̇max violation. Further thesis research is required to investigate the
interplay between, and sensitivity of, each of the variable parameters and weighting coefficients.

Another interesting observation is that the generated trajectories were often not intuitive in that
they were frequently non-linear and deviated significantly from the relatively simple trajectories
expected for reactive obstacle avoidance. As discussed in the thesis, the DM-IDVD routine

67

generates full sets of candidate trajectories by varying kinematic parameters at the boundaries
of the trajectory, such as speed, acceleration, etc. This feature, combined with the fact that
the coordinates, yaw angle, and speed factor of the trajectories are represented by reference
functions combining high order polynomials and trigonometric functions, produces these that
are far more flexible and complex, both spatially and kinematically.

In conclusion, this thesis successfully proved the concept of utilizing the Direct Method of
Inverse Dynamics in the Virtual Domain to calculate information-optimal trajectories based on
a probabilistic analysis of information gain. However, the viability of utilizing this method for
real-time trajectory generation was not established. Time constraints precluded further code
optimization and compilation into executable code to be run on the vehicle, and so in-tank
testing on the REMUS vehicle itself was never achieved.

6.2 Recommendations for Future Work
As discussed in the conclusions, there may well be significant opportunity for performance
improvements by optimizing the MATLAB code used to program the routine. Careful scrutiny
might be given to specific functions and subroutines within the algorithm to determine where
and how code optimizations may be made to improve the efficiency of the routine. Hardware-
in-the-loop simulation may also significantly speed up the computations in the algorithm as
well. Specifically, the author recommends examining alternative methods for the following
subroutines/functions: ray tracing (performed in both the sonar imaging and allision avoidance
subroutines); occupancy grid cell probabilistic calculations (specifically where the sensor signal
probabilities are evaluated from the sensor model probability density functions); and symbolic
math manipulations, specifically wherever the MATLAB polyval() functions is utilized.

Following any required code optimizations, the obvious next step should be to compile the
algorithm into computer code compatible with the computer resources on the REMUS vehicle
and perform actual in-tank testing in the CAVR AUV test tank. Following the completion of
successful in-tank testing, open water testing would then be needed to ascertain the viability of
the routine in the presence of disturbances.

Concomitant with on-vehicle testing of the algorithm would be implementation of methods
required to reduce real-world positional uncertainty caused by sleep-state drift and inherent
sensor error and noise. As methods for performing this task, such as Kalman filters, are already

68

well known and developed, augmenting the algorithm developed by this thesis with a positional
uncertainty reduction scheme should be fairly trivial.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

REFERENCES

[1] P. S. Sochaczewski and J. Hyvarinen, “Down deep: Environmentalists fight to protect the
fantastic microscopic creatures that dwell on the oceans bottom,” E : the Environmental

Magazine, vol. 7, no. 4, pp. 15–15, 1996.

[2] T. Allen, J. T. Conway, and G. Roughead, “A cooperative strategy for 21st century
seapower,” United States Naval Institute Proceedings, vol. 133, no. 11, pp. 14–20, 2007.

[3] J. A. Walsh and R. M. Smith, Navy Unmanned Undersea Vehicle (UUV) Master Plan.
NUWC, 2004.

[4] T. B. Curtin, D. M. Crimmins, J. Curcio, M. Benjamin, and C. Roper, “Autonomous under-
water vehicles: Trends and transformations,” Marine Technology Society Journal, vol. 39,
no. 3, pp. 65–75, 2005.

[5] D. Horner and O. Yakimenko, “Recent developments for an obstacle avoidance system for
a small auv,” in IFAC Proceedings Volumes, vol. 7. IFAC, 2007, pp. 19–25.

[6] A. R. V. Reet, “Contour tracking control for the remus autonomous underwater vehicle,”
Master’s thesis, Naval Postgraduate School, June 2005.

[7] D. L. Hemminger, “Vertical plane obstacle avoidance and control of the remus au-
tonomous underwater vehicle using forward looking sonar,” Master’s thesis, Naval Post-
graduate School, June 2005.

[8] A. Healey, “Guidance laws, obstacle avoidance, artificial potential functions,” in Advances

in Unmanned Marine Vehicles, G. Roberts and R. Sutton, Eds. IEEE, 2006, ch. 2.

[9] T. H. Furukawa, “Reactive obstacle avoidance for the remus autonomous underwater ve-
hicle utilizing a forward looking sonar,” Master’s thesis, Naval Postgraduate School, June
2006.

[10] O. Yakimenko, “Real-time computation of spatial and flat obstacle avoidance trajectories
for uuv’s,” in Navigation, Guidance and Control of Underwater Vehicles, vol. 2. IFAC,
2008.

71

[11] O. Yakimenko, D. Horner, and D. Pratt, “Auv rendezvous trajectories generation for un-
derwater recovery,” in Control and Automation, 2008 16th Mediterranean Conference on,
June 2008, pp. 1192–1197.

[12] N. A. McChesney, “Three-dimensional feature reconstruction with dual forward looking
sonars for unmanned underwater vehicle navigation,” Master’s thesis, Naval Postgraduate
School, 2009.

[13] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer,
vol. 22, no. 6, pp. 46 –57, jun 1989.

[14] S. Noykov and C. Roumenin, “Occupancy grids building by sonar and mobile robot,”
Robotics and Autonomous Systems, vol. 55, no. 2, pp. 162 – 175, 2007.

[15] D. S. Levine, “Information-rich path planning under general constraints using rapidly-
exploring random trees,” Master’s thesis, Massachusetts Institute of Technology, June
2010.

[16] W. B. Sebastian Thrun and D. Fox, Probabilistic Robotics. MIT Press, 2005.

[17] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003.

[18] O. Yakimenko, “Direct method for rapid prototyping of near-optimal aircraft trajectories,”
Journal of Guidance, Control, and Dynamics, vol. 23, no. 5, pp. 865–875, September-
October 2000.

[19] O. Yakimenko and S. Kragelund, “Real-time optimal guidance and obstacle avoidance for
umvs,” in Autonomous Underwater Vehicles, N. A. Cruz, Ed. InTech, 2011, ch. 4.

[20] O. Yakimenko, “Time and space decoupling,” http://faculty.nps.edu/oayakime/AE4902/
IME/4a/decoupling.html.

[21] N. Slegers and O. A. Yakimenko, “Terminal guidance of autonomous parafoils in high
wind-to-airspeed ratios,” Proceedings of the Institution of Mechanical Engineers, Part G:

Journal of Aerospace Engineering, vol. 225, no. 3, pp. 336–346, 2011.

[22] S. M. Doherty, “Cross body thruster control and modeling of a body of revolution au-
tonomous underwater vehicle,” Master’s thesis, Naval Postgraduate School, 2011.

72

APPENDIX A:
MATLAB Code

A.1 Main Function: Main_opt.m

1 %**

2 % MAIN_OPT.M

3 % THIS IS THE MAIN SCRIPT. RUN THIS TO PERFORM THE FULL SIMULATION.

4 %

5 % Written by: LT Adam Wiseman

6 % All code was written by the author with the exception of bresenham.m and

7 % the code for generating the animated plot. Credits for bresenham.m are

8 % inside that script, and credit for the animated plot code and the

9 % associated scripts/functions code goes to Dr. Les Carr of the Math Dept.

10 % at NPS.

11 %

12 % Last Edited: 23 March 2012

13 %**

14

15 %% Prep−−clear workspace, declare global variables

16 clear all

17 close all

18 clc

19 profile on −history
20

21 global L D W H R psi_dot_max u_max v_max dt TH M N

22 global xinit yinit psii beta_max %psif

23 global OG SnrImg

24 global AnimFlag ObsFlag ProbFlag x y VARS

25

26 %% Switches−−turn certain features on/off

27 AnimFlag=1; % Set to 0 to disable display of the REMUS animation

28 ProbFlag=1; % Set to 0 to run routine without probabilistic analysis

29 % (speeds up trajectory validation process)

30 ObsFlag=1; % Set to 0 to disable obstacles in tank

31

32 %% Vehicle and Tank Dimensions

33 L=2.75; % vehicle length in meters

73

34 D=0.19; % vehicle diameter in meters

35 W=20; % tank length in meters

36 H=10; % tank width in meters

37

38 R=2*H; % This is used to control size of tank matrix oversize and

39 % sonar beam range. It was originally set to the

40 % range of the sonar, but this resulted in overly large data

41 % matrices, and was thus reduced in length, with no detriment

42 % to the overall routine within the constraints of the test

43 % tank dimensions. Future testing in larger environments will

44 % require this to be set back to the sonar range.

45

46 M=10*(2*R+H); % Row space for model grids/matrices

47 N=10*(2*R+W); % Column space for model grids/matrices

48 % Note: The multiplication factor of 10 allows for finer grids in the

49 % sonar image and occupancy grid, and minimizes rounding errors caused when

50 % rounding non−integer coordinate values to integer values for matrix cell

51 % addressing. This multiplication factor is also found in some of the

52 % subroutines that require coordinate−to−matrix cell index translation.

53

54 %% Initialization of parameters

55 %***** Time Horizon (s) *****

56 TH=15; % Nominal time of trajectory from start point to end point.

57 %****************************

58 dt=.1; % Time step (s)

59 rf=5; % Refinement factor for refining data mesh. This simply

60 % decreases the step size of each maneuver. Raise this

61 % value to reduce the step size.

62 IG=[]; % Initialize Information Gain (for computational speed)

63

64 % Constraints

65 dp=14.5; % Max yaw rate (deg/sec)

66 psiTH=TH*dp; % Max yaw over time horizon (deg)

67 psi_dot_max = dp*pi/180; % maximum yaw rate, rad/s

68 v_max = .5; % maximum sway velocity, m/s

69 u_max = 2.88; % surge velocity in m/s

70 beta_max=45*pi/180; % absolute value of max desired beta

71 % (to keep trajectory within sonar cone)

72

73 %****INITIAL PARAMETER VALUES!!!****

74 xinit=W−3*L/2; % x−coordinate of origin of distribution circle

74

75 % xinit=190; % For testing purposes only

76 yinit=H−3*L/2; % y−coordinate of origin of distribution circle

77 % yinit=80; % For testing purposes only

78

79 psiinitdeg = 0; % Initial Heading in degrees

80 psiinit = pi/180*psiinitdeg;% Initial Heading in radians

81

82 %****FINAL PARAMETER VALUES!!!****

83 xfin=3;

84 yfin=5;

85 psi_d=−45; % Final yaw angle in degrees

86 psifin=psi_d*pi/180; % Final yaw angle in radians

87

88 %% Heuristic Boundaries

89 % Note: HB are completely artificially generated here. In the future, it

90 % will most likely be necessary to generate these on the fly based on

91 % initial sonar sweeps.

92

93 if ProbFlag

94 global BB UB RB LB RBx LBx UBy BBy

95

96 % Upper Heuristic Bound (top wall)

97 UB=R;

98

99 % Lower (Bottom) Heuristic Bound

100 BBy=yinit−L/2;
101 BB=H+R−BBy;
102

103 % Right Heuristic Bound (Right wall)

104 RB=W+R;

105

106 % Left Heuristic Bound

107 LBx=xinit−L/2;
108 LB=LBx+R;

109

110 % Bounding box corners for plotting purposes

111 UBy=H+R−UB;
112 RBx=RB−R;
113 xHCorners=[LBx LBx RBx RBx LBx];

114 yHCorners=[BBy UBy UBy BBy BBy];

115 end

75

116

117 %% Initialize Sensor model

118 if ProbFlag

119 SensorModelGeneration;

120 end

121

122 %% Object

123 global xl xr yl yu xl2 xr2 yl2 yu2

124 % Object 1

125 xl=6; % Left boundary of object 1

126 xr=7; % Right boundary of object 1

127 yl=7; % Lower boundary of object 1

128 yu=8; % Upper boundary of object 1

129

130 % Object 2

131 xl2=8; % Left boundary of object 2

132 xr2=9; % Right boundary of object 2

133 yl2=2; % Lower boundary of object 2

134 yu2=3; % Upper boundary of object 2

135

136 %% DIRECT METHODS OPTIMIZATION (IDVD)

137 %**

138 % Everthing below this is part of the DM process.

139 %**

140

141 %% Defining optimization problem

142 global Fine_v Cost_T Fine_YawRate Fine_u Fine_beta

143 global wT wY wu wv wb

144

145 wT = 1e0; % weighting coefficient for time of arrival

146 wY = 1e2; % weighting coefficient for yaw rate

147 wu = 1e0; % weighting coefficient for surge velocity u

148 wv = 1e3; % weighting coefficient for sway velocity v

149 wb = 1e0; % weighting coefficient for beta

150

151 if ProbFlag

152 global wG wH wA wE Cost_EV Cost_H Cost_IG Cost_AP avrad

153 wG = 1e1; % weighting coefficient for Information Gain

154 wH = 1e0; % weighting coefficient for Heuristics Violations

155 wA = 1e0; % weighting coefficient for allision avoidance

156 wE = 1e1; % weighting coefficient for unexplored region penalty

76

157

158 avrad=L; % Obstacle Allision Avoidance radius

159 end

160

161 %% Setting the boundary conditions

162 global vxi posxi vxf posxf

163 global vyi posyi vyf posyf lami lamf

164

165 posxi = xinit; posyi = yinit; % initial position

166 posxf = xfin; posyf = yfin; % final position

167 vxi = 0; vyi = 0; % components of initial velocity

168 vxf = 0; vyf = 0; % components of final velocity

169 % accxi = 0; accyi = 0; % components of initial acceleration

170 % accxf = 0; accyf = 0; % components of final acceleration

171 % betai=atan2(vxi,vyi)−psiinit; betaf=atan2(vxf,vyf)−psifin;
172 psii=psiinit; % psif=psifin; % initial and final yaw angles

173 lami=1; lamf=1; % initial and final lambdas

174

175 %% Guessing on the varied parameters

176

177 guess(1)=15; % virtual arc length (tauf)

178 guess(2)=0.5; % magnitude of final accel (accxf)

179 guess(3)=−0*pi/4; % direction of final accel (accyf)

180 guess(4)=0.25; % magnitude of initial accel (accxf)

181 guess(5)=3*pi/4; % direction of initial accel (accyf)

182 guess(6)=−.1; % initial psi double prime (psippi)

183 guess(7)=−0.054; % final psi double prime (psippf)

184 guess(8)=.0017; % initial lambda−dbl−prime
185 guess(9)=.0009; % final lambda−dbl−prime
186 guess(10)=−pi/2; % final psi

187

188 %% Define the Reference Function Coefficients

189 RefFuncs; %Note: Doing this the other way by including the coefficient

190 %vectorss in the trajectory function causes an error. Keeping

191 %it this way for now. However, some computational optimization

192 %may be acheived by including the output of this function

193 %directly into the trajectory.m script to eliminate the

194 %symbolic math computations performed in this function. The

195 %coefficient vectors have been left in trajectory.m but

196 %commented out to allow for future implementation. If the

197 %other method is used, this line may be commented out.

77

198

199 %% Calling the optimization routine

200 maxiter=1000; % maximum number of iterations within fminsearch

201 maxfuns=5*maxiter; % maximum number of function evaluations

202 % Setting the options for fminsearch:

203 opt=optimset('Display','iter','TolX',1e−2,'TolFun',1e−2,...
204 'MaxIter',maxiter,'MaxFunEvals',maxfuns);

205 t = cputime; % Used to calculate and display actual computational time

206

207 %**

208 % Calling the fiminsearch optimization function:

209 [guess_opt,fval,exitflag] = fminsearch('trajectory',guess,opt);

210 %**

211

212 % calculating and displaying computational time:

213 time_elapsed = cputime−t;
214 fprintf('fminsearch Elapsed Time: %4.2g minutes.\n\n',time_elapsed/60)

215 profile off

216

217 %% Displaying cost functions and penalties

218

219 if ProbFlag

220 fprintf(' Information Gain Cost function : %6.2g\n',Cost_IG)

221 fprintf(' Heuristics Violation Cost function : %6.2g\n',Cost_H)

222 fprintf(' Allision Avoidance Cost function : %6.2g\n',Cost_AP)

223 fprintf(' Unexplored Territory Cost function : %6.2g\n',Cost_EV)

224 end

225 fprintf(' Time Cost function : %6.2g\n',Cost_T)

226 fprintf(' Penalty in sway v : %6.2g\n',Fine_v)

227 fprintf(' Penalty in surge u : %6.2g\n',Fine_u)

228 fprintf(' Penalty in YawRate : %6.2g\n',Fine_YawRate)

229 fprintf(' Penalty in beta : %6.2g\n\n',Fine_beta)

230

231 %% Displaying optimal parameters

232

233 % Display initial guesses on varied parameters

234 disp('Initial Guesses on Values of Varied Parameters:')

235 fprintf('Arc length = %6.2f\n',guess(1))

236 fprintf('Final x,y−accel magnitude = %6.2f\n',guess(2))

237 fprintf('Final x.y−accel direction = %6.2f deg\n',guess(3)*180/pi)

238 fprintf('Initial x,y−accel magnitude = %6.2f\n',guess(4))

78

239 fprintf('Initial x,y−accel direction = %6.2f deg\n',guess(5)*180/pi)

240 fprintf('Initial psi accel = %6.2f\n',guess(6))

241 fprintf('Final psi accel = %6.2f\n',guess(7))

242 fprintf('Initial lambda dbl prime = %6.2f\n',guess(8))

243 fprintf('Final lambda dbl prime = %6.2f\n',guess(9))

244 fprintf('Final psi = %6.2f\n\n',guess(10)*180/pi)

245

246 % Display final values of varied parameters

247 disp('Final Values of Varied Parameters:')

248 fprintf('Arc length = %6.2f\n',guess_opt(1))

249 fprintf('Final x,y−accel magnitude = %6.2f\n',guess_opt(2))

250 fprintf('Final x.y−accel direction = %6.2f deg\n',guess_opt(3)*180/pi)

251 fprintf('Initial x,y−accel magnitude = %6.2f\n',guess_opt(4))

252 fprintf('Initial x,y−accel direction = %6.2f deg\n',guess_opt(5)*180/pi)

253 fprintf('Initial psi accel = %6.2f\n',guess_opt(6))

254 fprintf('Final psi accel = %6.2f\n',guess_opt(7))

255 fprintf('Initial lambda dbl prime = %6.2f\n',guess_opt(8))

256 fprintf('Final lambda dbl prime = %6.2f\n',guess_opt(9))

257 fprintf('Final psi = %6.2f\n\n',guess_opt(10)*180/pi)

258

259 %% Plotting the results

260 PlotResults

261

262 %% END

263 profile off

264 % The following line saves all variables in the workspace to a .mat file

265 % for future reference. Change this each run to avoid overwriting

266 % previous saves

267

268 % save('Run_3−22_1_incwv_facingN−fminsearch−1000iter')

A.2 Trajectory Generation and Optimization Function: trajectory.m

1 function PI=trajectory(guess)

2 %% This function computes states and controls for the current guess.

3 % It is the input function for fminsearch, and cannot be run alone. It is

4 % the function to be optimized by fminsearch.

5 global VARS ProbFlag

6 global vxi posxi vxf posxf lami lamf

7 global vyi posyi vyf posyf psii % psif betai betaf

79

8 global x y time V u v psi Psi tau lam beta psi_dot

9

10 %% Initialize Matrices/Grids−−see notes in script

11

12 InitMatrices;

13

14 %% Current values of varied parameters

15 tauf = guess(1); % virtual arc length

16 accxf = guess(2)*cos(guess(3)); % final x accel

17 accyf = guess(2)*sin(guess(3)); % final y accel

18 accxi = guess(4)*cos(guess(5)); % initial x accel

19 accyi = guess(4)*sin(guess(5)); % initial y accel

20 psippi = guess(6); % initial beta double prime

21 psippf = guess(7); % final beta double prime

22 lamppi = guess(8); % initial lambda−dbl−prime
23 lamppf = guess(9); % final lambda−dbl−prime
24 psif = guess(10); % final psi

25

26 %% Defining parameters in M/NN nodes in the virtual domain

27

28 global a apsi alam Mp Np Ol

29 % (x,y) Reference Function Coefficients

30

31 % Note: Putting the coefficient matrices in here gives me an error, so I'm

32 % keeping the RefFuncs subroutine for now. If the errors can be resolved,

33 % it would be computationally quicker to eliminate the symbolic math

34 % computations in RefFuncs and simply use the coefficient vectors below.

35

36 % syms tf x0 xp0 xpp0 xf xpf xppf

37 % a = [x0;

38 % (−xpp0/3 − xppf/6)*tf^2 − x0 + xf;

39 % (tf^2*xpp0)/2;

40 % −tf^2*(xpp0/6 − xppf/6);

41 % ((xpp0 + xppf)*tf^2)/(4*pi) + ((2*xp0 − 2*xpf)*tf)/(4*pi);

42 % ((xpp0 − xppf)*tf^2)/(24*pi) + ((6*xp0 + 6*xpf)*tf)/(24*pi) + ...

(12*x0 − 12*xf)/(24*pi)];

43 %

44 ax=subs(a,{'x0','xp0','xpp0','xf','xpf','xppf','tf'},...

45 {posxi,vxi,accxi,posxf,vxf,accxf,tauf});

46 ay=subs(a,{'x0','xp0','xpp0','xf','xpf','xppf','tf'},...

47 {posyi,vyi,accyi,posyf,vyf,accyf,tauf});

80

48

49 % (psi) Reference Function Coefficients

50 % syms psi0 psip0 psipp0 psiff psipf psippff tf

51 % apsi=[psi0

52 % psip0*tf;

53 % (psipp0*tf^2)/2;

54 % (psippff/2 − (3*psipp0)/2)*tf^2 + (−6*psip0 − 4*psipf)*tf − ...

10*psi0 + 10*psiff;

55 % ((3*psipp0)/2 − psippff)*tf^2 + (8*psip0 + 7*psipf)*tf + ...

15*psi0 − 15*psiff;

56 % (psippff/2 − psipp0/2)*tf^2 + (−3*psip0 − 3*psipf)*tf − 6*psi0 ...

+ 6*psiff];

57

58 ap=subs(apsi,{'psi0','psip0','psipp0','psiff','psipf','psippff','tf'},...

59 {psii,0,psippi,psif,0,psippf,tauf});

60

61 % (lambda) Reference Function Coeffiecients

62 % syms lam0 lamp0 lampp0 lamff lampff lamppff tf

63 % alam=[lam0;

64 % lamp0*tf;

65 % (lampp0*tf^2)/2;

66 % (lamppff/2 − (3*lampp0)/2)*tf^2 + (− 6*lamp0 − 4*lampff)*tf − ...

10*lam0 + 10*lamff;

67 % ((3*lampp0)/2 − lamppff)*tf^2 + (8*lamp0 + 7*lampff)*tf + ...

15*lam0 − 15*lamff;

68 % (lamppff/2 − lampp0/2)*tf^2 + (− 3*lamp0 − 3*lampff)*tf − ...

6*lam0 + 6*lamff];

69

70 al=subs(alam,{'lam0','lamp0','lampp0','lamff','lampff','lamppff','tf'},...

71 {lami,0,lamppi,lamf,0,lamppf,tauf});

72

73 % If using the commented out coefficient vectors above, uncomment the

74 % following lines as well:

75

76 % Mp=length(a);

77 % Nb=length(apsi);

78 % Ol=length(alam);

79

80 for i=1:Mp−2
81 cx(i)=ax(Mp−1−i);
82 cy(i)=ay(Mp−1−i);

81

83 end

84 for i=1:Np

85 cp(i)=ap(Np+1−i);
86 end

87 for i=1:Ol

88 cl(i)=al(Ol+1−i);
89 end

90

91 taubar=linspace(0,1); % taubar=tau/tauf (See report for why)

92

93 % Evaluate complete ref funcs to obtain vectors of state parameters:

94 x=polyval(cx,taubar)+ax(5)*sin(pi*taubar)+ax(6)*sin(2*pi*taubar);

95 y=polyval(cy,taubar)+ay(5)*sin(pi*taubar)+ay(6)*sin(2*pi*taubar);

96 psi=polyval(cp,taubar);

97 lam=polyval(cl,taubar);

98

99 NN=length(x);

100 %% Defining parameters' derivatives in NN nodes in the virtual domain

101 cx_prime=cx.*[3:−1:0]*eye(4,3);
102 cy_prime=cy.*[3:−1:0]*eye(4,3);
103

104 x_prime=polyval(cx_prime,taubar)+ax(5)*pi*cos(pi*taubar)+ax(6)*2*pi*...

105 cos(2*pi*taubar);

106 y_prime=polyval(cy_prime,taubar)+ay(5)*pi*cos(pi*taubar)+ay(6)*2*pi*...

107 cos(2*pi*taubar);

108 x_prime=x_prime/tauf;

109 y_prime=y_prime/tauf;

110

111 cx_dblprime=cx.*[6 2 0 0]*eye(4,2);

112 cy_dblprime=cy.*[6 2 0 0]*eye(4,2);

113

114 x_dblprime=polyval(cx_dblprime,taubar)−ax(5)*pi^2*sin(pi*taubar)−...
115 ax(6)*(2*pi)^2*sin(2*pi*taubar);

116 y_dblprime=polyval(cy_dblprime,taubar)−ay(5)*pi^2*sin(pi*taubar)−...
117 ay(6)*(2*pi)^2*sin(2*pi*taubar);

118 x_dblprime=x_dblprime/tauf^2;

119 y_dblprime=y_dblprime/tauf^2;

120

121 cp_prime=cp.*[5:−1:0]*eye(6,5);
122

123 psi_prime=polyval(cp_prime,taubar);

82

124 psi_prime=psi_prime/tauf;

125

126 cl_prime=cl.*[5:−1:0]*eye(6,5);
127

128 lam_prime=polyval(cl_prime,taubar);

129 lam_prime=lam_prime/tauf;

130

131 %% Computing the states and controls using *Inverse Dynamics*

132

133 del_tau = tauf/(NN−1);
134 tau(1) = 0;

135 time(1) = 0;

136 Psi = atan2(x_prime,y_prime); % Computing heading, rad

137 Psi(1) = Psi(2); Psi(end)=Psi(end−1);
138 beta=Psi−psi;
139 V(1) = lam(1)*sqrt(x_prime(1)^2+y_prime(1)^2); % Total speed

140 u(1) = V(1)*cos(beta(1)); % surge velocity

141 v(1) = V(1)*sin(beta(1)); % sway velocity

142

143 Psi_prime(1) = (x_prime(1)*y_dblprime(1)−y_prime(1)*...
144 x_dblprime(1))/(y_prime(1)^2+x_prime(1)^2);

145 Psi_dot(1) = lam(1)*Psi_prime(1);

146 psi_dot(1) = lam(1)*psi_prime(1);

147

148 for j=2:NN

149 tau(j) = tau(j−1)+del_tau;
150 dt = 2*del_tau/(lam(j−1)+lam(j));
151 time(j) = time(j−1)+dt;
152 V(j)= lam(j)*sqrt(x_prime(j)^2+y_prime(j)^2); % Total speed

153 u(j) = V(j)*cos(beta(j)); % surge velocity

154 v(j) = V(j)*sin(beta(j)); % sway velocity

155 Psi_prime(j)=(x_prime(j)*y_dblprime(j)−y_prime(j)*...
156 x_dblprime(j))/(y_prime(j)^2+x_prime(j)^2);

157 Psi_dot(j)=lam(j)*Psi_prime(j);

158 psi_dot(j) = lam(j)*psi_prime(j);

159 end

160

161 Psi_dot(end)=Psi_dot(end−1);
162 beta_dot = Psi_dot − psi_dot;

163

164 %

83

165 VARS=[lam' tau' time' x' y' u' v' V' x_prime' y_prime' beta' beta_dot'...

166 psi' psi_dot' Psi' Psi_dot'];

167

168 %%Sonar Imaging, Probabilistic Analysis, Occupancy Grid, Obstacle Avoidance

169 if ProbFlag

170

171 %**

172 % Stuff below this is part of the probabilistic analysis process.

173 %**

174

175 global OG SnrImg PrOpoly PrEpoly

176 global L IG UB BB RB LB AP RBx BBy ViolArea avrad

177

178 %% Information Gain Analysis

179

180 for i=1:NN

181 % Perform simulated sonar sweep

182 sweep(psi(i),x(i),y(i));

183

184 % Weight OG values at heuristic boundaries−−this reduces the

185 % information gain quantified by objects that we are already

186 % assuming to be there.

187 if i == 1

188 OG(10*UB,10*LB:10*RB)=.75;

189 OG(10*UB:10*BB,10*RB)=.75;

190 end

191 end

192 %% Update Occupancy Grid and Calculate Information Gain

193

194 [IGC1]=OGupdate(SnrImg,PrOpoly,PrEpoly); % IGC1: IG Calculation

195 IG=IGC1;

196

197 %% Stern Points used for Heuristic Checks

198 % Calculate the coordinates of the stern of the vehicle at each point

199 % along the trajectory and determine if the stern points cross the

200 % heuristics boundaries.

201

202 for i=1:NN

203 xS(i)=x(i)−L/2*sin(psi(i)); % Calc x−coord of stern for ...

each x_cg

204 if xS(i) > RBx

84

205 xViol(i)=1;

206 else

207 xViol(i)=0;

208 end

209 yS(i)=y(i)−L/2*cos(psi(i)); % Calc y−coord of stern for ...

each y_cg

210 if yS(i) < BBy

211 yViol(i)=1;

212 else

213 yViol(i)=0;

214 end

215 end

216

217 %% Heuristic Violation Area Analysis

218 % Uses the vectors of stern point coordinates determined above to

219 % calculate the total violation area between the arc swept by the

220 % vehicle stern and the heuristics boundaries.

221

222 ViolArea=HeurViolArea(xS(:),yS(:),xViol(:),yViol(:));

223

224 %*****END PROBABILISTIC (INFORMATION GAIN) ANALYSIS STUFF*****************

225 %***

226 %% Allision Avoidance

227 % Calculate the amount of penetration of an object/obstacle within a

228 % circle centered on the center of the vehicle with a give avoidance

229 % radius (defined in Main_opt.m script).

230

231 AvoidancePenalty=zeros(NN,1); % Initialize vector (for speed)

232

233 for i=1:NN

234 AvoidancePenalty(i)=Avoidance(beta(i),x(i),y(i),avrad);

235 end

236

237 % Cumulative avoidance penalty along trajectory:

238 AP=sum(AvoidancePenalty);

239 %% Favoring Explored Areas

240 % Calculate penalty for trajectorys that drive the vehicle outside of

241 % areas already swept by sonar (i.e. "explored areas"). This biases the

242 % resulting trajectories into known, or "explored" space.

243 global EV

244 for i=1:NN

85

245 [me(i),ne(i)]=xy2mn(x(i),y(i)); % Convert x,y coords to matrix coords

246 OGcval=OG(round(10*me(i)),round(10*ne(i))); % Determine OG cell value

247 % at each x,y

248 ev(i)=abs(OGcval−0.5); % Calculate absolute difference between

249 % OGVal and the OG value for an

250 % unexplored cell (0.5).

251 end

252 EV=sum(ev);

253 end

254 %% Calculate Performance Index

255 PI = PerformanceIndex;

256 return

257

258 function PI=PerformanceIndex

259 %% This function computes the combined performance index

260 %**

261 % This function performs the actual calculations of the weighted penalties

262 % for the Cost Function and Performance Index. The output is the value

263 % that is actually being optimized within the fminsearch function by

264 % changing the values of the variable parameters.

265 %**

266

267 global wu wv wb wY ProbFlag TH wT time Cost_T

268 global u v u_max v_max psi_dot psi_dot_max

269 global Fine_u Fine_v Fine_YawRate

270 global Fine_beta beta beta_max

271

272 Cost_T = (time(end)−TH)^2;
273 Fine_YawRate = max([0,(abs(psi_dot)−psi_dot_max)])^2;
274 Fine_u = max([0,(abs(u)−u_max)])^2;
275 Fine_v = max([0,(abs(v)−v_max)])^2;
276 Fine_beta = max([0,(abs(beta)−beta_max)])^2;
277 if ProbFlag

278 global Cost_IG Cost_H Cost_AP Cost_EV wG wH wA wE

279 global ViolArea AP IG EV

280 Cost_H = ViolArea;

281 Cost_AP = AP;

282 Cost_IG = 1/IG;

283 Cost_EV = 1/(1+EV);

284 end

285

86

286 if ProbFlag

287 PI = wG*Cost_IG+wH*Cost_H+wA*Cost_AP+wu*Fine_u+wv*Fine_v+wY*...

288 Fine_YawRate+wE*Cost_EV+wT*Cost_T;

289 else

290 PI = wu*Fine_u+wv*Fine_v+wY*Fine_YawRate+wb*Fine_beta+wT*Cost_T;

291 end

292

293 return

A.3 Reference Function Generation Function: RefFuncs.m

1 % This script computes coefficients of the reference polynomials

2 %% (x,y) Reference Function (scaled tau_bar=tau/tauf)

3 global a apsi alam Mp Np Ol

4 syms tf x0 xp0 xpp0 xf xpf xppf

5 A= [1 0 0 0 0 0;

6 0 1 0 0 pi 2*pi;

7 0 0 2 0 0 0;

8 1 1 1 1 0 0;

9 0 1 2 3 −pi 2*pi;

10 0 0 2 6 0 0];

11 b= [x0 (xp0*tf) (xpp0*tf^2) xf (xpf*tf) (xppf*tf^2)].';

12 a=A\b;

13 a=collect(a,tf);

14 Mp=length(a);

15

16 %% (psi) Reference Function (scaled tau_bar=tau/tauf)

17 syms psi0 psip0 psipp0 psiff psipf psippff tf

18 C=[1 0 0 0 0 0;

19 0 1 0 0 0 0;

20 0 0 2 0 0 0;

21 1 1 1 1 1 1;

22 0 1 2 3 4 5;

23 0 0 2 6 12 20];

24 d=[psi0 psip0*tf psipp0*tf^2 psiff psipf*tf psippff*tf^2].';

25 apsi=C\d;

26 apsi=collect(apsi,tf);

27 Np=length(apsi);

28

29 %% (speed profile) Reference Function\

87

30

31 syms lam0 lamp0 lampp0 lamff lampff lamppff tf

32 LL=[1 0 0 0 0 0;

33 0 1 0 0 0 0;

34 0 0 2 0 0 0;

35 1 1 1 1 1 1;

36 0 1 2 3 4 5;

37 0 0 2 6 12 20];

38 l=[lam0 lamp0*tf lampp0*tf^2 lamff lampff*tf lamppff*tf^2].';

39 alam=LL\l;

40 alam=collect(alam,tf);

41 Ol=length(alam);

A.4 Sensor Model Generator Function: SensorModelGeneration.m

1 % Sonar Sensor Model:

2 % This function creates the probability density functions for the sonar

3 % sensor model. It takes the pre−fit curve fits stored in this folder

4 % (created using the cfit Matlab toolbox) and creates the polynomials

5 % representing each sonar sensor probability model pdf for occupied/empty

6 % states. The empirical data input in the sensor probabilities cells (rO

7 % and rE) represents the data used to create the pdf's and resulting curve

8 % fits. This data is not actually used during runtime due to the fact that

9 % it is already incorporated into the saved curve fits PrOmdlfunc and

10 % PrEmdlfunc.

11

12 % The pdf's may be plotted by uncommenting the plotting code in the last

13 % cell.

14

15 global PrOpoly PrEpoly

16

17 % Signal strengths (x−axis)
18 SS=linspace(0,5000);

19 SS=SS';

20

21 %% Sensor Probabilities (Occupied)

22

23 rO = [0;

24 0.5000;

25 1.0000;

88

26 1.5000;

27 2.0000;

28 2.5000;

29 3.0000;

30 3.5000;

31 4.0000;

32 4.5000;

33 5.0000;

34 5.5000;

35 6.0000;

36 6.5000;

37 7.0000;

38 7.5000;

39 8.0000;

40 8.5000;

41 9.0000;

42 9.5000;

43 10.0000;

44 10.5000;

45 11.0000;

46 11.5000;

47 12.0000;

48 12.5000;

49 13.0000;

50 13.5000;

51 14.0000;

52 14.5000;

53 15.0000;

54 15.5000;

55 16.0000;

56 16.5000;

57 17.0000;

58 17.5000;

59 18.0000;

60 18.5000;

61 19.0000;

62 19.5000;

63 20.0000;

64 20.5000;

65 21.1000;

66 21.8000;

89

67 22.6000;

68 23.5000;

69 24.5000;

70 25.6000;

71 26.8000;

72 28.1000;

73 29.5000;

74 31.0000;

75 32.6000;

76 34.3000;

77 36.1000;

78 38.0000;

79 40.0000;

80 42.1000;

81 44.3000;

82 46.6000;

83 49.0000;

84 51.5000;

85 53.9500;

86 56.3500;

87 58.7000;

88 61.0000;

89 63.2500;

90 65.4500;

91 67.6000;

92 69.7000;

93 71.7500;

94 73.7500;

95 75.7000;

96 77.6000;

97 79.4500;

98 81.2500;

99 83.0000;

100 84.7000;

101 86.3500;

102 87.9500;

103 89.5000;

104 91.0000;

105 92.4500;

106 93.8500;

107 95.2000;

90

108 96.5000;

109 97.7500;

110 98.9500;

111 100.1000;

112 101.2000;

113 102.2500;

114 103.2500;

115 104.2000;

116 105.1000;

117 105.9500;

118 106.7500;

119 107.5000;

120 108.2000;

121 108.8500;

122 109.4500];

123

124 % Normalize rO Vector (ensure sum(rO) = 1)

125 rO=rO./sum(rO);

126

127 % determine function representing this pdf

128 load PrOmdlfunc;

129 PrOpdf=PrOmdlfunc;

130 PrOpoly=coeffvalues(PrOpdf);

131 PrO=polyval(PrOpoly,SS);

132 % % Plot pdf against original normalized sensor values

133 % plot(SS,PrO,':b')

134 % hold off

135

136 % % Plot error between rO and PrO

137 % Err=PrO−rO;
138 % plot(SS,Err)

139

140 %% Sensor Probabilities (Empty)

141

142 % rE=normpdf(SS,500,500);

143

144 rE=[25;34;54;62;67;71;73;74;74;73;71;65;57;51;45;40;35;31;27;24;21;18;16;...

145 14;12;11;10;9;8;8;7;7;6;6;5;5;5;5;4;4;4;4;4;4;3;3;3;3;3;3;3;3;3;3;3;...

146 2;1;1;1;1;1;1;1;1;1;1;1;1;...

147 1;1;1;1;1;1;1;1;1;1;1;1];

148

91

149 % Normalize rE Vector (ensure sum(rE) = 1)

150 rE=rE./sum(rE);

151

152 % determine function representing this pdf

153 load PrEmdlfunc2;

154 PrEpdf=PrEmdlfunc2;

155 PrEpoly=coeffvalues(PrEpdf);

156 PrE=polyval(PrEpoly,SS);

157

158

159 % PrE=PrE./sum(PrE);

160

161 % % Plot pdf against original normalized sensor values

162 % plot(SS,PrE,':b')

163 % hold off

164

165 %% Plot both pdf's together

166 % z=zeros(100,1);

167 % figure()

168 % plot(SS,PrE,':r',SS,PrO,'−−b',SS,z,'k')
169 % title('Sonar Return Signal Probability Density Functions')

170 % xlabel('Return Signal Value')

171 % ylabel('Probability of Receiving Signal Value')

172 % legend('P[r_t_+_1 | s(C)=Emp]','P[r_t_+_1 | s(C)=Occ]')

A.5 Sonar Sweep and Imaging Function: sweep.m

1 function sweep(hdg,xv,yv)

2 %SWEEP Performs a sonar sweep simulation given known input mapping data

3 % This function takes vehicle state inputs and a known world model of the

4 % environment to determine signal strength values for occupied/unoccupied

5 % pixels in the sonar sweep. It then stores these signal strength values

6 % in a sonar image model matrix representing a notional qualitative sonar

7 % image to be used for updating the Occupancy Grid.

8

9 % Inputs:

10 % hdg: Vehicle heading (psi) in NED coordinate frame

11 % xv: X coordinate of vehicle centroid

12 % yv: Y coordinate of vehicle centroid

13

92

14 global SnrImg WorldMdl L H R Rs

15 alpha = 45*pi/180; % Sonar spread half−width in radians

16

17 %*****Next four values are arbitrarily set. Once method is validated, this

18 % might need to be changed so that the signal returns are more ...

randomized

19 % based on sonar sensor model.*****

20 sigOccMed = 4000; % Median signal strength to use for occupied cells

21 sigOccDev = 750; % Max deviation from occupied median signal strength

22 sigEmpMed = 300; % Median signal strength to use for empty cells

23 sigEmpDev = 250; % Max deviation from empty median signal strength

24

25

26 %******Change the next line to refine sweep***************

27 ang = 1*pi/180; % Angle increment in radians *

28 %***

29

30 xs = xv + L/2*sin(hdg); % Sonar transmitter x−coordinate in tank frame

31 ys = yv + L/2*cos(hdg); % Sonar transmitter y−coordinate in tank frame

32

33 % Note: following are scaled by 10 to change into the matrix space, vice

34 % the cartesian space

35 ms = round(10*(R+(H−ys))); % Map matrix row index of ys

36 ns = round(10*(R+xs)); % Map matrix column index of xs

37

38 % This 'for' loop iterates through sonar spread in angular increment

39 % specified by variable 'ang'. At each step, it generates a Bresenham

40 % line, which it then compares to the known image map ('WorldMdl') to ...

assign

41 % a value of 1 or 0 to each point on the Bresenham line corresponding to

42 % the value for that point within the image map.

43

44 for a=hdg−alpha:ang:hdg+alpha
45 mr=ms−round(Rs*cos(a)); % row index of Bresenham line endpoint ...

y−coord
46 nr=ns+round(Rs*sin(a)); % column index of Bresenham line endpoint ...

x−coord
47 % Bresenham line creation

48 [bn bm] = bresenham(ns,ms,nr,mr);

49 len = length(bn);

50

93

51 bv=zeros(1,len);

52 for j=1:len

53 bv(j)=WorldMdl(bm(j),bn(j)); % Assign 1 or 0 value to each ...

point on

54 % Bresenham line corresponding ...

to those

55 % points in input binary matrix

56

57 % This next part chooses random values between min empty/occupied

58 % signal and max empty/occupied signal as defined above. This

59 % randomizes the signal return value, adding realism to the

60 % simulation.

61 if bv(j) == 0

62 sigEmpmin=sigEmpMed−sigEmpDev;
63 sigEmpmax=sigEmpMed+sigEmpDev;

64 sigEmp=randi([sigEmpmin sigEmpmax]);

65 SnrImg(bm(j),bn(j)) = sigEmp;

66 elseif bv(j) == 1

67 sigOccmin=sigOccMed−sigOccDev;
68 sigOccmax=sigOccMed+sigOccDev;

69 sigOcc=randi([sigOccmin sigOccmax]);

70 SnrImg(bm(j),bn(j)) = sigOcc;

71 break

72 end

73 end

74

75 end

76 end

A.6 Occupancy Grid Updater and Information Gain Calcu-
lation Function: OGupdate.m

1 function [IG1]=OGupdate(snrimg,occpdf,emppdf)

2 %OGUPDATE Updates the probabilities in Occupancy Grid for each sonar sweep

3 %and calculates the resulting information gain.

4 % This function takes the sonar image developed in the sweep function as

5 % well as the sensor signal probability density functions, and

6 % updates the Occupancy Grid usign the Bayesian Inference equation. It

7 % then calculates the information gain acheived during each cell update,

94

8 % and finally calculates the cumulative information gain over the entire

9 % occupancy grid for the given trajectory.

10

11 global OG %HE

12 [r c]=size(snrimg);

13 ig1=zeros(r,c); % Matrix preallocation for speed

14 % ig2=zeros(r,c);

15 for i=1:r

16 for j=1:c

17 if snrimg(i,j) 6= 0

18 PsO = polyval(occpdf,snrimg(i,j));

19 PsE = polyval(emppdf,snrimg(i,j));

20 elseif snrimg(i,j) == 0

21 PsE=0.5;

22 PsO=0.5;

23 end

24

25 PcOt=OG(i,j); % Prior OG cell value

26

27 % Bayesian inference formula for posterior OG cell value:

28 PcO=(PsO*PcOt)/(PsE*(1−PcOt)+PsO*PcOt);
29

30 % Simple IG method

31 ig1(i,j)=abs(PcO−PcOt);
32

33 % Alternate IG method: This method was derived from the

34 % Probabilistic Robotics book. However, it proved to be very

35 % computationally intensive, and produced results very close to the

36 % much simpler method actually employed above, thus it is not used

37 % at this time.

38

39 % Update Entropy

40 % Pi=OG(i,j); % Prior cell occupancy probability

41 % Ptrue=PcO; % Probability for correctly measuring ...

cell is Occupied

42 % Hp=−Pi*log2(Pi)−(1−Pi)*log2(1−Pi); % Prior cell ...

entropy

43 % HE(i,j)=Hp; % Update entropy grid

44

45 % Expected entropy after sensing (Probabilistic Robotics,

46 % Eqn. 17.15, pg. 584)

95

47 % EH=−Ptrue*Pi*log2(Ptrue*Pi/(Ptrue*Pi+(1−Ptrue)*(1−Pi)))...
48 % ...

−(1−Ptrue)*(1−Pi)*log2((1−Ptrue)*(1−Pi)/(Ptrue*Pi+(1−Ptrue)*(1−Pi)))...
49 % ...

−(1−Ptrue)*Pi*log2((1−Ptrue)*Pi/(Ptrue*(1−Pi)+(1−Ptrue)*Pi))...
50 % −Ptrue*(1−Pi)*log2((1−Ptrue)*Pi/(Ptrue*(1−Pi)+(1−Ptrue)*Pi));
51 %

52 % ig2(i,j)=Hp−EH; % Expected Information Gain (Probabilistic ...

Robotics,

53 % % Eqn. 17.4, pg. 572)

54

55 % Update Occupancy Grid

56 OG(i,j)=PcO;

57

58

59

60 end

61 end

62 IG1=sum(sum(ig1)); % Calculate total IG over entire OG

63 % IG2=sum(sum(ig2));

A.7 Heuristics Violation Analysis Function: HeurViolArea.m

1 function [ViolArea] = HeurViolArea(xS,yS,xViol,yViol)

2 %HEURVIOLAREA−−calculates heuristics boundary violation areas

3 % This function uses the vectors of stern point coordinates to

4 % calculate the total violation area between the arc swept by the

5 % vehicle stern and the heuristics boundaries.

6

7 global RBx BBy

8

9 if (any(xViol)) && (any(yViol))

10 ViolArea=NaN;

11 elseif (any(xViol)) || (any(yViol))

12

13 if any(xViol)

14 % fprintf('Run %g: Violation of Right Boundary.\n',n)

15 xViolVec=xS(find(xViol));

16 xvl=length(xViolVec);

17 for i=1:xvl

96

18 xV(i)=xViolVec(i)−RBx;
19 end

20

21 % ***Calculate Violation Area

22 xVint=trapz(yS(find(xViol)),xV);

23 ViolArea=abs(xVint);

24 % fprintf('Violation of Right Boundary: %6.4g\n',ViolArea)

25 % ***

26

27 % ***Plot right boundary violation area−−use this for a visual plot

28 % of the actual boundary violations.

29

30 % RBxp=ones(1,xvl)*RBx;

31 % xviolfig=figure();

32 % plot(yS(find(xViol)),xViolVec,'k',yS(find(xViol)),RBxp,'r*');

33 % jbfill(yS(find(xViol)),RBxp,xViolVec);

34 % axis equal

35 % tstr=sprintf('Run %g Right Boundary Violation Plot',n);

36 % title(tstr)

37 % xlabel('y')

38 % ylabel('x')

39 % legend('Stern Path','Right Boundary','Location','North')

40 % set(gca,'YDir','reverse')

41 % camroll(90)

42 % ***

43 end

44

45 if any(yViol)

46 % fprintf('Run %g: Violation of Bottom Boundary.\n',n)

47 yViolVec=yS(find(yViol));

48 yvl=length(yViolVec);

49 %[myv nyv]=size(yViolVec) % t/s only

50 for i=1:yvl

51 yV(i)=BBy−yViolVec(i);
52 end

53

54 % ***Calculate Violation Area

55 yVint=trapz(xS(find(yViol)),yV);

56 ViolArea=abs(yVint);

57 % fprintf('Violation of Lower Boundary: %6.4g\n',ViolArea)

58 % ***

97

59

60 % ***Plot bottom boundary violation area−−use this for a visual ...

plot

61 % of the actual boundary violations.

62

63 % BByp=ones(1,yvl)*BBy;

64 % [mby nby]=size(BByp) %t/s only

65 % yviolfig=figure();

66 % plot(xS(find(yViol)),yViolVec,'k',xS(find(yViol)),BByp,'r*')

67 % jbfill(xS(find(yViol)),BByp,yViolVec);

68 % axis equal

69 % tstr=sprintf('Run %g Bottom Boundary Violation Plot',n);

70 % title(tstr)

71 % xlabel('x')

72 % ylabel('y')

73 % legend('Stern Path','Bottom Boundary','Location','Best')

74 % ***

75 end

76

77 else ViolArea = 0;

78 end

79

80 end

A.8 Avoidance Penalty Analysis Function: Avoidance.m

1 % This script generates the World Model matrix and initializes the matrices

2 % for the sonar image, heuristics analysis, occupancy grid, and information

3 % gain value storage.

4

5 % World Model (Input data for simulation)

6 global HMat OG SnrImg WorldMdl R M N IG1 ObsFlag Rs H xl xr yl yu xl2 ...

xr2 yl2 yu2 %HE

7 % Tank matrix for Bresenham imaging algorithm

8 Rs=10*R; % Scales the sonar range value for matrix cell

9 % index addressing.

10 WorldMdl=zeros(M,N);

11

12 % The following 4 'for' loops place ones in tank matrix space outside ...

the tank

98

13 for i=1:Rs

14 WorldMdl(i,:)=1;

15 end

16 for j=M−Rs:M
17 WorldMdl(j,:)=1;

18 end

19 for k=1:Rs

20 WorldMdl(:,k)=1;

21 end

22 for l=N−Rs:N
23 WorldMdl(:,l)=1;

24 end

25

26 if ObsFlag

27 % Obstacles in tank:

28 m1=10*(R+H−yu);
29 m2=10*(R+H−yl);
30 n1=10*(xl+R);

31 n2=10*(xr+R);

32 WorldMdl(m1:m2,n1:n2)=1; % Assigns value of one to all World Model

33 % cells corresponding to the obstacle location.

34

35 m12=10*(R+H−yu2);
36 m22=10*(R+H−yl2);
37 n12=10*(xl2+R);

38 n22=10*(xr2+R);

39 WorldMdl(m12:m22,n12:n22)=1;

40

41 end

42

43 SnrImg=zeros(M,N); % Initialize Sonar Image matrix

44 HMat=WorldMdl; % Used for Heuristic Violation Analysis

45 OG=.5*ones(M,N); % Initialize Occupancy Grid

46 IG1=zeros(M,N); % Initialize Information Gain matrix

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Associate Professor Douglas Horner
Center for Autonomous Vehicle Research (CAVR)
Naval Postgraduate School
Monterey, California

4. Professor Oleg Yakimenko
Department of Mechanical and Aeronautical Engineering
Naval Postgraduate School
Monterey, California

101

