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ABSTRACT 

The Navy’s Strategic Planning and Analysis Directorate (OPNAV N14) uses a 

complex model to project officer status in the coming years. The Officer Strategic 

Analysis Model (OSAM) projects officer status using an initial inventory, historical 

loss rates, and dependent functions for accessions, losses, lateral transfers, and 

promotions that reflect Navy policy and U.S. law. OSAM is a tool for informing 

decision makers as they consider potential policy changes, or analyze the impact 

of policy changes already in place, by generating Navy Officer inventory 

projections for a specified time horizon.  

 This research explores applications of data farming for potential 

improvement of OSAM. An analysis of OSAM inventory forecast variations over a 

large number of scenarios while changing multiple input parameters enables 

assessment of key inputs. This research explores OSAM through applying the 

principles of design of experiments, regression modeling, and nonlinear 

programming. The objectives of this portion of the work include identifying critical 

parameters, determining a suitable measure of effectiveness, assessing model 

sensitivities, evaluating performance across a spectrum of loss adjustment 

factors, and determining appropriate values of key model inputs for future use in 

forecasting Navy officer inventory. 
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EXECUTIVE SUMMARY 

Manpower and personnel costs consume a significant portion of the U.S. Navy 

budget every year, and Navy planners face the challenge of balancing manpower 

requirements and mandated end strength with budget constraints. The variability 

of human behavior further complicates the issue of forecasting strength. The 

Chief of Naval Personnel’s (N1’s) Strategic Resourcing Branch is responsible for 

analyzing manpower inventory forecasts and estimating the Navy’s manpower 

expenditures to be included in the budget and Program Objectives Memorandum 

(POM) submitted to the Secretary of the Navy every two years.  Forecasting 

Navy Officer inventory is a complex problem with an imperfect solution. One tool 

currently in use to tackle this problem is the Officer Strategic Analysis Model 

(OSAM), a model that follows individual officers from an initial inventory, or 

entities, through possible attribute changes during a forecast period, resulting in 

a projection of status for each officer in the coming years. OSAM is a tool for 

informing decision makers as they consider potential policy changes, or 

analyzing the impact of policy changes already in place, by generating Navy 

officer inventory projections for a specified time horizon.  

Navy officer inventory changes continuously, but decision makers find it 

useful to have accurate information about annual variations in inventory; this is 

what OSAM models. The key attributes of rank, designator, time-in-service, and 

time-in-grade describe each officer in inventory and adjust as time elapses. In 

addition to initial inventory, functions describing accession, promotion, lateral 

transfer, and loss influence the total officer inventory characterization. To model 

losses, OSAM multiplies historical loss rates by a loss adjustment factor for each 

category of officers. The model is capable of assigning a unique loss adjustment 

factor for each combination of key attributes, but recent practice is to apply the 

same loss adjustment factor universally to all designators and grades in a given 

projection year (i.e., loss adjustment factor = 1.041 in year two, 1.059 in year 

three, 1.085 in year four, 1.114 in year five). These values describe a set of 
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typical loss adjustment factors that OPNAV N14 provided to model a slowly 

improving economy. The thesis work presented here analyzes OSAM using 

designs of experiments and simulation analysis to explore the capabilities and 

limitations of the model, specifically targeting the lateral transfer and loss 

functions within the model.  

Deployment of OSAM on Naval Postgraduate School (NPS) computers 

enables exploitation of multiple processors and advanced statistical methods of 

analysis. Several different analytical methods provide insights into OSAM. Final 

analysis results in recommended loss adjustment factors that generate a better 

forecast than past practice, at a 90% confidence level. An OSAM modification 

allows the tracking of loss behavior of Surface Warfare Officers (SWOs) whose 

lateral transfer efforts are unsuccessful. Analysis of experiments reveals that 

these officers’ loss adjustment factors are the same as SWOs who never applied 

for lateral transfer, at a 95% confidence level. Additional experiments are 

necessary to determine whether there is a benefit to modeling these officers 

separately, as this OSAM modification allows a unique historical loss rate to 

enter the model.   

This thesis compares OSAM forecasts to historical inventories over a five 

year period, and results could potentially improve with additional base year data 

available. Extension of this analysis over a broader time frame may also capture 

the impact of varying political and economic environments. This first foray into 

data farming OSAM studies only two officer communities, including four 

designators. Recommendations for future research include variation of additional 

parameters in future designs of experiments, and focused analysis on individual 

community forecasts, independently or in conjunction with other communities or 

the overall officer inventory. A weighted approach to such an analysis can require 

satisfaction of absolute requirements while observing flexibility in the officer 

inventory distribution according to anticipated behavior. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

Manpower and personnel costs consume a significant portion of the U.S. 

Navy budget every year, and Navy planners face the challenge of balancing 

manpower requirements and mandated end strength with budget constraints. 

The variability of human behavior further complicates the issue of forecasting 

strength. The Chief of Naval Personnel’s (N1’s) Strategic Resourcing Branch is 

responsible for analyzing manpower inventory forecasts and estimating the 

Navy’s manpower expenditures to be included in the budget and Program 

Objectives Memorandum (POM) submitted to the Secretary of the Navy every 

two years.  Forecasting Navy Officer inventory is a complex problem with an 

imperfect solution. One tool currently in use to tackle this problem is the Officer 

Strategic Analysis Model (OSAM), an entity based model that follows individual 

officers, or entities, from an initial inventory through possible attribute changes 

during a forecast period, resulting in a projection of status for each officer in the 

coming years.  OSAM is not a tool for predicting budgetary expenses, but rather 

for informing decision makers as they consider potential policy changes, or 

analyzing the impact of policy changes already in place, by generating Navy 

officer inventory projections for a specified time horizon.  

In its current form, OSAM is complicated to use and limited to small-scale 

employment. Prior to conduct of this research, OSAM had not been analyzed for 

variations over a large number of scenarios while changing multiple input 

parameters. The application of data farming methodology to the exploration of 

OSAM enhances understanding of the model’s capabilities and limitations. This 

thesis focuses on identifying effective means of applying data farming tools to 

OSAM exploration while targeting specific research questions related to the loss 

and lateral transfer functions of the model. 
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B. PURPOSE 

This study determines whether an adaptation of the OSAM currently in 

use by the Navy’s Strategic Planning and Analysis Directorate (OPNAV N14) 

could more effectively inform decisions about future loss rates and lateral 

transfers. OSAM forecasts are particularly sensitive to changes in projected loss 

rates, and there is not an accurate means to project loss rates. A robust design 

of experiments and iterative data analysis results in a better understanding of 

how variations in specific loss rates and lateral transfer rates affect OSAM 

inventory forecasts. Application of these methods to OSAM yield a more 

beneficial planning tool for decision makers.  

There is a great deal of interest in retention strategies for specific 

communities, in addition to officer retention in the combined officer corps. Lateral 

transfers are essential to staff communities that have no direct accession 

sources, and to retain talented leaders that otherwise might leave the Navy 

altogether. This study assesses the sensitivity of OSAM to variations in loss rate 

projections and lateral transfer rates, and suggests a systematic approach for 

future researchers to apply to additional questions. 

An additional product of this research is the modification of OSAM 

scenario management for a more efficient and user-friendly interface. Automated 

model implementation for data farming opens up a wealth of future research 

opportunities. Extending these tools to examination of additional aspects of 

officer inventory management may lead to improved community management, 

accession planning, promotion planning, and loss rate projections.  

C. RESEARCH QUESTIONS 

Navy officer inventory changes continuously, while long-term planning 

relies on effective personnel forecasting to influence key decisions. OSAM fills an 

essential role for Navy planners by modeling the Navy officer component of 

personnel forecasting. In this model, the key attributes of rank, designator, time-
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in-service, and time-in-grade describe each officer in inventory and adjust as time 

elapses. In addition to initial inventory, functions describing accession, 

promotion, lateral transfer, and loss influence the total officer inventory 

characterization. This research focuses on the outcome of lateral transfers and 

losses on Navy Officer inventory projections by addressing three specific 

research questions: 

 What is a reasonable range of loss adjustment factors to use in 

OSAM for accurate officer inventory projections?  

 How sensitive are officer inventory projections to varying future loss 

rates for specific communities or pay grades?  

 Is there a forecasting benefit to adjusting loss rates differently for 

officers who applied for lateral transfer and were declined, 

compared to officers who never applied for lateral transfer?  

In answering these research questions, the application of specific 

hypothesis tests yields insight to analytical results. These hypotheses, discussed 

at length in Chapter IV, are: 

 Primary hypothesis 1: The forecast generated from experimentally 

determined loss adjustment factors is more accurate than a 

forecast generated from a set of loss adjustment factors in which all 

values are 1.0. 

 Primary hypothesis 2: The forecast generated from experimentally 

determined loss adjustment factors is more accurate than a 

forecast generated from a set of loss adjustment factors in which 

values for projection year one are equal to 1.0, year two values are 

1.041, year three values are 1.059, year four values are 1.085, and 

year five values are 1.114. These values describe a set of typical 

loss adjustment factors that OPNAV N14 provided to model a 

slowly improving economy. 
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 Secondary hypothesis: Applying the unique set of loss adjustment 

factors for 902x officers, SWOs with declined lateral transfer 

applications, determined from a rigorous analysis yields a more 

accurate forecast than applying SWO loss adjustment factors to 

these declined lateral transfer applicants. 

D. SCOPE AND METHODOLOGY 

This study examines Navy officer inventory projection using the three 

research questions. Automation of input parameter adjustment and the post-

processing of results enabled an approach to the research questions in the 

context of data farming. Analysis of preliminary experiments identifies the loss 

rates with a significant impact on OSAM forecast accuracy and narrows the 

relevant range of these loss rates, resulting in a more compact design space for 

the next set of experiments. Selection of the final design space maximizes the 

information obtained about the model within the constraints of available time and 

computing power. 

OPNAV N14 enhanced OSAM to track lateral transfer applicants not 

selected for transfer, assigning a distinct loss rate to these officers. Analysis of 

preliminary and final experiments compares experimental results to historical 

data to determine whether the change to OSAM for tracking lateral transfer 

applicants results in more accurate officer inventory projections.  Additionally, 

experiments conducted for various loss rates were compared to historical data to 

determine what range of loss adjustment factors should be used by OSAM 

operators in future scenario consideration. Ultimately, this study demonstrates 

the value of OSAM and its potential analytical products in a data farming 

environment.  
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E. ORGANIZATION OF THESIS 

This thesis contains five chapters. Chapter II presents a brief overview of 

the current Navy Officer manpower planning process, the role of Officer Strategic 

Analysis Model (OSAM) in personnel policy decisions, and how data farming can 

multiply the power of OSAM as a tool for Navy decision makers. Chapter II also 

reviews manpower inventory projection related literature. Chapter III presents the 

design of experiments employed in data farming OSAM, and discusses the 

methodology of the data farming process. Chapter IV presents the analysis of 

experimental results.  Chapter V reports conclusions and recommendations for 

future research. 
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II. BACKGROUND 

This chapter develops the foundation necessary to understand the 

importance of this thesis to United States Navy decision makers. In addition to 

defining the Navy officer manpower environment and reviewing past research 

conducted in this field, the background contained herein provides context to the 

methodology and results detailed in later chapters.  

A. NAVY OFFICER MANPOWER 

A key component of budgeting is accurately predicting manpower 

inventory in a dynamic environment subject to both organizational policies and 

the desires of individuals within the system. Officer inventory is particularly 

difficult to predict, as personnel may enter the system at multiple ranks, can 

choose to move between specialties at numerous points in a career, and there is 

no proven means to predict officer loss rates.   

U.S. Code, Title 10 regulates original appointments for commissioned 

officers (Section 33), specifies the control of officers above the grade of O-3 

(Section 32), and governs aspects of officer promotions, separations, and 

involuntary retirements for all United States military branches (Section 36). Title 

10 codifies some facets of the Defense Officer Personnel Management Act 

(DOPMA), passed into law in 1980. In addition to aspects of DOPMA written into 

law, Department of Defense (DoD) policies derived from Congressional intent 

supplementing DOPMA legislation provide guidelines on promotion flow points 

and desirable minimum promotion opportunity for officers in each pay grade. 

(Schirmer et al., 2006) 

Officer career progression occurs upwardly via promotions, and 

sometimes laterally via redesignation. Lateral transfers between Navy officer 

communities potentially improve retention and career satisfaction for individuals, 

and enhances the ability of the Navy to staff officer communities properly when 
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unexpected shortfalls occur. According to Chief of Navy Operations (CNO) 

Instruction (OPNAVINST 1210.5), dated 24 Dec 2005, the purpose of lateral 

transfers is “to provide flexibility in the manning of officer communities.” This 

policy offers flexibility to the Navy, but also to individual officers, and adds 

additional uncertainty to the prediction of loss rates for applying officers denied 

the opportunity to transfer.  

Officer inventory projection models incorporate the key elements of officer 

career management and progression described here. Such models provide 

allowances for deviations from policies and practices to enable evaluation of 

policy changes, while intractable rules integrate laws into the modeling 

environment.  A quick reference guide published for the Strategic Planning and 

Analysis Directorate (OPNAV N14) delineates which aspects of personnel 

management meet law, which satisfy policy, and which implement common 

practice (Yardley et al., 2005). 

B. OFFICER STRATEGIC ANALYS IS MODEL (OSAM) 

1. Overview of the Model 

OPNAV N14 uses OSAM to project inventory of the active duty Navy 

Officer Corps over the time horizon of the Officer Programmed Authorization 

(OPA). The OPA specifies how many officers of each grade (Ensign through 

Captain) are required in each designator (73 skill sets modeled) in each 

projection year across the Fiscal Year Defense Plan (FYDP), which extends six 

years into the future. OSAM is an entity based model, maintaining designator, 

grade, and time-in-service information for individual officers, current and 

projected. By modeling officer behavior consistent with how the Navy Officer 

Corps behaves, OSAM attempts to generate a supply of officers with the right 

skills in the right grades at the right times.  

The purpose of OSAM is to predict on a yearly basis the grade, skill, and 

time-in-service (or years of commissioned service) content of the Active Navy 
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Officer force. In the model, four inter-related functions influence expected 

outcomes: loss generation, promotions, lateral transfers, and accessions. User-

defined parameters affect each of these functions, and they influence each other 

through interactions within the model. One objective of OSAM is to inform policy 

decisions by generating specific scenarios on request for decision makers. For 

instance, if Navy Recruiting Command needs to know whether their current 

accessions plan, in combination with NROTC and Naval Academy accessions, 

will be sufficient to supply the warfare communities with the required lieutenants 

in four years, OSAM can execute a scenario with the given accession plan to 

answer this question. A user-defined setting determines whether OSAM runs 

constrained to the inventory set by OPA for each year, or unconstrained to 

observe how officer inventory behaves on its own. The output of OSAM is a 

complete inventory of officers at the end of each projection year, characterized 

by the attributes of grade, designator, date of rank, time-in-service, and years of 

commissioned service.  

OSAM has great potential to inform policy makers, but it has many 

weaknesses as well. As a deterministic model, OSAM provides no confidence 

intervals for the officer inventory projected by its unconstrained mode. 

Furthermore, OSAM utilizes four interdependent functions to generate final 

output, and the interactions between these function may change from projection 

year to projection year. Of these four functions, promotions and accessions 

closely reflect Navy policies and behaviors. The promotion function is modeled 

three different ways, with user input determining the model to use in a given 

scenario; the default option is to promote to vacancy, as this is the underlying 

Navy policy. A known accession plan models officer gains for the first projection 

year, and in subsequent years new accessions are either unconstrained 

(determining according to the promotions, losses, and lateral transfers) or 

constrained so that officer end strength equals OPA. Promotion and accession 

functions in OSAM closely reflect the policies and practices implemented by 

Navy decision makers. Losses and lateral transfers are functions that depend 
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heavily on the unpredictable behavior and personal decisions of individual 

officers. The focus of this research is on the OSAM functions for loss rates and 

lateral transfers, intending to identify model parameters than will accurately 

capture the average behavior of individuals. 

2. Modeling Officer Loss Rates 

OSAM operators at OPNAV N14 note that the most significant unknown 

factor on model output is loss rates for projection years. Model output appears 

more sensitive to changes in loss rates than to other parameters, yet there is no 

good prediction system for officer loss rates from the Navy (as opposed to 

enlisted loss rates, which are correlated closely with unemployment rates). 

OSAM generates losses in two ways: regular loss rates reflect officers leaving 

the Navy by personal choice or policy reasons, and forced loss rates reflect the 

practice of from active service if twice non-selected for promotion. For any 

scenario, a user can also elect to turn on or off the force out business rules, 

potentially informing decisions on when and how often to allow exceptions to that 

rule.  

OSAM generates regular loss rates by multiplying historical loss rates 

(either most recent year baseline or a three-year average from the preceding 

three years) for a particular designator/rank/time-in-service combination by a loss 

adjustment factor defined by the OSAM user. For a particular 

designator/rank/time-in-service combination, the loss adjustment factor for a 

given projection year is equal to 1.0 if the analyst believes losses in that 

projection year will be exactly equal to historical losses. The adjustment factor 

will be less than 1.0 if the analyst believes the losses will be less than historical 

losses, and greater than 1.0 if the expected losses are greater than historical 

losses. Without a clear prediction formula for officer loss rates in future years, a 

working set of parameters for hypothesis testing is to apply the same loss 

adjustment factor universally to all designators and grades in a given projection 

year (i.e., loss adjustment factor = 1.041 in year two, 1.059 in year three, 1.085 in 
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year four, 1.114 in year five). These values describe a set of typical loss 

adjustment factors that OPNAV N14 provided to model a slowly improving 

economy. 

Each scenario implemented in OSAM has 2,025 loss adjustment factors 

as inputs to the model. Prior to this research, common practice applied the same 

loss adjustment factor to all officers in a given projection year, when in fact the 

loss rates of pilots five years from now may have changed differently than the 

loss rates of intelligence officers. While the loss adjustment factors used are 

reasonable values based on the experience of OSAM designers and users, it is 

desirable to know just how sensitive the model is to these changes. Data farming 

provides an opportunity to observe a variety of loss rates in a range, and to 

consider how varying loss rates differently for individual designator and grade 

combinations could affect total officer inventory and individual community 

inventory.  

With access to the actual Navy officer inventory data for every fiscal year 

since 1978, it is feasible to select multiple start years, and use OSAM to project 

FYDP inventory with various loss adjustment factors, then compare projections to 

the actual historical inventories in projected years. Rather than varying all 2,025 

loss rates, this research focuses on surface warfare officers (SWOs) and human 

resources (HR) officers.  

A third designator, 902x, created in OSAM to support this research, 

represents SWOs declined an opportunity to lateral transfer. Past research has 

shown that these officers have a significantly higher probability of leaving the 

Navy than SWOs who successfully lateral transfer or never apply for a lateral 

transfer (Kleyman & Parcell, 2010). Each officer modeled in OSAM belongs to 

only one community at a time. In reality, 902x officers as defined for this research 

are a subset of the SWO community, but in OSAM these two groups are disjoint 

sets. Even limiting variation of loss adjustment factors to these three categories, 

each design point includes 90 variables representing a unique loss adjustment 

factor in OSAM. A preliminary design of experiments determines which loss rates 
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are most useful to vary, and subsequent iterations further narrow the range of 

loss rates appropriate to use in forecasting officer inventory over multiple start 

years.  

3. Modeling Lateral Transfers 

There are three types of lateral transfers modeled in OSAM: training 

attrites, option officers, and lateral transfers. Training attrites are officers who do 

not complete initial training in their original designator. Option officers enter the 

Navy with a contract specifying a lateral transfer to occur after completing 

surface warfare officer qualification. The transfer behavior of these two groups is 

explicitly modeled in a user defined input file; an OSAM user can specify how 

officers move among designators via the lateral transfer application process, but 

the typical user setting is to leave lateral transfer behavior unconstrained, letting 

OSAM calculate the correct number. In this case, OSAM determines the number 

of officers required to supply lateral transfers to recipient communities. Each 

supplying community supplies a fraction of all its officers eligible for lateral 

transfer such that each community supplies a similar proportion of its whole. 

Notably, there is no restriction modeled in OSAM on the number of officers taken 

from each supplying community, which could potentially leave one or more of 

these supplying communities short of senior officers in a future projection year. 

A 2010 study of the lateral transfer application process by Center for 

Naval Analyses (CNA) observes that 41% of applicants disapproved for lateral 

transfer leave the Navy within 36 months, while only 10% of applicants approved 

for lateral transfer leave the Navy within 36 months. (Kleyman & Parcell) 

Currently, OSAM does not model the lateral transfer application process itself, 

only the change in designator for the officers approved to transfer. The findings 

of CNA could have a significant impact on the total Navy officer inventory and in 

particular on specific officer communities. Kleyman and Parcell’s (2010) study 

consider the applicants to lateral transfer boards in the period between 2005 and 

2010. If applied to an improved OSAM model, their findings enable comparison 
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of OSAM forecasts for multiple start years to the original OSAM model 

projections, and to the actual observed historical inventories.  

4. Goals of the Model 

“All models are wrong, but some are useful” (Box & Draper, 1987). OSAM 

is a complex model used to observe the results of “What if?” scenarios for Navy 

planners. At this time, OSAM is a Microsoft Visual FoxPro 9.0 executable 

application, dependent on input contained in 60 database files. A baseline 

scenario draws information from each of these files, and adjustments to the 

baseline scenarios occur via individually editing one or more of the 60 input files. 

A Microsoft Word document maintained with each set of database files tracks 

specific parameters defined in the database files. Generating a new scenario 

involves meticulous attention to detail in adjusting the database files and 

documenting the changes. Some methods employed to reduce human error 

when using this complex scenario management system are repetition and 

consistent practices. There is a single employee at OPNAV N14 whose primary 

job is to track and maintain OSAM scenarios, and to run new scenarios as 

needed. Even this experienced individual requires fifteen to twenty minutes to 

prepare and document a well-defined scenario. The run itself takes 3–12 

minutes, depending on the machine resources available. Output analysis, 

primarily visualization in pivot charts, occurs immediately after running a scenario 

and takes 15–30 minutes, depending on the number and types of questions of 

interest. Despite complexities in implementation, OSAM is a powerful tool with 

great potential for informing Navy leadership on the impacts of proposed policy 

changes.  

This thesis, in conjunction with the Simulation Experiments & Efficient 

Designs (SEED) Center for Data Farming, considers different choices of input 

parameters to OSAM within reasonable ranges, performs sensitivity analysis on 

these parameters, and suggests reasonable values or ranges of values to use as 

inputs to OSAM. Preliminary analysis determines reasonable ranges of variation 
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for ninety loss adjustment factors. The input to OSAM that has the greatest 

influence on results is loss rates, for which there is no reliable prediction means 

at this time. The ability to execute numerous runs of OSAM in a short period in a 

data farming environment provides an opportunity to understand the impact of 

varying loss rates on officer inventory.  

C. LITERATURE REVIEW 

For as long as there have been organizations, managers have had an 

interest in predicting the flow of manpower into, within, and out of them; military 

leaders have faced this challenge for as long as armies have been around. This 

need for leaders to plan ahead evolved over time to simple manpower modeling 

and then to multifaceted projection planning as the size and complexity of 

organizations expanded over the centuries. Manpower modeling in general and 

military manpower modeling in particular has been the subject of targeted 

operations research since before operations research has been a recognized 

discipline. As availability of computing power has improved dramatically, 

manpower modeling has reached new levels of complexity; the research 

conducted over the past few decades has laid a solid foundation for the Officer 

Strategic Analysis Model examined in this thesis.  

A review of literature previously published on the subject of manpower 

modeling provides background information on the subject, identifies successful 

model explorations, and highlights limitations of previous studies in the context of 

this thesis. Publications on the subject of manpower modeling are numerous, but 

none apply data farming tools to exploring an existing officer manpower model. 

This literature review identifies research on similar or related topics, such as 

developing new officer inventory models, or data farming an existing enlisted 

manpower model. Despite the significant gap between this thesis and previously 

published works, each of the sources identified in this literature review provide 

background and context to the evolving field of forecasting military personnel 

accurately.  
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The results of this literature review cover two distinct topics: Navy 

manpower modeling, and other service manpower modeling. The discussion on 

Navy manpower modeling falls under the subdivisions of inventory projection 

research and studies targeting lateral transfer processes and loss rate 

projections.  

1. Navy Manpower Modeling 

a.  Inventory Projection 

One definition of manpower planning is the interaction of three 

processes: predicting future demand, predicting future supply, and evaluating 

policies intended to bring predicted demand and predicted supply as close 

together as possible (Edwards, 1983). Inventory projection brings together all 

three of these functions by using organizational knowledge and policies to predict 

supply and demand, and observing the gap between them. Each inventory 

projection model considered in this literature review has the ultimate goal of 

informing decision makers on the impact of potential policy changes.   

Clark (2009) develops a linear optimization program, 

Requirements-Driven Cost-Based Manpower Optimization (RCMOP), to project 

monthly values for Navy officer inventory by minimizing unmet manpower 

requirements without over-executing the budget. Like OSAM, Clark (2009) 

models officer inventory as a function of four component functions: promotions, 

accessions, lateral transfers, and losses. RCMOP assigns penalties to unmet 

manpower requirements to determine priority in executing the budget, while 

OSAM can either constrain inventory to meet manpower requirements or allow 

the officer inventory to progress naturally according to expected behavior of 

individuals if unconstrained by OPA.  

Wheeler (2010) builds on Clark’s 2009 RCMOP model. Wheeler 

considers variation of loss rates and additional officer communities, as well as 

increasing the time horizon considered. The majority of officer communities 
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remain in the “other” category under Wheeler’s analysis. The nature of OSAM as 

a simulation model allows incorporation of each Navy officer community 

separately to obtain high-resolution inventory. Clark (2009) and Wheeler (2010) 

focus on meeting budget requirements, a goal distinctly different from that of this 

research, which focuses on assessing the treatment of loss rates employed in 

generating an accurate forecast.    

b.  Lateral Transfer Modeling or Analysis 

In 1997, the Center for Navy Analyses (CNA) examines the Navy’s 

lateral transfer system. Moore and Reese (1997) assess how the policy of 

staffing Restricted Line (RL) and Staff Corps communities fit into a strategy to 

increase retention and career satisfaction among officer. At the time of Moore 

and Reese’s study, there is a shortage of lateral transfers to sustain the RL and 

Staff communities; a secondary goal of their research is to determine whether an 

adjustment to transfer rates is appropriate. This CNA study observes that lateral 

transfer arising from training attrition early in an officer’s career fail to obtain 

warfare qualification more often than officers originally placed in a designator do; 

Moore and Reese suggest that this is due to a mismatch between the job and the 

officer.  The observations in this 1997 analysis lay the foundation for numerous 

studies on the subject of lateral transfers in subsequent years, but do not attempt 

to model lateral transfers in a forecasting environment. 

In 2004, Monroe and Cymrot analyze a proposed policy of cutting 

Navy officer accessions and limiting lateral transfers, ultimately determining that 

reducing Surface Warfare Officer (SWO) accessions by 160 officers each year 

could save the Navy $91 million. This study considers only the SWO community, 

using productivity measures to estimate the tradeoffs between keeping officers in 

the SWO community and allowing them to transfer in greater numbers to RL or 

Staff communities. Generally, any SWO queried in an unofficial context will state 

that fellow SWOs pursuing a lateral transfer and declined the opportunity to 

transfer often elect to leave the Navy, thus still creating a gap in SWO 
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manpower. Monroe and Cymrot (2004) take steps to quantify these choices by 

SWOs, and lay the groundwork for future studies to drill down further. Monroe 

and Cymrot do not address the questions undertaken in this thesis, but 

nonetheless provide background important to understanding and interpreting 

forecast results. 

In 2007, Ryan identifies factors that lead Unrestricted Line (URL) 

officers to request lateral transfers, identifies lateral transfer selection criteria 

used by selection boards, and determines through regression analysis that 

officers turned down by a lateral transfer selection board have a different 

retention likelihood than officers who apply and are selected. “Officers who apply 

for lateral transfer but are not selected are more than twice as likely to leave the 

Navy as those who are selected” (Ryan, 2007, p. 73). Ryan’s research does not 

quantify the impact of his findings on inventory projections, as this thesis begins 

to do.  

Building on Ryan’s 2007 work, Kleyman and Parcell (2010) conduct 

a thorough statistical analysis of lateral transfer applicants over a five-year 

period, and determine a lower bound impact of denying applicants solely based 

on supplying community quotas. Ryan (2007) and Kleyman and Parcell (2010) 

note retention differences, but stop short of applying these differences to 

modeling loss rates for lateral transfer applicants, a task uniquely suited to data 

farming an inventory projection model such as OSAM.  

2. Other Service Manpower Modeling 

In 1983, a simulation model for military personnel analysis, the Accession 

Supply Costing and Requirements (ASCAR) model, develops to compute 

projected shortfalls in desired end strength and total man-years (Collins et al., 

1983). This model, like OSAM, informs decision makers on the impact of 

potential personnel policies. This model is an important predecessor to OSAM in 

both its design and its purpose, but as a model for active duty enlisted personnel, 
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ASCAR does not consider the complexities of prior service and promotions in 

controlled grades, which this thesis must incorporate in the analysis of officer 

inventory projections.   

In 1991, Grant publishes a special report discussing a non-line officer 

projection model developed for the United States Air Force to inform the effect of 

policy decisions, such as compensation and promotion adjustments, on future 

force structure. This model is an discrete event simulation and includes many of 

the functional aspects that OSAM addresses, though there is no allowance for 

lateral transfers in this Air Force model. Notably, the non-line officer projection 

model presented by Grant (1991) does not consider the non-line officer force as 

an aggregate. That is, the model provides a forecast for each officer community 

in isolation, thus missing any interaction effects that affect the total force. 

Fiebrandt (1993) develops and implements a U.S. Coast Guard Rating 

Forecast Model to project inventory and personnel flow by rating. Though this 

model is for enlisted personnel and for a different military service, it treats 

functions similarly to OSAM, though the constraints behave differently. The 

greatest shortcoming of Fiebrandt’s model in the context of officer inventory 

projection is that, like Grant (1991), it models only one community at a time, 

losing the information gained from observing redesignations between ratings.  

In 2002, Schrews develops a new optimization model for enlisted 

manpower projection in the United States Army Active Guard Reserve (AGR). 

The model developed by Schrews (2002) tracks soldiers through a simulation 

with the same attributes that OSAM follows, and deals with accessions at pay 

grades E-4 to E-9, rather than at the initial training point. Though Schrews (2002) 

does address loss rate variations, these variations have a small impact on 

results, as new gains to the system replacing losses require only a one-week 

training pipeline. OSAM must incorporate training pipelines from 6 months to 8 

years for different designators, so the effect of loss rates on forecasts warrants 

rigorous analysis. 
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Erdman (2010) uses experimental design and data analysis to study the 

U.S. Army’s Enlisted Specialty (ES) model. The ES model uses coefficients to 

set penalties and rewards on different components of its objective function; the 

user can adjust these coefficients to focus the optimization on certain goals to 

observe the impact on future decisions. Erdman’s 2010 thesis uses data farming 

to select the coefficient values that had the greatest impact on lowering the 

deviation between inventory and authorizations over the planning horizon. Like 

OSAM, the ES model projects manpower inventory in specific job types and 

ranks. While the modeling methods employed are very different between the two 

(entity-based simulation in OSAM vs. linear optimization in ES model), the 

applicability of data farming is similar for each. The use of historical data as a 

representation of the future to assess input parameter values is important to this 

thesis, as it was in assessing the ES model.   

While the studies reviewed in this chapter each provide insight to the 

intricacies of Navy officer manpower modeling, none of them addressed the 

issue of modeling all officers in a service, accounting for individual communities 

and transition between them. OSAM’s capability to handle these complexities is 

unique. With this fact in mind, the application of an effective design of 

experiments, data farming, and simulation analysis to OSAM is the subject of the 

remaining chapters in this thesis. 
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III. METHODOLOGY AND APPROACH 

This chapter introduces the tools and methods employed in gathering, 

processing, and analyzing data from 495 OSAM simulations. Each simulation 

produces about 80,000 rows of data, each of which represents a Navy officer in a 

given year. The selection of experimental designs and the reduction of generated 

data to a single measure of effectiveness presents a unique challenge.  This 

chapter discusses analytical methods used is assessing the forecast accuracy of 

OSAM. 

A. DATA FARMING 

1. Definition and Application 

Data farming is a continually evolving combination of methods that 

capitalizes on high performance computing to explore a decision space more 

completely than traditional analytics typically allow. The opportunity to observe 

an entire landscape of solutions enables analysts to interpret results, assess 

model validity, identify and examine outliers, and explore otherwise 

insurmountable research questions (Horne & Meyer, 2010).  

Any model with multiple input parameters subject to variation could be a 

candidate for data farming. Efficient experimental design combined with 

automation of input parameter variations can leverage high performance 

computing to explore a large design space (Horne & Schwierz, 2008). Figure 1 

depicts the iterative nature of data farming. The scenario building loop in Figure 1 

includes building a model and defining research questions to explore with that 

model. This research uses a pre-built model, OSAM, so this scenario building 

loop refers to the specification of research questions and determination of how to 

proceed with model exploration. The scenario run space execution loop on the 

right hand side of Figure 1 describes the process of designating a design space, 
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executing multiple experiments, analyzing and interpreting results, and repeating 

the process as appropriate (Horne & Meyer, 2004).  

 

 

Figure 1.   Iterative nature of data farming (From Horne & Meyer, 2004).  

A key component of effective data farming is efficient experimental design. 

Design of experiments (DOE) is a field that applies a systematic approach to 

observing the impact of changing variables in a simulation. The application of 

DOE within the data farming loop in Figure 1 enables observation of single 

variable effects and interactions between variables.  The Appendix summarizes 

the components constructed to implement OSAM in a data farming environment. 

2. Design of Experiments 

Data farming enables study of a model’s response to multiple variations of 

many input parameters, available computing power and experimental design 

features magnify the benefits of data farming techniques.  As one objective of 

this thesis is to explore the applicability of data farming to OSAM, the scope of 
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this experiment is limited to varying 90 parameters, as described in Tables 1–5, 

describing the loss adjustment factors of the Surface Warfare and Human 

Resources communities. All DOEs retain the mapping described in these tables, 

though in later experiments many input parameters remain constant at 

analytically determined optimal values. To assist in exploring the lateral transfer 

research question, analysts at OPNAV N14 adapted OSAM to add a new 

designator, 902x, to be defined as needed for specific research purposes. For 

this investigation, the 902x designator includes SWOs declined the opportunity to 

lateral transfer. The 902x designator has its own set of historical loss rates, 

distinct from SWOs who never applied for lateral transfer. 

Table 1.   Each input parameter to vary in OSAM simulation mapping to its 
description of attributes. This table shows the mapping for the loss 
adjustment factors in the first projection year of each simulation. 

Projection Year designator grade input parameter

1 V1

2 V2

3 V3

4 V4

5 V5

6 V6

1 V7

2 V8

3 V9

4 V10

5 V11

6 V12

1 V13

2 V14

3 V15

4 V16

5 V17

6 V18

loss_adj factor mapping

HR (1200)

SWO (1110) 

& SWO 

Trainee 

(1160)

SWOs 

declined for 

Lateral 

Transfer 

(902x)

1
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Table 2.   Mapping for the loss adjustment factors in the second projection year 
of each simulation.  

Projection Year designator grade input parameter

1 V19

2 V20

3 V21

4 V22

5 V23

6 V24

1 V25

2 V26

3 V27

4 V28

5 V29

6 V30

1 V31

2 V32

3 V33

4 V34

5 V35

6 V36

2

HR (1200)

SWO (1110) 

& SWO 

Trainee 

(1160)

SWOs 

declined for 

Lateral 

Transfer 

(902x)

loss_adj factor mapping

 

Table 3.   Mapping for the loss adjustment factors in the third projection year. 

Projection Year designator grade input parameter

1 V37

2 V38

3 V39

4 V40

5 V41

6 V42

1 V43

2 V44

3 V45

4 V46

5 V47

6 V48

1 V49

2 V50

3 V51

4 V52

5 V53

6 V54

loss_adj factor mapping

3

HR (1200)

SWO (1110) 

& SWO 

Trainee 

(1160)

SWOs 

declined for 

Lateral 

Transfer 

(902x)
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Table 4.    Mapping for the loss adjustment factors in the fourth projection year.  

Projection Year designator grade input parameter

1 V55

2 V56

3 V57

4 V58

5 V59

6 V60

1 V61

2 V62

3 V63

4 V64

5 V65

6 V66

1 V67

2 V68

3 V69

4 V70

5 V71

6 V72

loss_adj factor mapping

4

HR (1200)

SWO (1110) 

& SWO 

Trainee 

(1160)

SWOs 

declined for 

Lateral 

Transfer 

(902x)
 

Table 5.   Mapping for the loss adjustment factors in the fifth projection year. 

Projection Year designator grade input parameter

1 V73

2 V74

3 V75

4 V76

5 V77

6 V78

1 V79

2 V80

3 V81

4 V82

5 V83

6 V84

1 V85

2 V86

3 V87

4 V88

5 V89

6 V90

loss_adj factor mapping

5

HR (1200)

SWO (1110) 

& SWO 

Trainee 

(1160)

SWOs 

declined for 

Lateral 

Transfer 

(902x)
 



 26

In a simulation environment with a small number of variable input 

parameters and a discrete number of levels for each parameter, it is possible to 

run an experiment covering every combination of variables. This set of conditions 

describes a full factorial design, and this type of experiment exhausts a design 

space, providing maximum information to an analyst. Unfortunately, it is 

infeasible to conduct a full factorial experiment on most real world models, and 

impossible for many, due to the exponential growth of design points required with 

the addition of each factor or factor level. Methods in the area called DOE devote 

resources to identifying and exploring experimental designs that cover much of 

the design space with a fraction of the design points that would appear in a full 

factorial design. Latin hypercubes (LHs) and nearly orthogonal Latin hypercubes 

(NOLHs) are two design types that satisfy this challenge neatly (Sanchez, 2006). 

When the factors, or variables, of a DOE are columns with N rows 

representing the possible levels for each factor, a randomized permutation of 

each column results in a Latin hypercube design. This type of design is most 

beneficial in experiments with large numbers of factors, and a randomized LH 

has good orthogonality properties when the number of design points is much 

greater than the number of factors. For smaller designs, it is important to select a 

LH design with low pairwise correlation between columns. An alternative to 

generating multiple LHs and choosing one with low pairwise correlations is to use 

an NOLH design. The SEED Center at NPS maintains spreadsheets pre-built to 

generate NOLH designs for small and moderate numbers of factors. Even with a 

small number of factors to vary, a full factorial design is cumbersome with more 

than two levels. An NOLH design has good space-filling and orthogonality 

properties, does not need checking for pairwise correlations, and requires a 

fraction of the design points a full factorial design would need (Sanchez, 20006). 

Running a large number of simulations, one for each design point, 

generates massive amounts of data. A relationship exists between the 

explanatory variables, or input parameters, and one or more response variables; 

determining this relationship correctly is often the goal of simulation analysis. In 
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1951, Box and Wilson introduce response surface methodology as a means to 

approximate this relationship using a second-degree polynomial. This 

methodology has proven effective and easy to apply to simulation analysis, even 

when details about the simulation process used to generate the data are 

unknown. Using current computing and available analytical software, a 

regression model allows all input parameters to enter the model as independent 

variables, along with the quadratic terms for each input parameter, and all 

possible two-way interactions between the input parameters. For an experiment 

with 90 input parameters, this methodology generates a regression model with 

an unwieldy number of terms, and additional statistical tools serve to simplify the 

model. A simulation analysis conducted after each DOE results in reduction of 

input parameters to include in the subsequent DOE if some parameters do not 

appear in the response surface model, or optimization of all generated models 

yields the same solution for some parameters.  

In conducting this research, the first DOE varies 108 factors over 108 

design points, and is a randomized LH design (S-plus script for Latin hypercubes, 

2011). Each factor is a continuous variable, but the design generation uses 108 

discrete levels for these factors. This first DOE intends to analyze variation over 

a six year forecast period, but base year data files for OSAM were only available 

as far back as 2007, so the simulation analysis was limited to a five year 

projection period. The variable mapping described in Tables 2–5 shows only the 

90 factors contributing to the analysis. Of these 90 remaining factors, five 

represent 902x officers of grade O1 (Ensigns). Navy policy prohibits officers with 

less than two years of commissioned service from applying for lateral transfer; 

this policy effectively means that 902x Ensigns never appear in the model. The 

inclusion of these five factors in the first DOE is an oversight, and subsequent 

DOEs do not consider them.   

The second DOE varies 65 factors over 128 design points, and is an 

NOLH design (Vieira, Sanchez, Kienitz, & Belderrain, 2011). The third DOE 

varies 29 factors over 128 design points, and is an NOLH design (Sanchez, 
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2005). This third DOE runs first with all 902x parameters equal to their 

corresponding SWO parameters, and a second time with all 902x parameters 

equal to values calculated in earlier analyses. Conventionally, as the number of 

factors in a DOE decreases, so does the number of design points needed. This 

research used fewer design points in earlier DOEs to explore and analyze the 

model within a reasonable period. All DOEs execute five times, once for each of 

the five base years, 2007–2011, that generate a forecast comparable to available 

historical data. 

B. DATA HANDLING 

Every design point generates about 80,000 rows of data, each 

representing a single officer in one projection year of the forecast period. To 

conduct a simulation analysis, it is necessary to condense this data into a single 

measure of effectiveness for each design point. The primary research focus is to 

assess the loss adjustments factors’ impact on forecast accuracy, so the analysis 

compares forecast inventory to actual inventory for each year that historical data 

is available. Relative difference, absolute difference, or mean squared error can 

all be effective measures of forecast accuracy, but each of these needs to be 

weighted proportionately when condensing so much data into a single value.  A 

straightforward solution is to calculate the mean absolute proportional error 

(MAPE) for each design point.  

,

where N is the number of data points included.

state state

state
state

actual forecast

actual
MAPE

N






 

In the context of this thesis, the state denoted by subscript refers to the 

combination of skill (SK), grade (GR), and fiscal year (FY). To calculate MAPE 

for each design point requires significant data manipulation. First, culling the data 

to extract only SWOs, HRs, and 902x officers enables matching forecast 

inventory with actual historical data for only the designators of interest to this 



 29

thesis. Then, the SWO community absorbs all 902x officers for comparison with 

historical inventory. The initial redesignation of these officers to 902x allows them 

to behave uniquely in OSAM, but they are still SWOs, and must be included in 

the total SWO inventory in evaluating forecast accuracy. The remaining data 

includes a SWO and HR inventory for each projection year and grade for all 90 

design points. This table joins with a historical inventory table to generate 

MAPEFY values for each DP.  The FY subscript associated with each MAPE 

value indicates that this value measures forecast accuracy for a specific fiscal 

year; each projection year OSAM generates yields a separate MAPEFY model. As 

the manipulation and combination of data tables proceeds, the number of rows, 

N, describing the data changes several times, rendering it a misleading value to 

include in final MAPE calculation. Instead, the traditional MAPE formula is 

adapted to normalize for total forecast. 

, , , ,
, ,

, , ,

, ,
,

SK GR FY SK GR FY
SK GR FY

SK GR SK GR FY

FY
SK GR FY

SK GR

actual forecast
forecast

actual
MAPE
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The resulting data set includes one MAPEFY value for each design point, 

used in the next phase of analysis to generate regression models. Conducting 

MAPE calculations proportioned on rank and skill in this fashion ensures that a 

small group of officers, such as HR Captains (O6s), do not exert the same 

influence on the overall MAPE model as a large subset, such as SWO Ensigns 

(O1s). This method simultaneously ensures that the influence of deviations within 

a subset exert a proportional influence on the model (i.e., a forecast with five 

more HR Captains than historical has a greater impact on the HR Captain 

component than a forecast with five more SWO Ensigns than historical). This 

second attribute is particularly important if applying this method to modeling 

MAPE by designator and fiscal year (MAPEFY,SK), rather than only by fiscal year 

(MAPEFY) as implemented in this simulation analysis. 
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The last step in the data-handling phase of analysis is subsetting MAPE 

calculations by fiscal year, generating a file for each projection year with a MAPE 

value for each design point. Once matched with the original DOE file, this data 

table is ready for the modeling phase of analysis.  

C. REGRESSION ANALYSIS 

OSAM’s forecast accuracy is a function of many complex inter-related 

elements, none of which exhibit linear relationship in the execution of the model. 

Design of experiments and simulation analysis enable reduction of the complex 

relationship between loss adjustment factors and forecast accuracy to regression 

modeling. Ordinary least squares regression is insufficient to describe this 

relationship, but a stepwise regression allowing all terms in a response surface 

model can predict MAPE effectively. A response surface includes each 

parameter varied in the model, quadratic terms for each variable and all two-term 

interactions between variables (Box & Wilson, 1951). 

Using a minimum Akaike’s Information Criterion (AIC) stopping rule, 

stepwise regression identifies the best model, based on subjective statistical 

rules, of MAPE for each projection year and base year; each DOE generates 15 

MAPE models. The model naming convention used in this thesis is base year-

MAPE-projection year, so the model named 2007MAPE1 is the MAPE model for 

the first projection year (FY07) of the scenario with base year 2007.  

For the first DOE, the MAPE models include a large number of terms and 

exhibit excellent fit, many with r-square values greater than 0.98. A smaller 

number of terms is desirable, so this researcher employs a process that runs the 

model iteratively to observe t-statistics for individual model coefficients and 

remove additional terms manually from the stepwise model. The modeling 

challenge is to achieve a good enough fit while limiting the total number of terms 

included in the model. The solution to this challenge is to make judgment calls in 

balancing the AIC value and goodness of fit statistics with the likelihood that 

included terms are individually significant to the model. This balancing act is 



 31

simpler with later DOEs, when fewer terms in the model limit the goodness of fit, 

disallowing the opportunity to remove terms from the initial stepwise model.  

D. OPTIMIZATION BY NONLINEAR PROGRAMMING 

It is desirable to minimize the absolute deviation of forecast inventory from 

actual inventory, but a direct attempt to minimize MAPE, a function of loss 

adjustment factors, will result in most or all factors being set to their minimum 

allowable values. Further, it is desirable to compare multiple MAPE models 

simultaneously. When comparing multiple models in a group, or meta-model, the 

maximum MAPE among these models is the value to minimize. Approaching the 

problem in this manner results in most or all models in the meta-model ending 

with very similar MAPE values, resulting in a better solution set than could be 

reached by minimizing the total or average MAPE of the meta-model. This 

problem formulation is:  

 

min maxs.t.   { 1, 2,... 90}

     0   meta-model

maxmin
x V x V

MAPE

x x x x V V V

MAPE MAPE

 

 
  
   

  
 

 

The simplest meta-model to use includes each of the fifteen MAPE 

models generated for the DOE. Some base year scenarios provide MAPE data 

for only one or two years, and only one or two models cover some projection 

years. To account for this uneven distribution of data and reduce the influence of 

any single model on the final solution set, a formulation of meta-models derives 

from three different grouping categories. One category includes all models 

generated from a given base year scenario. A second category includes all 

models that project a given projection year, independent of base year. A third 

category includes all models that predict a given fiscal year. Table 6 

demonstrates the meta-model groupings considered in determining optimal 

values for each loss adjustment factor. 
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A benefit of this problem formulation is its ease of implementation in 

Microsoft Excel. A known limitation of Excel’s solver feature is that the solution is 

a local minimum, but not necessarily a global minimum. The solution set returned 

by Excel is dependent on the initial values selected for all variables. For this 

reason, the initial values chosen were consistent and equal to 1.0 for all loss 

adjustment factors. This practice does not guarantee the smallest possible MAPE 

value, but the potential errors due to this software property are smoothed by the 

averaging of all results over the fifteen meta-models described in Table 6. 
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Table 6.   This table demonstrates the meta-model groupings considered in 
determining optimal values for each loss adjustment factor. The 
model naming convention used is base year-MAPE-projection year, 
so the model 2007MAPE1 is the MAPE model for the first projection 
year (FY07) of the scenario with base year 2007. The MAPE values 
in this table are for demonstration purposes only. 

model MAPE model MAPE model MAPE

2007MAPE 1 0.12369 2007MAPE 1 0.12369 2007MAPE 1 0.12369

2007MAPE 2 0.16065 2008MAPE 1 0.08931 max 0.12369

2007MAPE 3 0.02441 2009MAPE 1 0.12875

2007MAPE 4 0.00708 2010MAPE 1 0.10380 model

2007MAPE 5 0.11844 2011MAPE 1 0.16239 2007MAPE 2 0.16065

max 0.16065 max 0.16239 2008MAPE 1 0.08931

max 0.16065

model model

2008MAPE 1 0.08931 2007MAPE 2 0.16065 model

2008MAPE 2 0.05747 2008MAPE 2 0.05747 2007MAPE 3 0.02441

2008MAPE 3 0.06707 2009MAPE 2 0.09360 2008MAPE 2 0.05747

2008MAPE 4 0.18762 2010MAPE 2 0.06817 2009MAPE 1 0.12875

max 0.18762 max 0.16065 max 0.12875

model model model

2009MAPE 1 0.12875 2007MAPE 3 0.02441 2007MAPE 4 0.00708

2009MAPE 2 0.09360 2008MAPE 3 0.06707 2008MAPE 3 0.06707

2009MAPE 3 0.13666 2009MAPE 3 0.13666 2009MAPE 2 0.09360

max 0.13666 max 0.13666 2010MAPE 1 0.10380

max 0.10380

model model

2010MAPE 1 0.10380 2007MAPE 4 0.00708 model

2010MAPE 2 0.06817 2008MAPE 4 0.18762 2007MAPE 5 0.11844

max 0.10380 max 0.18762 2008MAPE 4 0.18762

2009MAPE 3 0.13666

model model 2010MAPE 2 0.06817

2011MAPE 1 0.16239 2007MAPE 5 0.11844 2011MAPE 1 0.16239

max 0.16239 max 0.11844 max 0.16239

2007 scenario summary MAPE2007 summary

MAPE 5 summary

2010 scenario summary

MAPE 2011 summary

2011 scenario summary

grouped according to projection 
year being forecast           

(independent of base year)

MAPE 1 summary

MAPE 2 summary

MAPE 3 summary

MAPE 4 summary

MAPE2008 summary

2008 scenario summary

MAPE 2009 summary

2009 scenario summary MAPE 2010 summary

grouped according to base year
grouped according to          

fiscal year being forecast
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A solution for each of the meta-models in Table 6 determines the set of 

loss adjustment factors that minimizes the maximum MAPE in the meta-model. 

An overall meta-model including all 15 MAPE models also produces a solution 

set.  These 16 solution sets demonstrate a range of values for each loss 

adjustment parameter. As discussed earlier, some parameters do not appear in 

every meta-model, but this process guarantees at least four data points for every 

loss adjustment factor. Only one MAPE model, 2007MAPE5, depends on the 

values of parameters V73 – V90. The optimization of the three meta-models in 

Table 6 including 2007MAPE5, as well as the overall meta-model, provide a 

solution set for these 18 factors, one data point from each solution set. Similarly, 

parameters V55 – V72 appear only in models 2007MAPE4, 2007MAPE5, and 

2008MAPE4, so these variables appear in seven solution sets, and their final 

recommended values depend on the seven data points available for each 

parameter in this range. These data points determine an average value and 95% 

confidence interval (CI) for each loss adjustment factor. The CI width for every 

factor informs the decision to hold it constant in subsequent experiments or retain 

it as an input parameter. 

The processes described in this chapter apply to analysis of data collected 

from each DOE, and the results from the first two DOEs used to formulate the 

subsequent DOE. This iterative data farming loop produces results that answer 

the research questions put forth in this thesis. Chapter IV presents a summary of 

these results.  
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IV. ANALYSIS OF EXPERIMENTAL RESULTS 

This chapter presents the computational results derived from each design 

of experiments and discusses the process of deriving subsequent experimental 

designs. This chapter also presents results of the final experiments, discusses 

the implications of these results, and assesses the statistical and practical 

significance of findings.  

A. FIRST DESIGN OF EXPERIMENTS  

1. Loss Adjustment Factors to Hold Constant 

A solution for each of the meta-models in Table 6 determines the set of 

loss adjustment factors that minimizes the maximum MAPE in the meta-model. 

An overall meta-model including all 15 MAPE models also produces a solution 

set.  These 16 solution sets demonstrate a range of values for each loss 

adjustment parameter. As discussed earlier, some parameters do not appear in 

every meta-model, but this process guarantees at least four data points for every 

loss adjustment factor.  

This analysis calculates an average value and 95% confidence interval 

(CI) for each loss adjustment factor. The factors for projection year five have the 

fewest number of data points, and thus have the widest confidence intervals, as 

a rule. A summary table of average values, the CI lower bound (LB), and CI 

upper bound (UB) for each factor indicates which parameters are constant in the 

next DOE. A rule of thumb used is to hold constant factors with a CI smaller than 

0.1, or special cases of factors that do not vary much, despite having a large CI. 

Table 7 includes factors determined by DOE1 to be constant in DOE2. The 

factors and confidence intervals in Table 7 are final determined values, and 

appear again in the graphical summary of results later in this chapter.  
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Table 7.   Factors to hold constant in DOE2, based on DOE1 analysis. Shaded 
cells have a CI wider than 0.1. V38 is held constant for DOE2 
because 9 of 11 values for V38 were equal, with outliers heavily 
influencing CI calculation. 

LB UB

HR 6 V24 1.039 1.024 1.054

902x 2 V32 1.000 0.999 1.001

HR 2 V38 1.208 1.058 1.359

SWO 5 V47 1.000 0.999 1.001

902x 3 V51 1.000 1.000 1.000

4 V58 1.000 1.000 1.000

5 V59 1.000 1.000 1.000

6 V60 1.000 1.000 1.000

1 V61 1.000 1.000 1.000

6 V66 1.000 1.000 1.000

2 V68 1.000 1.000 1.000

3 V69 1.000 1.000 1.000

1 V73 1.000 1.000 1.000

2 V74 1.000 1.000 1.000

5 V77 1.000 1.000 1.000

6 V78 1.000 1.000 1.000

SWO 2 V80 1.000 1.000 1.000

2 V86 1.000 1.000 1.000

3 V87 1.000 1.000 1.000

4 V88 1.000 1.000 1.000

95% Confidence intervalProjection 

Year
designator grade

input 

parameter
average

2

3

4

5

HR

SWO

902x

HR

902x

 

 

2. Selection of Parameter Ranges for DOE2 

The factors not included in Table 7 remain variable input parameters in the 

second design of experiments (DOE2). After analysis of DOE1, some factors 

have a 95% CI greater than the size of the original range allowed in the 

experiment. The two-fold purpose of DOE1 is to identify variables to hold 

constant in subsequent experiments, and to reduce the range of remaining input 

parameters to vary in DOE2. With this in mind, the range allowed for each 

remaining variable is a maximum of 0.2. The center of each variable’s range is its 

average value determined from DOE1 analysis, with a range of 0.2 or its 95% CI, 

whichever is smaller. 
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B. SECOND DESIGN OF EXPERIMENTS 

1. Loss Adjustment Factors to Hold Constant  

As in analysis of DOE1, the results of DOE2 yield a solution for each of 

the meta-models in Table 6, and an overall meta-model including all 15 MAPE 

models. Taken together, these solution sets determine the set of loss adjustment 

factors that minimizes the maximum MAPE in the meta-model. Descriptive 

statistics for these 16 solution sets determine an average value and a 95% CI for 

each loss adjustment factor. A summary table of values and CIs for each factor 

indicates which factors are constant in the next DOE. A rule of thumb used is to 

hold constant factors with a CI smaller than 0.1. Table 8 displays all loss 

adjustment factors to be held constant in DOE3, in addition to those indentified in 

Table 7. The shaded rows in Table 8 indicate parameters held constant in DOE3, 

despite a CI wider than 0.1. Each of these parameters is a 902x loss adjustment 

factor, held constant in DOE3 to test the secondary hypothesis of this thesis: 

using distinct values for 902x loss adjustment factors determined from a rigorous 

analysis yields a more accurate forecast than applying SWO loss adjustment 

factors to 902x officers. The factors and confidence intervals in Table 8 are final 

determined values, and appear again in the graphical summary of results later in 

this chapter.  

2. Selection of Parameter Ranges for DOE3 

The factors not included in Table 7 or Table 8 remain variable input 

parameters in the third design of experiments (DOE3). The analysis of DOE2 

identifies variables to hold constant in subsequent experiments, and to reduce 

the range of remaining input parameters to vary in DOE3. With this in mind, all 

SWO and HR loss adjustment factors with a CI wider than 0.1 remain variable in 

DOE3. All 902x loss adjustment factors are constant in DOE3, to test the 

secondary hypothesis of this thesis: using distinct values for 902x loss 
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adjustment factors determined from a rigorous analysis yields a more accurate 

forecast than applying SWO loss adjustment factors to 902x officers.  

Table 8.   Factors to hold constant in DOE3, based on analysis of DOE2. 
Shaded cells have CI wider than 0.1, but remain constant in the next 
DOE at their average values, for the sole purpose of testing the 
secondary hypothesis: that experimentally determined factors for 
902x will yield a better forecast than using the SWO factors for 902x. 

LB UB

1 V1 1.001 0.985 1.018

2 V2 1.004 0.972 1.035

2 V14 0.970 0.812 1.127

3 V15 1.051 0.882 1.220

4 V16 1.012 0.945 1.079

5 V17 1.000 0.964 1.035

6 V18 0.996 0.937 1.055

2 V20 1.067 1.051 1.083

3 V21 1.087 1.074 1.099

SWO 3 V27 0.883 0.857 0.909

3 V33 1.015 0.980 1.049

4 V34 1.019 0.963 1.075

5 V35 1.036 0.991 1.082

6 V36 1.016 1.013 1.019

1 V37 1.078 1.078 1.078

4 V40 1.046 1.030 1.061

5 V41 1.063 1.059 1.067

6 V42 1.077 1.067 1.086

1 V43 1.045 1.016 1.075

4 V46 1.047 1.011 1.084

6 V48 1.072 1.072 1.072

2 V50 1.078 1.051 1.105

4 V52 1.079 1.067 1.090

5 V53 1.016 0.982 1.050

6 V54 1.014 0.979 1.049

1 V55 1.075 1.075 1.075

2 V56 1.118 1.100 1.135

3 V57 1.149 1.149 1.149

SWO 4 V64 1.101 1.098 1.104

4 V70 1.110 1.110 1.110

5 V71 1.097 1.075 1.120

6 V72 1.141 1.056 1.225

HR 4 V76 1.116 1.116 1.116

1 V79 1.183 1.183 1.183

6 V84 1.209 1.209 1.209

5 V89 1.094 1.094 1.094

6 V90 1.119 1.119 1.119

902x

HR

5

902x

SWO

902x

HR

902x

1

2

3

4

SWO

HR

902x

HR

Projection 

Year
designator grade

input 

parameter
average

95% Confidence interval
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The remaining 28 SWO and HR loss adjustment factors vary in DOE3 

according to an NOLH design. The 128 runs of this design execute twice; DOE3a 

assigns to all 902x loss adjustment factors the value determined in analysis of 

DOE1 and DOE2, while DOE3b sets each 902x loss adjustment factor equal to 

the SWO loss adjustment factor for the same projection year and grade 

combination. 

C. THIRD DESIGN OF EXPERIMENTS 

1. Use of Unique Loss Adjustment Factors for Declined Lateral 
Transfer Applicants 

The null hypothesis for this comparison is the secondary hypothesis 

specified in Chapter I of this thesis: that using distinct values for 902x loss 

adjustment factors determined from a rigorous analysis yields a more accurate 

forecast than applying SWO loss adjustment factors to 902x officers. A paired 

two sample t-test is sufficient to test this hypothesis. The results of this t-test, 

displayed in Table 9, indicate that using experimentally determined 902x loss 

adjustment factors does not provide a more accurate forecast, as measured by 

MAPE, than setting all 902x factors equal to their corresponding SWO factors, at 

a 95% confidence level.    

Table 9.   t-Test: Paired Two Sample for Means, to test secondary hypothesis: 
using distinct values for 902x loss adjustment factors determined 
from a rigorous analysis yields a more accurate forecast (smaller 
MAPE) than applying SWO loss adjustment factors to 902x officers. 

DOE3a DOE3b

Mean 0.1038115 0.09837249

Variance 0.00071632 0.00057733

Observations 16 16

Pearson Correlation 0.93988152

Hypothesized Mean  0

df 15

t Stat 2.50570874

P(T<=t) one‐tail 0.01134058

t Critical one‐tail 1.73960672  
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This important result indicates there is no benefit to implementing a 

distinct set of loss adjustment factors for SWOs declined a lateral transfer. 

Notably, OSAM models historical loss rates differently for 902x officers than for 

SWOs who have not applied for a lateral transfer. Thus, disproval of this 

secondary research hypothesis does not mean there is no benefit to modeling 

902x officers distinctly from SWOs. Additional model exploration may offer a 

conclusive answer to this question. 

2. Final Values for Loss Adjustment Factors 

As in earlier phases of analysis, a solution for each of the meta-models in 

Table 6, and an overall meta-model including all 15 MAPE models, determines 

the set of loss adjustment factors that minimizes the maximum MAPE in the 

meta-model. Subsequent to disproval of the secondary research hypothesis, 

analysis DOE3b recommends appropriate factor values for future forecasting, 

disregarding results from DOE3a. Descriptive statistics for the 16 solution sets of 

DOE3b determine an average value and a 95% CI for each loss adjustment 

factor. A summary table of values and CIs for each factor indicates final 

recommended values of loss adjustment factors, and their respective confidence 

intervals (See Table 10). The shaded rows in Table 10 indicate parameters with 

a CI wider than 0.15. Additional experiments might narrow these ranges further, 

but the reduction in parameters varied through this iterative analytical process led 

to difficulty generating acceptable regression models. This research instead 

recommends accepting these average values, with a note of caution. The factors 

and confidence intervals in Table 8 are final determined values, and appear 

again in the graphical summary of results later in this chapter.  

Taken together, the values in Tables 7–8 and Table 10 are the 

experimental results determined for use in future forecasting efforts with OSAM. 
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Table 10.   Factor values determined by analysis of third and final DOE. Shaded 
cells have CI wider than 0.15.  

LB UB

3 V3 0.981 0.938 1.024

4 V4 0.984 0.919 1.050

5 V5 1.031 0.961 1.101

6 V6 1.020 0.976 1.064

1 V7 1.028 0.908 1.147

2 V8 0.997 0.897 1.096

3 V9 0.974 0.905 1.043

4 V10 0.999 0.903 1.096

5 V11 0.987 0.903 1.072

6 V12 0.961 0.828 1.095

1 V19 1.020 1.018 1.022

4 V22 0.999 0.960 1.038

5 V23 0.983 0.957 1.010

1 V25 0.991 0.955 1.028

2 V26 1.000 0.942 1.057

4 V28 1.008 0.972 1.043

5 V29 1.004 0.931 1.077

6 V30 1.014 0.966 1.061

HR 3 V39 1.092 1.005 1.179

2 V44 1.042 1.042 1.042

3 V45 0.874 0.794 0.954

2 V62 0.961 0.912 1.009

3 V63 0.936 0.831 1.042

5 V65 0.992 0.963 1.021

HR 3 V75 1.101 1.082 1.119

3 V81 0.902 0.834 0.969

4 V82 1.017 0.981 1.054

5 V83 1.173 1.173 1.173

HR

SWO

SWO

SWO

SWO
5

4

3

2

1

HR

SWO

Projection 

Year
designator grade

input 

parameter
average

95% Confidence interval

 

 

3. Interpretation of Results  

The final experimental values displayed in Tables 7–8 and Table 10 are 

useful for implementation in OSAM, but a list of numbers is only one 

demonstration of how the recommendations of this research compare to the 

values used in OSAM runs prior to this analysis. Figure 2 is a visual 

representation of the 95% CIs for SWO loss adjustment factors, overlaid with the 
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null hypothesis (primary hypothesis 1) and the working hypothesis (primary 

hypothesis 2). The vertically aligned diamonds on this plot each represent the 

upper and lower bound of the CI for the case indicates on the horizontal axis. 

Figure 2 shows that the CI for many SWO loss adjustment factors contains either 

one or both hypothetical values, with some notable exceptions.  

The O3, or Lieutenant, average loss adjustment factors recommended by 

this analysis fall below the null and working hypothesis for all projection years, 

with the working hypothesis values falling completely outside the CI for projection 

years two through five, and the null hypothesis values falling completely outside 

the CI for projection years two, three, and five. This result could be due to a 

tendency of OSAM to overestimate O3 loss rates, leading to a recommendation 

for O3 loss adjustment factors less than 1.0 across all projection years. This 

finding may suggest a need to revisit the method of estimating O3 loss rates in 

OSAM, but more likely identifies a specific issue with SWOs, because the same 

behavior does not occur in the HR community (See Figure 3).   

 

 

Figure 2.   Ninety-five percent confidence intervals of optimal loss adjustment 
factors for SWOs compared to null and working hypotheses. 
Diamonds indicate upper and lower bound of respective CIs. 



 43

Figure 3 is a visual representation of the 95% CIs for HR loss adjustment 

factors, overlaid with the null hypothesis (primary hypothesis 1) and the working 

hypothesis (primary hypothesis 2). The vertically aligned diamonds on this plot 

each represent the upper and lower bound of the CI for the case indicates on the 

horizontal axis. Figure 3 shows that the CI for many HR loss adjustment factors 

contains either the null or working hypothesis value. The HR factor values align 

closely with the working hypothesis values, with the exception of several values 

in projection years four and five eliminated from further variation early in analysis 

because they did not appear in any regression models.  

Figure 3 suggests that OSAM may be overestimating loss rates for HR 

O2s and O3s in projection years two and four, and underestimating loss rates for 

HR O1s, O4s, and O5s in projection year two. While the deviations from 

hypothetical values are not as large as for SWOs, there is evidence to suggest 

forecast accuracy improves when using the experimentally determined loss 

adjustment factors, particularly in years two and four.  

 

 

Figure 3.   Ninety-five percent confidence intervals of optimal loss adjustment 
factors for HRs compared to null and working hypotheses. Diamonds 
indicate upper and lower bound of respective CIs. 
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The number of HR officers is significantly smaller than the number of 

SWOs at any given time. This analysis determines the loss adjustments factors 

displayed in Figures 2 and 3 simultaneously. The focus of this thesis is overall 

MAPE for the conglomerate of officer communities considered, but determination 

of loss adjustment factors one designator at a time could result in detailed 

information for specific communities. Development of regression models for 

MAPE separated by designator will yield this information.   

D. VERIFICATION EXPERIMENT 

A final experiment runs with only three design points. The first DP sets all 

loss adjustment factors of interest equal to 1.0, to test primary hypothesis 1, 

referred to in Figures 2 and 3 as the null hypothesis. The second DP sets loss 

adjustment factors for projection year one equal to 1.0, 1.041 in year two, 1.059 

in year three, 1.085 in year four, and 1.114 in year five, to test primary hypothesis 

2, referred to in Figures 2 and 3 as the working hypothesis. The third DP sets all 

loss adjustment factors equal to the average values reported in Tables 7–8 and 

Table 10. Each of these DPs provides 15 MAPE values, one for each base 

year/projection year combination. These three sets of MAPE values, shown in 

Table 11, are comparable to one another for hypothesis testing.   
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Table 11.   Summary of MAPE values from final set of OSAM runs.  

baseyear
projection 

year

hypothesis 

1

hypothesis 

2

Experimental 

Results

2007 2007 0.03994 0.03994 0.04063

2007 2008 0.05722 0.05793 0.0649

2007 2009 0.08593 0.0876 0.09325

2007 2010 0.1308 0.13008 0.11542

2007 2011 0.16801 0.17947 0.15208

2008 2008 0.05485 0.05485 0.05305

2008 2009 0.07957 0.07965 0.08988

2008 2010 0.10263 0.1096 0.09576

2008 2011 0.16301 0.16365 0.14534

2009 2009 0.07982 0.07982 0.07822

2009 2010 0.11527 0.11616 0.114

2009 2011 0.16658 0.16481 0.15079

2010 2010 0.09616 0.09616 0.09363

2010 2011 0.12217 0.12119 0.12048

2011 2011 0.10249 0.10249 0.10633

MAPE

 
 

1. Test of Hypothesis 1 

The null hypothesis for this comparison is that the MAPE generated from 

experimental results is not smaller than the MAPE generated from a set of loss 

adjustment factors in which all values are 1.0. A paired two sample t-test is 

sufficient to test this hypothesis. The results of this t-test, displayed in Table 12, 

indicate that experimental results provide a better forecast than setting all loss 

adjustment factors equal to 1.0, at a 90% confidence level.    
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Table 12.   t-Test: Paired Two Sample for Means, to test primary hypothesis 1: 
the MAPE generated from experimental results is not smaller than 
the MAPE generated from a set of loss adjustment factors in which 
all values are 1.0. 

Experimental 

Results hypothesis 1

Mean 0.100917333 0.104296667

Variance 0.001133595 0.001639373

Observations 15 15

Pearson Correlation 0.986185896

Hypothesized Mean Difference 0

degrees of freedom 14

t Stat ‐1.426505455

P(T<=t) one‐tail 0.087820762

t Critical one‐tail 1.761310115  
 

2. Test of Hypothesis 2 

The null hypothesis for this comparison is that the MAPE generated from 

experimental results is not smaller than the MAPE generated from a set of loss 

adjustment factors in which values for projection year one are equal to 1.0, year 

two values are 1.041, year three values are 1.059, year four values are 1.085, 

and year five values are 1.114. Again, a paired two sample t-test is sufficient to 

test this hypothesis.  The results of this t-test, displayed in Table 13, indicate that 

experimental results provide a better forecast than applying OPNAV N14’s loss 

adjustment factors describing a slowly improving economy (setting values for 

projection year one equal to 1.0, year two values are 1.041, year three values are 

1.059, year four values are 1.085, and year five values are 1.114.), at a 90% 

confidence level.  
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Table 13.   t-Test: Paired Two Sample for Means, to test primary hypothesis 2: 
the MAPE generated from experimental results is not smaller than 
the MAPE generated from a set of loss adjustment factors describing 
a slowly improving economy. 

Experimental 

Results hypothesis 2

Mean 0.100917333 0.10556

Variance 0.001133595 0.00173016

Observations 15 15

Pearson Correlation 0.982063123

Hypothesized Mean Difference 0

degrees of freedom 14

t Stat ‐1.691014156

P(T<=t) one‐tail 0.056482551

t Critical one‐tail 1.761310115  
 
 

The designs of experiments used in this thesis target analysis of data from 

base years 2007 through 2011, and this thesis has proven that changing loss 

adjustment factor values can generate a better forecast (measured by MAPE) 

than applying the same values to all loss adjustment factors. It is desirable to test 

these results against forecasts not included in the original analysis, but at this 

time additional data is unavailable. Nonetheless, this research demonstrates the 

benefits of applying data farming to OSAM, both to validate the model and 

improve it for future use. The fifth and final chapter of this thesis delineates 

significant findings and suggestions for future research.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

This thesis demonstrates the potential to assess and improve OSAM with 

insights provided through data farming. This chapter summarizes specific 

findings related to SWO and HR loss adjustment factors, and suggests direction 

for further exploration of OSAM’s input parameters. OSAM utilizes input 

parameters contained in 60 database files; while this research varied a relatively 

small number of parameters in only one of those files, the methods employed to 

measure accuracy, generate a better forecast, and test specific research 

questions lay the foundation for countless further applications to OSAM and to 

other models owned by OPNAV N14.  This thesis takes necessary first steps to 

explore the applicability of data farming, and the results suggest numerous 

applications for future research to undertake.  

 A. SIGNIFICANT FINDINGS 

1. Assessment of Loss Rate Variation 

OSAM implements loss rate variation over a forecast period through the 

multiplication of historical loss rates by a loss adjustment factor. There is a 

potential to model unique loss adjustment factors for each combination of 

designator, projection year, and years of commissioned service (YCS). The 

rigorous numerical analysis in this thesis comparing simulation forecasts to 

historical inventories confirms that in many cases, officer loss rates next year will 

be similar to loss rates this year. The average experimentally determined SWO 

and HR loss adjustment factors for the first projection year range between 0.961 

and 1.031, and the 95% confidence interval includes the value 1.0 for every 

analyzed loss adjustment factor. This finding is in keeping with common practice 

in running OSAM simulations.  

Forecast analysis in projection years two through five yields less 

consistent results across the set of HR and SWO loss adjustment factors varied. 
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Recommended SWO Lieutenant (O3) loss adjustment factors are less than 1.0 in 

every projection year, and multiple recommended values are very close to 1.0 

even in later projection years. For loss adjustment factors that deviate from 1.0, 

there seems to be a general upward trend with increasing projection years. 

2. Validation of Results 

This research delivers a suggested value to apply for each factor in future 

OSAM runs, and provides a CI for these factors. The complex interactions 

between officer communities, ranks, and overall inventory make validation of 

individual loss adjustment factors impractical. A validation of the entire solution 

set is feasible, and demonstrates that experimentally determined loss adjustment 

factors yield a better forecast than holding parameters constant equal to 1.0, at a 

90% confidence level. This validation also affirms that experimental results yield 

a better forecast than varying all factors identically in each projection year 

according to OPNAV N14’s set of loss adjustment factors describing a slowly 

improving economy (1.0 in year one, 1.041 in year two, 1.059 in year three, 

1.085 in year four, and 1.114 in year five), again at a 90% confidence level.  

3. Loss Rate Variation for Declined Lateral Transfer Applicants 

As part of this research, a modification of OSAM adds a fictitious 

designator, 902x. This designator is adaptable to pursue various research 

questions, and for this thesis represents SWOs declined the opportunity to lateral 

transfer. Analysis of the first two experimental designs determines optimal values 

for 902x loss adjustment factors, and the final design of experiments executed 

twice, once with these experimentally determined values, and once with all 902x 

factors equal to their corresponding SWO factors. Analysis of this experiment 

reveals that there is no need to model loss adjustment factors differently for 

declined lateral transfer applicants. In fact, using the experimentally determined 

 

 



 51

902x values does not provide a more accurate forecast, as measured by MAPE, 

than applying the appropriate SWO values to these factors, at a 95% confidence 

level.  

This result at first seems counterintuitive, since earlier research (Kleyman 

& Parcell, 2010) shows that SWOs declined the opportunity to lateral transfer are 

more likely to leave the Navy than SWOs who never applied for lateral transfer. 

With this background in mind, it is important to recall that this hypothesis test 

indicates there is no benefit to varying loss adjustment factors distinctly for 902x 

officers, but does not consider the underlying loss rates built into the model.  

Notably, OSAM models 902x officers with unique historical loss rates, so this 

interesting finding is insufficient to suggest eliminating the 902x designator from 

the model.  

4. Applicability of Data Farming to OSAM 

One objective of this thesis is to explore the potential for continued 

application of data farming techniques to officer inventory projection. OSAM’s 

adaptation for use in a data farming environment enabled multiple simulations to 

run without operator interaction. This capability provides an opportunity to run 

countless variations of experimental designs in future explorations of the model. 

Data farming is unquestionably a useful technique for exploring OSAM.   

 

B. RECOMMENDATIONS FOR FUTURE RESEARCH  

1. Additional Base Years 

A noted limitation of this research is the lack of aligning forecast and 

historical data for early fiscal years and later projection years in the time period 

observed. The analytical approach employed adjusts for this information 

shortage by considering overlapping meta-models. The analysis of forecasts for 

additional base years is an ideal solution to this data scarcity. In addition to 

improving the accuracy of results, an expansion of this thesis to additional base 
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years provides an opportunity to observe forecast variation over additional 

economic and political environments, which may influence the retention behavior 

of some Navy officers.  

Analysis of forecast accuracy over a longer time period should reduce the 

number of meta-models needed to determine recommended loss adjustment 

factors. Additional data for each meta-model should also enable assessment of 

which set of meta-model groupings is most effective in determining 

recommended loss adjustment factors. An exploration of meta-models is 

particularly useful to OPNAV N14, as this methodology may apply to future 

versions of OSAM as a built-in accuracy check.  

2. Modeling Distinct Loss Rates for Declined Lateral Transfer 
Applicants 

This research concludes there is no need to model loss adjustment factors 

for declined lateral transfer applicants uniquely from the loss adjustment factors 

of officers who did not apply from lateral transfer. A logical next step is to assess 

whether there is value in modeling these declined lateral transfer applicants as a 

unique designator at all. As noted previously, OSAM models 902x officers with 

unique historical loss rates. The implementation of the 902x designator in OSAM 

is at the user’s discretion, and its definition is alterable according to the 

researcher’s needs. Running a DOE twice (once with 902x historical loss rates 

determined appropriately for SWOs declined the opportunity to lateral transfer, 

and once with 902x historical loss rates equal to corresponding SWO historical 

loss rates), will provide the data necessary to resolve this research question. 

Past research suggests these officers have unique promotion and loss 

probabilities. Application of data farming to this problem can determine whether 

these differences are significant enough to warrant modeling a unique 

designator. Application of this methodology to additional officer communities may 

determine which, if any, communities benefit from modeling this category of 

officers uniquely. 
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3. Additional Designators 

This research studies the loss adjustment factors for four of the 74 

designators modeled by OSAM. There is value in repeating this study for other 

designators. The methodology applied in this thesis is appropriate to recommend 

loss adjustment factors for the designators studied, but all officer communities 

interact in OSAM to meet the total inventory requirements imposed on the entire 

Navy Officer Corps. A similar study encompassing more designators may 

recommend different values for the loss adjustment factors studied in this thesis, 

due to such interactions. Data farming methods are ideal for tackling this type of 

problem expansion, enabling exploration of a complex, unwieldy design space. 

Data farming methods continue to evolve, and there are some potential 

limitations imposed by computing power and designs of experiments for large 

numbers of input parameters. OSAM includes 2,025 loss adjustment factors, and 

the variation of all factors simultaneously may present challenges in these areas. 

Exploration of the design space is possible without unique variation of all 2,025 

factors, with information about which designators have loss rates that vary 

similarly from year to year. Grouping designators together by categories of 

similar behavior could enable a study of all loss adjustment factors 

simultaneously. For instance, it may be appropriate to assign the same loss 

adjustment factors to all Limited Duty Officers (LDOs), a separate set of loss 

adjustment factors to all nurses and Medical Service Corps (MSC) officers, and 

yet another set of loss adjustment factors to all Restricted Line (RL) officers. A 

numerically determined solution set for all loss adjustment factors in OSAM could 

greatly improve the forecast accuracy of mid-term inventory projections.  

4. Model MAPE by Designator 

This thesis assesses the quality of forecasts by measuring mean absolute 

proportional error (MAPE), proportioned on rank. Application of this measure of 

effectiveness to more specific modeling may yield additional findings of interest 

to both OPNAV N14 and individual officer communities. For example, 
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proportioning MAPE on both designator and rank would enable the building of 

separate SWO and HR MAPE models. Both sets of models should still include 

loss adjustment factors from both communities, as their inventories interact 

during the simulation. The unique solution sets generated from this additional 

analysis may provide insight on the loss behavior of individual communities, and 

can identify the optimal set of loss adjustment factors for a goal of maximizing 

forecast accuracy of a single officer community. Similarly, both communities’ 

models could be considered together, weighting the MAPE models appropriately 

according to the Navy’s need to meet one community’s inventory needs more 

than another. This task requires significant input from Navy personnel subject 

matter experts, or consideration of many different weighting combinations. This 

approach to analysis has great potential for informing policy decisions, but the 

selection of appropriate weights for different officer communities is certain to vary 

widely between subject matter experts.  

5. Weighting Forecast Accuracy 

Accurate projection of Navy officer inventory is a goal of OSAM, and this 

thesis focuses on enhancing efforts to achieve this objective. In addition to 

overall forecast accuracy, there are many officer inventory goals that individual 

communities strive to meet. For instance, the SWO community needs a minimum 

number of Lieutenants at seven YCS to fill department head afloat billets; SWO 

accession plans intend to meet this need, even though this may result in more 

Ensigns than needed in the interim (Monroe & Cymrot, 2004). Data farming 

OSAM and analyzing MAPE calculations for very specific combinations of officer 

attributes can potentially improve projection to meet such specific goals.  

C. IMPACT OF RESEARCH 

OPNAV N14 gleans multiple benefits from this research, both in the short 

term and the long term. Analysts at N14 have envisioned building an automated 

validation or accuracy check capability into current and future forecasting 
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models, and will explore the use of MAPE as a forecast accuracy metric. The 

methodology utilized in this thesis seems a promising means of accomplishing 

this goal.  

This research highlights some weaknesses of OSAM that N14 can 

improve upon. One recommendation of this study is to include more historical 

data to adequately measure accuracy; N14 plans to make this a requirement in 

future model development. This thesis also identifies OSAM’s overestimation of 

SWO Lieutenant loss rates in all projection years. The loss estimation process is 

a key step in personnel forecasting, and N14 strives to model losses well. The 

next update of OSAM will strive to correct this weakness, either including more 

explanatory historic information (e.g., years of total service), or using new rate 

generation techniques (e.g., machine learning, Bayesian, or agent-based 

behavioral models).  

To leverage the conclusion that forecast accuracy can improve with 

experimentally determined loss adjustment factors, N14 will ensure that future 

models retain the capability for users to modify loss rates. This potential benefit 

lends itself to future research, particularly the investigation of loss rates for 

additional specific officer communities.  

This thesis, the first application of data farming concepts to OSAM, lays 

the groundwork for continuing efforts in this area. The conclusions of this 

research provide actionable steps for OPNAV N14 to pursue. Further, the 

implementation of designs of experiments, selection of a forecast accuracy 

metric, and development of a multi-faceted analytical approach employed in this 

study serve as a roadmap for future exploration of OSAM.  
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APPENDIX 

This appendix describes the data farming components used to data farm 

OSAM. The information included here is derived from the notes of Stephen 

Upton, who developed the code used and executed all experiments in this thesis 

on the computer clusters of the SEED Center for Data Farming. 

The current implementation of data farming OSAM is a limited version, in 

that the development of code and other artifacts is specifically to assist in 

completion of this thesis. The hard coding of some settings supports timely 

implementation of OSAM in a data farming environment. In particular, the design 

points used in the experiments varied only factors in the loss_adj.dbf file, based 

on settings for fiscal year, grade, and designator. Using the current 

implementation, one can vary a factor for any combination of fiscal year, grade, 

or designator contained in the loss_adj.dbf file.  Extension of data farming to 

varying factors in any other input file will require editing the implementation code. 

OSAM simulations run via a Microsoft Visual Fox Pro Version 9 (VFP9) 

executable file. An additional VFP9 file, dfosam.exe, assists in data farming 

OSAM. A licensed copy of VFP9 is necessary to edit the OSAM input files, as 

indicated by designs of experiments. In addition to this new VFP9 executable file, 

several other elements are part of the vital infrastructure for data farming OSAM. 

Table 14 provides a summary of these components.  

Each OSAM run saves the output files, Multi-Year Summary.dbf and 

flow_pt.dbf, in a directory named for the appropriate design point. These are the 

files containing data to be processed and analyzes as described in Chapter III. 
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Table 14.   Summary of components utilized in the implementation of OSAM in a 
data farming environment. 

 

Component Description

stage.OSAM.run.R

this  code creates  the Output and submit directories, then 

creates  a DP_X directory for all DPs  in the design, where 

X is  the design point or row number of the DOE file. It 

then creates  condor_submit files  for all the DPs  and puts  

them in the submit directory. (this  code needs  4 

arguments: [1] study.dir is  the directory location, [2] 

basecase.name is  the zipped contents  of an OSAM 

scenario, including  the OSAM executable file, [3] 

start.year, [4] doe.file.name)

submit‐template.data

this  is  the condor submit template, with BASECASE 

STARTYEAR  DOEFILE DPNUM and STUDY variables  that 

get replaced with appropriate values  by 

stage.OSAM.run.R  code

dfOSAM.R

Generates  the appropriate factors.csv file used by 

dfosam.exe using  the factor.map.csv file, the baseyear, 

startyear, and DP number as  input

dfosam.exe
short VFP9 executable that updates  the loss_adj.dbf file 

based on the factors.csv file

dfOSAM.bat
calls  dfOSAM.R, dfosam.exe and the OSAM executable in 

proper order of execution on the compute node  
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