
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

EVALUATION OF NON-CONVECTIVE WIND 
FORECASTING METHODS IN THE 15TH OPERATIONAL 

WEATHER SQUADRON AREA OF RESPONSIBILITY 
 

by 
 

Christopher S. Wireman 
 

March 2012 
 

 Thesis Advisor: Wendell A. Nuss 
 Second Reader: Joshua P. Hacker 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
March 2012 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Evaluation of Non-convective Wind Forecasting 
Methods in the 15th Operational Weather Squadron Area of Responsibility 

5. FUNDING NUMBERS 

6. AUTHOR(S) AND ADDRESS(ES) Christopher S. Wireman 8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number ______N/A______.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 
 
Predicting critical wind thresholds for non-convective wind events is a challenge for today’s operational forecasters.  
This study evaluates two different methods to forecasting non-convective wind gusts of >35 knots at five locations 
within the 15th Operational Weather Squadron’s area of responsibility.  In 2001, Olivier Brasseur developed the Wind 
Gust Estimate (WGE) as a physically based representation of the boundary layer parameters required to produce gusts 
at the surface.  Previous research compared the WGE to the Air Force Weather Agency’s non-convective wind gust 
algorithm.  In this research, the WGE is statistically compared to the Rapid Update Cycle’s (RUC) wind gust 
algorithm that is empirically derived to produce wind gusts forecasts in the RUC model. Utilizing a WRF ensemble 
data set, the statistical results show the RUC performed better overall at three of the five locations when evaluated 
with the >35 knot threshold.  Case study analysis revealed that the WGE performed best on seven of the ten case 
studies.  A best fit linear regression is applied to both algorithms and the performance is evaluated on ten independent 
case studies to analyze accuracy improvements and the potential use of such tuning to the algorithms for future 
applications.  The results of this research suggest that integration of both non-convective wind gust forecast methods 
into operational forecasts at the 15th Operational Weather Squadron could prove valuable with further testing and 
evaluation against established rules of thumb and other accepted techniques. 
 
 
 
 
14. SUBJECT TERMS Non-convective Wind Forecasting Methods, Wind gusts, Forecasting, 
Meteorology, Wind Gust Estimate, Rapid Update Cycle, Boundary Layer, Turbulence, Turbulent 
Kinetic Energy, Weather 

15. NUMBER OF 
PAGES  

129 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

EVALUATION OF NON-CONVECTIVE WIND FORECASTING METHODS IN 
THE 15TH OPERATIONAL WEATHER SQUADRON AREA OF 

RESPONSIBILITY 
 
 

Christopher S. Wireman 
Captain, United States Air Force 

B.S., North Carolina State University, 2003 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN METEOROLOGY 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
March 2012 

 
 
 

Author:  Christopher S. Wireman 
 
 
 

Approved by:  Wendell A. Nuss 
Thesis Advisor 

 
 
 

Joshua P. Hacker 
Second Reader 

 
 
 

Wendell A. Nuss 
Chair, Department of Meteorology 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Predicting critical wind thresholds for non-convective wind events is a challenge for 

today’s operational forecasters.  This study evaluates two different methods to forecasting 

non-convective wind gusts of >35 knots at five locations within the 15th Operational 

Weather Squadron’s area of responsibility.  In 2001, Olivier Brasseur developed the 

Wind Gust Estimate (WGE) as a physically based representation of the boundary layer 

parameters required to produce gusts at the surface.  Previous research compared the 

WGE to the Air Force Weather Agency’s non-convective wind gust algorithm.  In this 

research, the WGE is statistically compared to the Rapid Update Cycle’s (RUC) wind 

gust algorithm that is empirically derived to produce wind gusts forecasts in the RUC 

model. Utilizing a WRF ensemble data set, the statistical results show the RUC 

performed better overall at three of the five locations when evaluated with the >35 knot 

threshold.  Case study analysis revealed that the WGE performed best on seven of the ten 

case studies.  A best fit linear regression is applied to both algorithms and the 

performance is evaluated on ten independent case studies to analyze accuracy 

improvements and the potential use of such tuning to the algorithms for future 

applications.  The results of this research suggest that integration of both non-convective 

wind gust forecast methods into operational forecasts at the 15th Operational Weather 

Squadron could prove valuable with further testing and evaluation against established 

rules of thumb and other accepted techniques. 
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I. INTRODUCTION 

A. OBJECTIVES AND MILITARY SIGNIFICANCE 

Non-convective winds are defined as high winds that occur in the absence of 

thunderstorms, tornadoes or tropical cyclones (Knox et al. 2011a).  Non-convective wind 

events encompass many different types of weather phenomenon.  For example, 

downslope winds, gap winds, dust storms, and other winds associated with extra-tropical 

cyclones are all events that are classified as non-convective.  Winds caused by strong 

pressure gradients are also non-convective in nature (Ashley and Black 2008).  The 

majority of focus in previous studies of non-convective wind events is placed on extra-

tropical cyclones as the leading cause of most high wind events (Niziol and Paone 2000; 

Knox 2004; Lacke et al. 2007; Ashley and Black 2008; Knox et al. 2011a).   

Non-convective wind forecasting has long since plagued even the most 

experienced forecasters.  Unlike the better-known counterpart, convective winds, non-

convective winds can occur in rather seemingly good weather days with clear skies and 

warm temperatures but can produce extensive damage and even loss of life (Kapela et al. 

1995; Knox 2004; Lacke et al. 2007; Ashley and Black 2008; Knox et al. 2011a,b).  The 

United States military has a vested interested in receiving timely and accurate watches 

and warnings of strong winds both associated and not associated with thunderstorms in 

order to properly protect people and secure valuable assets.  High wind gusts can have a 

wide range of impacts on a military installation from unsecured maintenance equipment 

and materials on a flight line to personnel performing construction work on rooftops of 

high buildings such as hangars.  Winds also play a dominant role in aviation operations.  

For example, details such as current runway usage at most airfields across the globe are 

typically determined by the prevailing wind direction and speed.  Additionally, large 

aircraft may require notice of gusty surface winds before performing low-level missions 

where aircraft control is the highest priority (LaCroix 2002).   

The 15th Operational Weather Squadron at Scott Air Force Base (AFB), Illinois, 

provides weather support to Air Force, Army, National Guard and other Department of 
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Defense (DoD) installations in the United States.  The 15th OWS area of responsibility 

(AOR) consists of 150 locations across six distinct regions throughout the eastern half of 

the United States.  From the Northern and Central Plains through the Great Lakes and 

Kentucky/Tennessee regions into New England and the Mid-Atlantic, the vast AOR 

provides many different types of weather phenomena and forecast challenges to the 

weather professionals at the 15th OWS providing timely, accurate and relevant weather 

products to the installations in the region (see Figure 1). 

 

 

Figure 1. Outline of the 15th OWS AOR. 

In 2006, the 15th OWS requested research to evaluate the latest forecasting 

techniques of winds associated with convective activity with the focus placed on 

locations within their AOR.  The result was a detailed analysis (Kuhlman 2006) on the 

value and accuracy of modeled derived indices such as T1, T2 and WINDEX methods.  

In 2011, a similar request was drafted by the 15th OWS to evaluate the forecasting of 

non-convective winds.  Table 1 shows the winds in the 15th OWS AOR; this area 

encompasses 50% of the nation’s top ten windiest cities from November through April 

(Niziol and Paone 2000). 

Although various accepted techniques for forecasting non-convective winds are in 

use, the primary focus of this research is to statistically evaluate the performance of a 

physically based wind forecast model (the Wind Gust Estimate) at five different locations 



 3

within the 15th OWS AOR. The Wind Gust Estimate (WGE) is a relatively new physical 

approach developed by Brasseur (2001) to estimate wind gusts that incorporates known 

physical processes in the atmosphere, and in particular, the response of air parcels in the 

boundary layer to turbulent eddies.  Previous studies of this technique indicate positive 

results (LaCroix 2002, Nordstrӧm 2005).  An updated analysis using the latest weather 

prediction models and greater focus on location-based forecasting to identify possible 

localized performance differences will ideally produce meaningful results valuable to 

operational forecasters.  More background on this will be presented in Chapter II.   

 

1. BLUE HILL, MA 17.0 MPH 

2. CASPER, WY 14.7 

3. CHEYENNE, WY 14.5 

4. DODGE CITY, KS 14.3 

5. GREAT FALLS, MT 14.2 

6. ROCHESTER, MN 14.1 

7. AMARILLO, TX 13.8 

8. BOSTON, MA 13.5 

9. NEW YORK, NY (LAGUARDIA) 13.5 

10. BUFFALO, NY 13.2 

Table 1.   Top ten windiest U.S. cities during November through April.  Bolded 
cities indicate those within 15th OWS AOR (After Niziol and Paone 2000). 

The long-term goal of this work is to drive future research to improve the 

prediction of non-convective winds by operational forecasters to mitigate the unfavorable 

impacts to military operations.  The short-term goal and focus of this thesis is to provide 

the 15th OWS a recommendation for the best methods and algorithms to utilize when 

forecasting non-convective wind events and particularly for winds greater than or equal 

to 35 kts.  Supplementing this main goal are four secondary research goals listed below in 

order to ensure a thorough and valuable examination of different non-convective wind 

forecast models.   
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 Compare the forecast skill and performance of the WGE to an empirical 
forecast model. 

 Examine the performance of each model at each individual location to 
identify trends. 

 Determine if results can be used to tune the forecast algorithms to improve 
performance. 

 Examine the diurnal performance of these models. 

 

B. NON-CONVECTIVE WINDS DEFINITIONS AND THRESHOLDS 

For the purposes of this research, non-convective wind events will be defined as 

wind events not associated with convection (i.e., thunderstorms, outflows, tornadoes, 

tropical systems).  High wind events such as those due to pre and/or post-frontal winds 

associated with extra-tropical systems and winds due to strong pressure gradients will be 

included.  Due to the inherent complexity of topographic effects, outside of the model’s 

capability to resolve possible flow enhancement due to local terrain, phenomena such as 

gap winds or other types of events usually found in the Intermountain West will not be 

examined.  Along with selection of the types of events to use in this study, it is equally 

important to examine the types of thresholds typically used in literature to analyze non-

convective wind events. 

This research focuses on Air Force Weather warning criteria and specifically the 

threshold for a Strong Wind Warning (SWW).  SWWs are issued for winds not 

associated with thunderstorms greater than or equal to 35 kts (sustained or gust) 

(AFMAN 15–129V1 2011).  This criterion differs slightly from National Weather 

Service (NWS) thresholds for high wind events often found as the criteria for which 

researchers choose to use.  Some research uses a threshold of sustained wind of 40 mph 

(35 kts) for one hour or greater or a peak gust of 58 mph (50 kts; Knox et al. 2011a).  

Other research utilizes the NWS Central Region’s criteria for a high wind advisory of 

sustained winds at least 30 mph (26 kts) for one hour or greater or gusts of 45 mph (39 

kts) or greater (Crupi 2004).  While analyzing storm report data for fatality information 

associated with high wind events, Walker and Black (2008) organized events by terms 
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such as “high wind,” “gusty wind,” and other similar basic terms and then further 

determined if these were associated with convective or non-convective environments.   

C. METEOROLOGY ASSOCIATED WITH NON-CONVECTIVE WIND 
EVENTS 

One cause of non-convective wind gusts can be physically explained by higher 

wind speeds aloft that are transported down to the surface.  Other explanations and 

hypotheses of the causes of strong non-convective winds include topographic effects, 

strong winds due to the pressure gradient, tropopause folding, and a relatively new study 

area of “sting jets” (Knox et al. 2011a).  Additional hypotheses such as the bent-back 

warm front are thoroughly summarized in research conducted by Asuma (2010).   

Kapela et al. (1995) developed an operational forecast checklist based on 11 key 

atmospheric ingredients that have been shown to indicate a strong post cold-frontal wind 

event associated with extra-tropical cyclones in the Northern Plains.  The operational 

checklist consists of the following ingredients: a) pressure gradient diagnosis from 

modeled output, b) strength and position of the 500 mb vorticity center, c) 3-hourly 

pressure changes from isallobaric analysis, d) subsidence, e) cold-air advection, f) lapse 

rate, g) satellite imagery and comma cloud features, h) jet position and strength, i) 

directional wind shear in the vertical, j) geostrophic wind, k) snow cover and l) cessation 

of strong winds. If some, or specifically if all, of the ingredients come together then 

dangerous surface winds could occur (Kapela et al. 1995).  An idealized high wind event 

is shown schematically in Figure 2 detailing the culmination of all of these individual 

ingredients.  Although the research conducted by Kapela et al. (1995) is focused on the 

Northern Plains, the meteorology presented on winds associated with extra-tropical 

cyclones can be applied in many locations prone to weather impacts due to passing 

cyclones (such as the Northeast United States) and was the focal point of the in-depth 

meteorological analysis conducted by Knox et al. (2011a). 
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Figure 2. Idealized schematic of the 4 February 1984 strong wind episode in the 
northern plains.  Surface features are moving southeast.  Thick dashed lines are 

isallobars, with pressure rise-fall centers marked by +/- signs.  Tubular arrows depict 
relative flow originating at low and high levels.  The X represents a midlevel vorticity 
maximum.  Surface anticyclones have an isentropic surface to represent the domelike 

structure of the air masses.  Scalloped lines show associated clouds (From Kapela et al. 
1995). 

Kapela et al. (1995) found that locations just to the south or west of a passing 

vorticity maximum usually created the best scenarios for strong subsidence and a higher 

potential for momentum transfer to occur.  Another subsequent feature associated with 

this subsidence is the atmospheric response as adiabatic warming occurs, effectively 

decreasing static stability and further supporting the downward transfer of momentum.  It 

is important to note here that any inversion (including a subsidence inversion) will 

increase the static stability in the lower levels and decrease the momentum transfer into 

the boundary layer and likely result in lower surface wind speeds (Kapela et al. 1995).   

An anomalous high-wind event over Upper Michigan occurred with the presence 

of a sharp inversion at 850 mb (Crupi 2004).  The ability to predict or accurately 
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characterize the height of the boundary layer is critical in wind speed prediction (Niziol 

and Paone 2000).  This is especially important when forecasting non-convective winds at 

night when the nocturnal boundary layer heights vary and are often difficult to predict 

combined with possible inversions. 

Another identifiable feature associated with strong subsidence examined in 

various studies is that of subsidence associated with the “dry slot” noted in satellite 

images of mature cyclones often linked to tropopause folds (see Figure 3).  This feature is 

commonly found south of the center of the low pressure system and indentified by its 

relatively cloud free region.  High winds are often associated with this feature due to the 

large amount of subsidence occurring in this region as higher momentum air aloft is 

pulled down from the upper atmosphere into the lower atmosphere (Knox et al. 2011b).  

In weak or no static stability in the lower atmosphere, high speed winds can be mixed 

down creating gusty winds at the surface (Knox 2004).  Utilizing isentropic charts is an 

integral way to analyze subsidence associated with the dry slot region.  Identifying 

regions of higher momentum air aloft that has a greatest potential for downward transfer 

is possible when a strong gradient of post-frontal isobars on an isentropic surface is 

analyzed (Kapela et al. 1995).   

Several previous studies identify the isallobaric wind, which occurs when the 

accelerating geostrophic wind is balanced with Coriolis force, as an important contributor 

to non-convective winds.  The strongest winds will occur in the regions of the strongest 

pressure gradient (Knox et al. 2011a).  The 3-hour pressure tendencies are a quick way to 

analyze the potential for strong gusty winds.  The surface pressure tendency equation 

says that the pressure tendency is a function of the mass change in the vertical and 

therefore the vertically integrated temperature (represented as density) advection (Kapela 

et al. 1995).  As such, strong cold air advection in the lower troposphere will be indicated 

at the surface by strong pressure rises (greater than 3 mb in three hours) which will alert 

forecasters to the possibility of gusty winds (Kapela et al. 1995 and Niziol and Paone 

2000).  Strong rise/fall pressure couplets are also a good indicator of high wind events 

(Niziol and Paone 2000).  Niziol and Paone (2000), discuss the occurrences of strong 850 

mb winds ahead of cold frontal passages that did not transport gusty winds to the surface 
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due to a lack of mixing as result of lower lapse rates or temperature inversions.  Their 

analysis revealed that high wind events occurred when surface to 850 mb lapse rates 

reached 8° Celsius while non-events revealed lapse rates of 3.5° Celsius (Niziol and 

Paone 2000).  Asuma (2010) concluded that strong wind speeds in the boundary layer as 

well as the near dry adiabatic lapse rates existed in the southwest quadrant of mid-latitude 

cyclones further developing an environment favorable for mixing gusty winds to the 

surface.  Forecasters must key in on these areas of strong isallobaric pressure gradients 

and pressure rises as this usually implies a stronger measured wind (Kapela et al. 1995). 

Hourly pressure changes may be more important than 3-hourly tendencies (Niziol and 

Paone 2000).  Furthermore, this type of analysis must be used with caution since the 

isallobaric wind may not be the dominant component of the ageostrophic wind and 

approximations for the isallobaric wind may be misleading (Knox et al. 2011a). 

Figure 3. Satellite image (26 Oct 2010) of a mid-latitude extra-tropical cyclone with 
the dry slot highlighted by the white arrow (After Knox et al. 2011b). 

D. CLIMATOLOGY OF NON-CONVECTIVE WIND EVENTS 

The common goal among cataloging numerous similar weather events is that they 

likely reveal signatures that can be used in pattern recognition.  This notion was detailed 

by Knight et al. (2005) as the authors explored common climatological predictors 

(anomalies) associated with various types of severe weather events.  Although no single 

specific physical process can be identified as the cause of non-convective winds, 
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climatological analysis does reveal many consistencies of these events throughout the 

most prone regions of the United States where they occur (Knox et al. 2011a).  Most 

climatology studies on non-convective winds focus on the Great Lakes region and the 

Northeast, with a limited number of studies conducted in the Midwest and Northern 

Plains.  These events occur at much less frequency in the Southeast when compared to 

these other regions (Knox 2004). 

One of the most cited studies in recent literature was conducted by a pair of 

meteorologists at the NWS Forecast Office in Buffalo, NY.  Niziol and Paone (2000) 

conducted a climatological study of non-convective wind events in Western New York 

which has become a focal point for studies in the subsequent recent decade.  Their 

research was developed to help operational forecasters predict high wind events as mid-

latitude cyclones affected the Great Lakes region by analyzing synoptic scale weather 

patterns that typically produced these events.  Non-thunderstorm related wind gusts 

greater than or equal to 50 kts at Buffalo, New York over a twenty-year period was 

chosen as the criteria for selecting events (Niziol and Paone 2000).  This threshold is 

higher than most discussed previously. 

The high wind events at Buffalo were climatologically analyzed and the results 

revealed most of the high wind events occurred during the cold season from October 

through April which correlates well to previous research of the frequency distribution of 

mid-latitude cyclones in the Great Lakes region.  In terms of wind direction, the majority 

of the wind events occurred when the winds were from the southwest to west direction 

(Niziol and Paone 2000).  This is consistent with typical “dry slot” winds as the 

orientation to the mid-latitude cyclone is such that upper level winds are from the south 

or southwest (Knox 2004).  Surface track analysis of the cyclones was accomplished and 

revealed a direct correlation to the high wind events and Buffalo’s location in the 

southwest to west quadrant of the low.  For New York and much of the Northeastern 

United States mid-latitude storm tracks occur from southwest to northeast with storms 

crossing north and west of New York with vertical tilt north and west into the regions of 

coldest air.  Strong east to west isallobaric gradients typically exist along cold frontal 

boundaries.  Surface to 850 mb lapse rates are greater along with strong cold air 
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advection that exists in deep layers with wind events versus non-events (Niziol and Paone 

2000). Results from research conducted in 2004 focused on the Midwest reveal similar 

conclusions.  However, the southwest quadrant bias is dominant in high wind events, 

with few exceptions, and across a much more widespread region of analysis differing 

from previous conclusions that the bias was due to the Great Lakes influence and 

orientation (Knox 2004).   

Expanding upon the research in the Great Lakes region, Lacke et al. (2007), 

created a 44-year climatology of non-convective wind events broken down by two 

different criteria: A) sustained winds of 40 mph (35 kts) or greater for at least one hour or 

B) any gust of 58 mph (50 kts) or greater.  Thirty-eight observation stations from 

Minnesota through Ohio to New York were used for this study.  Of the over six million 

observations analyzed, roughly 2,600 satisfied either criterion A or B.  Nearly 30% of the 

observations that satisfied criterion A occurred during the month of March, however the 

peak (35%) for the wind gust criterion occurred in the month of January (Lacke et al. 

2007). 

For the majority of the wind events that met either criterion, the locations of the 

observation stations were primarily along the Great Lakes, with an additional peak in 

frequency of occurrence in the western part of the Midwest.  Furthermore, when 

analyzing the cases by sea level pressures, the data revealed that non-convective wind 

events occurred with both high and low pressure systems although the frequency was 

greater for those associated with low pressure systems.  Additionally, the authors 

examined wind direction preference for non-convective wind events to compare and 

contrast with results from previous research.  The results were clear and strikingly similar 

to previous research done in both the Midwest and western New York State.  Figure 4 

shows an overwhelming high frequency (70% for criterion A and 76% for criterion B) of 

events occurred in the west through southwest cardinal direction (Lacke et al. 2007). 
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Figure 4. Frequency of wind observations by wind direction satisfying criteria A) 
sustained winds of 40 mph (35 kts) or greater for at least one hour or criteria B) any gust 

of 58 mph (50 kts) or greater (After Lacke et al. 2007). 

While results from the Great Lakes climatology study showed that non-convective 

wind events could occur associated with strong pressure gradients as high pressure builds 

into the region, the majority of the events occurred with mid-latitude cyclones supporting 

previous research results.  This was an important conclusion when it appeared in 2007 

since it was the first study conducted over a wide region to suggest the link between mid-

latitude cyclones and non-convective wind events.  Additionally, the result of the primary 

favored wind direction from the west through southwest was also an important discovery 

as it had only been noted in a small area in literature at that point.  Although there were a 

few outliers in primary wind direction during these events, the authors conclude this is 

likely due to climatology of these wintertime cyclone tracks (Lacke et al. 2007).  This 

conclusion was further supported by additional research that showed the primary wind 

direction for non-convective wind events in the Great Plains was from the northwest 

indicating the importance of the location of the observation station to the cyclones storm 

track (Knox et al. 2011b). 
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E. DAMAGE AND FATALITIES CAUSED BY NON-CONVECTIVE WINDS 

The military community is not the only customer with a vested interest in accurate 

prediction of high wind events.  The Internet is full of news articles that detail the 

impacts caused by non-convective wind events.  Recent news stories range from 

relatively minor impacts at major sporting event festivities (Associated Press 2012) to the 

Notre Dame tragedy in 2010 (Knox et al. 2011b).  It is clear that non-convective wind 

events have a wide range of impacts on the population within the United States. 

History shows that many of the great natural disasters across the world were 

caused by non-convective winds.  For example, “The Perfect Storm” of 1991, caused by 

a strong coastal cyclone that merged with the remnants of a hurricane caused five 

fatalities and $200 million in damage in eastern North America.  In recent history, the 

October 2010 storm in the upper Midwest of the United States was one of the strongest 

ever recorded in the Continental United States (CONUS) with a low pressure of 955 mb 

and peak wind speeds of 78 mph (68 kts) recorded (Knox et al. 2011a).  In terms of 

damage alone, in just a small four year survey from 2000–2004, high winds associated 

with non-convective events caused more property and crop related damages than did 

winds produced by thunderstorms or tornadoes (Lacke et al. 2007).  Although various 

research reveals different numbers when it comes to comparing property and crop 

damage totals between convective and non-convective events, fatality trends associated 

with these storms remains consistent.   

A study conducted by Ashley and Black (2008) provided the most in-depth 

analysis of fatalities associated with non-convective winds to date.  The study analyzed 

fatalities from storm reports over a 26-year period from 1980–2005.  Figure 5 shows that 

fatality numbers are similar to those associated with convective winds from 

thunderstorms and are greater than those winds associated with hurricanes and tropical 

storms (although flooding is usually the leading cause of fatalities in those events).  The 

authors also analyzed fatalities among various regions within the United States.  The 

Northeast represents a large percentage of overall fatalities likely due to its location with 

respect to strong low pressure systems crossing this region in the cold season months and 

higher population.  83% of fatalities analyzed during this time period were associated 
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with wind events caused by mid-latitude cyclones or post-frontal winds after passage of a 

cyclone.  Gradient winds, likely associated with strong high pressure systems, accounted 

for another 10%.  In summary, 93% of fatalities were caused by events that are less likely 

to draw public urgency from warnings when compared to severe thunderstorm or tornado 

warnings (Ashley and Black 2008).  The lack of perceived danger likely results in people 

venturing into harm’s way more often during these types of events as 91% of fatalities 

occur in vehicles, boats or outdoors (Knox 2004; Ashley and Black 2008; Knox et al. 

2011b).  The increased education of the general public and forecasting performance by 

meteorologists on non-convective wind events will work hand in hand to lower the 

dramatic impacts on society and provides for additional motivation for this thesis. 

 

 

Figure 5. Fatalities associated with various types of wind events from 1980–2005 
(From Ashley and Black 2008). 

 
 
 
 



 14

THIS PAGE INTENTIONALLY LEFT BLANK 



 15

II. BACKGROUND 

A. WGE METHOD 

1. Overview 

Through the mid-1990s, research on wind gusts and forecasting techniques 

largely centered around empirical or statistical approaches rather than methods designed 

around physical explanations of the causes of surface wind gusts.  Empirical approaches 

can characterize the wind gusts with some accuracy, especially for weak to moderate 

wind gusts, but do not accurately predict the more severe wind gusts that occur (Brasseur 

2001, Nordstrӧm 2005).  Empirical methods are typically the preferred method at the 

operational forecasting level due to the lesser number of parameters required to run the 

model and their lower sensitivity to small errors.  Empirical algorithms do not explain the 

physical processes in the atmosphere, which should be a requirement for the development 

of enhancements for increased model performance and reliability related to wind gusts 

(Brasseur 2001). 

Brasseur (2001) developed an innovative technique for wind gust forecasting 

based solely on physical processes in the atmosphere (called the Wind Gust Estimate).  

This method was developed based on Brasseur’s (2001) physical explanation of the 

intricate details of boundary layer interactions that caused wind gusts to occur at the 

surface.  The goal was to not only develop a reliable wind gust forecast method, but in 

future research that examines the WGE methodology, increase the understanding of the 

physical processes in the atmosphere responsible for these gusts.  In turn, this would 

enable enhancements to the forecasting method and increase reliability of the model.  A 

key aspect of this method is not only the prediction of the wind gust at the surface, but 

also the prediction of the lowest and highest estimates of possible wind gusts speeds that 

encompasses the estimated wind gust with high probability, called the bounding interval 

(Brasseur 2001).   

Before detailing the prediction model itself, it is important to understand the 

fundamental characterizations of the boundary layer processes of the WGE according to 
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Brasseur (2001).  The most important of these physical explanations is that wind gusts 

occur due to the deflection of air parcels, flowing at higher speeds aloft, by large 

turbulent eddies in the boundary layer.  It is clear from this explanation that these 

turbulent eddies must be strong enough to counterbalance the buoyancy forces in the 

atmosphere.  Therefore, the stability of the boundary layer is one critical component of 

this method (Brasseur 2001).  This supports previous research and explanations found in 

Chapter I that relate atmospheric stability to non-convective wind gust events.   In 

summary, the three major physical ingredients of the boundary layer that were utilized in 

the development of the WGE are the wind speeds within the layer, the turbulent eddies 

and the stability (Brasseur 2001).  The accurate prediction of these components is 

important to the accuracy of the method. 

Turbulent kinetic energy (TKE) plays a large role in the WGE equation and is 

parameterized within numerical models.  TKE in the boundary layer is critical in the 

determination of which parcels will reach the surface.  Several methods have been 

presented for the accurate prediction of TKE within the model.  Brasseur (2001) details 

the standard prognostic TKE equation.  This equation states that mean TKE is equal to 

shear production terms (includes both the x and y components) combined with the 

buoyancy, the vertical transport of turbulence as well as the dissipation (the latter two 

typically subtract from the mean TKE value).  This equation is utilized in all turbulence 

parameterizations with 1.5 (or greater) order turbulence closure (Brasseur 2001).  

However, since TKE was not a standard variable output by the Air Force Weather 

Agency (AFWA) when analyzing the WGE performance with the Fifth-Generation 

Mesoscale Model (MM5), LaCroix (2002) developed an alternative method for 

calculating TKE.  This calculation utilizes the Reynolds averaged perturbation velocities 

of the u, v, and w wind components.  This alternative method was not tested in this 

research since the model data set used from the Advanced Research WRF Version 3.1.1 

utilizes the 2.5 order turbulence closure model  from the Mellor-Yamada-Janjić (MYJ) 

PBL scheme and calculates TKE, however this alternative method is an important aspect 

discussed in Chapter V (Skamarock et al. 2008). 
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2. Calculation of the WGE 

As mentioned previously, the fundamental characteristic of the WGE is that the 

air parcels are deflected from a specific height in the boundary layer by turbulent eddies 

that overcome the buoyancy within the layer (see Figure 6).  The following equation 

summarizes these characteristics utilized in the WGE (Brasseur 2001): 
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   (1) 

The height of the parcel that is being deflected to the surface is represented as zp.  Large 

turbulent eddies that are described in Brasseur (2001) are represented in the numerical 

model by TKE.  From the surface to height zp the local TKE in the layer is represented by 

E(z) which the integral then transforms into the average TKE in the layer.  This integral 

on the left side of the inequality represents the energy associated with these large 

turbulent eddies.  The right side of the inequality represents the energy associated with 

buoyancy.  Θv(z) represents the virtual potential temperature (in degrees Kelvin) at the 

specific height, whereas Δθv represents the difference in virtual potential temperature in 

the specific layer (Brasseur 2001).  For the purpose of this study and the model data 

utilized (examined in Chapter III), the starting height of 0 in the integral indicates the 

surface represented by the model in surface wind speed calculations as 10 meters above 

ground level (AGL).  This is consistent with current automated observation systems 

currently utilized at most airfields across the country and is representative of the surface 

wind speeds. 

The WGE is then represented by the maximum wind speed of all heights that 

satisfy Equation (1) and is given by Equation (2): 

    2 2maxestimate p pWg U z V z      (2) 

U and V represent the x and y components of the wind at the particular height that air 

parcels are being deflected to the surface (Brasseur 2001). 
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Figure 6. Determination of the wind gust estimate based on turbulent kinetic energy 
averaged over a given depth (from the surface) in the boundary layer (From Brasseur 

2001). 

3. Calculation of the Lower Bound 

Though not analyzed in-depth in this research (brief results discussion in 

Chapter IV), the bounding interval calculation process from Brasseur (2001) is important 

to describe.  Future research projects would benefit from analyzing this interval and the 

relation to probability of events occurring.  The lower bound is similar to the WGE 

calculation except that it utilizes the local TKE at particular height versus the mean TKE 

through the layer as is the case for the WGE calculation.  Since the lower bound utilizes 

the local TKE value versus the average, the value of the TKE variable will be smaller as 

height increases.  This is the case for both stable and unstable layers, although the rate of 

change with respect to height will vary with different stabilities.  The lower bound 

calculation is thus represented by the Equation (3): 
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The right hand side of the inequality still represents energy associated with buoyancy in 

the atmosphere while the left hand side of the equation represents the vertical velocity 

variance associated with turbulence at the particular level.  Brasseur (2001) further 
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explains that this vertical variance is not computed in the standard prognostic TKE 

calculation in a 1.5 order closure model but can be calculated using a simple ratio 

(2.5/11) multiplied by the local TKE, E(z) (Brasseur 2001).  The lower bound wind gust 

speed is then represented by Equation (4): 

    2 2maxlower p pWg U z V z      (4) 

4. Calculation of the Upper Bound 

The upper bound is simply the model’s highest mean wind speed in the boundary 

layer.  Given as Equation (5):  

    2 2maxupper p pWg U z V z      for zp < ztop   (5) 

The variable ztop represents the boundary layer top (Brasseur 2001).  Similar to the 

calculation of TKE, there are different methods for calculating the boundary layer top. 

 Numerical models represent the boundary layer top based on the planetary 

boundary layer (PBL) scheme chosen.  For example, the Medium Range Forecast model 

(MRF) PBL scheme used in many models today, including variations of the WRF and 

MM5, calculates the PBL top utilizing the bulk Richardson number (LaCroix 2002, 

Skamarock et al. 2008).  Additionally in the WRF model, the Yonsei University, MYJ, 

and Asymmetrical Convective Model Version 2 PBL schemes are available as choices to 

use.  As mentioned previously, the MYJ scheme is utilized in the data set for this research 

and the main difference from this scheme and the MRF scheme utilized in previous 

research is that boundary layer top is calculated from TKE versus the Richardson number 

(Skamarock et al. 2008). 

5. Important Results and Conclusions from Brasseur (2001) 

As part of the analysis section, Brasseur (2001) examined whether or not it 

appeared that inaccuracies in the prediction of the winds were due to the model or the 

WGE method.  The first result from Brasseur’s (2001) research is that of the dependency 

of the WGE to the model predicted meteorological fields and in particular the boundary 

layer.  This seems intuitive, but the results of incorrect prediction of deepening low 
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pressure systems, for example, can cause large errors in the estimation of wind gusts.  

Moreover, strong vertical mixing with the boundary was shown to cause an 

overestimation of the bounding interval as well as the wind gust.  This likely results in a 

key overestimation of the winds especially near sunrise when the nocturnal boundary 

layer is at its greatest (Brasseur 2001). 

A large part of the results section detailed the impact of model horizontal 

resolution to the prediction of wind gusts using the WGE method.  It was found that the 

higher the resolution of the model (50 km versus 25 km) the more accurate the wind gust 

estimates were due the model’s ability to more accurately resolve mesoscale features 

within the cyclone (Brasseur, 2001).   

In this day and age of budget cuts, especially in the DoD, managers should 

perform a cost/benefit analysis of accurate predictions balanced with the computing cost 

of increased resolution.  Ideally, there exists a compromise where inaccuracies are 

accepted for a lower resolution model.  It is hoped that the results of our research will 

shed some light on the ability of the WGE to predict non-convective wind gusts with a 

lower resolution model within the CONUS. 

The bounding interval also proved to be a source of valuable information.  Results 

on the reliability of the bounding interval for a three month period during the cold season 

at nine stations in Belgium were analyzed.  On average, when the observed wind gusts 

ranged from 20 kts to 39 kts, the reliability of the predicted bounding interval was 81%.  

When winds were greater than 39 kts the reliability of the bounding interval decreased to 

73% but still a high reliability percentage further emphasizing the need of accurately 

predicted parameters especially during severe events.  The lowest reliability occurred 

when the observed winds were below 20 kts likely caused by overestimation of mean 

winds in the boundary layer (Brasseur 2001).  One possible example of this, mentioned 

previously, is the overestimation of the vertical mixing by the model in the nocturnal 

boundary layer. 

One final important result from Brasseur (2001) was the comparison of the results 

from the WGE to two different but widely used empirical methods for forecasting wind 
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gusts today.  The WGE outperformed one method and performed similarly to the second 

method.  These results indicate the WGE is a viable wind-gust forecasting method that 

can perform as well or better than widely used popular methods in today’s operational 

forecasting realm (Brasseur 2001).  This conclusion provided the motivation to compare 

the WGE to another empirically based wind gust model explained in Section 2C. 

B. RESULTS FROM PREVIOUS STUDIES ON THE WGE METHOD 

Several studies have been conducted on the WGE method since its development 

in 2001.  LaCroix (2002) analyzed results from the WGE method as well as the relevancy 

to operational forecasting, and in particular to the Air Force Weather operational 

forecasting community.  The purpose of the study was to compare and contrast the WGE 

method and the AFWA wind gust method run on 53 different 06Z and 18Z MM5 model 

runs.  The results were compared and analyzed at 23 airfields (both military and civilian) 

throughout the CONUS that represented different geography from coastal regions to 

mountainous terrain.  The verification criterion chosen was 15 kts.  If a wind gust of 15 

kts or greater was forecast, this triggered a “yes” in standard 2x2 contingency table 

verification procedures.  For verification purposes in the absence of a wind gust, an 

observed sustained wind speed of 15 kts would be considered a “yes” observation in the 

contingency table verifications procedures (LaCroix 2002).  Although, there are a few 

limitations identified in this study that were mitigated in our research (explained further 

in Chapter III), the results are important and relevant and were used to help formulate the 

goals and hypothesis as we began our research. 

Overall RMSE showed that the WGE was more accurate than the AFWA 

algorithm although there were important variations that should be noted.  Based on using 

standard meteorological verification scores (Hit Rate, Probability of Detection, etc.) the 

overall results showed that the WGE was better during the daytime hours at accurately 

predicting the 15 kt wind gust events than the AFWA wind gust algorithm.  However, at 

night, the AFWA algorithm outperformed the WGE, although the AFWA algorithm still 

showed a bias of overforecasting at night (LaCroix 2002).  This result suggests that the 

nocturnal boundary layer characteristics in the model are not accurately predicted in the 

WGE.  Parameters such as TKE may be overestimated, especially during overnight hours 
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causing overforecasting of surface wind gusts at the surface.  When analyzed for specific 

regions, the data from the coastal stations typically did not conform to the diurnal trend 

mentioned previously.  Alternatively, when the results for the coastal plains locations 

were isolated, the data revealed that the AFWA algorithm performed better than the 

WGE in almost all categories at all times (LaCroix 2002). 

Utilizing the Canadian Regional Climate Model (CRCM) at resolutions of 60, 20, 

5 and 1 km, Goyette et al (2003) implemented the WGE method and analyzed two strong 

extra-tropical cyclones and the predictions of the WGE at various stations in Switzerland 

and Belgium.  This research takes a slightly different avenue of approach from Brasseur 

(2001) and LaCroix (2002) as it explores the impacts of terrain, and ultimately the 

importance of the model’s ability to resolve the terrain and associated meteorological 

parameters in the boundary layer on the WGE (Goyette et al. 2003).   

One key result from this study was that not only do the atmospheric parameters in 

the boundary layer need to be accurately predicted by the model in order for the WGE 

method to be accurate, but the “atmospheric flow field” or impacts of terrain on the flow 

also needs to be resolved well by the model.  Vertical resolution also played a factor in 

the results as it increased from 30 sigma levels at 20 km to 46 sigma levels at 1 km.  

Similarly, vertical and horizontal resolution had an impact on other small scale features 

being resolved as well.  For example, the authors note a low-level jet detected by the 1 

km (46 sigma level vertical resolution) grid, but not the 20 km (20 sigma level vertical 

resolution) grid.  This low-level jet represented a statically stable layer that was otherwise 

undetected by the 20 km grid.  The result of this feature being missed was a higher 

boundary layer height prediction (identified at the 14th sigma level) and therefore a 

higher maximum wind speed that could reach the surface at the critical level where TKE 

was greater than buoyancy.  In the 1 km grid, the boundary layer height was noted at the 

8th sigma level (roughly 1 km lower) and therefore predicted a lower maximum wind 

gust.  Due to the increased vertical resolution of boundary layer wind speeds (with the 

low level jet) and TKE variations, the atmospheric conditions are much more 

representative (see Figure 7).  Consequently, when compared to observations, the 1 km 

grid forecast was much more accurate (Goyette et al. 2003).   
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Finally, most results showed that the higher the spatial and vertical resolution of 

the model the more accurate the WGE prediction was.  However, at several locations in 

Belgium, which has similar geography to locations like the Great Plains of the United 

States, the relatively flat surface provided only somewhat better gains in accuracy when 

resolution was increased.  The greater gains, and ultimately if measured, the more cost-

effective approach, were realized in the higher resolution output over large topographical 

changes such as the Alps (Goyette et al. 2003).  This is a valuable conclusion during a 

time of budget constraints when calculating the cost-benefit analysis of running higher 

resolution models across the entire CONUS.  Perhaps running this algorithm at lower 

resolutions over relatively smooth terrain is a better solution while running the algorithm 

in higher resolution nested grids for regions with high topographic changes not only in 

the CONUS but other regions of the world where assets could be employed and 

mountains are a factor.  It was this conclusion that motivated our study and analysis of a 

45 km model with higher vertical resolution. 

 

        (a)                                               (b) 

Figure 7. Simulated TKE and wind profiles, VH(z, t), at 0, 6, 12, and 18 hours UTC, 
at station Visp (Switzerland), elev. 2100 ft, during VIVIAN storm with CRCM at (a) 20 
km grid spacing and (b) 1 km grid spacing.  Vertical axes are wind speed difference in m 

s-1 and the height above the resolved surface in meters (After Goyette et al. 2003). 
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Nordstrӧm (2005) conducted research on the WGE method utilizing the Rossby 

Centre regional Atmospheric model (RCA) which was chosen due to the tendency of the 

model to underforecast wind gusts.  The RCA is a regional climate model primarily used 

for climate studies across northern portions of Europe.   With a higher resolution than a 

global model, the regional climate model downscales the global model data in order to 

predict phenomena at much smaller spatial scales than can be resolved at the global level.  

The model has 24 vertical levels and a horizontal resolution of 22 km and includes a 1.5 

order closure which includes associated TKE values.  The boundary layer height is 

determined by the bulk Richardson number (not TKE values such as the MYJ PBL 

scheme; Nordstrӧm 2005). 

Nordstrӧm (2005) analyzed the results from storm systems over southern 

Scandinavia in 1999 and 2005 as well as a three month simulation from 2004 to 2005.  

The author notes that the WGE method showed a bias of overforecasting winds during 

the storms by as much as 25 ms-1 (49 kts).  However, during the three month simulation it 

appears that the bounding interval captured the observed wind gusts at locations on land.  

In comparison, over the open water the WGE prediction of the magnitude of the winds 

were better represented by the model, however the bounding interval was less accurate 

overall in capturing the observed wind speeds.  It was also apparent, as shown in other 

studies, the algorithm is highly dependent on the accurate prediction of main synoptic and 

mesoscale features and associated meteorological parameters that are used in the WGE 

(Nordstrӧm 2005). 

Based on these results, Nordstrӧm (2005) developed a method to empirically tune 

the data to the results.  The author concedes while not an explanation of the physical 

processes of the atmosphere, the tuning would dampen the wind gusts in order to produce 

more accurate results.  The premise of this tuning is the assumption that the winds are 

slowed down through the surface layer after being deflected from above.  The method 

produces an alpha variable to apply to the gust which was empirically chosen between 

1.3 and 1.4.  After applying the correction, the results improved over land, however over 

water where the original results were fairly accurate, the correction caused an 

overestimation of predicted wind speeds.   Nordstrӧm (2005) concludes that although the 
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correction does not conform perfectly to the observed data, it does lower the predicted 

wind speeds over land which was the goal of the tuning (Nordstrӧm 2005).  This 

empirical tuning example, encouraged us to take a look at another possible way of tuning 

the algorithm in order to increase accuracy of the WGE method, particular for 35 kt to 49 

kt wind warnings. 

C. RAPID UPDATE CYCLE (RUC) EMPIRICAL METHOD 

Motivated by the conclusion from Brasseur (2001) that the WGE method 

performed as good as or better than two tested empirical relationships, this study also 

conducted a comparison to the RUC empirical method to forecast wind gusts.  The RUC 

is an operational numerical weather model with 13 km grid spacing run every hour out to 

18 hours by the National Oceanographic and Atmospheric Administration’s National 

Centers for Environmental Predicton (NOAA/NCEP).  For this research the actual RUC 

model was not used or analyzed, however, the algorithm for the post-processed variable 

of gust wind speed (hereafter referred to as the RUC method) was used with the WRF 

model data set described in Chapter III.  The RUC method is a fairly simple empirical 

method that utilizes two model derived variables: boundary layer depth and wind speeds 

at each sigma level in the boundary layer to include the surface.  The RUC method 

process begins with first calculating the different in wind speed between the surface and 

each sigma level in the boundary layer.  This difference is then multiplied by a coefficient 

that decreases from one at the surface to 0.5 at 1 km height and remains 0.5 for any 

height above 1 kilometer.  The maximum “excess” value in the boundary layer computed 

from the wind speeds and associated coefficient is then added back to the surface wind 

speed for the peak gust.  Equation (6) summarizes the RUC wind gust method: 

 

     max *RUC SFC SFCWg WndSpd f z WndSpd z WndSpd      (6) 

 

where f(z) denotes the coefficient at a particular sigma level and WndSpd(z) represents 

the wind speed at that level (NOAA ESRL 2012). 
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III. DATA AND METHODS 

A. WRF-ARW MODEL  

The Weather Research and Forecasting (WRF) model is the latest advanced state-

of-the-art mesoscale weather model that was designed for education and research 

purposes as well as operational use (Skamarock et al. 2008).  Utilized internationally, the 

WRF is a unique and collaborative effort.  The WRF development and continuous 

improvement process spans across partners from the government sectors such as the 

Federal Aviation Administration and the National Oceanographic and Atmospheric 

Administration, to civilian institutions such as the National Center for Atmospheric 

Research (NCAR) and the University of Oklahoma, and importantly with the military 

organizations such as AFWA and the Naval Research Laboratory (Skamarock et al. 2008, 

Hacker et al. 2011 and WRF 2012).  This collaboration across the spectrum of 

operational and research users in the Atmospheric Science community enables a wide 

range of enhancements and updates to the model while building closer bonds between 

these vital organizations with a similar goal: to improve weather forecasting.  See 

Skamarock et al. (2008) for more details on the Advanced Research WRF (ARW) 

Version 3. 

The WRF utilizes a hydrostatic pressure vertical coordinate (η).  The calculation 

and equations are the same for the terrain-following coordinate σ used in many 

hydrostatic models.  The following equations define η: 

 
( )h htp p




   where μ = phs – pht (7) 

The hydrostatic portion of the pressure is represented as ph and the surface and top 

boundaries are represented as phs and pht respectively.  Figure 8 depicts the terrain-

following coordinate from the surface (shown as 1.0) to the top (shown as 0; Skamarock 

et al. 2008).  Table 2 gives an example of how η level heights can vary with time based 

on surface pressure differences (only the lowest five levels are shown).  Smaller 

differences (on order of <5 m) are noted at lower vertical levels, with larger differences 

(on order of 100 m) noted in the upper atmosphere (not shown).  The model used for this 
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research contains 41 η vertical levels, with typically 10 to 15 levels in the boundary layer, 

which results in an increased vertical resolution over other models of similar horizontal 

resolution that were used in previous research on non-convective wind gust prediction. 

   

Figure 8. ARW η coordinate (From Skamarock et al. 2008). 

One main advantage of using the WRF in our research was the inclusion of TKE 

values throughout the boundary layer.  The WRF includes a critical PBL scheme for our 

research; the Mellor-Yamada-Janjić (MYJ) which uses a 2.5 turbulence closure model.  

The top of the boundary layer is determined by TKE values as well as buoyancy and 

shear for the mean flow (Skamarock et al 2008).  The inclusion of this key parameter is 

different than many of the previous research studies due to the need to solve for TKE 

values manually in their research.  The inclusion of TKE values from the model 
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minimizes errors associated with manual calculation, especially due to different methods 

noted in research to calculate this variable.   

η level Day A Day B 

1 19.34 18.61 

2 58.11 55.90 

3 97.05 93.32 

4 144.07 138.41 

5 207.32 198.83 

 

Table 2.   Example of variations of η level heights (in meters) in a hydrostatic model 
due to differences in surface pressure between days in the lowest five model levels. 

B. WRF MESOSCALE ENSEMBLE DATA SET 

The model utilized for this research was a 10-member WRF ensemble with 45 km 

horizontal grid and 41 vertical levels.  Hacker et al. (2011) tested nine different 

ensembles with a variety of model and initial condition perturbations in order to evaluate 

performance to identify best combinations for use in a mesoscale ensemble operational 

setting at AFWA.  The primary targeted audience: aviation customers.  As such, one 

main focus of the model evaluation was on lower atmospheric winds, which in turn is 

highly applicable to non-convective wind gusts and provided the confidence in the 

ensembles ability to accurately predict these winds (Hacker et al. 2011).  It should be 

noted that this study is not a continuation of their research, but instead uses the 

multiphysics ensemble to evaluate the performance of WGE and RUC algorithms. 

Hacker et al. (2011) created an ensemble and incorporated 10 members with 

different sets of physics packages (see Table 3).  Descriptions of these physics packages 

not explained previously can be found in Skamarock (2008).  Each of the 10 members 

chosen for the ensemble represents a combination of different physics packages that run 

stably together and produced reasonable results.  This multiphysics ensemble was shown 

to have better reliability for 10 m wind speeds than the control ensemble although the 

authors note the poorer performance for high wind events (Hacker et al. 2011).  It is our 
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theory that applying non-convective wind gust algorithms to this data set will show 

increased performance for higher wind events.  Furthermore, the choice of utilizing 

forecasts from this ensemble was further solidified by the results given by Hacker et al. 

(2011) on the multiphysics ensembles performance in the PBL.  While highly accurate 

PBL predictions stand out as likely the most difficult to produce, it is shown that 

encompassing a broader spectrum of physics packages produces the best skill of 

predictions in the PBL compared to other individually tested ensemble methods (Hacker 

et al. 2011). 

Overall, the data set consisted of 119 model runs with a mixture of 00Z and 12Z 

runs available.  Each model run was initialized via cold-start interpolation from GEFS. 

The available model runs were from the months of June, November and December of 

2008 and January and February of 2009.  Our focus time period, given by research results 

in Chapter I, was November through February.  Not all days throughout the available 

months included a model run.  In fact, it was not uncommon to have two model runs (00Z 

and 12Z) for one day, with a day or two in between before the next available model run.   

The data set included a maximum of 81 total variables (not including nine 

variables associated with character strings, model name, number of levels, etc.) in each 

ensemble run, however not all variables were available in each ensemble member.  Due 

to the nature of the multiphysics ensemble, four of the 10 members utilized the Yonsei 

University (YSU) PBL scheme which does not include a prognostic TKE variable.  

Moreover, the YSU scheme uses the buoyancy profile to calculate the top of the PBL 

instead of TKE as in the MYJ scheme (Skamarock et al. 2008).  The differences in the 

approaches between the WGE (physical) and the RUC (empirical) meant different 

variables were used for each.  Table 4 highlights the main variables used to process each 

algorithm.  Section E (Methodology) further examines the processes used by each 

algorithm to produce a forecast. 
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Member 

# 

Land 

Surface 
PBL Microphysics Cumulus 

Long-

wave 

Short-

wave 

1 Thermal YSU Kessler KF RRTM Dudhia 

5 Thermal MYJ WSM6 KF RRTM CAM 

7 Noah MYJ Kessler BM CAM Dudhia 

8 Noah MYJ Lin Grell CAM CAM 

10 Noah YSU WSM5 KF RRTM Dudhia 

11 Noah MYJ WSM5 Grell RRTM Dudhia 

15 RUC YSU Lin BM CAM Dudhia 

16 RUC MYJ Eta KF RRTM Dudhia 

17 RUC YSU Eta BM RRTM CAM 

19 RUC MYJ Thompson Grell CAM CAM 

Table 3.   Configuration of multiphysics ensemble adjusted to reflect our data sets 
member number.  Member 10 uses the same physics suite as the operational 

configuration at AFWA (After Hacker et al. 2011).   

 

Model variables used in WGE Model variables used in RUC 

10 m U wind component, 10 m V wind 

component, Sustained wind speed, 

Potential temperature, Ice mixing ratio, 

Rain mixing ratio, Cloud mixing ratio, 

Vapor mixing ratio, Geopotential 

height, Terrain height, PBL height, 

TKE 

10 m U wind component, 10 m V wind 

component, Sustained wind speed, 

Geopotential height, Terrain height, 

PBL height  

Table 4.   Variables used by each algorithm for this research.  The TKE variable was 
available in six of the ten ensemble members. 

C. SELECTION OF LOCATIONS FOR EVALUATION 

Five bases were chosen as test sites to evaluate the performance of the two 

algorithms.  These sites were selected based on the criteria of minimal impacts of terrain 
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to wind gust enhancement as well as to sample and represent the geographical differences 

within the 15th OWS AOR.  The five locations chosen were: Westover ARB, MA; 

Andrews AFB, VA; Langley AFB, VA; Scott AFB, IL; and Offutt AFB, NE.  Figure 9 

shows a map of terrain height and locations for the five bases used in this study. 

D. ALGORITHM PROCEDURES 

Algorithms to calculate the WGE and RUC model wind gust forecasts from the 

WRF output were written and compiled using the program MATLAB.  Model data netcdf 

files were converted to .mat files for use in MATLAB.  For each forecast compiled, 

output was manually recorded into Microsoft Excel spreadsheets in order to perform 

various calculations and statistics described in Section E of this chapter.  Surface 

sustained wind (10 m wind speed) and wind direction were not part of the algorithms 

analysis, however the variables were recorded in order to provide additional information 

on the model’s performance of individual weather events.  Prior to running the algorithms 

on the raw .mat file data, two interpolations were made. 

 

Figure 9. Terrain map of 45 km WRF domain with locations used for this research 
plotted in MATLAB. 
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1. Destaggering Variables in the Vertical and Bilinear Interpolation 

Before processing the data with the non-convective wind gust algorithms, a 

subroutine (or function) was created to interpolate the data in two ways.  First, the WRF 

model data set includes primary variables (U, V wind components, temperature, pressure) 

on 40 half η levels, however geopotential (φ) and vertical velocity (w) are available on 41 

full η levels.  Model data was unstaggered in the vertical which reduces, or interpolates, 

all variables to the whole η level.  This process allows computations to be made more 

simply while retaining the integrity and resolution of the vertical grid.  Due to the nature 

of the hydrostatic model, η above ground heights can vary as shown in Table 2.  The max 

η level representing the PBL height at each location fell below the 20th level. 

Another interpolation made to the model data was in the horizontal spatial realm 

of the grid.  Since 45 km represents a large area between grid points, it was determined 

that an interpolation should be made at each location.  The purpose of this was to ensure 

that more accurate representation of the variables at that location could be made versus 

using just the nearest grid point.  Although terrain may not be a major factor at Westover 

ARB, MA, using a grid point 45 km to the west could mean a higher elevation point.  

Similarly, using a point 45 km to the east of Langley AFB, VA would result in an ocean 

data point.  By taking the nearest four points, and interpolating that data to the actual 

location, a more accurate representation of the variable field can be made.  This process 

is called bilinear interpolation. 

Bilinear interpolation is a distance-weighted interpolation of gridded variables by 

using the nearest four grid points (Nett 2012).  This interpolation includes all variables in 

an x, y, z grid.  This means that a grid point relatively close to the actual location will get 

more weight than a neighboring grid point farther away.  The interpolation is first made 

in the x-direction and then in the y-direction to the actual location. See Nett (2012) for 

further explanation on the process of bilinear interpolation.   

After the data was bilinear interpolated, the actual and model terrain heights were 

compared to note any differences that might impact the accuracy of the data and 

forecasts.  Table 5 shows the comparison between actual elevation and the model terrain 
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height.  Westover ARB is the only outlier where the elevation difference was much larger 

than its actual elevation.  Careful investigation reveals the western nearest grid points are 

located in higher terrain while the eastern grid points are similar to the actual station 

elevation.  This difference will be accounted for in the data results chapter. 

Instead of running the data across the grid to produce calculations, a column 

vector of data was extracted from the surface to the top of model layer for the point 

location.  The two algorithms were then applied using this column vector of data.  For 

each model run, data for all five locations were extracted.  The data was placed in 

matrices of columns (one column for each of the locations) for each model variable.   

 

 Actual 

elev (m) 

Bilinear Interpolated 

elev (m) 

Westover ARB 73 201.15 

Andrews AFB 85 49.33 

Langley AFB 3 5.04 

Scott AFB 140 146.16 

Offutt AFB 319 342.77 

Table 5.   Comparison of actual and model estimated elevation heights in meters. 

2. WGE Algorithm 

This section describes the procedures used in the WGE algorithm.  The WGE 

algorithm used for this research is a modified version of the algorithm currently used to 

produce output for CONUS OWS modeled Skew-Ts.  Due to the difference in available 

parameters (TKE, modeled PBL height, etc.), the adapted version differs in the process to 

compute values used in the algorithm.  Therefore, the results produced here should not be 

considered verification of the OWS algorithm due to the differences in model data 

variables available as well as the modifications made to the algorithm. 

The first step of algorithm is to set the initial gust estimate to the modeled 10 m 

gust variable.  If the modeled PBL winds are less than that of the surface gust parameter, 



 35

then the 10 m gust variable represents the WGE prediction for that time period.  In some 

cases, the 10 m gust parameter was missing, and therefore an artificial, but representative 

value was created by combining the u and v wind components at 10 m.  The wind 

direction was also extracted from the model data field to provide additional information 

on the model’s timing error of frontal passages.   

Next, in order to calculate the surface parameters, variables are assigned values 

based on η levels.  The surface potential temperature value is set to value at the lowest η 

level (1).  As described above, this is a good approximation since the lowest η value is 

around 18–20 m AGL.  The mixing ratios for rain, cloud, and ice are combined for each 

level with the value at the first level recorded as the surface combined mixing ratio.  This 

same process is accomplished for the surface vapor mixing ratio.  Next, a variable is 

created to represent part of the virtual potential temperature equation.  The following 

equation converts potential temperature to virtual potential temperature (LaCroix (2002): 

  1 .61v Lr r     (8) 

The vapor mixing ratio is represented by r and the combination of rain, cloud and 

ice mixing ratios is represented by rL.  After computation of the value inside the bracket 

is accomplished, the algorithm multiplies this result by the potential temperature at the 

surface to produce the virtual potential temperature. 

The next step in the algorithm is to determine the η level that represents the top of 

the boundary layer.  First the AGL level for each η level is computed.  Then a one 

column matrix is created to determine how many levels are less than the MYJ produced 

PBL height variable.  The maximum level in this matrix is indentified as the η level PBL 

top and the algorithm will not exceed this level when computing the WGE.   

A “for” loop is then created to run from η level 1 to the η level identified as the 

top of the PBL.  The values are calculated from the surface to the top of the PBL which is 

a departure from the top-down method used by LaCroix (2002).  The algorithm steps up 

from the surface to each η level and calculates the variables in the layer required for both 

the TKE and buoyancy terms in Equation (1) shown in Chapter II.  For each layer, both 

sides of Equation (1) are calculated and added to the running total of each respective 
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integral.  After a layer is computed and added to the total integral, the TKE component is 

compared to the buoyancy component.  If the TKE component is greater than or equal to 

the buoyancy component, then the wind speed at the highest η level used in the layer is 

compared to the previously recorded value.  If the current level’s winds are greater than 

the previous level’s winds, the max gust is set as the new wind speed overriding the 

previous value.  If the value is less than the previously recorded max gust value, it is 

discarded and the loop continues.  As soon as the algorithm finds the point where the 

buoyancy term is greater than the TKE term, the loop is exited and the max gust value is 

recorded as the WGE.  Calculations for the lower and upper bound of the WGE are also 

embedded in the algorithm and follow Equations (3), (4), and (5) from Chapter II.  Due to 

the limited amount of analysis conducted on the bounding interval, detailed steps of 

algorithm will not be provided. 

3. RUC Algorithm 

The RUC algorithm is an empirically based estimate of non-convective wind 

gusts.  As such, this makes the algorithm much shorter compared to the WGE.  The 

boundaries of the RUC algorithm are similar to the WGE in that the values computed 

must stay within the PBL.  Similar to the WGE, a determination of the top of the PBL, 

represented by the nearest η level, is calculated.  This alerts the algorithm when to stop 

running the associated “for” loop and end the program. 

The empirical portion comes from the coefficient that is applied at each level 

explained in Chapter II.  The description of the code from NOAA ESRL (2012) notes that 

the coefficient decreases from 1 to .5 at 1 km AGL.  Therefore, a column matrix was 

created with values of these coefficients.  An average η level for 1 km was determined to 

be around the 12th level.  Although this can vary as shown previously, the small fluction 

(+/- 50–100m) was determined not to vary enough to drastically alter the value of the 

coefficient applied.  Therefore, coefficients linearly decreased from 1 at η level 1, to 

.4995 at η level 12 and remained .4995 at any level above 12 per the description given in 

Chapter II. 
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For each level the coefficient is multiplied by the wind speed at that level and 

added back to the surface wind speed value and stored in a matrix.  When the algorithm 

reaches the top of the PBL, the matrix of adjusted wind speeds is analyzed and the 

maximum wind speed recorded as the RUC non-convective wind gust value.   

E. METHODOLOGY 

The methodology and design of this project was tailored towards performance 

evaluation of the non-convective wind gust algorithms to forecast a specific wind 

warning threshold used in today’s operational weather squadron setting.  Therefore, the 

methodology uses slightly different verification processes and procedures compared to 

other studies.  As such, the methodology and statistics presented in this research are 

designed to give a summary of the performance of the algorithms using a proven reliable 

model system (in this case the WRF model with the multiphysics ensemble) and less 

designed to evaluate the performance of the ensemble model itself.  Therefore, statistics 

and results presented in this research will reflect the algorithms performance based on 

this methodology.  Furthermore, the benefits of using the ensemble outweighed the 

benefits of using a single deterministic model due to the increased skill over using an 

equal resolution model run (Brennan 2012).  For this reason, and due to the future of 

ensembles in the Air Force Weather community (Hacker et al. 2011), it was important to 

analyze the non-convective algorithm’s performance using this ensemble. 

1. Selection of Events and Forecast Distribution 

Beginning with selection of events for analysis, the first step was to gather all 

observations for the time period of 21 November 2008 through 21 February 2009 

(coinciding with available model data sets) for the locations chosen and described in 

Section D.  Therefore, observations for 92 days at each location were compiled from the 

14th Weather Squadron’s, the Air Force’s Climatology Center, online database.  For the 

five locations used, this yielded roughly 11,000 observations to analyze.  To focus on the 

algorithms forecast of a specific threshold, we chose an observed value that would likely 

cause a forecaster to increase their situational awareness and to thoroughly analyze all 

possible tools for determination of wind warning issuance (in this care for winds >35 kts) 
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in an operational setting.  This requires a key assumption: model skill under the threshold 

chosen is relatively good.  Using the results of Hacker et al. (2011) and preliminary tests 

on a few cases, we felt confident that this assumption was valid especially for days where 

significant weather pattern changes (strong cyclones and associated frontal boundaries) 

did not occur.   

The threshold was set to analyze forecasts on time periods when an observed 

value 30 kts or greater occurred.  If a 30 kt observation was noted, it was grouped with 

surrounding observations closest to the nearest 3-hour forecast valid time.  For example, 

a 0655Z 30 kt observation would be grouped with the 0455Z, 0555Z and 0755Z 

observations (-1 hr, valid time, +1 hr, +2 hr), hereafter referred to as an observation 

group, for error analysis.  This narrowed the database from 11,000 observations down to 

nearly 630 and yielded 157 observation groups.  These observation groups were then 

matched to the applicable 3-hour forecast panel from the closest available model run 

(explained further in Section E3).  Figure 10 is a graphical representation of the 3-hourly 

forecasts with associated observation groups used for verifying maximum wind speeds. 

Figure 10. Three-hour forecast timeline with associated observation group times.  
Max wind speed recorded in each observation time frame was used for verification of 

accompanying 3-hour forecast. 

Figures 11 and 12 show the forecast distribution by location as well as overall 

distribution partitioned by 6-hour forecast groups, respectively.  Although the majority of 

the analysis was done with combined results, some results and conclusions are made 

based on the accuracy associated with specific forecast lead-times.  However, due to the 

reliability of the model during the first 48-hour period (as shown by Hacker et al. 2011), 



 39

the combination of results from different forecast times should not greatly alter the 

overall statistics and results.  40% of the forecasts verified with within 12 hours of the 

model run and 56% within 24 hours.  26% of the forecasts verified were between 27 and 

30 hours from the model run time indicative of the gap between days of model runs. 

 

Figure 11. Distribution of overall forecasts and accompanying observations by 
location.  Red bars represent the number of forecasts analyzed at each location.  Green 

bars represent the total number of observations analyzed at each location. 

Figure 12. Distribution of overall forecasts by lead time from closest model run 
binned in six hour forecast groups.  
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2. Utilizing Ensemble Mean for Deterministic Forecast and Verification 

Six of the 10 members utilized the MYJ PBL scheme, which produces a 

prognostic TKE value for each vertical level and computes boundary layer heights based 

on the TKE profile within the boundary layer.  The other four members use the YSU 

scheme which does not produce a TKE value and calculates the boundary layer height 

from the buoyancy profile (Skamarock et al. 2008).  Since TKE is a requirement for the 

WGE algorithm and to not incorporate error with differences in calculations of TKE, the 

ensemble mean forecast was taken from the six available members utilizing the MYJ 

PBL scheme (see Table 3).  However, the RUC algorithm utilizes variables available in 

all members and therefore all 10 members forecast were utilized to calculate the 

ensemble mean of the RUC algorithm.  The decision was made to incorporate all 10 

members into the mean calculation for the RUC to produce a more reliable mean.  This, 

in turn, could give the RUC method a statistical advantage; however when each members 

prediction were analyzed, the spread was such that it produced a minimal impact on mean 

value.  Therefore the 10-member mean was used to analyze the RUC predictions. 

A simple application of ensembles is to utilize the ensemble mean as a single 

forecast since this represents the most likely forecast from the initial atmospheric 

conditions.  In fact, one major goal of ensemble forecasting is to improve the forecast by 

ensemble averaging (Kalnay 2003).  Intuitively, using the ensemble mean then tends to 

average out large errors and enhance the similarities in member forecasts (Wilks, 2006).  

Using the mean as deterministic forecast gives users some information on the likelihood 

of an event occurring since the mean is comprised of its associated member’s forecasts 

(Jolliffe and Stephenson 2003).  The ensemble mean is a non-probabilistic (or 

deterministic) forecast. 

Verification of the ensemble mean yields pros and cons as explained in Ebert 

(2012b).  Pros include filtering out smaller and unpredictable scales which, in turn, 

represents the ensemble’s skill.   Furthermore general operational forecasters and other 

users of ensembles typically use the ensemble mean.  Therefore, methods used to verify 

the ensemble mean can include deterministic (non-probabilistic) verification scores 

(Ebert 2012a,b).  The purpose of this study is to show how well the algorithms performed 
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given a reliable data set.  With this in mind, it was decided to utilize the mean as the 

single deterministic forecast and to compare verification statistics based on this forecast 

using documented statistics from Wilks (2006) rather than to use any individual member 

of the ensemble.   

3. Method of Calculating Overall Forecast Error 

The method for calculating the forecast error was determined by analyzing the 

initial results from the output of the algorithms.  Error results were plotted on histograms 

to reveal the distribution of errors associated with the algorithms.  Ideally, the errors 

would all be near zero, or have a Gaussian (or normal) distribution from the error 

distribution.  For the determination of method to compute error statistics, two histograms 

were plotted.  The bins associated with these histograms were in 2 kt intervals centered 

around a 4 kt central axis.  The first histogram computed the wind gust error using the 

maximum wind speed recorded in the observation at the valid time of the forecast.  For 

example, a 06Z forecast would be verified with at 0555Z observation using the highest 

wind speed recorded in the observation.  The results show a fairly normal distribution of 

errors of the RUC algorithm, however, less of a normal distribution for the WGE.  

Moreover, the number of errors that exceeded 10 kts is also high for this verification (see 

Figure 13) indicating an overestimation of wind gusts. 
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Figure 13. Wind gust error distribution using maximum wind speed from 
observations at forecast valid time.  Blue bars represent the number of WGE errors for 

each bin, green bars represent the number of RUC errors for each bin.  Errors are binned 
by 2 kt intervals centered on a 4 kt central axis. 

Due to inherent timing errors common in weather models, frontal passages and 

other mesoscale features that effect maximum wind forecasts could occur within the three 

hour gap not represented by the forecasts.  Therefore, we also analyzed errors based on 

observation groups previously explained using the maximum wind +/- 1.5 hours from the 

forecast valid time.  This method ensured that all gaps in between forecast valid times are 

covered by an observation for verification.  For example, a peak wind remark recorded at 

0135Z would be compared to the 03Z forecasts, while a peak wind remark recorded at 

0125Z would be compared to the 00Z forecast.  Increasing the verification window is a 

similar approach to a new form of verification called neighborhood (or “fuzzy”) 

verification (see Ebert 2009).  Since neighborhood verification is typically used for event 

verification, we chose this similar approach to increase the temporal window for wind 

speed verification.  Intuitively, by increasing this window, only a higher observed wind 

speed would change the error value.  Therefore, it is assumed this will minimize the 

overestimation and shift the errors to the left.  WGE errors were more normally 
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distributed, while the RUC shifted to a slight underestimation of winds with 35% of 

errors falling between -2 kts and -6 kts (see Figure 14). 

 

Figure 14.  Wind gust error distribution using maximum wind speed from 
observations +/- 1.5 hours from forecast valid time.  Blue bars represent the number of 
WGE errors for each bin, green bars represent the number of RUC errors for each bin.  

Errors are binned by 2 kt intervals centered on a 4 kt central axis. 

Mean error and RMSE also provide an indication of algorithm performance when 

compared with these different methods.  According to Wilks (2006), mean error of 

greater than zero will reflect, on average, forecasts that are too high while the opposite is 

also true.  Furthermore, the bias indicated here does not give information related 

magnitude and cannot be considered an accuracy measurement, but can give an 

indication of performance.  Alternatively, RMSE does give an indication to the 

magnitude of the errors since it represents the error using similar units as the variable for 

wind.  More on the results from RMSE calculations will be discussed in Chapter IV, but 

it is important to note the increased accuracy of the algorithms when compared to the 

observation groups (see Figure 15). 

 

 



 44

Figure 15. Mean error and root mean square error comparisons.  Blue bars indicate 
errors calculated using maximum wind speed from observations at forecast valid time.  

Red bars indicate errors calculated using maximum wind speed from observations +/- 1.5 
hours from forecast valid time.   

4. Method of Calculating Hit/Miss/False Alarms 

Choosing an appropriate method for calculating overall error was an important 

step in determining the methodology for event verification.  Consistency is vital when 

analyzing data and producing results.  Using a strategy similar to neighborhood 

verification (Ebert 2009) allows us to verify the algorithms ability to predict warning 

level winds in an environment where winds are close to the threshold.  Our method for 

calculating hits, misses, and false alarms makes use of standard practices for warning 

verification with an increased temporal window.   

Using the observation groups determined from analysis of 30 kt observations, a 

threshold of 35 kts was set for event verification.  In standard “yes/no” contingency table 

verification methods, if the algorithm produced an ensemble mean forecast greater than 

or equal to 35 kts (ensemble mean values rounded to the nearest knot) or an observed 

valued of 35 kts or greater occurred, then this constituted a “yes” in the contingency 

table.  Likewise, if either did not produce a results of 35 kts or greater, then this 

constituted a “no.”  The use of a 35 kt threshold is a rather strict but straightforward way 
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of verifying the ability of the algorithms to predict a specific warning level threshold.  

Other research has focused on other thresholds such as wind speeds of 15 kts (LaCroix 

2002). 

5. Statistics Computed 

Based on Wilks (2006) and in computing statistics comparable to LaCroix (2002), 

standard two by two (2x2) contingency tables were developed (Figure 16).  Air Force 

standard verification scores included Critical Skill Index (CSI), Probability of Detection 

(POD), and False Alarm Rate (FAR).  Hit Rate (HR) measures the number of correct 

forecasts (yes/yes, no/no) compared to the total number of forecasts (n).  Therefore, a 

perfect forecast would have a HR of 1.  This score is important in assessing the 

performance for the two wind gust algorithms for our study.  The ability of the algorithms 

to predict non-events in environments when observed winds were 30 kts or greater was 

critical to increasing confidence in the performance of the algorithms.  This makes HR a 

useful statistic.  Using the 2x2 table, this relationship is given by (LaCroix 2002): 

 

HR = (a+d)/n 

 

The threat score, also referred to as the CSI, is often a more useful tool when 

verifying events that happen much less frequently than non-events (Wilks 2006).  This is 

particularly the case when discussing the frequency of 35 kt events but may not be as 

important as HR.  CSI is calculated as the proportion of correct forecasts to non correct 

forecasts for the threshold after removing non-occurrences (Wilks 2006).  Therefore, 

using Figure 16, this is represented as: 

 

CSI = a/(a+b+c) 

 

Similar to HR, POD is also a useful calculation of algorithm performance as it 

measures the actual detection of verified “yes” events compared to the number of times 

the event actually occurred (Wilks 2006).  This is represented as: 
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POD = a/(a+c) 

 

FAR is a measure of the ratio of the false alarms to the total number of events that 

did not occur (Wilks 2006).  False alarms and misses (events not forecast, but those that 

occur) are critically important to DoD assets.  A miss can cause damage or injury and 

associated monetary loss while a false alarm can cause wasted resources and cancelled 

operations also resulting in monetary loss.  FAR is represented as: 

 

FAR = b/(a+b) 

 

Other scores associated with contingency table verifications were also computed 

outside of the typical warning verification statistics described in this section.  The 

additional scores include bias, and two unbiased skill scores, the Kuiper (KSS) and 

Equitable Threat Skill Scores (ETS). 

Similar to mean error previously mentioned, bias is not a measure of accuracy, 

however it is a measure of the algorithms performance in terms of over or 

underforecasting.  Instead of positive and negative values representing this result as in the 

mean error, bias scores greater than or less than 1 indicate over or underforecasting, 

respectively, with a perfect score of exactly 1 (LaCroix 2002).  Bias is represented as: 

 

BIAS = (a+b)/(a+c) 

 

KSS is an unbiased skill score that rewards forecasts of rare events and is 

applicable to our strict event threshold.  ETS, also an unbiased skill score, utilizes CSI 

and accounts for random forecast events (LaCroix 2002).  These skill scores are 

calculated by: 

KSS = (ad-bc)/(a+c)(b+d) 

ETS = (ad-bc)/(ab+ac+ad+b2+bc+c2+cd) 
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Figure 16. The 2x2 forecast verification matrix (From LaCroix 2002). 
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IV. DATA ANALYSIS 

A. OVERVIEW 

This chapter is broken into several sections to examine the variety of ways used to 

analyze the data set using the methodology described in Chapter III.  The first analysis 

was done on the combined statistics for each algorithm at each location for sustained 

wind forecasts and the RMSE for wind gust predictions.  Then location-based results 

were calculated using several techniques to form conclusions on the performance of the 

two algorithms at each site.  After analyzing the algorithms performance at each location, 

a linear regression analysis was performed in order to assess accuracy differences.  

Finally, 10 cases studies (two at each location) were analyzed as independent data sets 

utilizing the results and conclusions from the location-based performance metrics as well 

as the linear regression tuning of the algorithms.  A summary of the results from this 

analysis is presented in the last section of this chapter. 

B. COMBINED RESULTS 

The ability to accurately predict sustained wind forecasts can be an indicator of 

how well the model is handling the current weather features that are affecting a particular 

location.  Since sustained winds do not vary as much as wind gusts, a time window 

surrounding the forecast was not used.  The errors were combined to produce an overall 

sustained wind forecast error histogram similar to Figure 13 for wind gust errors.  Figure 

17 shows that the errors closely resemble a Gaussian distribution with a slight 

underforecast bias between two and six knots.  This result, combined with the mean error 

and RMSE of the sustained wind forecasts shown in Figure 18, gave increased 

confidence in the model’s ability to handle boundary layer features that effect surface 

winds forecasts. 
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Figure 17. Sustained wind forecast error histogram for all locations.  Errors 
calculated using sustained wind speed from observations at forecast valid time.  Blue bars 

represent number of errors binned by 2 kt intervals centered on a 4 kt central axis. 

Figure 18. Sustained wind forecast mean error and RMSE calculations for all 
locations.  Errors calculated using sustained wind speed from observations at forecast 

valid time.  Blue bar indicates mean error, red bar indicates RMSE. 
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Figure 15 reflects increased accuracy for both algorithms, represented by the 

RMSE, when forecasts were verified using wind speeds recorded +/- 1.5 hours from the 

forecast valid time.  This analysis was also conducted on a location by location breakout 

to determine whether the algorithms performance changed for specific locations when 

evaluated using the RMSE (see Figure 19).  For the WGE, three of the five bases showed 

improvement in RMSE when forecasts were verified against the +/- 1.5 hour observation 

groups.  These RMSE improvements were seen at Westover (-3.56 kts), Andrews (-2 kts) 

and Scott (-3.29 kts).  The increased RMSE values at Langley (+1.26 kts) and Offutt 

(+.23 kts) were smaller, comparatively.  The improvements at the three locations 

outweighed the small losses at Langley and Offutt.  For the RUC algorithm Andrews (-

1.56 kts), Langley (-2.68 kts), and Scott (-2.25 kts) all revealed improvements in RMSE.  

Westover (+.06 kts) and Offutt (+.42 kts) both showed a small loss in accuracy.  These 

results are comparable to the RMSE results from Brasseur (2001) which ranged from 

roughly 4 kts to 9 kts during a three month simulation in Belgium.  Similarly, LaCroix 

(2002) showed RMSE values of 7 kts to 11 kts.  While these two prior studies utilized 

different verification procedures and data methodology, the similar results indicate the 

validity of our data methodology and analysis approach. 

Figure 19. RMSE error using maximum wind speed from observations +/- 1.5 hours 
from forecast valid time at each location.  Blue bars represent the WGE RMSE in knots, 

red bars represent the RUC RMSE in knots. 
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C. LOCATION-BASED RESULTS 

A location-based analysis was conducted and the algorithm performance varied at 

the five locations.  This section analyzes the location-based results for a variety of 

different analyses conducted.  The analysis conducted here will be summarized and used 

as a template for the case studies in Section E of this chapter. 

1. Westover ARB 

Westover ARB is approximately 45 miles to the east of the Massachusetts/New 

York border near the south-central portion of the state.  Sixty-five miles to the east of the 

Hudson River that flows through New York, a spine of the Appalachian Mountains is 

situated between the Hudson River and Westover ARB (Google Earth 2012).  As alluded 

to in Chapter III and shown in Table 5, the proximity of these mountains played a role in 

the modeled bilinear interpolated grid point elevation for this location. 

A difference of 128 m was expected to produce differing results of predicted 

versus observed wind gusts at this location.  Figure 19 shows the WGE RMSE values for 

Westover to be second largest of the five locations, and the RUC RMSE values are the 

lowest of the five locations.  When the forecasts were compared to the nearest 

observation only, the WGE RMSE value was the highest of the five locations while the 

RUC RMSE remained the lowest (not shown). 

The sustained and wind gust error histograms were plotted for Westover (see 

Figure 20).  The RUC shows a relatively normal distribution of errors, where 56% of the 

forecasts errors were within +/- 4 kts.  The WGE shows an overestimation of wind gusts 

(22% of forecast errors >10 kts), similar to what was expected based on higher modeled 

terrain.  The sustained wind forecast errors also represent a relative Gaussian distribution 

with 70% of the errors within +/- 4 kts.  It appears as though the RUC was able to 

overcome the model grid point resolution deficiency, while the WGE appears to be 

affected by this elevation difference. 
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Figure 20. Sustained (top) and wind gust error (bottom) histograms for Westover 
ARB.  Sustained wind errors (blue bars, top graph) calculated using sustained wind speed 

from observations at forecast valid time.  Wind gust error distribution using maximum 
wind speed from observations +/- 1.5 hours from forecast valid time.  Blue bars represent 
the number of WGE errors for each bin, green bars represent the number of RUC errors 

for each bin.  Both histogram errors are binned by 2 kt intervals centered on a 4 kt central 
axis.   
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There were 27 3-hour forecasts analyzed for Westover using 2x2 contingency 

tables constructed from the ensemble mean to evaluate the performance of forecasted 

winds greater than or equal to 35 kts.  Overall, the RUC outperformed the WGE in all 

categories except CSI (-2%) and POD (-57%).  The latter result indicates the WGE’s 

ability to predict 35 kt events, however based on the results from the wind gust error 

histogram, it is likely this result is a product of an overestimation of winds rather than an 

increase in skill as the skill score comparisons shown in Figure 21 indicate a Kuiper Skill 

Score of 0.35 for the WGE versus 0.66 for the RUC.  Near term statistics (3–24 hour 

period) reveals the WGE outperforms the RUC in all categories except HR (-9%). 
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Figure 21. 2x2 contingency table statistics for Westover ARB (27 forecasts).  
Statistical performance is grouped by forecast lead-time in 12-hour groups.  For example, 

the 3-12 hour bin in each chart represents statistics calculated on forecasts verified 
between three and 12 hours from model run time.  The final group represents statistics 
calculated on all hours combined.  Dark red bars indicate WGE statistics, light red bars 

indicate RUC statistics. 

Another approach in assessing algorithm performance is to look at it from the 

standpoint of an operational forecaster.  That is to say, how well did the algorithms verify 

forecasts when the prediction was for winds greater than or equal to 35 kts?  Even though 

the forecast may not have verified in the +/- 1.5-hour window, extending the window 

indicates that timing errors were possible, which could reveal the algorithms accurate 

prediction of the threshold with just a simple timing error.  Since, it is possible that a 

single observation verified more than one 3-hour forecast when the window was 

expanded, the total number of verified forecasts combined with the number of misses are 

not the same for each algorithm. 

Figure 22 indicates this analysis for the WGE forecasts at Westover.  Of the 27 3-

hour forecasts analyzed, 20 forecasts were for winds that met or exceeded the 35 kt 

threshold.  Of those 20 forecasts, seven verified within the +/- 1.5-hour window.  One 

more verified when that window was extended to +/- 3-hours and two more when it was 

extended to +/- 6-hours.  In all, 10 of the 20 forecasts verified within a 12-hour period 

while another 10 did not verify at all and were counted as false alarms.  Furthermore, 

there were no missed forecasts for this location.  This overforecast tendency appears to be 

a direct result from the modeled elevation difference and not an accurate evaluation of the 

algorithms as similar results at other locations were not replicated.  Figure 23 is the same 
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analysis but conducted on RUC forecasts at Westover.  The number of actual forecasts 

(five) for the threshold is much lower than WGE reinforcing that the empirical model was 

not affected as much by the elevation difference.  All five verified within the 12-hour 

forecast window, and there were no false alarms.   However, there were four missed 

forecasts using this algorithm.   

This particular analysis was developed to judge the performance of the algorithms 

along the fine line between acceptable false alarms and misses.  Ideally, both would be 

zero.  However, is 10 false alarms and zero misses worse than four misses and zero false 

alarms? The results at Westover represent the unique and often challenging risk 

management decision process operational forecasters endure when making critical 

threshold decisions. 

Figure 22. Threshold analysis using the WGE algorithm at Westover ARB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts.  Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 
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Figure 23. Threshold analysis using the RUC algorithm at Westover ARB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts. Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 

2. Andrews AFB 

Andrews AFB is approximately 10 miles to the southeast of Washington D.C.  In 

between the Potomac River to the west and the Chesapeake Bay to the east, the terrain 

around the base provides little in the way of wind enhancement with no major terrain 

differences in the surrounding region (Google Earth 2012).  Modeled elevation for this 

location is approximately 36 m lower than actual elevation.  With this difference in 

elevation, it was expected that wind gust predictions would be slightly underforecast for 

this base, an opposite effect from what was shown at Westover ARB. 
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There were 39 forecasts verified at Andrews.  WGE RMSE was slightly lower 

than the RUC by less than .5 kt.  Error histograms revealed that 54% of the forecasts 

were within +/- 4 kts for the WGE compared to only 36% for the RUC.  Analysis of both 

algorithms revealed an underforecast bias, however the RUC was much more 

underforecast with 77% of the errors resulting in a prediction of >2 kts lower than the 

observed value (see Figure 24).  This bias was also evident in the sustained wind error 

histogram where 54% of the errors were between +/- 4 kts with 28% between -4 kts and -

6 kts (not shown).   

Figure 24. Wind gust error distribution using maximum wind speed from 
observations +/- 1.5 hours from forecast valid time.  Blue bars represent the number of 
WGE errors for each bin, green bars represent the number of RUC errors for each bin.  

Errors are binned by 2 kt intervals centered on a 4 kt central axis. 

When all forecast hours were combined, the WGE outperformed the RUC in six 

of seven of the statistics and skill scores that were evaluated.  However, in the short term 

window of less than 24 hours, the RUC outperformed the WGE in all categories except 

POD (-33%) but had one more missed forecast compared to the WGE (see Figure 25). 
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Figure 25. 2x2 contingency table statistics for Andrews AFB (39 forecasts).  
Statistical performance is grouped by forecast lead-time in 12-hour groups.  For example, 

the 3-12 hour bin in each chart represents statistics calculated on forecasts verified 
between three and 12 hours from model run time.  The final group represents statistics 
calculated on all hours combined.  Dark red bars indicate WGE statistics, light red bars 

indicate RUC statistics. 
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Of the 39 3-hour forecasts analyzed, 13 WGE forecasts were for winds that met or 

exceeded the 35 kt threshold (see Figure 26).  Of those 13 forecasts, six verified within 

the +/- 1.5-hour window.  Nine verified when that window was extended to +/- 3-hours 

and one more when it was extended to +/- 6-hours.  In all 10 of the 13 forecasts verified 

within a 12-hour period while another three were counted as false alarms.  Additionally, 

there were four missed forecasts.  The underforecast bias revealed previously was a direct 

contributor to missing these four forecasts.  Eight threshold forecasts were produced 

using the RUC algorithm (see Figure 27).  Four verified within the +/- 1.5-hour forecast 

window, with another two within the +/- 3-hour window.   However, there were six 

missed forecasts and two false alarms using the RUC algorithm.  Analyzing the results 

solely based on this analysis indicated the RUCs underforecast bias for this location 

yielded an increase in misses when compared to the WGE. 

Figure 26. Threshold analysis using the WGE algorithm at Andrews AFB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts.  Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 
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Figure 27. Threshold analysis using the RUC algorithm at Andrews AFB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts.  Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 

3. Langley AFB 

Langley AFB is located in the southeastern region of a coastal plain peninsula that 

extends betweens the James River and Chesapeake Bay in southeastern Virginia.  

Approximately five miles to the west of the Chesapeake Bay and eight miles to the east 

of the James River, the weather is influenced by the bodies of water nearby including the 

Atlantic Ocean which is 25 miles to the east (Google Earth 2012).  Modeled elevation for 

this location is approximately 2 m higher than the actual elevation.  Therefore, model 

predictions of wind gusts are not affected by the interpolated terrain height. 
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There were 24 forecasts verified at Langley AFB.  This number reflected the 

lowest number of non-convective wind events during the evaluation period for the 

locations analyzed and is indicative of the lower number of events that occur in the 

southern portions of the CONUS.  RUC RMSE revealed lower error than the WGE by 

6.55 kts.  Error histograms reiterated the WGE error for this location with a large 

underforecast bias that included 46% of the forecasts underforecast by greater than 10 

kts.  54% of the forecasts were within +/- 4 kts for the RUC compared to only 25% for 

the WGE (see Figure 28).  The sustained wind error histogram depicted accurate 

predictions with 71% of the errors were between +/- 4 kts (not shown).   

Figure 28. Wind gust error distribution using maximum wind speed from 
observations +/- 1.5 hours from forecast valid time.  Blue bars represent the number of 
WGE errors for each bin, green bars represent the number of RUC errors for each bin.  

Errors are binned by 2 kt intervals centered on a 4 kt central axis. 

When all forecast hours were combined, contingency table statistics showed the 

RUC outperformed the WGE in all seven evaluated statistics and skill scores.  This 

performance also occurred in the short term forecast window of less than 24 hours (see 

Figure 29). 
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Figure 29. 2x2 contingency table statistics for Langley AFB (24 forecasts).  
Statistical performance is grouped by forecast lead-time in 12-hour groups.  For example, 

the 3-12 hour bin in each chart represents statistics calculated on forecasts verified 
between three and 12 hours from model run time.  The final group represents statistics 
calculated on all hours combined.  Dark red bars indicate WGE statistics, light red bars 

indicate RUC statistics. 
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Of the 24 3-hour forecasts analyzed, eight WGE forecasts were for winds that met 

or exceeded the 35 kt threshold (see Figure 30).  Of those eight forecasts, five verified 

within the +/- 1.5-hour window and a total of six verified when that window was 

extended to +/- 3-hours.  Six of the eight forecasts verified within a 12-hour period while 

two were counted as false alarms.  Furthermore, there were six missed forecasts.  The 

underforecast bias discussed previously was a direct contributor to missing these six 

forecasts.  10 threshold forecasts were produced using the RUC algorithm (see Figure 

31).  Seven verified within the +/- 1.5-hour forecast window, with another two within the 

+/- 3-hour window and all 10 verified within the +/- 6-hour window.   Although there 

were four missed forecasts, the RUC algorithm was the best method of prediction for this 

location. 

Figure 30. Threshold analysis using the WGE algorithm at Langley AFB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts.  Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 
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Figure 31. Threshold analysis using the RUC algorithm at Langley AFB.  Blue bars 
represent number of forecasts verified in each window (3, 6, or 12 hours), false alarms or 
missed forecasts.  Red bars represent associated percentages of overall forecasts in each 

window or false alarm columns. 

4. Scott AFB 

Scott AFB is located in southwestern Illinois, approximately 20 miles to the east 

of St. Louis, Missouri and the Mississippi River (Google Earth 2012).  Relatively flat 

terrain exists throughout much of the nearby region with little in way of terrain 

enhancement to wind speeds.  Modeled elevation for this location was approximately 6 m 

higher than actual elevation.  Therefore, model predictions of wind gusts were not 

influenced by errors due to the small difference in interpolated terrain height. 
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There were 28 forecasts verified at Scott.  RMSE calculations for both algorithms 

were almost identical with less than .5 kt separating the WGE from the RUC.  Error 

histograms revealed a relative normal distribution for the WGE error for this location 

with a slight overforecast bias.  The RUC distribution was less normally distributed with 

a clear underforecast bias.  50% of the forecasts were within +/- 4 kts with 43% 

overforecast by greater than 2 kts for the WGE as compared to 39% within +/- 4 kts and 

54% underforecast by greater than 2 kts for the RUC (see Figure 32).  The sustained wind 

error histogram revealed accurate predictions of wind gusts as 64% of the errors were 

between +/- 4 kts with a definitive underforecast bias.  Only two of the 28 sustained wind 

forecasts verified with an error greater than 2 kts. (not shown).   

Figure 32. Wind gust error distribution using maximum wind speed from 
observations +/- 1.5 hours from forecast valid time.  Blue bars represent the number of 
WGE errors for each bin, green bars represent the number of RUC errors for each bin.  

Errors are binned by 2 kt intervals centered on a 4 kt central axis. 

When all forecast hours were combined, contingency table statistics showed the 

WGE outperformed the RUC in all categories except bias (-.88).  This performance also 

occurred in the short term forecast window of less than 24 hours (see Figure 33).  When 

all statistic and error calculations were examined at Scott, the best predictions were 

produced by the WGE, which was also seen in the analysis of the 35 kt wind forecasts.   
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Figure 33. 2x2 contingency table statistics for Scott AFB (28 forecasts).  Statistical 
performance is grouped by forecast lead-time in 12-hour groups.  For example, the 3-12 
hour bin in each chart represents statistics calculated on forecasts verified between three 
and 12 hours from model run time.  The final group represents statistics calculated on all 

hours combined.  Dark red bars indicate WGE statistics, light red bars indicate RUC 
statistics. 
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Of the 28 3-hour forecasts analyzed, 17 WGE forecasts met or exceeded the 35 kt 

threshold (see Figure 34).  Of those 17 forecasts, eight verified within the +/- 1.5-hour 

window and a total of 10 verified when that window was extended to +/- 3-hours.  The 

remaining seven forecasts were attributed to false alarms and there was one missed 

forecast.  Nine threshold forecasts were produced using the RUC algorithm (see Figure 

35).  Four verified within the +/- 1.5-hour forecast window, with another two within the 

+/- 3-hour window and a total of six verified within the +/- 6-hour window.  This resulted 

in three false alarm forecasts and five missed forecasts.  The five missed forecasts were a 

result of the underforecast bias.  Although there were seven false alarm and one missed 

forecasts, the statistics prove the WGE algorithm was the best method of prediction for 

this location. 

 

Figure 34. Threshold analysis using WGE at Scott AFB.  Blue bars represent number 
of forecasts verified in each window (3, 6, or 12 hours), false alarms or missed forecasts.  

Red bars represent associated percentages of overall forecasts in each window or false 
alarm columns. 
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Figure 35. Threshold analysis using RUC at Scott AFB.  Blue bars represent number 
of forecasts verified in each window (3, 6, or 12 hours), false alarms or missed forecasts.  

Red bars represent associated percentages of overall forecasts in each window or false 
alarm columns. 

5. Offutt AFB 

Offutt AFB is located in southeastern Nebraska, approximately 10 miles to the 

southeast of Omaha and approximately three miles from the Nebraska/Iowa border 

(Google Earth 2012).  Eastern Nebraska into Iowa is dominated by flat terrain with little 

in the way of terrain changes and is often identified geographically as the High Plains.  

Modeled elevation for this location was approximately 24 m higher than actual elevation.  

Only small overforecast errors were expected due to this interpolation difference.  The 

error analysis below reveals a primarily underforecast bias despite the expected outcome. 

There were 39 forecasts verified at Offutt which tied with Andrews for the most 

forecasts verified during the evaluation period.  This correlates well with previous 

research findings that show the High Plains to be a region with a high concentration of 

non-convective wind events.  RMSE calculations for both algorithms were fairly similar 

with less than 1 kt separating the WGE from the RUC.   Error histograms revealed a 

relative Gaussian distribution for both algorithms.  The WGE error distribution was more 
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normally distributed about the center of the axis for errors between -2 kts and 2 kts.  The 

RUC errors were more distributed about the axis centered about errors from -2 kts to -4 

kts indicating an underforecast bias for this location.  46% of the forecasts were within 

+/- 4 kts with 41% overforecast by greater than 2 kts for the WGE as compared to 44% 

within +/- 4 kts and 72% underforecast by greater than 2 kts for the RUC (see Figure 36).  

The sustained wind error histogram depicted accurate predictions with 64% of the errors 

between +/- 4 kts with an underforecast bias as only eight of the 39 sustained wind 

forecasts verified with an error greater than 2 kts. (not shown).   

Figure 36. Wind gust error distribution using maximum wind speed from 
observations +/- 1.5 hours from forecast valid time.  Blue bars represent the number of 
WGE errors for each bin, green bars represent the number of RUC errors for each bin.  

Errors are binned by 2 kt intervals centered on a 4 kt central axis. 

When all forecast hours were combined, contingency table statistics showed the 

RUC outperformed the WGE in all categories except bias (-.42).  In the short term 

forecast window of less than 24 hours, the RUC outperformed the WGE in all categories 

(see Figure 37).  When all statistic and error calculations were examined, the best 

algorithm predictions were produced by the RUC. 
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Figure 37. 2x2 contingency table statistics for Offutt AFB (39 forecasts).  Statistical 
performance is grouped by forecast lead-time in 12-hour groups.  For example, the 3-12 
hour bin in each chart represents statistics calculated on forecasts verified between three 
and 12 hours from model run time.  The final group represents statistics calculated on all 

hours combined.  Dark red bars indicate WGE statistics, light red bars indicate RUC 
statistics. 
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Of the 39 3-hour forecasts analyzed, 12 WGE forecasts met or exceeded the 35 kt 

threshold (see Figure 38).  Of those 12 forecasts, five verified within the +/- 1.5-hour 

window, two more when the window was extended to +/- 3-hours and a total of eight 

verified when that window was extended to +/- 6-hours.  The remaining four forecasts 

were attributed to false alarms and there were seven missed forecasts.  Seven threshold 

forecasts were produced using the RUC algorithm (see Figure 39).  Six verified within 

the +/- 1.5-hour forecast window, with the seventh verifying within the +/- 6-hour 

window.  This resulted in no false alarm forecasts but six forecasts were missed.  This 

performance metric is somewhat concerning considering the results from the 2x2 

contingency table statistics.  While the decrease of false alarms to zero is a performance 

advantage, the decrease in missed forecasts by one forecast using the RUC algorithm 

does not produce strong confidence in either algorithms ability to detect or properly alert 

to the given threshold. 

 

 

Figure 38. Threshold analysis using WGE at Offutt AFB.  Blue bars represent 
number of forecasts verified in each window (3, 6, or 12 hours), false alarms or missed 

forecasts.  Red bars represent associated percentages of overall forecasts in each window 
or false alarm columns. 
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Figure 39. Threshold analysis using RUC at Offutt AFB.  Blue bars represent number 
of forecasts verified in each window (3, 6, or 12 hours), false alarms or missed forecasts.  

Red bars represent associated percentages of overall forecasts in each window or false 
alarm columns. 

D. LINEAR REGRESSION ANALYSIS 

1. Method 

A simple best fit linear regression was applied to each algorithms results for each 

location.  Similar to the explanation given by Nordstrӧm (2005) for tuning the algorithm 

to their data set, this method was designed to improve results of the analyzed data in 

order to determine whether this method is viable for use in the field.  However, this does 

not provide an explanation of the effects of model tuning on the physical parameters 

forecast by the model.   

The linear regression was accomplished by applying the best fit line to the data 

using the same results (i.e., 3-hour forecasts compared to observation groups) used in this 

chapter to produce a new prediction of maximum wind gust.  RMSE and new 2x2 

contingency table statistics were produced for each algorithm at each location to 

determine the increase in accuracy provided by the linear regression.  For calculations of 



 74

RMSE, the “Leave One Out Cross Validation Method” was used to help ensure over 

fitting did not occur.  See Moore (2012) for more information on this and other methods 

to detect and prevent overfitting of data.  Each location summary also details the 

magnitude of the changed forecasts that became worse than the original forecast.  The 

purpose of this analysis is to show that most forecasts changed slightly (<3 kts) using the 

best fit, although this could be the difference in crossing the 35 kt threshold.  These tools, 

along with the linear regression equations, were applied to independent case studies to 

assess the validity of using this method to tune the algorithms in order to produce more 

accurate results. 

2. Results 

a. Westover ARB 

Table 6 shows the resulting linear regression equations for the two 

algorithms.  The regression equations were applied to the original 27 forecasts.  The 

WGE regression resulted in 21 improved forecasts and six worse forecasts.  Of the six 

worse forecasts, three changed by 3 kts or less and the other three between 8 kts and 12 

kts, a fairly large change that attempted to reduce the outliers to the mean.  Misses also 

increased from zero from the original analysis to four when the regression analysis was 

applied as four original 35 kt forecasts were adjusted below the threshold.  When new 

contingency table statistics were computed, four of the seven categories (HR, FAR, Bias, 

ETS) improved, while the remaining three categories worsened (see Table 7).  The RUC 

regression resulted in 13 improved forecasts, seven worse forecasts (all changed < 3 kts) 

and seven forecasts that did not change.  No change was apparent in any of the 

contingency table statistics or in the number of misses from original analysis for the 

RUC.  Figure 40 reflects the RMSE comparison for each algorithm. 

 

WGE RUC 

y=.2456x + 24.071 y=.3091x + 23.881

Table 6.   Linear regression equations for Westover ARB computed by applying best 
fit line to observed wind gust versus forecast data pairs. 
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  WGE  Adj WGE  RUC  Adj RUC 

HR  0.52  0.70  0.78  0.78 

CSI  0.35  0.27  0.33  0.33 

POD  1.00  0.43  0.43  0.43 

FAR  0.65  0.57  0.40  0.40 

BIAS  2.86  1.00  0.71  0.71 

KSS  0.35  0.23  0.66  0.66 

ETS  0.12  0.13  0.44  0.44 

Table 7.   Post-regression statistics for Westover ARB.  The seven statistical 
categories analyzed were Hit Rate (HR), Critical Success Index (CSI), Probability of 

Detection (POD), False Alarm Rate (FAR), Bias, Kuiper Skill Score (KSS) and Equitable 
Threat Score (ETS).  Green cells represent an increase in statistical accuracy when 
compared to the original value, red cells represent a decrease in statistical accuracy.   

 

Figure 40. RMSE comparison for Westover ARB.  Blue bars represent the original 
RMSE value, red bars represent the RMSE values after linear regression was applied and 

green bars represent the cross-validated RMSE values. 

b. Andrews AFB 

Table 8 details the linear regression equations for Andrews AFB.  The 

regression equations were applied to the original 39 forecasts.  The WGE regression 

resulted in 24 better wind gust predictions, nine worse predictions and six forecasts that 

were unchanged.  The nine worse forecasts were a result of six changing by <3 kts and 
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three changing between 4 kts and 7 kts, however the number of misses remained the same 

at four.  When new contingency table statistics were computed, they remain unchanged 

from the original statistics (see Table 9).  The RUC regression resulted in 29 improved 

predictions, six worse predictions (five changed by <3 kts and one changed by 4 kts) and 

four forecasts that did not change.  Five of the seven categories (CSI, POD, Bias, KSS, 

ETS) improved, while HR and FAR worsened slightly by less than 5%.  Figure 41 

reflects the RMSE comparison for each algorithm. 

 

WGE RUC 

y=.2481x + 25.8181 y=.2527x + 26.245

Table 8.   Linear regression equations for Andrews AFB computed by applying best 
fit line to observed wind gust versus forecast data pairs. 

 
  WGE  Adj WGE  RUC  Adj RUC 

HR  0.72  0.72  0.74  0.72 

CSI  0.35  0.35  0.29  0.31 

POD  0.60  0.60  0.40  0.50 

FAR  0.54  0.54  0.50  0.55 

BIAS  1.30  1.30  0.80  1.10 

KSS  0.36  0.36  0.26  0.29 

ETS  0.20  0.20  0.16  0.17 

Table 9.   Post-regression statistics for Andrews AFB.  The seven statistical 
categories analyzed were Hit Rate (HR), Critical Success Index (CSI), Probability of 

Detection (POD), False Alarm Rate (FAR), Bias, Kuiper Skill Score (KSS) and Equitable 
Threat Score (ETS).  Green cells represent an increase in statistical accuracy when 
compared to the original value, red cells represent a decrease in statistical accuracy. 
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Figure 41. RMSE comparison for Andrews AFB.  Blue bars represent the original 
RMSE value, red bars represent the RMSE values after linear regression was applied and 

green bars represent the cross-validated RMSE values. 

c. Langley AFB 

Table 10 shows the linear regression equations for Langley AFB applied 

to the 24 forecasts.  The extremely flat slope of the WGE regression indicates a poor 

fitting of the data (Wilks 2006).  The WGE regression resulted in 17 better forecasts, five 

worse predictions and two unchanged forecasts.  The five changed forecasts ranged from 

<3 kts (three) to 5 kts (two).  The main advantage became apparent when missed 

threshold event forecasts were assessed.  Overall misses decreased from six to one using 

the WGE at this location even though the fit is shown to be poor.  When new contingency 

table statistics were computed, all but CSI and POD worsened (see Table 11).  However, 

POD doubled from 45% to 90% after the regression was applied.  The RUC regression 

resulted in 13 improved predictions, eight worse forecasts (six by <3 kts and two by 4 

kts) and three predictions that did not change.  Misses also decreased from five to three.  

Similar to the WGE statistics, after regression was applied all statistical categories 

worsened except CSI (+4%) and POD (+18%).  Figure 42 reflects the RMSE comparison 

for each algorithm.  Of particular note, when WGE regression was applied, RMSE was 
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cut by 60% which is likely resulted in the increased accuracy of detection of threshold 

events as indicated by the new POD. 

 

WGE RUC 

y=.0708x + 33.352 y=.417x + 21.259

Table 10.   Linear regression equations for Langley AFB computed by applying best 
fit line to observed wind gust versus forecast data pairs. 

  WGE  Adj WGE  RUC  Adj RUC 

HR  0.63  0.46  0.67  0.63 

CSI  0.36  0.43  0.43  0.47 

POD  0.45  0.91  0.55  0.73 

FAR  0.38  0.55  0.33  0.43 

BIAS  0.73  2.00  0.82  1.27 

KSS  0.22  ‐0.01  0.31  0.27 

ETS  0.13  ‐0.01  0.19  0.15 

Table 11.   Post-regression statistics for Langley AFB.  The seven statistical 
categories analyzed were Hit Rate (HR), Critical Success Index (CSI), Probability of 

Detection (POD), False Alarm Rate (FAR), Bias, Kuiper Skill Score (KSS) and Equitable 
Threat Score (ETS).  Green cells represent an increase in statistical accuracy when 
compared to the original value, red cells represent a decrease in statistical accuracy. 
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Figure 42. RMSE comparison for Langley AFB.  Blue bars represent the original 
RMSE value, red bars represent the RMSE values after linear regression was applied and 

green bars represent the cross-validated RMSE values. 

d. Scott AFB 

Table 12 reflects the linear regression equations for Scott AFB applied to 

the 28 forecasts.  The WGE regression resulted in 17 better forecasts, nine worse 

predictions and two unchanged forecasts.  Five of those nine forecasts changed by <3 kts 

while the other four changed by 4 kts to 8 kts.  Misses also increased from one to two.  

Table 13 shows the updated statistics that were computed.  Three of seven categories 

were improved (HR, FAR, Bias).  The RUC regression resulted in 18 improved 

predictions, five worse forecasts and five predictions that did not change.  Of the five 

forecasts, three changed by <3 kts and two changed by 4 kts to 11 kts.  Analyzing the 

post-regression RUC statistics showed that all categories improved except a slight decline 

in the bias statistic and the ETS remain unchanged.  Figure 43 details the RMSE 

comparison for each algorithm.   
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WGE RUC 

y=.3742x + 20.722 y=.3236x + 23.208

Table 12.   Linear regression equations for Scott AFB computed by applying best fit 
line to observed wind gust versus forecast data pairs. 

  WGE  Adj WGE  RUC  Adj RUC 

HR  0.64  0.68  0.64  0.68 

CSI  0.44  0.44  0.29  0.36 

POD  0.89  0.78  0.44  0.50 

FAR  0.53  0.50  0.56  0.44 

BIAS  1.89  1.56  1.00  0.90 

KSS  0.42  0.41  0.18  0.28 

ETS  0.20  0.15  0.10  0.10 

Table 13.   Post-regression statistics for Scott AFB.  The seven statistical categories 
analyzed were Hit Rate (HR), Critical Success Index (CSI), Probability of Detection 

(POD), False Alarm Rate (FAR), Bias, Kuiper Skill Score (KSS) and Equitable Threat 
Score (ETS).  Green cells represent an increase in statistical accuracy when compared to 

the original value, red cells represent a decrease in statistical accuracy. 

 

Figure 43. RMSE comparison for Scott AFB.  Blue bars represent the original RMSE 
value, red bars represent the RMSE values after linear regression was applied and green 

bars represent the cross-validated RMSE values. 
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e. Offutt AFB 

The final linear regression analysis was accomplished on the data at Offutt 

AFB.  Table 14 shows the linear regression equations applied to the 39 forecasts.  The 

WGE regression resulted in 25 better forecasts, nine worse predictions (six changed by 

<3 kts and three changed by 4 kts to 5 kts) and five unchanged forecasts.  Missed 

forecasts increased from seven to eight.  When new contingency table statistics were 

computed, all but CSI, POD, and Bias improved (see Table 15).  The RUC regression 

resulted in 25 improved predictions, 10 worse forecasts (seven changed by <3 kts and 

three changed by 4 kts to 5 kts) and four predictions that did not change.  Missed 

forecasts decreased from six to four.  All statistical categories improved except for a 

small decline in FAR (6%).  Figure 44 reflects the RMSE comparison for each algorithm.   

 

WGE RUC 

y=.1919x + 27.42 y=.3304x + 23.741

Table 14.   Linear regression equations for Offutt AFB computed by applying best fit 
line to observed wind gust versus forecast data pairs.. 

  WGE  Adj WGE  RUC  Adj RUC 

HR  0.64  0.69  0.82  0.85 

CSI  0.26  0.25  0.46  0.57 

POD  0.42  0.33  0.50  0.67 

FAR  0.58  0.50  0.14  0.20 

BIAS  1.00  0.67  0.58  0.83 

KSS  0.16  0.19  0.46  0.59 

ETS  0.09  0.11  0.35  0.45 

Table 15.   Post-regression statistics for Offutt AFB.  The seven statistical categories 
analyzed were Hit Rate (HR), Critical Success Index (CSI), Probability of Detection 

(POD), False Alarm Rate (FAR), Bias, Kuiper Skill Score (KSS) and Equitable Threat 
Score (ETS).  Green cells represent an increase in statistical accuracy when compared to 

the original value, red cells represent a decrease in statistical accuracy. 
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Figure 44. RMSE comparison for Offutt AFB.  Blue bars represent the original 
RMSE value, red bars represent the RMSE values after linear regression was applied and 

green bars represent the cross-validated RMSE values. 

3. Summary 

Although best fit regression analysis was a simplistic way of fitting seemingly 

non-linear data to a line, it is our theory that this approach could be useful when applied 

to a collection of data over many years.  Our data design restricted the results to center 

around the 30 kt to 35 kt threshold, however if all forecasts and all observations were 

used to produce a regression analysis, this could potentially be very useful in tuning the 

algorithms to the model.  For the purposes of our research, the results discovered above 

were used during the case study analysis to provide additional information when 

preparing to forecast an independent case near the 35 kt threshold.   

This regression must be used with caution, however.  It is evident from the linear 

regression equations that low wind gust forecasts would result in large adjustment due to 

our data design.  For example, a 5 kt wind forecast would likely be adjusted to near 30 kts 

due to our analysis parameters.  After carefully analysis and consideration, a minimum 

forecast wind speed was set in order for the regression to be applied because the errors 

associated with the regression were non-Gaussian.  During case analysis, wind forecasts 
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below 25 kts were not used to apply the regression and that forecast remained unadjusted.  

Section E describes the analyzed results of the data with and without linear regression 

applied. 

E. CASE STUDY ANALYSIS 

1. Overview 

Two 24-hour periods where winds reached 30 kts or greater in at least one 

observation were withheld from the original data set at the beginning of the selection 

process.  By masking this data very early on in the research project, we ensured 

objectivity would be accomplished during the analysis of this data.  The only piece of 

information known was that at some point, winds reached at least 30 kts in order for the 

observations to be culled and saved from the original batch of observations.  Each 

forecast was approached from an operational forecaster point of view, however with 

limited preliminary information.  Only the surface analysis and infrared (IR) imagery 

three hours prior to the beginning of the forecast period were accessed.  Furthermore, no 

model fields were analyzed due to the focus of this case study analysis on the algorithm 

performance with information and results found for each location. 

The goal of the case study analysis was to analyze each 3-hour forecast panel for 

a pre-determined 24-hour period.  During this 24-hour timeframe a decision would be 

made whether or not to issue a 35 kt wind warning for this location and, if so, the valid 

times of the warning to assess timing error.  The observed data was then compared to the 

forecast and the results are summarized below.  This method of analysis is not meant to 

encompass a “perfect world” scenario where all data is available; however the method 

was designed to provide an evaluation of the algorithms based on all of the information 

and results analyzed to this point to provide a thorough analysis of the algorithms 

performance with and without adjustments detailed previously.  The following section 

provides examples of how the case study analysis was conducted as well as some of the 

results that were identified.  An example of a hit, miss, false alarm as well as evidence of 

nocturnal boundary layer and timing errors from a selection of these case studies are 

presented with a summary of all results detailed at the end. 
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2. Results 

a. False Alarm Example 

As previously explained in this research, at Westover ARB, the WGE 

outperformed the RUC statistically in the near term and the threshold verification 

statistics further emphasized the WGE’s ability to predict wind gusts using the 35 kt wind 

threshold.  For these reasons, the WGE was chosen as the preferred algorithm for this 

case study at Westover.  This does not mean the RUC information was discarded, only 

that it was used to supplement the forecast provided by the WGE.  Additionally, 

climatological wind direction information for 35 kt wind events were analyzed.  A peak 

in 35 kt wind events occurred when wind directions were from the west through 

northwest (270–330).  This provided additional guidance likely not taken into account by 

the algorithms forecasts. 

This case resulted from a storm system approaching Westover on 25 

December 2008.  A low pressure system located over the Great Lakes region was lifting 

to the northeast with an approaching cold frontal boundary located in extreme western 

New York by 00Z on the 25th.  The forecast period is from 03Z (22L) on the 25th to 03Z 

on the 26th.   

Both algorithms and both adjusted algorithms indicated 35 kts during the 

forecast period.  The WGE increased the wind gusts to near 50 kts by 09Z which 

corresponded well with expected frontal passage time based on placement at 00Z.  The 

gradual decrease in winds indicated by both algorithms was indicative of the predicted 

weakening pressure gradient behind the cold front.  The initial difference in wind gust 

estimation and temporal evolution was likely attributed to the differences in physical 

processes (increase in TKE during frontal passage) versus the empirical relationship of 

the wind speeds in the boundary layer.   

Based on the given results the warning would have been issued valid at 

09Z until 12Z.  Waiting until 09Z was based on the model predicted wind direction (not 

shown) not favorable for 35 kt wind events based on climatology until that time period.  
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Furthermore, due to the tendency for WGE to overforecast at Westover based on previous 

results, the expected wind speeds were reduced to between 35 kts and 39 kts. 

After the observations were analyzed for this case, the warning would 

have been a false alarm (by only 1 kt).  This gives confidence that the adjustments made 

to the forecast and the warning itself were certainly valid.  Applying the linear regression 

increased the performance of the WGE algorithm and produced the best algorithm for 

this case.  For the original WGE algorithm, of the nine forecasts (03Z through 03Z), five 

predicted winds greater than the 35 kt threshold, however once the linear regression was 

applied, this number was reduced in only one 3-hour forecast.  Futhermore, the RMSE 

decreased from 11.88 kts to 8.67 kts.  The RUC’s performance was less changed by the 

linear regression adjustment with only an RMSE change from 14.67 kts to 10.87 kts.  

Figure 45 shows the comparison of the original and adjusted by linear regression 

predictions compared to the observations.  The black lines indicate nighttime hours for 

this location to show potential overforecasting of the algorithms at night as inferred in 

previous research. 
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Figure 45. 25 Dec 08 original (top) and adjusted forecasts by linear regression 
(bottom) compared to observations at Westover ARB.  Blue lines represent original (top) 

and adjusted (bottom) WGE forecasts.  Red lines represent original (top) and adjusted 
(bottom) RUC forecasts.  Green line represents maximum observed wind speed (by +/- 

1.5-hour observations group) for each accompanying 3-hour forecast time.  Space 
between vertical black lines represents hours of darkness. 

b. Hit Example with Nocturnal Boundary Layer Error 

Both algorithms performed very similar at Andrews AFB, especially after 

the linear regression adjustments were made.  However, the RUC’s performance in the 

near term window became the basis of choosing this algorithm as the preferred solution 

for this location.  Additionally, a peak in 35 kt wind events occurred when wind 

directions were from the west through northwest (270–330) based on climatological 

information. 
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This case resulted from a storm system approaching the location on 31 

December 2008.  A low pressure system located over northern Indiana was moving to the 

east towards Pennsylvania with an approaching boundary system approaching the 

location.  The warm front extended southeast into western Virginia while the cold front 

extended southwest into southeastern Missouri at 00Z.  It was expected that this forecast 

was going to be influenced by both frontal passages.  The forecast period is from 03Z 

(22L) on the 31st to 03Z on the 1st. 

Initial results indicated the model had a handle of the synoptic situation 

with winds gradually increasing with a peak wind occurring at 18Z which corresponded 

well with expected cold frontal passage in both algorithms.  The WGE algorithm was 

more aggressive with wind speed changes with roughly 15 kts at 12Z to near 50 kts at 

15Z, while the RUC is more gradual and peaks near 40 kts at 18Z.  When the linear 

regression was applied, the WGE remained unchanged until 15Z due to predetermined 

minimum 25 kt threshold.  The RUC crossed this threshold at 09Z.  While the temporal 

evolution is relatively the same, the difference between the two predictions was much 

smaller beginning at 15Z after the regression was applied.  Both adjusted algorithms 

predicted winds greater than 35 kts during the same time frame. 

Based on the given results the warning would have been issued valid at 

15Z until 03Z.  Both algorithms temporal pattern reflected the expected wind speed 

variations that would accompany the associated weather pattern.  Climatological wind 

analysis revealed favorable wind directions to occur at that time as well.  Furthermore, 

due to the tendency for the RUC to underforecast this location based on previous results, 

the expected wind speeds would have been increased to between 44 kts and 48 kts. 

After the observations were applied to the case study, the warning would 

have verified with a 1 hour 12 minute timing error.  The maximum observed wind speed 

during this time period was 47 kts.  This adjustments made to the forecast and the 

warning itself were certainly valid.  Additionally, the temporal evolution of the observed 

winds was almost identical to the WGE and adjusted WGE pattern.   Applying the linear 

regression increased the performance of the WGE algorithm and produced the best 

algorithm for this case.  For the original WGE algorithm, of the nine forecasts, five were 
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predicting winds greater than the 35 kt threshold and four of those verified as hits.  Once 

the linear regression was applied, these numbers remain unchanged but RMSE decreased 

from 5.84 kts to 4.97 kts.  The RUC’s performance was less changed as five of five “yes” 

forecasts verified.  However, the RMSE for both the unadjusted and adjusted predictions 

were extremely high (12.58 kts and 15.17 kts, respectively) indicative of the nocturnal 

boundary layer overforecast bias.  Figure 46 shows the comparison of the adjusted and 

unadjusted predictions compared to the observations. 

Figure 46. 31 Dec 08 original (top) and adjusted forecasts by linear regression 
(bottom) compared to observations at Andrews AFB.  Blue lines represent original (top) 
and adjusted (bottom) WGE forecasts.  Red lines represent original (top) and adjusted 
(bottom) RUC forecasts.  Green line represents maximum observed wind speed (by +/- 

1.5-hour observations group) for each accompanying 3-hour forecast time.  Space 
between vertical black lines represents hours of darkness. 
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d. Miss Example 

As shown in the statistical results, the WGE algorithm performed better 

than the RUC algorithm when statistical categories were analyzed at Scott AFB.  

Therefore, the WGE was used as the preferred forecast solution for this location during 

case study analysis.  Adjustments were made based on the slight overforecast bias shown 

in the error histograms.  Additionally, climatological preferred wind directions were from 

the west through northwest directions (270–300).  Also of note, for research conducted 

on data during the 2008–2009 season, wind gusts also exceeded the 35 kt threshold at 

wind directions from the southeast through west (150–270). 

This case resulted from a storm system very close to Scott AFB on 14 

January 2009.  A low pressure system was located along the northern Missouri and 

central Illinois border and moving to the east.  The approaching warm front was in 

proximity to the base by 12Z while the cold frontal boundary extended southwest from 

the low into northern Missouri and back into Kansas.  The forecast period is from 15Z 

(09L) on the 14th to 15Z on the 15th.   

Both algorithms revealed a very similar evolution in wind gusts with the 

RUC prediction of 33 kts initially and decreased steadily through the end of the forecast 

period.  The WGE predicted winds at 23 kts initially and then peaked at 35 kts at 18Z 

before decreasing through 21Z.  The algorithms maintained an approximate 5 kt 

difference through 12Z where both algorithms were essentially identical.  The adjusted 

algorithms revealed similar maximum wind speed forecasts below 35 kts for both 

algorithms through the period.  The spike from the initial 15Z forecast to the 18Z forecast 

reflected in the WGE is more of a representative signature of a cold frontal passage. 

Based on the given results the warning would not have been issued for this 

case.  Both algorithms’ predictions did not provide high confidence in meeting the 

threshold as only the unadjusted WGE forecast peaked at 35 kts, then rapidly dropped 

wind speeds afterwards.  Favorable wind directions do occur for 35 kt winds and the 
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nocturnal boundary layer is not a factor for this case, however the tendency of the WGE 

to overforecast this location resulted in a lowered forecast maximum wind gust forecast 

of 30 kts to 32 kts. 

After the observations were applied to the case study, the non issued 

warning would have been a miss.  Two observations of 35 kts and 36 kts were recorded 

during the 18Z to 21Z forecast windows.  The sustained wind speed was also analyzed 

and revealed a very low RMSE for this forecast window at 2.75 kts.  This indicated the 

accuracy of the model’s handling of the boundary layer pattern.  Furthermore, the 

original 35 kt forecast by the WGE verified which indicated the ability of the WGE to 

accurately forecast the wind pattern given model’s handling of the atmospheric and 

boundary layer parameters.   

For the original WGE algorithm, of the nine forecasts, seven verified as 

“no/no” forecasts, one as a “yes/yes” and one as a miss with an RMSE of 6.05 kts.  The 

unadjusted WGE prediction turned out to be the most accurate for this case.  Both 

adjusted algorithms did not indicate warning level winds and RMSE increased for the 

WGE to 6.68 kts.  While the RMSE decreased from 5.34 kts to 4.70 kts for the RUC, 

both adjusted and unadjusted failed to predict the warning level winds throughout the 

forecast period.  Figure 47 shows the comparison of the adjusted and unadjusted 

predictions compared to the observations. 
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Figure 47. 14 Jan 09 original (top) and adjusted forecasts by linear regression 
(bottom) compared to observations at Scott AFB.  Blue lines represent original (top) and 

adjusted (bottom) WGE forecasts.  Red lines represent original (top) and adjusted 
(bottom) RUC forecasts.  Green line represents maximum observed wind speed (by +/- 

1.5-hour observations group) for each accompanying 3-hour forecast time.  Space 
between vertical black lines represents hours of darkness. 

e. Hit Example with Model Timing Error 

The results from the statistical analysis section revealed the WGE’s better 

performance in the near term window of less than 24 hours at Offutt AFB.  After linear 

regression was applied, the RUC also performed well statistically for this location.  

Therefore, the WGE was used as the preferred forecast solution for this location during 

case study analysis with consideration given to the adjusted RUC forecast.   The tendency 
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for the WGE to have a slight overforecast bias for this location was also taken into 

consideration when producing a forecast during the case study analysis process although 

this bias was minimal.  Additionally, climatological preferred wind directions for 35 kt 

wind events occurred throughout almost all directions on the compass rose.  The peak of 

events occurred when wind directions were from the northwest through north directions 

(300–360).  However, secondary and tertiary maximums included wind gusts from the 

north through northeast, and southeast through west (000–030 and 150–270) indicative of 

the variable nature in which wind events occur at this location.   

This case resulted from a storm system north of Offutt AFB on 12 January 

2009.  A low pressure system was located near the South Dakota, North Dakota, 

Minnesota border triple point.  The approaching warm front was in proximity to the base 

by 12Z while the cold frontal boundary extended southwest from the low into central 

South Dakota.  The forecast period is from 15Z (09L) on the 12th to 15Z on the 13th. 

Both algorithms revealed identical temporal evolutions of wind gusts with 

winds decreasing through the first six hours then increasing rapidly over the next six 

hours with a peak wind at 00Z.  The WGE max wind of 44 kts exceeded the 35 kt 

threshold where the RUC prediction of 34 kts did not and presented the only major 

difference between the two algorithms.  The adjusted algorithms revealed almost the 

same exact temporal evolution of wind gusts and maximum wind speed forecasts except 

for 06Z.  Additionally, the linear regressed WGE maximum wind speed at 00Z was 

reduced to the 35 kt threshold. 

Based on the given results the warning would have been issued for this 

case valid from 21Z to 06Z.  The approaching cold front was forecast to move through 

within six to nine hours of the analysis time with peak winds during frontal passage at 

approximately 00Z as indicated by both algorithms.  Wind directions were favorable 

during this time (320–350) and with maximum wind speeds expected to occur during the 

afternoon to early evening hours the issuance of the warning would have been justified.  

With the WGE chosen as the algorithm of choice, wind speeds were predicted to reach 44 

kts, although the RUC predicted max winds of 35 kts during the same period.  This 

resulted in a lowered wind speed forecast of 40 kts to 45 kts. 
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After the observations were applied to the case study, the warning would 

have verified with a 9 minute timing error based on the adjusted warning valid time.  

Based only on the both algorithm’s predictions, the timing error would have been around 

three hours as both algorithms predicted 35 kts between 21Z and 00Z.  Maximum winds 

reached 36 kts near 21Z.  The temporal evolution of the winds verified well with both 

algorithms although there appeared to be a timing error of frontal passage by 

approximately three hours (see Figure 48).  Regardless, the spike in peak wind and rapid 

decrease was very well indicted by both algorithms.  The sustained wind speed was also 

analyzed and revealed a very low RMSE for this forecast window at 2.31 kts with no 

timing error problems noted. 

When RMSE, false alarm and missed forecasts were analyzed, the 

statistics were somewhat misleading due to the timing error.  Both show large RMSE 

errors and missed 35 kt forecasts, but these are attributed to the timing errors as noted.  

For the original WGE algorithm, of the nine forecasts, six verified as “no/no” forecasts, 

one as a “yes/yes,” one as a miss, and one was a false alarm with an RMSE of 10.27 kts.  

The unadjusted WGE prediction turned out to be the most accurate for this case although, 

as expected, the adjusted RUC was very close.  Both adjusted algorithms indicated 

warning level winds, 00Z-03Z for the WGE and 00Z for the RUC, but neither verified 

due to the timing error.  RMSE increased for the WGE to 10.39 kts, while the RMSE 

decreased from 9.13 kts to 8.87 kts for the RUC. Figure 48 shows the comparison of the 

adjusted and unadjusted predictions compared to the observations. 
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Figure 48. 12 Jan 09 original (top) and adjusted forecasts by linear regression 
(bottom) compared to observations at Offutt AFB.  Blue lines represent original (top) and 

adjusted (bottom) WGE forecasts.  Red lines represent original (top) and adjusted 
(bottom) RUC forecasts.  Green line represents maximum observed wind speed (by +/- 

1.5-hour observations group) for each accompanying 3-hour forecast time.  Space 
between vertical black lines represents hours of darkness. 

3. Summary 

The case studies revealed valuable results when analyzed together.  Of the 10 

cases, six 35 kt wind warnings would have been issued based on the analysis conducted.  

Four of those would have verified and two would have been false alarms (both by only 1 

kt) which indicates accurate forecasts were made.  Of the four non-issued warnings, two 

of those verified as non-events and another two were missed.  In one missed case, one of 

the two algorithms forecasted 35 kt winds with a slight timing error from the observed 35 
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kt wind speed, but low confidence in the predictions based on analysis resulted in a 

forecast of lower wind speeds.  The other miss resulted from a stronger than expected 

frontal passage at night that caused winds in excess of the threshold not predicted by 

either algorithm.  There typically exists an inherent pressure of making a decision to issue 

a warning in an operational forecasting environment, especially when the models indicate 

above or near threshold values.  However, for this research, objective analysis and 

reasoning without this pressure provided an opportunity to produce forecasts and assess 

the algorithms capability without the added pressure of costs associated by issuing or not 

issuing the warning. 

When the WGE was compared to the RUC for overall performance and best 

method, the WGE was the better algorithm for seven of the 10 cases.  For both cases at 

Scott AFB, the unadjusted WGE performed the best, confirming the statistical analysis 

conducted for this location.  Three of the seven times the linear regressed WGE 

performed better than the original forecasts including both cases at Andrews AFB.  

Furthermore, the RUC algorithm performed better during three of the 10 test cases 

analyzed and only one of those three times did the linear regression improve the forecast.  

This validates key research goals presented in this thesis.  First, different methods worked 

at different locations.  Furthermore, the linear regression, while only a small statistical 

sample, showed promise when tuning the physically based wind algorithm.  Less of an 

improvement is evident when applied to the empirically based wind gust method.  

Nonetheless, similar to the improved forecasting ability with the creation of ensembles, 

using these different wind algorithms together to produce a forecast proved valuable with 

the added benefit of additional information provided from another model. 

The black lines indicated on each of the Figures 45 through 48 indicated hours of 

darkness to briefly investigate the tendency for the algorithms to overforecast nocturnal 

boundary layer wind gusts at the surface.  There are indications that this is an issue with 

both algorithms, however the RUC algorithm seemed to be effected by this more in the 

ten case studies analyzed.  With accurate PBL representation and especially of the lower 

TKE values in a nocturnal boundary layer, it was noted that the WGE handled this 
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phenomenon slightly better whereas the empirical method relies on accurate modeled 

wind speed and PBL height variables which could be overforecast. 

The bounding interval described in Chapter II was not explicitly examined in this 

research, however preliminary results were collected for future analysis.  Table 16 shows 

the results from this data period collected at each location along with the total results.  In 

summary, approximately two-thirds of the observed wind gusts were within the bounded 

interval predicted by the WGE.  Approximately 20% of the observations were observed 

below the lower bound while nearly 10% were observed above the upper bound.  These 

results support Brasseur’s (2001) conclusions that the bounded interval is a reliable 

source of information and a reasonable way to assess confidence in the algorithms 

prediction. 

 

 Westover Andrews Langley Scott Offutt TOTAL % 

Obs Low 12 6 2 7 8 35 22.29

Within Range 14 24 21 21 27 107 68.15

Obs High 1 9 1 0 4 15 9.55 

Accuracy % 51.85 61.54 87.5 75 69.23   

Table 16.   WGE bounded interval analysis.  Observed low column indicates the 
number of forecasts where the observed value was below the lower bound prediction.  

Observed high column indicates the number of forecasts where the observed value was 
higher than the upper bound prediction.  Accuracy percentages based on the ratio of 

number of values within range to the total number of forecasts for each location. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

Based on the results of this research, using the WGE and RUC algorithms to 

predict 35 kt wind events is beneficial. The analysis design for our research was rather 

strict and some statistical reliability was lost due to the fact that observations and 

forecasts below 30 kts were not analyzed.  However, the inclusion of low wind events 

would only act to increase the performance statistics detailed in Chapter IV.  This 

increase in performance would come from the amount of days with calm or light winds 

and the increased number of correct rejections and lower number of false alarms that 

would occur.  Outside of the some predictions in the nocturnal boundary layer, the 

algorithms were shown to handle low wind situations well during a variety of sample 

cases (not shown), and at the end of several analyzed case studies such as the 12 Jan 09 

case shown in Figure 48.  Due to our strict threshold design of 35 kts, it is anticipated that 

statistics such as false alarm may be a pessimistic representation.  This is a promising 

conclusion since false alarm rates were near 50% overall. 

As mentioned in several studies conducted before this, these algorithms are highly 

sensitive and dependent upon the model’s performance and accurate representation of the 

atmospheric parameters, especially in the boundary layer.  Brasseur (2001) suggested that 

higher-resolution model forecasts would lead to more accurate WGE predictions.  Our 

research showed that using a lower resolution model (45 km) still produced reliable 

results that provided reasonable confidence in the ability of both algorithms to produce 

accurate non-convective wind gust predictions.  Certainly we expect that a higher 

resolution model should produce better results, but it is not clear whether skill gains 

would justify increases in computational costs.  

There is still a requirement to quality check and adjust the algorithm’s output.  

Examples of these types of adjustments include analysis of climatological factors, local 

rules of thumb and known model errors or tendencies (i.e., terrain interpolations).  In 

many ways, this can be considered an example of tuning the algorithms as well.  For 
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example, by applying location-based climatological wind direction analysis for 35 kt 

wind events, adjustments to the timing of 35 kt winds based on predicted wind direction 

can be made.  In several of the analyzed case studies, this reduced the false alarm rate and 

timing error of our predicted wind warnings.  Furthermore, the nocturnal boundary layer 

issues were only briefly examined in case studies where an entire 24-hour period was 

analyzed.  Results support previous research conclusions of the tendency of the WGE to 

overforecast winds in the nocturnal boundary layer (LaCroix 2002) when compared to 

daytime wind speeds forecasts and was also noted in predictions from the RUC 

algorithm.   

The linear regression analysis is a simple way to tune the algorithms to the data.  

Initial results show there were some improvements made to some independent case 

studies analyzed, but outliers had a large effect and could not be applied to lower wind 

speed predictions.  While not perfect, it is suggested that a large database of prediction 

versus observation results would produce a more accurate regression analysis and could 

be applied to tune the algorithms.  A collection of results for each location is ideal.  

Additionally, incorporating other parameters such as the wind direction for these events 

would make the tuning more reliable. 

The results from the case studies show the positive advantages of introducing 

another forecast method into the forecast process.  Although only three of the 10 cases 

resulted in the RUC as the best algorithm forecast, analyzing the differences between the 

algorithms is just as important as the similarities.  The data and results presented suggest 

integration of the two algorithms would help to increase the accuracy of critical wind 

speed thresholds.  The benefit of these algorithms could be fully realized if applied to 

each grid point in the model and a spatial representation of wind gusts were presented.  

The location-based results presented in this study show the benefits of applying and 

evaluating these algorithms a particular location, which then could be applied to 

individual grid points for further analysis. 

An accurate representation the TKE field in the boundary layer is vital in WGE 

calculations.  LaCroix (2002) presented a method using to produce this calculation using 

model perturbation variables when TKE values are not available due to the model’s PBL 
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scheme.  Due to the availability of TKE and boundary layer height parameters from the 

MYJ PBL scheme for our research, LaCroix’s (2002) method was not utilized.  However, 

it is our recommendation that a model data set incorporating a parameterization scheme, 

such as the MYJ PBL scheme, be used to ensure the accuracy of the TKE fields and other 

boundary layer variables.  This ensures that calculation or boundary layer height errors 

are not a factor in the algorithms prediction of maximum wind gusts.  A study of the 

cost/benefit analysis of calculating TKE versus utilizing a model with the MYJ PBL 

scheme should be accomplished.  This is one of several recommendations of from our 

research. 

B. RECOMMENDATIONS 

There is still work needed in this area to benefit forecasting for other locations 

outside of the 15th OWS AOR.  The following recommendations are suggestions for 

areas of future research.  First, using the ensemble mean as the single deterministic model 

caused a loss of valuable ensemble information.  This was an unintended consequence of 

our research, but necessary to focus on the performance of the algorithms versus the 

performance of the model itself.  Future research should explore the evaluation of the 

value added by applying these algorithms to an ensemble forecast.  Brier Skill Scores and 

reliability operating characteristics would be valuable analyses utilizing such ensemble 

information. 

One such example of value added by the ensemble is assessing the risk of using 

the ensemble member’s prediction of a threshold forecast.  This is a hybrid approach to 

conversion of a probabilistic forecast to a nonprobabilistic forecast by choosing an 

appropriate  threshold presented in Wilks (2006).  A brief example of this is presented in 

Figures 49 and 50.  Member 11 was chosen as the control forecast and used to produce a 

“yes/no” forecast compared to the percentage of the members forecasting a “yes” 

forecast.  This analysis revealed that the lowest increase in miss rate compared to the 

lowest increase in false alarm rate existed at the 67% threshold (4 of 6 members) for the 

WGE and 60% for the RUC (6 of 10 members).  This is shown in the second graph of 

each figure as miss rate is compared to false alarm rate.  Based on these thresholds, 

waiting to issue a warning for the 35 kt threshold until these thresholds were met 
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produced the ideal miss/false alarm rates when compared to other thresholds.  The black 

lines represent the 67% and 60% thresholds, respectively. 

Finally, implementation of these algorithms, as well as the location-based results 

presented in this research, could prove useful in operational forecasts; however further 

testing is needed to measure performance against local rules of thumb and other 

established methods currently in place.  Further research areas should utilize real-time 

information.  This requires access to current model data sets that incorporate the MYJ 

PBL scheme and associated required parameters.  As future models come online (such as 

the Rapid Refresh), this is a possible avenue to acquire real time information for similar 

analysis conducted in this research.  This would also allow research to be conducted on 

high resolution models with similar PBL characteristics to evaluate performance 

differences such as was accomplished by Brasseur (2001). 

Figure 49. WGE ensemble prediction threshold using Member 11 as the control 
forecast.  Each plot represents the statistics if the warning were issued based on the 
percentage of members predicting a “yes” forecast.  Black line represents the best 
decision threshold based on analysis.  Hit Rate (HR), Critical Skill Index (CSI), 

Probability of Detection (POD), False Alarm Rate (FAR) and Miss Rate plotted on left.  
FAR versus Miss Rate plotted on the right graph. 
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Figure 50. RUC ensemble prediction threshold using Member 11 as the control 
forecast.  Each plot represents the statistics if the warning were issued based on the 
percentage of members predicting a “yes” forecast.  Black line represents the best 
decision threshold based on analysis.  Hit Rate (HR), Critical Skill Index (CSI), 

Probability of Detection (POD), False Alarm Rate (FAR) and Miss Rate plotted on left.  
FAR versus Miss Rate plotted on the right graph. 
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