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ABSTRACT 

We have studied the conditions that affect atmospheric electromagnetic surface ducts in 

the Aegean Sea region and how those conditions are related to regional and global scale 

climate variations. As a primary source for our calculations, we used radiosonde 

soundings from three different stations situated around the Aegean Sea, analyzing a 20-

year period, from 1991 to 2010. We derived statistics on ducting parameters and 

correlated them with the seasonal means of selected climate system variables. We 

focused on seasonal and interannual variations in surface ducting frequency, height, and 

strength gradient. 

We found that variations in low level atmospheric moisture were a dominant 

factor governing variations in surface ducting conditions. The moisture variations were 

mainly associated with fluctuations in: (1) moisture advection associated with mid-

latitude cyclones in winter; and (2) local and regional evaporation in summer.  The 

frequency of surface ducts in the summer was twice that for the winter due to larger 

amounts of atmospheric moisture in the summer. Variations in large-scale subsidence did 

not seem to significantly affect surface ducting variations. From an interannual 

perspective, the years that were characterized by increased moisture amounts also tended 

to exhibit stronger and more frequent ducting conditions for both winter and summer. We 

found significant correlations between Aegean surface ducting conditions and: (1) local 

and regional moisture(r = 0.85 with  significance level p = 99%); and,(2) climate 

variations that affect local and regional moisture, such as those associated with the Arctic 

Oscillation (AO), North Atlantic Oscillation (NAO), and south Asian monsoon 

conditions (r > 0.60 with p > 95%). As a by-product, we also discovered significant 

correlations (ranging from r = 0.67 to r = 0.96 with p > 95%) between ducting parameters 

and the vertical resolution of the radiosonde data, indicating that differences in data 

collection procedures need to be accounted for when conducting ducting analyses based 

on radiosonde data. 
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I. INTRODUCTION 

A. ANOMALOUS PROPAGATION AND REFRACTIVTY 

Electromagnetic (EM) radiation is photon energy propagating in the form of 

waves, and has both electric and magnetic field components, which oscillate in phase 

perpendicular to each other and perpendicular to the direction of energy propagation.  In 

a vacuum, the waves propagate at the speed of light, whereas in the atmosphere, they 

propagate at slightly lower speeds.  The atmosphere can have a strong effect on the 

propagation characteristics of EM radiation.  

Variations in temperature, humidity, and pressure in the atmosphere cause 

changes in atmospheric density, which in turn lead to alterations in the speed of EM 

waves.  These changes in speed induce changes in the propagation direction, or 

refraction, of the waves.  In particular, EM waves are refracted as they cross from one 

medium with a given density to another medium with a different density. Refraction is 

always such that the waves turn toward the medium in which they travel more slowly, as 

they pass from a less dense medium into a denser one (Petty 2006).  This is the case 

shown in Figure 1, where an EM ray is shown traveling through medium 1, with a 

relatively low density, into medium 2, with a relatively high density. The propagation 

speed is greater in medium 1 than in medium 2, and so the ray bends toward medium 2, 

as shown in Figure 1.   
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Figure 1.   Schematic depiction of an EM ray being refracted as it travels through 
different media. Medium 1 denotes a less dense material than medium 2. (From 
http://www.mysundial.ca/tsp/refraction_of_light.html, accessed January 2012) 

Some refraction of EM waves is almost always present in the atmosphere. When 

the structure of the atmosphere causes unusual bending of EM waves, anomalous 

propagation occurs.  Anomalous propagation takes place when the vertical distribution of 

temperature, pressure, and, most importantly, humidity in the atmosphere is significantly 

different from average or standard atmosphere conditions (Wallace 2006).  In Figure 2, a 

cartoon shows examples of normal and anomalous propagation (AP) for EM radiation 

emitted by a radar.  The AP sectors indicate regions where EM radiation is present due to 

unusual refractive conditions.  As shown in Figure 2, AP can significantly extend or 

reduce the range of the emitting radar at various elevations. Therefore, anomalous 

propagation, denotes EM refraction outside of the norm. 
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Figure 2.   Two dimensional cartoon showing how the EM energy propagates under 
normal and abnormal atmospheric conditions. (From http://www.idga.org/views-
analysis/articles/fundamentals-of-rf-propagation-in-electronic-warfa/, accessed 

January 2012 )  

The index of refraction is a measure of the phase speed of EM radiation in a 

medium compared to the phase speed in a vacuum, and quantifies the refraction. The 

index of refraction, n , for a particular medium is defined as the ratio of the phase speed 

of EM radiation in vacuum, c , (i.e., the speed of light) divided by the phase speed in the 

medium, v ,  (Equation 1.1).  

 
c

n
v

   (1.1) 

Because the phase speed of light is lower in the atmosphere than in a vacuum, n  

is greater than one. EM waves travel faster in mediums with indices of refraction closer 

to one for which v is relatively close to c. At Earth’s surface, the index of refraction for 

the atmosphere has an average value of 1.000315. To avoid using values that are very 

close to one, a quantity called refractivity, N , is used (Equation 1.2) (Guest 2010). 

 
6( 1)10N n   (1.2) 

This results in easy-to-use numbers (such as 315, instead of 1.000315). The refractivity, 

N , for EM waves in the radio frequency range depends on atmospheric pressure 

( )P hPa , Temperature ( )T K and water vapor pressure ( )e hPa ,according to the following 

formula (Guest 2010). 
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N
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     (1.3) 

The refractivity (also known as the refractivity index), N , equals 315 at sea level 

in standard or average conditions.  The vertical gradient of N  determines the way EM 

energy propagates through the atmosphere in relation to the horizontal. From a ray 

perspective, the ratio dN dz  ( gradientN ) determines the amount that EM rays curves in 

an absolute (e.g., space) reference frame. If dN dz  is such that the ray’s curvature is 

significantly different from what would occur in standard atmosphere conditions, then 

anomalous propagation arises. The amount of this departure determines the type and the 

amount of the anomalous propagation, as described in the following paragraphs. 

A modified refractivity term, M, which includes the effect of Earth’s curvature, 

has been adopted for practical purposes and is given as: 

 0.157M N z   (1.4) 

Where N is the refractivity index from (1.3) and z is the height above the surface in 

meters. M is dimensionless and is expressed in M-units. The second term accounts for 

Earth’s curvature, so that the value of M represents ray curvature with respect to Earth’s 

surface. In a standard atmosphere, because the pressure and the water vapor pressure 

decrease with height rapidly, while temperature decreases slowly, N decreases with 

altitude. On the other hand, M increases with altitude in a standard atmosphere, as 

depicted in Figure 3. 

 

Figure 3.   Vertical profiles of N and M for a standard atmosphere (After: Guest 2010) 
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A synopsis of different types of anomalous conditions is given in Table 1. These 

conditions depend on how rapidly N or M varies with altitude, in response to temperature 

and humidity variations. 

Table 1.   Types of refractive conditions and the attendant N and M gradients 
(From: Turk 2010) 

 

Refractive 
condition 

 

dN/dz 
 

(N-units/km) 

 

dM/dz 
 

(M-units/km) 

 

Distance 
to 

Surface 
Horizon 

 

Subrefraction 
 

0 < N 157 < M Reduced 

 

Normal 
 

-79 < N < 0 78 < M < 157 Standard 

 

Super refraction 
 

-157 < N < -79 0 < M < 78 Increased 

 

Trapping 
 

N < -157 M < 0 Greatly Increased 

 

Figure 4 shows, schematically, how the different types of refractive conditions 

lead to alterations of the EM energy paths and, consequently, to different ranges. 

 

Figure 4.   Cartoon showing the different paths along which EM energy propagates under 
the effects of different atmospheric refractive conditions (From: Guest 2010). 
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This study focuses on the very last type of anomalous refractive conditions noted 

in Table 1, that of trapping, or ducting, as explained in the next section. 

B. DUCTING CONDITIONS AND DUCTING FORMATION MECHANISMS 

Ducts appear whenever the refractive conditions are such that EM energy is 

confined and channeled within a trapping layer located somewhere in the atmosphere. 

The EM signal in this case is forced to propagate, in general, within the duct boundaries.  

In order for these specific trapping conditions and, by extension, for ducting conditions to 

occur, the vertical gradient of M must be negative somewhere in its profile. 

1. Ducting Formation Mechanisms 

Several atmospheric circumstances lead to ducting and non-standard propagation 

conditions.  The basic principle that is required in order for a duct to exist is that M 

decreases with height; conducive conditions are large decreases of humidity (water vapor 

pressure e) with height. Within the atmospheric boundary layer (ABL), a variety of 

processes can produce the necessary conditions for ducting, such as horizontal 

differential advection, nocturnal radiation cooling, surface fluxes, weather fronts, 

convective processes, and vertical variations imposed by complex terrain. 

The magnitude and the duration of these processes will eventually determine their 

ability to form ducts and characteristics (e.g., frequency, height, strength). The existence 

of duct-generating mechanisms can depend on phenomena on a variety of spatial scales. 

Global and synoptic scale environmental conditions interact with local effects to regulate 

the final details of the duct-creation mechanisms. 

The large-scale environment has an important effect on the moisture structure of 

the atmosphere. Water vapor pressure tends to play a major role in M structure (Equation 

1.3). The amount of moisture in the lower levels controls the context within which the 

ducting mechanisms act. These mechanisms become significantly more effective when 

they operate under a regime of increased moisture. This is explained by the fact that the 

water vapor pressure e is an exponential function of temperature, as shown in Figure 5. 
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Figure 5.   Variations with temperature of the saturation water vapor pressure over a 
plane surface of pure water at temperature T.  Note, the rapid increase of se when 

the temperature takes on values higher than  10 oC  (From: 
http://apollo/lsc/vsc.edu/classes/met130/notes/chapter4/rh.html, accessed January 

2012) 

When there is a large amount of  moisture in the atmosphere, then the value  of  

the water vapor pressure e is large, and small variations in the relative humidity profile 

lead to large variations in e and therefore to large variations in the M profile. This effect 

is particularly enhanced when the air is warm because, in these situations, the e values 

vary the most with temperature changes. Generally, the duct-formation mechanisms are 

strongest under a regime of increased moisture. This aspect is explored in more detail in 

Chapter III, where we see that large difference in ducting occurrence between winter and 

summer are largely due to different moisture conditions between these two seasons. 

2. Classes of Ducts 

Meteorological conditions can cause a trapping layer to occur where the base of 

the resultant duct is at Earth's surface. There are two types of such ducts, based on the 

trapping layer's location relative to Earth's surface, referred to as surface ducts and 

surface-based ducts, as illustrated in Figure 6. 
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Figure 6.   Illustration of different M profiles along with the different types trapping 
layers and the ducts that they generate. (a) standard atmosphere – no ducting; (b) 
surface duct; (c) surface-based duct; and (d) elevated duct. The red line indicates 

the vertical extent of the ducts. 

The first type is a duct created from a surface-based trapping layer (b in Figure 6). 

This duct is referred to as a “surface duct.” The second type of duct is created from an 

elevated trapping layer (c in Figure 6). This duct is commonly referred to in the literature 

as a “surface-based duct,” although some references call both types “surface ducts.” If 

meteorological conditions cause a trapping layer to occur aloft (d), such that the base of 

the duct occurs above Earth's surface, then the duct is referred to as an “elevated duct,” 

which can potentially form at any altitude of the atmospheric column. In this study, we 

focus on surface ducts (b in Figure 6), which are the most common type of the general 

class of surface ducts (ITU-R 1999a). 

C. DUCTING CLIMATOLOGY STUDIES 

Knowledge of the effects of the atmosphere on EM radiation is especially 

important for operators of systems that use radio frequencies, such as communications 

and radar systems.  For this reason, the study of the factors that affect the propagation of 
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EM energy is an area of active research. As previously explained, ducting conditions are 

important because they can lead to anomalous propagation, as described in the following 

quote. 

The existence of ducts is important because they can give rise to 
anomalous radio wave propagation, particularly on terrestrial or very low 
angle Earth-space links. Ducts provide a mechanism for radio wave 
signals of sufficiently high frequencies to propagate far beyond their 
normal line-of-sight range, giving rise to potential interference with other 
services. They also play an important role in the occurrence of multipath 
interference although they are neither necessary nor sufficient for 
multipath propagation to occur on any particular link. The existence of a 
duct, even if suitably situated, does not necessarily imply that energy will 
be efficiently coupled into the duct in such a way that long-range 
propagation will occur. In addition to satisfying the maximum elevation 
angle condition above, the frequency of the wave must be above a critical 
value determined by the physical depth of the duct and by the refractivity 
profile. Below this minimum trapping frequency, ever-increasing amounts 
of energy will leak through the duct boundaries. (ITU-R 1999b) 

Therefore, understanding ducting enables the users of EM energy propagation to 

take advantage of atmospheric conditions and use it more effectively in a complicated 

environment. For this reason, a significant amount of research has been conducted with 

respect to ducting conditions and climatic factors that affect those conditions.   

Ducting climatology studies often involve mapping the ducting conditions around 

the globe to present the information in an easy-to-understand format. Some of these 

studies have involved: 

 Mapping of M and the associated refractive conditions (Craig et al. 1995).  

 Ducting parameters statistics (probability of occurrence, height, thickness, 
strength, etc.) (Isaakidis et al. 2004; Von Engeln et al. 2004). 

 Ducting associated with meteorological parameters (Bech et al. 2002; Zhu 
et al. 2005). 

 Ducting variations based on weather variations (Mentes et al. 2007). 

 Identification of areas favorable or unfavorable to ducting conditions (Von 
Engeln et al. 2004). 

 Assessment and validation of data and methods used to derive ducting 
statistics (Craig et al. 1995; COST 2002).  
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 Use of satellite imagery to assess ducting variability and climatology 
(Helvey et al. 1995). 

D. MOTIVATION AND PURPOSE OF THIS THESIS 

Many of the prior ducting climatology studies have focused on how the existence 

and characteristics of ducts are affected by weather variations. Research efforts have been 

performed to derive statistics which reveal the intraseasonal and spatial variability of 

ducting conditions driven by large scale or synoptic scale variations of weather features 

(Babin 1996; Bech et al. 2002; Isaakidis et al. 2004; Zhu et al. 2005; Mentes et al. 2007). 

But to our knowledge, no extensive investigations have explored the connections between 

interannual variations of ducting and large-scale weather variations. 

The main purpose of this study is to derive surface duct statistics for the Aegean 

Sea, and to examine the long-term variations of these statistics. This study focuses on 

interannual and interseasonal variations and seeks correlations between these variations 

and variations of global, regional, and synoptic-scale environmental conditions. A major 

focus is on explaining why these correlations occur and whether specific physical 

relationships can be identified that could lead to improved predictions of ducting 

conditions. Our study also includes an evaluation of the derived statistics based on the 

accuracy and resolution of the datasets we used in our study. 
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II. DATASETS AND METHODOLOGY 

A. REGION AND PERIOD OF STUDY 

We investigated surface ducts in the region around the Aegean Sea. The Aegean 

Sea is surrounded by four meteorological stations that perform radiosonde measurements 

and maintain an archive of upper-air data. These stations are Athens (Greece), Heraklion 

(Greece), Izmir (Turkey), and Thessaloniki (Greece. The focus of our study was on the 

first three stations for a 20-year period from 1991 through 2010. Figure 7 shows a 

satellite view of the area of interest and the location of the radiosonde stations. 

 

Figure 7.   Map of Aegean Sea region showing the three locations for which we analyzed 
radiosonde data. (After: Google maps: 

http://maps.google.com/maps?hl=en&tab=wl, accessed January 2012 ) 

All three stations lie along the coastline, with their distance from it not exceeding 

a few hundred meters. Their altitudes are 15 m for Athens, 39 m for Heraklion and 29 m 

for Izmir. A geographical triangle is created by the three stations, with the maximum 

distance between them being 387 km (Heraklion–Izmir) and the minimum being 296 km 
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(Athens–Izmir). The relatively short distances between them, their location in the 

periphery of the same sea, the same proximity to the coastline, and almost similar 

altitudes render these stations ideal in terms of comparison purposes. These stations are 

often affected by the same large scale and regional scale weather systems and climate 

factors, so we can attempt to extract a clear signal of ducting variations, based on 

synoptic or larger environmental variations, and distinguish these from variability 

imposed by more local effects. 

B. DATASETS OVERVIEW 

Radiosonde sounding datasets are commonly used as a source of data for the 

meteorological variables needed for the calculation of the modified refractivity, M. We 

obtained radiosonde datasets for this study from the University of Wyoming, Department 

of Atmospheric Science. They encompass a span of 20 years for each station. For the 

needs of this research, the datasets were used in the form of text files, each file containing 

soundings for an entire month.  More than 35,000 soundings were processed and 

analyzed in order to compute the respective values of M and, eventually, the 

corresponding ducting parameters. 

For the stations we studied, soundings were taken twice every day, at 00 UTC and 

12 UTC. Our ducting analyses were based on meteorological parameter values existing 

over these specific locations, at these specific times. Quite advantageous for this study is 

the fact that all of the three stations share the same time zone and the local time leads the 

UT by two or three hours, depending on the season. Therefore, soundings taken at 00 

UTC refer to nighttime and those taken at 12 UTC refer to daytime conditions. The 

soundings provided a rich record of prevailing meteorological variables throughout the 

vertical atmospheric column. We focused not only on those parameters necessary for the 

computation of M, but also on those that were needed to understand the in situ weather 

conditions. In Figure 8, a segment of a sample sounding record is provided, in which one 

can notice the provided meteorological variables and the vertical levels at which they are 

collected. The recorded vertical levels depicted in Figure 8 are just a sample. They differ 
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from sounding to sounding. Many factors determine the levels at which data is recorded 

and the spacing between those levels, as discussed in COST Action 255 (2002).  

 

 

Figure 8.   Segment of a full sample sounding recorded from Athens station on July 06, 
2007, 00 UTC (After: University of Wyoming, Department of Atmospheric 

Science, available online at 
http://www.weather.uwyo.edu/upperair/sounding.html, accessed May 2011) 

C. MODIFIED REFRACTIVITY CALCULATION 

For the calculation of M, we used the following formula: 

 5
2

0.157 77.6 5.6 3.73 10 0.157
P e e

M N z x z
T T T

       (2.1)
 

The variables that are extracted from the sounding in order to compute M, are P in hPa, T 

in oC  and RH in % and z in m. Pressure, P and altitude, z, values are directly inserted in 

the above formula, without any unit conversion. Temperature T is converted from K to 

oC by using the conversion ( ) ( ) 273.15oT K T C  . For the calculation of water vapor 

pressure, e, we have used the formula (Isaakidis et al. 2004): 

 
100 s

RH
e e  (2.2) 

where se represents the saturation water vapor pressure and is further decomposed 

according to the expression: 

 17.2694 273.15
6.11exp

35.85s

T
e

T





 (2.3) 

where  T  is expressed in K . 
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The outputs of these formulas are computed using MATLAB. The codes are 

based on Turk’s (2010) thesis MATLAB routines. Some of them have been modified and 

a few new ones have been developed in order to meet the requirements of this study. The 

codes have been set up to run for each dataset file separately, but they give individual 

results for each sounding contained inside the file. 

The first code used is “preprocess.m.” It processes the text file of the raw data to 

make it readable from MATLAB. The second code used is “load_sounding.m,” and is the 

most important one. It reads the raw data from the text file, computes the M profile, 

determines ducting conditions throughout the atmospheric column, and, if ducts exist, it 

calculates the associated ducting parameters. Within this code, two functions are 

included: the “theta_q.m” function, which computes the potential temperature, Θ and the 

specific humidity, Q , at each measured level, and the “m_n_profile.m” function, which 

calculates the profile of the modified refractivity. The next code is the “statistics.m” 

which derives ducting statistics for the period covered by each file-dataset, a month for 

our case. The last code used is “decode_and_save_soundings.m.” It extracts the variables 

provided by the sounding, computes the refractivity values again, and finally tabulates all 

of the products in MATLAB files. Additionally, it computes the vertical resolution of the 

datasets, as explained in the next chapter. The “plot_all_soundings.m” code is intended 

for optional use. It plots the profiles of temperature, dew point, and modified refractivity 

for each sounding, so that one can view at a glance the vertical structure of the 

atmosphere. These plots are particularly useful in order to identify potentially spurious 

values. All of these codes are shown in Appendix B. 

D. DUCTING PARAMETERS AND RELATED STATISTICS 

In this study, we worked only with surface ducts that have their trapping layer 

attached to the ground (b in Figure 6). Two different seasons were examined: winter, 

comprised of December, January, and February; and summer, comprised of June, July, 

and August. Ducting statistics were derived separately for these two seasons. The three 

ducting parameters that we worked on are frequency of occurrence (“Frequency” from 

now on), height of duct, and strength gradient of duct. 
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1. Definitions 

We used the following definitions: 

 Frequency: the number of surface ducts occurrence events divided by the 
total number of recorded soundings under consideration, expressed as a 
percentage. It gives the probability of occurrence. 

 Height: the altitude of the minimum modified refractivity M measured 
from the mean sea level. It gives the upper boundary of the trapping layer. 

 Strength gradient: the difference between M at the bottom and the top of 
the surface duct divided by the height of the duct. It gives the strength of 
the ducting structure. 

2. Statistics 

The Frequency statistics were based on the available valid observations 

(soundings) at location, for an entire month. We then averaged the monthly values over a 

three-month period in order to calculate Frequency for the entire season. For Height and 

Strength gradient statistics, we used the monthly mean values, and then averaged the 

monthly means over a three-month period for the season. Tables with the calculated 

statistics are included in Appendix A. 

The same method was used for the derivation of statistics for other meteorological 

and ducting variables necessary for our study. We created a seasonal time series of the 

ducting parameters for the period of interest (1991–2010) in order to monitor the yearly 

variations. 

E. METEOROLOGICAL VARIABLES 

Various meteorological variables that can either directly or indirectly affect the 

ducting parameters were examined. Annual, multi-annual, and long-term seasonal means 

and anomalies of these variables were used to calculate correlations between them and 

the ducting parameters. The main source of the meteorological data was acquired from 

the NOAA/ESRL/PSD reanalysis datasets archive. Reanalysis datasets can be 

summarized as follows.   

Reanalysis datasets are created by assimilating ("inputting") climate 
observations using the same climate model throughout the entire 
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reanalysis period in order to reduce the effects of modeling changes on 
climate statistics. Observations are from many different sources including 
ships, satellites, ground stations, RAOBS, and radar. (From 
NOAA/ESRL/PSD, available online at the following 
websitehttp://www.esrl.noaa.gov/psd/data/gridded/reanalysis) 

In particular, we accessed via the ESRL site the NCEP/NCAR reanalysis dataset (Kalnay 

et al. 1996; Kistler et al. 2001), which can be summarized as follows. 

This reanalysis was the first of its kind for NOAA. NCEP used the same 
climate model that was initialized with a wide variety of weather 
observations: ships, planes, RAOBS, station data, satellite observations 
and many more. By using the same model, scientists can examine 
climate/weather statistics and dynamic processes without the complication 
that model changes can cause. The dataset is kept current using near real-
time observations. (From NOAA/ESRL/PSD, available online at the 
following website http://www.esrl.noaa.gov/psd/data/gridded/reanalysis) 

With the aid of the ESRL/PSD online tools, we were able to plot seasonal 

composites of variables (means, anomalies, and long-term means), seasonal linear 

correlations of gridded variables with time series of ducting parameters that we created, 

and seasonal mean time series for variables averaged over an entire selected area.  We 

used radiosonde soundings themselves as a secondary source of meteorological data.  

Computing tools, based on EXCEL or MATLAB software, were used as an additional aid 

for statistical computations (e.g., linear correlations), plotting, and other calculations. 
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III. ANALYSIS AND RESULTS 

A. MAIN CLIMATOLOGICAL FEATURES OF THE AREA OF INTEREST 

1. Climate Factors Affecting the Area 

The two seasons that we analyzed, winter (DJF) and summer (JJA), exhibited 

distinct differences over the Aegean region, that are governed by large-scale climate 

factors. 

a. Winter 

During winter, the Aegean area is subject to extratropical cyclones 

entering the area from the west, having formed either over the Atlantic Ocean and 

western Europe or over the Mediterranean Sea. The weather associated with the passage 

of these depressions is dominated by southwesterly flow at the lower levels of the 

atmosphere, bringing high amounts of moisture and significant rainfall over the Aegean 

region. A secondary source of significant weather in the area is the invasion of cold air 

masses spawned by the Azores High and/or Siberian High (Figure 9). This cold air enters 

the area from the north or northeast and flows over relatively the warm water of the 

Aegean and bringing instability and significant weather changes (Mentes et al. 2007; 

Aviation Meteorology 2012). 

The main systems that regulate the circulation over the Aegean area of 

interest are the Azores High, the Icelandic Low and the Siberian High. Figure 9 shows 

these major systems, with typical location and magnitude values for January. The 

magnitude of these global systems and the location of them relative to each other define, 

more or less, the main characteristics of the prevailing weather over the area of interest. 

Even slight variations of these systems can cause significant variations in meteorological 

conditions. For example, a strengthening and northward shift of the Azores High can 

block extratropical cyclones from entering the Aegean region, while opposite shifts can 
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allow extratropical cyclones to more frequently enter the Aegean region. As another 

example, the Siberian High can extend a ridge over eastern Europe that leads to 

northeasterly flow over the Aegean region.  

 

Figure 9.   The Azores High, Icelandic Low, and Siberian High affect weather and 
climate in the Aegean region.  Changes in the strength, position, and orientation 
of these large scale circulation features can cause significant changes in Aegean 

conditions. (From: Eastern Illinois University, Department of Geology/Geography 
website, available online at http://www.ux1.eiu.edu/~cfjps/1400/circulation.html, 

accessed January 2012) 

A map of the long-term mean (climatological mean) of specific humidity, 

Q, at the 1000 hPa level shows relatively humid air over the main body of Mediterranean 

Sea compared to the surrounding land (Figure 10; cf. Romanou et al. 2010; Robinson et 

al. 2001). Southwesterly flow advects large amounts of moisture into the study area. On 

the other hand, the levels of humidity decrease when northeasterly flow sets in and brings 

dry, cold air from the Eurasia continental land. 
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Figure 10.   Long-term mean of specific humidity Q at 1000 hPa for winter. The relatively 
moist air over the Mediterranean can be a source of moisture for the Aegean 

region, while the surrounding land regions can be a source of dry air. Note the 
strong humidity gradient in the south-north direction over the Aegean Sea. Figure 
created at: NOAA/ESRL Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/ , accessed January 2012. 

b. Summer 

During summer, the weather conditions in the Aegean region are mostly 

governed by the combination of the Azores High and the thermal low developing over 

much of southwest Asia and south-central Asia, from western India to the Red Sea. 

Figure 11 shows these major circulation features, with typical locations and magnitudes 

for July. The Azores High often extends eastward to the Balkans and causes medium and 

upper level subsidence over southeastern Europe and northerly or northeasterly flow over 

the Aegean. Northwestward extensions of the thermal low can also lead to northeasterly 

flow over the Aegean region (Aviation Meteorology 2012). This flow is known as the 

Etesian winds, which brings relatively dry air over the Aegean and the adjacent lands 

(Theocharis et al. 1998). Whenever the combination of these previously mentioned 
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systems weakens, a different circulation is set up, leaving room for 

westerly/southwesterly flow and, in very rare occasions, to mid-latitude disturbances 

propagating from Europe and the western Mediterranean. The last circulation causes 

winds to blow over the relatively warm eastern Mediterranean, resulting in high moisture 

fluxes into the atmosphere and high amounts of atmospheric moisture advection into the 

Aegean region.  

 

Figure 11.   The Azores or Bermuda High and southwest and south-central Asia thermal 
low tend to produce a northerly or northeasterly low-level flow over the Aegean 

region during summer. (From: Eastern Illinois University, Department of 
Geology/Geography website, available online at 

http://www.ux1.eiu.edu/~cfjps/1400/circulation.html, accessed January 2012) 

Figure 12 shows the long-term mean of specific humidity, Q, at the 1000 

hPa level for summer. The air over Mediterranean waters is relatively moist due to warm 

waters and high moisture fluxes to the atmosphere. The Aegean region is relatively dry 

due to its relatively cool waters and its being surrounded on three sides by land with 

relatively dry air (Skliris et al. 2011). Note that the summer values of Q are 

approximately double those in winter (Figure 10).  
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Figure 12.   Long-term mean of specific humidity Q at 1000 hPa for summer. The 
relatively moist air over the Mediterranean can be a source of moisture for the 
Aegean region. Figure created at: NOAA/ESRL Physical Sciences Division 

website, available online at http://www.esrl.noaa.gov/psd/ , accessed January 
2012. 

2. Teleconnections 

Well-established teleconnections have been discovered, which link the climate 

variations in the eastern Mediterranean region with variations in remote regions of the 

globe. The most robust of these are the Arctic Oscillation (AO) and North Atlantic 

Oscillation (NAO) during winter (Jacobeit et al. 2007; Zervakis et al. 2004). Both of 

these atmospheric oscillations, during their positive phases, create patterns that block the 

propagation of depressions and frontal activity from the Atlantic Ocean towards the 

eastern Mediterranean. The opposite happens during their negative phases. As a result, 

the Aegean region tends to experience anomalously dry and cool conditions during the 

positive phases, and anomalously wet and warm conditions during the negative phases of 

these two modes. The AO can be summarized as follows. 
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The AO is an intraseasonal and interseasonal oscillation in the strength of 
the northern polar vortex.  In the positive AO phase (+AO), the polar 
vortex is anomalously strong and well defined, while in the negative AO 
phase (-AO), the polar vortex is anomalously weak and diffuse. +AO: 
Strong polar vortex leads to strong westerlies in midlatitudes, and 
confinement of midlatitude storm tracks to anomalously high latitudes, 
where precipitation and temperature anomalies are positive.  Lower 
latitudes in midlatitudes have negative precipitation and temperature 
anomalies. –AO: Weak polar vortex leads to weak westerlies in 
midlatitudes, and southward shift of midlatitude storm tracks to 
anomalously low latitudes, where precipitation and temperature anomalies 
are positive.  Higher latitudes in midlatitudes have negative precipitation 
and temperature anomalies. (Murphree 2011) 

Figure 13 illustrates the AO phases and their associated impacts on Europe. 

 

 

Figure 13.   Schematic illustration of the AO positive phase (left panel) and negative phase 
(right panel). (After: http://jisao.washington.edu/wallace/natgeo/ArcticSubart.pdf, 

accessed January 2012) 

The NAO is closely related to the AO and can be summarized as follows. 

The NAO consists of a north-south dipole of anomalies, with one center 
located over Greenland and the other center of opposite sign spanning the 
central latitudes of the North Atlantic between 35°N and 40°N. The 
positive phase of the NAO reflects below-normal heights and pressure 
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across the high latitudes of the North Atlantic and above-normal heights 
and pressure over the central North Atlantic, the eastern United States and 
Western Europe. The negative phase reflects an opposite pattern of height 
and pressure anomalies over these regions. Both phases of the NAO are 
associated with basin-wide changes in the intensity and location of the 
North Atlantic jet stream and storm track. Strong positive phases of the 
NAO tend to be associated with above-average temperatures in the eastern 
United States and across northern Europe and below-average temperatures 
in Greenland and oftentimes across southern Europe and the Middle East. 
They are also associated with above-average precipitation over northern 
Europe and Scandinavia in winter, and below-average precipitation over 
southern and central Europe. Opposite patterns of temperature and 
precipitation anomalies are typically observed during strong negative 
phases of the NAO. (Climate Prediction Center, 2012) 

Figure 14 illustrates the NAO phases and their associated impacts in Europe. 

 

 

Figure 14.   Schematic illustration of the NAO positive phase (left panel) and negative 
phase (right panel). (After: http://www.ldeo.columbia.edu/NAO/ , accessed 

January 2012) 

Figures 15-18 are maps of linear correlations between selected meteorological 

variables and the AO and NAO indices. From these maps, it becomes obvious that the 

AO tends to have a larger impact on the Aegean region than the NAO (Unal et al. 2010). 
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Figure 15.   Linear correlations in winter between sea level pressure (SLP) and the: (a) AO 
index (left panel); and (b) NAO index (right panel), based on 1981-2010 NCEP 

reanalysis dataset. Correlation magnitudes ≥ 0.30 and greater indicate significance 
at the 95% level or greater. Figures created at: NOAA/ESRL Physical Sciences 
Division website, available online at http://www.esrl.noaa.gov/psd/, accessed 

January 2012. 

 

Figure 16.   Linear correlations in winter between precipitation rate (PR) and the: (a) AO 
index (left panel); and (b) NAO index (right panel), based on 1981–2010 NCEP 

reanalysis dataset. Correlation magnitudes ≥ 0.30 and greater indicate significance 
at the 95% level or greater. Figure created at: NOOA/ESRL Physical Sciences 
Division website, available online at http://www.esrl.noaa.gov/psd/, accessed 

January 2012. 
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Figure 17.   Linear correlations in winter between zonal wind at 850 hPa (ZW) and the: (a) 
AO index (left panel); and (b) NAO index (right panel), based on 1981–2010 
NCEP reanalysis dataset.  Correlation magnitudes ≥ 0.30 and greater indicate 

significance at the 95% level or greater. Figures created at: NOAA/ESRL 
Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012) 

 

 

Figure 18.   Linear correlations in winter between meridional wind at 850 hPa (MW) and 
the: (a) AO index (left panel); and (b) NAO index (right panel), based on 1981–

2010 NCEP reanalysis dataset. Correlation magnitudes ≥ 0.30 and greater indicate 
significance at the 95% level or greater. Figures created at: NOAA/ESRL 

Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  
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These correlations are consistent with what one would expect from the effects of 

the AO and NAO on the area of study. For example, the AO and NAO are positively 

correlated with Aegean SLP, and negatively correlated with Aegean precipitation rate, 

zonal wind, and meridional wind.  This indicates that during the positive phases of the 

AO, the Aegean region experiences anomalously high pressures, low precipitation, and 

northeasterly winds, all due to changes in large scale circulations and a northward shift in 

extratropical storm tracks. The opposite anomalies tend to occur during the negative 

phases, so that the Aegean region experiences anomalously low SLP, high precipitation, 

and southwesterly winds, and more frequent mid-latitude depressions. 

B. ANALYSIS OF DUCTING CONDITIONS OVER ATHENS STATION 

1. Derived Statistics 

Initially, we examined the variation of the ducting parameters over an entire year. 

Figure 19 shows the yearly distribution of these parameters. Summer has the highest 

Frequency, highest Height, and highest Strength gradient, suggesting that favorable 

conditions for ducting formation prevail during summer months. In contrast, winter 

exhibits the lowest values of Frequency and Height. Strength gradient has relatively low 

values during winter, with the lowest ones during the February-March-April (FMA) 

period. 

The variability of these parameters is quantified by the standard deviation. 

Comparing the two seasons, one can see in Figure 19 that the summer months display 

much lower variability, relative to mean values, for Frequency, a slightly higher 

variability for Height, and the same variability for Strength gradient. This indicates that 

summer generates robust ducting conditions, but with relatively low variability due to 

relatively stable conditions during summer compared to winter during which relatively 

high variability is imposed by the synoptic scale circulations.  
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Figure 19.   Distribution plots of ducting parameters for Athens station. The values used 
for this plot have been derived by averaging the monthly means over the 1991-

2010 period. 
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Next, we examined the interannual variability of ducting parameters. By taking 

the seasonal mean for each year, we constructed time series separately for each parameter 

and season. In Figure 20, the resultant plots for the winter are presented with linear trend 

lines to show long term vairations. 

 

Figure 20.   Time series of ducting parameters during winter for Athens. The blue 
(crooked) line connects the seasonal means of the respective ducting parameter 

for each year. The red (straight) line depicts the linear trend of the series. 
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The trend lines uncovered significant but unexpected trends for all three 

parameters. Such trends signify the existence of more frequent and strong ducts with the 

progression of the years, implying that something has changed during the period of study 

— either with the meteorological conditions described by the data or with the 

measurement and data recording processes used during the collection of those data.  

The interannual variation in the ducting parameters for Athens is pictured in 

Figure 21. The summer trends are similar to those for winter but lower in magnitude 

(Figure 20).  
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Figure 21.   Time series of ducting parameters during summer for Athens.  The blue 
(crooked) line connects the seasonal means of the respective ducting parameter 

for each year. The red (straight) line depicts the linear trend of the series. 
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A careful examination of both the winter and summer plots (Figures 20-21) shows 

that, between 1997 and 1999, marked shifts occurred in the Height and Strength gradient 

values, with the Height shifts being more distinct. No corresponding marked shifts 

occurred in the Frequency values. 

To understand these changes during 1997-1999 and the long term trends, we 

examined the climate variations that occurred in the Aegean and nearby regions during 

the entire study period and found no obvious explanation for the changes. For this reason, 

we turned our attention to the data processing procedures throughout the study period, to 

identify potential processing changes that could account for this peculiar ducting 

variability. By carefully inspecting the raw data, we realized that there were notable 

differences in the number of vertical levels contained in the radiosonde datasets. This 

meant that the processing of the radiosonde measurements was generating data 

distributed at different vertical levels for different observation periods, with the vertical 

distances between significant levels being different for different periods. In particular, we 

observed that the vertical resolution of the recorded data was much finer after 1998, with 

many more vertical levels being included in the sounding data files. We also noticed that 

the increase in vertical resolution in 1998 coincided with the previously mentioned shifts 

in Height and Strength gradients (Figures 20 and 21).  

Variations in the vertical resolution of radiosonde data due to data processing and 

recording differences have been identified and documented in prior studies (Craig et al. 

1995; COST Action 255 2002). Many reasons account for this situation. The variability 

of the atmospheric conditions, which cause the radiosonde to ascend with varying speeds 

and sample at varying significant levels, or the utilization of different equipment, are 

some possible reasons. In this research, we have not covered in depth the topic of data 

resolution but we have dealt with the implications that this issue has for our study.  

Surface ducts occur in the lower part of the atmospheric boundary layer (ABL).  

To determine how well the radiosonde data resolved that part of the atmosphere, we used 

the following technique. We calculated the mean height of surface ducts by averaging the 

seasonal mean heights over the 1999–2010 period, during which the resolution was finer. 

Next, we calculated with the same method the mean height of the upper quartile of duct 
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heights (i.e., the uppermost 25% of the ducts). For the winter, we found that the mean 

height of surface ducts was 40.38 m, with a mean upper quartile height of 51.03 m. For 

the summer, the numbers were 66.80 m and 85.95 m, respectively. Then, we rounded up 

to the nearest 10 meters the upper quartile values and we treated the resultant numbers as 

critical levels, based on the assumption that 75% of surface ducts should occur below 

these levels. The critical level for the winter was determined to be 60 m, and the critical 

level for the summer was determined to be 90 m. Based on these numbers, we calculated 

the vertical resolution as the percentage of the sounding times for which data was 

collected at one or more levels below the relevant critical level. We assumed that if a 

surface duct was present below a critical level, it would have been captured by the 

radiosonde only at those times (i.e., when at least one level below the critical level was 

recorded). Applying this method to all our sounding data, we came up with some quite 

interesting results, and even more interesting correlations between the resolution and the 

ducting parameters. 

Figure 22 shows the same information as in Figure 20, for the winter, along with a 

curve representing the yearly variation of seasonal mean vertical resolution. Comparison 

of the ducting parameters time series with their corresponding resolution time series 

indicates that the resolution variations is well correlated with the ducting parameters. The 

linear correlations for the entire 20-year period are summarized in Table 2. 
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Figure 22.   Time series during winter for Athens. The blue line (rhombus markers) 
connects the seasonal means of ducting parameters for each year. The red line 
(square markers) connects the seasonal means of resolution, expressed in %. 
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Table 2.   Linear correlations coefficients (r) and significance levels (p) between ducting 
parameters and sounding data vertical resolution during winter. 

WINTER Frequency Height Strength Gradient 

Resolution 
r = 0.67 r = -0.93 r = 0.83 
p > 99% p = 100% p ≈ 100% 

 

The correlations are particularly strong for the Height and the Strength gradient. 

The plots in Figure 22 and the correlation coefficients in Table 2 suggest that whenever 

coarse resolution takes place (i.e., there is no recorded data below the critical level 

defined by the average upper quartile of the mean height), then the statistically derived 

Frequency is lower, the statistically derived Height is higher and the statistically derived 

Strength gradient is higher. The opposite effect occurs with finer resolved vertical 

profiles. In summary, coarser vertical resolution: (1) fails to capture real ducts that 

develop in lower layers and, simultaneously; and (2) captures only the deep ducts, thus 

artificially making the Frequency too low, the Height too high, and the Strength gradient 

too low. 

The same connection between resolution and ducting parameters statistics holds 

during summer. Figure 23 illustrates the respective plots and Table 3 summarizes the 

relevant correlation coefficients for the summer. The main difference now is that the 

correlation between Frequency and Resolution is much weaker, remaining positive, 

however. This less strong correlation during summer is explained by the fact that the data 

resolution takes on double values compared to the winter, having reached almost its 

upper limit (100%) after 1998. As a consequence, the majority of surface ducts are 

captured by the soundings, and only a few “elude,” thus causing the Frequency variability 

often become “disconnected” from the resolution variability. On the other hand, the 

Height and Strength gradient correlation coefficients are even higher during summer, 

because the almost permanent existence of ducts causes these statistically derived 

parameters to fluctuate in accordance with the resolution fluctuations. 
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Figure 23.   Time series during summer for Athens.  The blue line (rhombus markers) 
connects the seasonal averages of ducting parameters for each year. The red line 

(square markers) connects the seasonal means of resolution, expressed in %. 
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Table 3.   Linear Correlation Coefficients (r) and Significance Levels (p) between ducting 
parameters and sounding data vertical resolution during summer. 

SUMMER Frequency Height Strength Gradient 

Resolution 
r = 0.30 r = -0.96 r = 0.88 
p = 81% p = 100% p ≈ 100% 

 

Considering both seasons together, we have concluded that long-term variations 

in vertical resolution are responsible for the trends and shifts in the ducting parameters 

time series shown in Figures 20 and 21. The large shift in resolution in 1998 is the major 

factor that led to, for example, the large changes in ducting conditions after this year. The 

Hellenic National Meteorological Service reported to us that improvements in the 

software used to analyze radiosonde data were applied during the spring of 1998.  This 

software change appears to be the major factor that led to improved vertical resolution in 

the Athens data during 1998.  

In Table 4, a synopsis of the average values for the periods before and after 1998 

is given. Note the large differences between the periods, for both winter and summer, in 

the Frequency, Height, and Strength gradient, and that these differences are consistent 

with the differences in vertical resolution. Thus, the raw radiosonde data is biased in the 

earlier period by the lower resolution during that period.  

Table 4.   Average values of ducting parameters for the low-resolution period before 1998 
and the high-resolution period after 1998. 

 WINTER SUMMER 

1991‒1998 1999‒2010 1991‒1997 1998‒2010 

Frequency (%) 21.71 32.21 60.40 64.85 

Height (m) 62.37 40.38 106.73 66.80 

Strength gradient 
(M units/m) 

0.11 0.29 0.20 0.38 

Resolution (%) 12.25 50.25 36.48 83.18 
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2. Interseasonal Ducting Variability 

Initially, we examined the striking difference in ducting conditions between 

winter and summer (Figure 19, Table 4). There is a two-fold explanation for those 

enhanced conditions during summer. First, a major ducting mechanism is established 

along the coastline; intense evaporation, due to warm conditions prevailing over the 

eastern Mediterranean, feeds the lower levels of the atmosphere with very large amounts 

of moisture. As a result, a strong negative water vapor pressure gradient forms in the 

vertical, generating ducting conditions. Additionally, any process creating relative 

humidity gradients is going to have a magnified effect on specific humidity gradients 

when the temperature is warmer, as discussed in Chapter I (subsection B1). High 

amounts of moisture remaining over an area render the ducting mechanisms more 

effective for this specific area. In Chapter I, we referred to equation (1.3) and the 

exponential growth of water vapor pressure e as a function of temperature, in order to 

justify this claim. We can reach the same conclusion if we express modified refractivity 

M directly as a function of temperature T and relative humidity RH. 

For illustrative purposes, we produced Figure 24, where several graphs of M are 

plotted for several values of RH. The resulting graphs are based on equation (2.1) where e 

has been replaced and expressed with its components, according to the equations (2.2) 

and (2.3). An altitude of 15z m   (Athens’ altitude) and a typical pressure of 

1014p hPa   have been chosen for our calculations. These plots indicate that M changes 

more at higher temperatures and relative humidity. This is the main difference between 

winter and summer ducting conditions. During summer, M lies at the right part of the 

depicted curves and, therefore, is much more sensitive to temperature and relative 

humidity variations than it is during winter. This means that the same changes in 

temperature or relative humidity cause considerably larger changes to M  in summer than 

in winter. As a consequence, the ducting mechanisms become more effective during 

summer, thus improving in general the ducting conditions. In other words, the 

atmosphere is more sensitive to the processes that create ducts during summer, and so 

even the minor differential changes in relative humidity or temperature profiles tend to 

generate ducting conditions. 
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Figure 24.   Modified refractivity M graphs as a function of temperature T in K. Four 
different graphs are plotted corresponding to four different amounts of relative 

humidity. An altitude of z=15 m and of pressure p=1014 hpa have been used for 
the M computations. 

To better understand the impact of the overall moisture amount on the ducting 

mechanisms, we set up a conceptual simulation of ducting conditions under different 

moisture regimes. The simulation and its results are presented in Table 5.  
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Table 5.   Summary of a simulation of ducting conditions under different moisture regimes.  
Top section of table: meteorological values at the two boundaries of a surface 

duct. M values and the corresponding differences between the two levels are also 
included. The values specified in the upper part of the table are real data based on 
real surface ducting conditions that have occurred at the Athens station. Middle 

sections of table: Simulation results based on changing only temperature.  Bottom 
sections of table: Simulation results based on changing only relative humidity.   
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The upper part of the table provides a sample of real ducting conditions that 

occurred in Athens on June 5, 2002, 00Z. With a temperature inversion of 1.8 oC  and a 

relative humidity at the surface (at 15 m) higher by 23.4% than the relative humidity at 

the 31 m level, a duct formed between the upper and the lower vertical levels with an M 

deficit of -7.20 units.  

In the middle part of the table (configuration I), we simulated similar atmospheric 

conditions, keeping all the meteorological values the same except temperature. To 

simulate the differences between winter and summer conditions, we modified the 

observed temperature values by 10 degrees, but kept the temperature difference between 

the two levels the same. By leaving the relative humidity values unchanged, we generated 

moist conditions during summer and dry conditions during winter. The resultant M values 

are shown on the right part of the table. During the simulated summer conditions, when 

the moisture levels were much higher, the M deficits were larger, and improved ducting 

conditions occurred. The opposite occurred in the winter simulation, as one can tell from 

the same table (configuration I). 

In the lower part of the table (configuration II), we applied the same technique, 

but this time we portrayed the different moisture regimes by modifying equally for both 

levels the relative humidity values and keeping the temperature the same. In this case, 

too, we ended up with analogous results. Under moist conditions, the M difference 

between upper and lower level were higher, than under dryer conditions. 

The mechanisms discussed above hold for intraseasonal and interannual 

variations of moisture amounts, but are significantly less effective in the winter, since the 

refractivity conditions are represented by the left, lower part of the M curves (Figure 24). 

Whenever the moisture levels increase, the atmospheric conditions become more 

favorable for ducting formation. The effect of moisture on interannual variations of 

ducting conditions is analyzed in the next subsection. 

Regarding the winter, the mechanisms that generate surface ducts operate under a 

regime of lower moisture amounts and, therefore, their ability to create ducting 
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conditions is substantially reduced, as previously explained. Furthermore, the evaporation 

is much less because of much lower temperatures.  

On the other hand, the passage of frontal systems can favor duct development, 

and this process is much more common in the winter than in the summer. In Figure 25, an 

example of ducting associated with fronts is given. The cross sections of cold and warm 

fronts are sketched along with the associated M  distributions. One can notice that the 

regions where surface ducts form are just ahead of a cold front and behind a warm front, 

and they are related to the RH vertical gradients over these particular regions. Many other 

cases of different M  distributions can occur, depending on the structure and the 

dynamics of the front. 

 

Figure 25.   Vertical cross sections of cold front (left panels) and warm front (right 
panels), with the corresponding M distributions (bottom panes). The dotted lines 
at the top panes represent relative humidity isopleths.  The red rectangles define 

the regions where M decreases with height and therefore surface ducts form 
(After: Davidson 2003). 

3. Interannual Ducting Variability 

We analyzed correlations between the time series of the ducting parameters and 

the time series of relevant climate system variables. Our goal was to identify the 
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relationships between ducting and regional and remote variables, and the physical 

processes that determine those relationships, so that improved prediction of ducting can 

ensue. Due to the resolution issue that emerged, we decided to work only with data from 

the second period (after 1998). By doing so, we removed the long-term bias caused by 

the resolution issue, and more realistic statistics can be derived. We are aware of the fact 

that biases attributed to the short-term resolution variations still remain. However, those 

variations tend to be relatively small.  Thus, we concluded that we could use the post-

1998 data to investigate how interannual variations in ducting in the Aegean region are 

related to regional and remote climate variations. 

Before proceeding with that investigation, we needed to determine the extent to 

which moisture variations in the lower troposphere explain interannual variations in 

surface ducting, as they explain interseasonal (summer - winter) variations in surface 

ducting. We used mixing ratio, a variable that is directly available from the radiosonde 

data, as the parameter to represent the amount of moisture in the air and as a surrogate for 

water vapor pressure in Equation 2.1. Thus, changes in the mixing ratio are directly 

linked directly to changes in M, via Equation 2.1, and thus to changes in surface ducting. 

Figure 26 shows time series of ducting frequency and mixing ratios for the two lower 

levels of the recorded vertical levels. Both winter and summer parameters are shown.  
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Figure 26.   Time series  for Athens in summer (upper panel) and winter (lower panel) of 
Frequency (green lines with triangle markers), moisture mixing ratio at the 

surface level (blue lines with rhombus markers) and moisture mixing ratio at the 
next higher level recorded by the radiosonde sounding (red lines with square 
markers). The correlation between the Frequency and surface mixing ratio is 

shown in the lower right of each panel. 



 44

A visual inspection of these plots indicates that, in general, interannual variations 

in Frequency tend to follow the interannual variations in the surface mixing ratio, with a 

higher correlation during summer. By correlating the Frequency with the mixing ratio at 

the surface, we received noteworthy correlation values, especially during summer, which 

reveal the important role of interannual variations in moisture in determining interannual 

variations in Frequency. For the summer, 0.73r   and significance level 99%p  . The 

values for the winter are 0.52r   with 91%p  . The lower correlation during the winter 

is expected, since M lies at the left part of the exponential curves (Figure 24).    

Having these relationships as a guide, and based on the methods and the tools 

described in Chapter II, we produced maps of the correlations between Frequency at 

Athens and selected climate system variables. Only the more statistically significant and 

dynamically relevant correlations are shown.  The dynamically relevant correlations are 

those that indicate clear and physical plausible dynamical relationships between the 

Frequency and the climate system variables. 

a. Winter 

Figure 27 shows the correlation between Athens Frequency and SLP for 

winter 1999-2010. Note the large region of negative correlation centered on the 

Mediterranean. The black box indicates a region in the eastern Mediterranean, over and 

close to the Aegean focus region, for which the area-average correlation is especially 

strong, with 0.84r    and a corresponding significance level, 99%p  . 



 45

 

Figure 27.   Linear correlations in winter between SLP and Frequency at Athens for the 
period 1999-2010, based on 1981–2010 NCEP reanalysis dataset. The black 

rectangle in the eastern Mediterranean region indicates an area of strong negative 
correlation that is over and near the Aegean focus region of our study. Correlation 

magnitudes ≥ 0.30 and greater indicate significance at the 95% level or greater. 
Figure created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/, accessed January 2012. 

Other prominent features in this map are the north-south dipole of 

negative and positive correlation over the mid-latitude and sub-polar North Atlantic 

Ocean, which is consistent with the NAO and AO. We computed the corresponding 

correlation coefficients between Frequency and these indices with the following results: 

0.49r    with significance level 89%p   for the NAO, and 0.62r    with 

significance level 97%p   for the AO. Additionally for the AO index, large correlation 

exists between it and the Height with values 0.70r   and 99%p  . 

Figure 28 illustrates the correlation maps for PR, and for RH at 700 hPa. 

There are significant positive correlations over the Aegean Sea and the surrounding area 

(see black boxes in Figure 28), with the PR correlation taking on the very high value of 

0.9r   and 100%p  . Note also the consistency between the results in Figures 27-28 
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over much of the region surrounding the Aegean. For example, in the general eastern 

Mediterranean region, the negative correlation with SLP is consistent with the positive 

correlation with PR and RH at 700 hPa. 

 

Figure 28.   Linear correlations in winter between Frequency at Athens and the: (a) PR 
(left panel); and (b) RH at 700 hPa (right panel) for the period 1999-2010, based 

on 1981–2010 NCEP reanalysis dataset. The black rectangles in the eastern 
Mediterranean region indicate areas of strong positive correlation that are over 

and near the Aegean focus region of our study. Correlation magnitudes ≥ 0.30 and 
greater indicate significance at the 95% level or greater. Figures created at: 

NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012. 

In Figure 29, the correlation maps for ZW and MW at 850 hPa are 

depicted. Highly significant positive correlations occur for both zonal and meridional 

winds over the eastern Mediterranean. The values for the black boxes shown in Figure 29 

are 0.78r   with 99%p   for the ZW, and 0.79r   with 99%p   for the MW.  Note 

also the consistency between the correlations shown in Figures 27-29.  For example, all 

these figures are consistent in indicating that high Frequency at Athens tends to be 

associated with the passage of extratropical cyclones through the eastern Mediterranean 

region, and corresponding low SLP, high PR, high RH, and southwesterly winds.   
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Figure 29.   Linear correlations in winter between Frequency at Athens and the: (a) ZW at 
850 hPa (left panel); and (b) MW at 850 hPa (right panel) for the period 1999-

2010, based on 1981–2010 NCEP reanalysis dataset. The black rectangles in the 
eastern Mediterranean region indicate areas of strong positive correlation that are 

over and near the Aegean focus region of our study. Correlation magnitudes ≥ 
0.30 and greater indicate significance at the 95% level or greater. Figures created 

at: NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 30 shows correlation maps for SST. Both concurrent and lagging 

correlations were plotted (Frequency lagging SST by one month). We focused on the 

concurrent positive correlation in the Aegean region (black box in Figure 30, left panel), 

with 0.61r  , 96%p  , and the lagging negative correlation in the North Atlantic with 

0.67r   , 98%p  . Note that the correlation pattern in the North Atlantic has a 

quadripole structure consistent with the SST anomalies associated with the NAO and AO 

(Murphree 2011).  

 



 48

 

Figure 30.   Linear correlations in winter between Frequency at Athens and the: (a) SST 
(left panel); and (b) SST leading by one month (right panel) for the period 1999-

2010, based on 1981–2010 NCEP reanalysis dataset.  The black rectangles 
indicate areas of strong correlation. Correlation magnitudes ≥ 0.30 and greater 

indicate significance at the 95% level or greater. Figures created at: NOAA/ESRL 
Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Table 6 is a summary of all the correlations between ducting parameters 

and meteorological variables for winter 1999-2010. Correlations with the NAO and AO 

indices are also included. Significance levels have been calculated only for correlations 

larger than 0.5 . Among them, the correlations with SLP, PR, and RH at 700 hPa level are 

especially significant, with values up to 0.9 for the PR over the Aegean Sea (Figure 28). 

Equally important is that all three ducting parameters (Frequency, Height, and Strength 

gradient) tend to have the same correlation sign, as indicated by the red and green arrows 

in Table 6. This indicates that the correlations represent real dynamical relationships. In 

the next section, the physical processes that explain the correlations are described in 

detail. 
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Table 6.   The winter mean values of the ducting parameters for Athens (top four rows) and 
the correlations between those parameters and corresponding area-average 

environmental variables for selected regions. Only significance levels greater than 
or equal to 90% are shown. The correlations with significance levels greater than 

or equal to 95% are highlighted in yellow. Correlations with NAO and AO indices 
are also included. The sign of the correlation is indicated by the colored arrows: 

red indicates negative and green indicates positive. 
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The observed correlation patterns (Figures 27–30) and the individual 

correlation values (Table 6) together indicate that surface ducting conditions in Athens 

are more likely in winter when mid-latitude depressions are occurring in the area. These 

depressions constitute a major source of humidity, especially by producing southwesterly 

moisture advection over the Aegean Sea from the relatively humid regions over the 

Mediterranean (see Figure 10). Additionally, they are accompanied by frontal activity, 

which also improves ducting conditions, as explained in the previous section. The very 

strong correlations with the PR and the RH (Table 6) over Aegean Sea support these 

arguments. 

Moreover, the SST correlations in the Aegean Sea and the North Atlantic 

Ocean (Figure 30) are consistent with the same processes. The positive correlation at the 

Aegean Sea indicates that higher SST results in higher evaporation, leading to higher 

humidity levels, and thus leading to enhanced ducting conditions. The SST correlation 

patterns in the North Atlantic Ocean are linked with  the NAO and AO, with the negative 

(positive) phase of each oscillation being associated with more (less) frequent 

extratropical cyclone activity in the Mediterranean, thus leading to more ducting over the 

Aegean.  

Figures 31–35 illustrate composite anomaly maps of selected climate 

system variables for the two years that exhibited the highest Frequency during the 1999–

2010 period and the two years that exhibited the lowest Frequency during the 1999–2010 

period. These maps complement the correlation maps (Figures 27-30) by showing the 

anomalous conditions, including the spatial patterns and signs of the climate variations, 

associated with high and low Frequency. 

The anomaly maps give results consistent with the correlation maps. The 

years of the highest Frequency are those with negative phases of the NAO and AO 

modes, as is evident from the SLP anomaly dipole over the North Atlantic (Figure 31). 

During those years, more mid-latitude storms were directed towards the eastern 

Mediterranean, as indicated by the negative SLP anomaly over the Aegean region, the 

positive precipitation rate anomaly (Figure 32), the positive RH anomaly (Figure 33), and 

the generally southwesterly flow anomaly indicated by the vector wind (VW) anomalies 
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(Figure 34). For the years of the lowest Frequency, we find exactly the opposite anomaly 

patterns. The SST anomalies in the Aegean Sea and the North Atlantic (Figure 35) are 

also in agreement with the corresponding correlation maps and the physical 

interpretations given earlier. 

 

Figure 31.   SLP composite anomaly maps for the two winters with the highest Frequency 
at Athens (left panel) and the lowest Frequency at Athens (right panel).  Figures 
created at: NOAA/ESRL Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/, accessed February 2012. 

 

Figure 32.   PR composite anomaly maps for the two winters with the highest Frequency 
at Athens (left panel) and the lowest Frequency at Athens (right panel). Figures 
created at: NOAA/ESRL Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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Figure 33.   RH at 700 hPa composite anomaly maps for the two winters with the highest 
Frequency at Athens (left panel) and the lowest Frequency at Athens (right panel). 

Figures created at: NOAA/ESRL Physical Sciences Division website, available 
online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  

 

Figure 34.   VW at 850 hPa composite anomaly maps for the two winters with the highest 
Frequency at Athens (left panel) and the lowest Frequency at Athens (right panel). 

Figures created at: NOAA/ESRL Physical Sciences Division website, available 
online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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Figure 35.   SST composite anomaly maps for the two winters with the highest Frequency 
at Athens (left panel) and the lowest Frequency at Athens (right panel). SST leads 

by one month. Figures created at: NOAA/ESRL Physical Sciences Division 
website, available online at http://www.esrl.noaa.gov/psd/ , accessed February 

2012.  

b. Summer 

Figure 36 shows the correlation between Athens Frequency and  SLP for 

summer 1998-2010. Note the regions within the black boxes of  negative correlation over 

the N. Atlantic Ocean and  positive correlation over the Indian subcontinent. The 

respective values are 0.72r   with 99%p   for the N. Atlantic Ocean and 

0.70r   with 99%p   for the Indian subcontinent.  
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Figure 36.   Linear correlations in summer between SLP and Frequency at Athens for the 
period 1998-2010, based on 1981–2010 NCEP reanalysis dataset. The black 

rectangles indicate areas of strong correlation.  Correlation magnitudes ≥ 0.30 and 
greater indicate significance at the 95% level or greater. Figure created at: 

NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

A weaker negative correlation exists over almost the entire European 

continent. In contrast with the winter when the NAO and AO pattern are distinct (Figure 

27), for the summer, no correlation exists between these two modes and the Frequency 

index. Noteworthy negative correlations, however, emerge between both the NAO and 

AO indices and the Strength gradient index. The corresponding values that they take on 

are 0.56r   with 95%p   for the NAO, and 0.55r   with 95%p   for the AO.     

In Figure 37, the correlation maps for ZW and MW, at 850 hPa are 

depicted. Significant positive correlations occur for both zonal and meridional winds over 

Aegean Sea and the neighboring areas. The corresponding values that have been 

calculated are 0.48r   with 90%p   for the ZW and 0.55r   with 95%p   for the 

MW.  
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Figure 37.   Linear correlations in summer between Frequency at Athens and the: (a) ZW 
at 850 hPa (left panel); and (b) MW at 850 hPa (right panel) for the period 1998-

2010, based on 1981–2010 NCEP reanalysis dataset. The black rectangles 
indicate areas of strong positive correlation that are over and near the Aegean 
focus region of our study.  Correlation magnitudes ≥ 0.30 and greater indicate 

significance at the 95% level or greater. Figures created at: NOAA/ESRL 
Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 38 shows correlation maps for SST. Both concurrent and lagging 

correlations were plotted (Frequency lagging SST by one month). We focused on the 

lagging correlations in the Arabian Sea and in the North Atlantic (black boxes in Figure 

38, right panel).. Positive correlation occurs at the Arabian Sea with values 0.72r  , 

99%p   and negative correlation occurs at the N. Atlantic Ocean with values 0.66r   , 

99%p  . Additionally for the Arabian Sea, a positive correlation takes place between 

SST and the Strength gradient index lagging by one month with corresponding values 

0.64r   and 98%p  . 
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Figure 38.   Linear correlations in summer  between Frequency at Athens and the: (a) SST 
hPa (left panel); and (b) SST leading by one month (right panel) for the period 

1998-2010, based on 1981–2010 NCEP reanalysis dataset.  The black rectangles 
indicate areas of strong correlation. Correlation magnitudes ≥ 0.30 and greater 

indicate significance at the 95% level or greater. Figures created at: NOAA/ESRL 
Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/ , accessed February 2012.  

Table 7 is a summary of all the correlations between ducting parameters 

and meteorological variables for summer 1998-2010. Correlations with the NAO and AO 

indices are also included. Significance levels have been calculated only for correlations 

larger than 0.5. Among them, the correlations with SLP in India and North Atlantic are 

especially significant. Noteworthy in this table is the fact that the Height correlations tend 

to be negative whenever the correlations with the other ducting parameters are positive.  

This tendency seems to be opposite from the one observed during winter, where the 

correlations with all the ducting parameters have the same sign. 
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Table 7.   The summer mean values of the ducting parameters for Athens (top four rows) 
and the correlations between those parameters and corresponding area-average 

environmental variables for selected regions. Only significance levels greater than 
or equal to 90% are shown. The correlations with significance levels greater than 

or equal to 95% are highlighted in yellow. Correlations with NAO and AO indices 
are also included. The sign of the correlation is indicated by the colored arrows: 

red indicates negative and green indicates positive.  
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By comparing Table 7 with Table 6 (winter correlations), a noteworthy 

difference is observed. During winter, there is the same correlation tendency for all the 

three ducting parameters. This suggests that the mid-latitude depressions and the incipient 

southwesterly flow serve as constructive mechanisms inclined to build ducting 

conditions; that is, more frequent, higher and stronger ducts. In contrast, during summer, 

the correlations attendant to Height appear to have opposite signs from the other 

parameters’ correlations. This happens because the summer correlations are dictated by 

the prevailing northeasterly flow over the Aegean, which actually signifies a destructive 

for the ducting conditions process. This destructive mechanism tends to erode the ducts, 

and only the stronger and usually higher surface ducts survive. As a result, they drive the 

average Height up. This may explain why the summer correlations between Frequency, 

Strength gradient and Height appear with opposite signs. 

In this part of the analysis, we try to provide reasonable and physical 

explanations for the patterns and the correlations observed between surface ducting and 

meteorological conditions during summer.  As discussed in Section A, northeasterly flow 

prevails at lower levels over the Aegean Sea due to the relative position between the 

Azores High and the Indian Thermal Low. The cases of southwesterly flow due to 

synoptic scale effects are rare. Southerly and southwesterly winds are frequently 

observed, however, at the meteorological station of Athens, due to the sea breeze 

circulation that develops when the background northeasterly flow is not strong enough to 

suppress it.  

For the 1998–2010 period we created a time series of the percentage of 

occurrence of southwesterly flow over Athens station during the summer. This was 

correlated with the ducting frequency time series to see the impact of sea breeze on 

ducting conditions for this specific area. The correlation coefficient that arose was 

0.03r  . The other ducting parameters had equally low correlations.  This means that sea 

breeze is not a factor that dictates the variation of ducting parameters, at least when it is 

averaged over a whole season period. A possible explanation accounting for this is that, 

in the case of the sea breeze, two moisture-related forces act against each other. The 

onshore flow brings moist air, creating favorable conditions for ducting. On the other 
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hand, however, the lower level flow is weaker from the higher one, mostly due to friction 

effects, resulting in the transport of lower amounts of moisture at the surface than at 

higher levels, therefore, creating unfavorable ducting conditions. The net outcome is 

neutral for the ducts. 

We also correlated the ducting frequency with the percentage of 

occurrence of offshore flow, which technically, for the case of the Athens station, is the 

synoptic northeasterly flow itself. The resultant correlation was 0.74r    with 

significance level 99%p  . This significantly negative correlation is consistent with the 

correlation maps in Figure 37, which show the correlations with the wind components. 

Gathering all this evidence together, we infer that whenever the northeasterly flow is 

strong, the ducting frequency is low, and whenever the northeasterly flow relaxes, the 

ducting frequency increases. The reason for this is that the prevailing northeasterly flow 

over Athens advects less humid air from the relatively dry Aegean Sea region (Figure 

12), therefore reducing the total moisture amounts over the station. Moreover, the 

advected air parcels before reaching the Athens station cross over the hot land and mix 

with dry air, reducing even more the amounts of moisture that they contain. On top of 

that, the persistent northeasterly winds cause mixing within the surface layer by means of 

mechanically generated turbulence, and therefore tend to destroy the humidity and 

temperature gradients.  

Figure 39 is a map of the Athens station area and shows its disposition in 

relation to the prevailing winds. Before reaching the Athens station, the northeasterly 

winds have to flow over land and mix with dryer air. 
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Figure 39.   Part of the Aegean Sea and the surrounding land masses are captured in this 
figure. The red stars denote the locations of Athens and Izmir. (After Google 

Maps) 

Consistent with the wind correlations are the correlations associated with 

the SLP presented in Figure 36 and the correlations associated with the SST presented in 

Figure 38. The correlation map in Figure 36 implies that when the thermal low over 

Indian subcontinent amplifies, then the northeasterly flow over Aegean Sea gets stronger, 

depleting the moisture amount over Athens and causing more wind-generated mixing. 

The same effect takes place whenever the Azores High amplifies but without being able 

to displace the west flank of the Indian Low hovering over the Aegean Sea (Figure 11). 

In this situation, a strong pressure gradient develops, generating very strong and 

persistent northeasterly flow, with analogous implications. If the intensifying Azores 

High expands eastward, covering the Aegean Sea region with high pressure levels, with 

the thermal low retreating, then a different situation develops, but with the same negative 

effects on ducting conditions. Persistent fair weather and extensive insolation warms the 

ground, causing a thermally driven mix of the surface layer, eventually smoothing over 

the vertical profile gradients and destroying ducts. 
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Concerning SST correlation maps (Figure 38), the relevant correlations 

appearing over the N. Atlantic Ocean and Arabian Sea are consistently coupled with the 

respective SLP correlations. The negative correlation of SST at the N. Atlantic links with 

the negative correlation of SLP over the same region, due to air-sea interaction effects. 

The positive correlation of SST at the Arabian Sea links with the positive correlation of 

SLP over the Indian subcontinent. When the SLP is low, it implies an intensification of 

the dominant thermal low, and consequently stronger summer monsoons. This situation, 

in turns, involves more persistent cloudiness, heavier rain and increased river run off for 

the Arabian Sea. These last three factors contribute to lower SST for that region. The 

opposite effects take place when the SLP over the Indian subcontinent increases.    

Associates  

Figures 40–42 illustrate composite anomaly maps of selected climate 

system variables for the two years that exhibited the highest Frequency during the 1998–

2010 period and the two years that exhibited the lowest Frequency during the 1998–2010 

period. These maps complement the correlation maps (Figures 36-38) by showing the 

anomalous conditions, including the spatial patterns and signs of the climate variations, 

associated with high and low Frequency. 

The anomaly maps give results consistent with the correlation maps. The 

years of the highest Frequency (2005, 2010) are those with lower than normal SLP over 

Europe and higher than normal SLP over India, suggesting a weaker pressure gradient 

over the Aegean Sea (Figure 40). This results in an anomaly at 850mb VW with a 

southerly direction, bringing air rich in moisture over Athens (Figure 41). The opposite 

situation takes place during the lowest Frequency years (2000, 2006). Positive SLP 

anomaly over Europe and negative SLP anomaly over Saudi Arabia indicate a strong 

combination of Azores anticyclone with the thermal low amplifying over India and the 

Middle East. This results in an anomaly at 850mb VW with a northeasterly direction, 

bringing relatively dry air over Athens. SST anomalies at the N. Atlantic Ocean and 

Arabian Sea (Figure 42) are also in agreement with the corresponding correlation maps 

and the physical interpretations given earlier.  
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Figure 40.   SLP composite anomaly maps for the two summers with the highest 
Frequency at Athens (left panel) and the lowest Frequency at Athens (right panel). 

Figures created at: NOAA/ESRL Physical Sciences Division website, available 
online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.   

 

 

Figure 41.   VW at 850 hPa composite anomaly maps for the two summers with the 
highest Frequency at Athens (left panel) and the lowest Frequency at Athens 
(right panel). Figures created at: NOAA/ESRL Physical Sciences Division 

website, available online at http://www.esrl.noaa.gov/psd/ , accessed February 
2012.  
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Figure 42.   SST composite anomaly maps for the two summers with the highest 
Frequency at Athens (left panel) and the lowest Frequency at Athens (right panel). 
The SST leads by one month. Figures created at: NOAA/ESRL Physical Sciences 

Division website, available online at http://www.esrl.noaa.gov/psd/ , accessed 
February 2012.  

The SLP anomaly maps in Figure 40, and the SLP correlation maps in 

Figure 36, show that the Frequency decreases when high pressure covers the wider region 

around the Aegean Sea. We also explored the relation of the Frequency with the incipient 

subsidence caused by high-pressure systems. We looked for correlations between the 

Frequency and the vertical velocity ω at several vertical levels. We did not find any 

vertical level where the correlation was positive. On the contrary, the correlations were 

slightly negative throughout the vertical. In Figure 43, we provide a sample of the 

correlation maps between Frequency and ω for two different levels. The resultant ω 

negative correlations are consistent with the SLP negative correlations, and signify that 

when stronger subsidence takes place, denoted by positive vertical motion, the Frequency 

decreases. The Frequency is larger when the subsidence relaxes (less positive vertical 

motion). After the previous results, we are inclined to believe that the subsidence, which 

manifests itself mostly at the middle and higher atmosphere, does not penetrate the ABL 

deep enough to be capable of affecting the surface ducting conditions. We consider that 

the temperature inversions it produces are confined to higher altitudes and might rarely 

reach the surface.  
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Figure 43.   Linear correlations in summer between Frequency at Athens and the: (a) ω at 
1000 hPa (left panel); and (b) ω at 500 hPa (right panel) for the period 1998-2010, 

based on 1981–2010 NCEP reanalysis dataset.  Correlation magnitudes ≥ 0.30 
and greater indicate significance at the 95% level or greater. Figures created at: 

NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed February 2012.  

 
 
 

C. ANALYSIS OF DUCTING CONDITIONS OVER IZMIR STATION 

1. Derived Statistics 

Initially, we examined the variation of the ducting parameters over an entire year. 

Figure 44 shows the yearly distribution of these parameters. Summer has the highest 

Frequency and highest Strength gradient, as happens at the Athens station, suggesting 

that favorable conditions for ducting formation prevail during summer months. The 

Height distribution seems to follow a different pattern, demonstrating three local maxima: 

January, June and October. In contrast, winter exhibits the lowest values of Frequency 

and Height. Strength gradient has relatively low values during winter, with the lowest 

ones during the FMA period, similar to patterns observed in Athens. 
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The variability of these parameters is quantified by the standard deviation. As in 

Athens, one can see in Figure 44 that the winter months display higher variability, 

relative to mean values, for Frequency, implying that ducting conditions during winter 

follow the increased variability of atmosphere, imposed by the synoptic scale circulation. 

In contrast, summer’s lower variability for Frequency can be attributed to the more stable 

weather during this season. 

 

Figure 44.   Distribution plots of ducting parameters for IZMIR station. The values used 
for this plot have been derived by averaging the monthly means over the 1991–

2010 period. 
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Next, we examined the interannual variability of ducting parameters.  By taking 

the seasonal mean for each year, we constructed time series separately for each parameter 

and season. Aware of the resolution issue we confronted with the Athens station ducting 

statistics, we took the data vertical resolution for the Izmir station into consideration as 

well. By applying the same methodology as for Athens, we calculated the critical levels, 

below which the major volume of surface ducts are expected to be. For winter, we came 

up with a critical level of 70 m, and for summer, with a critical level of 80 m. 

Figure 45 presents the resultant plots for the winter season, and linear trend lines 

for the ducting parameters were added to each plot. A situation similar to Athens is 

encountered here, with trends over the ducting parameters revealing statistical biases. The 

ducting conditions appear to be better during the second half of the 1991–2010 period. 

Significant positive correlation occurs between Frequency and vertical resolution with a 

coefficient of 0.68r   and significance level 99%p  . The correlations with the other 

two ducting parameters are not significant, but they still imply that a connection holds 

between them and the resolution.  
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Figure 45.   Time series during winter for Izmir. The blue line (rhombus markers) 
connects the seasonal means of ducting parameters for each year. The red line 

(square markers) connects the seasonal means of the resolution, represented in %. 
The red straight line depicts the linear trend of the ducting parameters series. For 
the years 1991 and 1995 there are no Height and Strength gradient values because 

the derived statistics show that no surface ducting occurred at those years 
(Frequency = 0%) 
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Regarding the correlation coefficients along with the relevant plots, we infer that 

the observed biases are due to the long-term variation of the vertical resolution. As one 

can readily see, the resolution graph displays two distinct modes, one at the first and one 

at the second decade, with an outstanding spike between them. The first decade is 

characterized by exceptionally low resolution and subsequently by exceptionally low 

ducting frequency. We have no relevant information at our disposal to account for this 

peculiar behavior, but we assume that it has to do with the utilization of different data 

processing software between these two major periods, as the case was for Athens. There 

is no recorded proof of an atmospheric change to explain this huge change in the 

resolution between these two periods. 

The additional characteristic here on resolution graph is that, even within the 

same major periods, the resolution presents large fluctuations. Obviously short-term 

atmospheric variability can account for these interannual fluctuations, since their 

magnitude is much less than the interdecadal one. For the Athens station, this fluctuation 

was not so large, something that compels us to believe that the more complex topography 

around Izmir station explains those larger fluctuations because it is apt to produce more 

significant pressure levels in the vertical, recorded by the radiosonde. 

It is important to stress here that the short-term resolution variability is related 

with short-term atmospheric variability and connected with the concept of the significant 

pressure levels. Significant pressure levels are calculated according to WMO criteria 

based on significant meteorological events occurring in the vertical. However, a 

significant level, from a meteorological perspective, does not necessitate that the same 

level is significant from a ducting perspective, or vice-versa. The M reversals in the 

profile can occur even without significant atmospheric variations, since the proper 

synergy of the meteorological variables involved in equation (2.1) is sufficient to produce 

those reversals.   Consequently, we believe that the frequency variations, as a statistical 

product, are dictated to an important degree by the resolution fluctuations. On the 

contrary, we argue that the variations of the real ducting frequency are not connected 

with the variations of the resolution, even though both of them are influenced by the same 

meteorological variables, but with different manners. 
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Figure 46 shows the respective plots for summer. Note that the same connection 

between resolution and ducting statistics holds during summer. The main difference now 

is that the correlation between Frequency and resolution is much weaker, although 

remaining positive. The same explanation as for Athens applies here. The weaker 

correlation during summer is explained by the fact that the resolution is twice the winter 

values. Consequently, the greater part of surface ducts is detected by the radiosondes, and 

only a few evade, thus the Frequency variability tends to disengage from the resolution 

variability. On the other hand, the Height and Strength gradient correlation coefficients 

are much higher during summer, because the almost permanent existence of surface ducts 

makes these statistically derived parameters fluctuate in accordance with the resolution 

fluctuations. 

The two distinct periods are still evident, as well as the spike between them, but 

with less magnitude applying for both of these features. One more notable characteristic 

on the summer plots is the large fluctuation of resolution during the first decade.  
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Figure 46.   Time series during winter for Izmir. The blue line (rhombus markers) 
connects the seasonal means of ducting parameters for each year. The red line 

(square markers) connects the seasonal means of the resolution, represented in %. 
The red straight line depicts the linear trend of the ducting parameters series. 
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On the grounds of the existing link between resolution and ducting parameters 

variation, and in order to study the yearly variation of the ducting conditions in 

connection with the weather variations, we are compelled, as happened in Athens case, to 

examine only those periods that present relatively low resolution fluctuation. In this way, 

we eliminate, to a significant degree, the biases imposed by the resolution issue, and we 

allow for the ducting variations to be dictated mainly by the meteorological variations. 

2. Analysis and Discussion Around Ducting Variability 

In this section, we analyze the interseasonal and interannual surface ducting 

variations, try to interpret them and give sensible explanations based on physical rules 

and fundamental meteorological principles. 

a. Interseasonal Variability 

The striking difference, which holds in ducting conditions, between winter 

and summer (Figure 44) stems from the same causes as those described and analyzed for 

Athens. The main cause for the interseasonal dissimilarity has to do with the amounts of 

moisture present in the lower levels of atmosphere. The intense evaporation during 

summer produces strong water vapor pressure gradients at the vertical, generating surface 

ducts and, at the same time, renders the potential ducting mechanisms more effective, as 

has already been analyzed. 

On the other hand, during winter, the mechanisms that generate surface 

ducts operate under a regime of lower moisture amounts and, therefore, their ability to 

create ducting conditions is substantially reduced. Furthermore, the evaporation is much 

less, due to much lower temperatures. 

b. Interannual Variability 

Following the same reasoning we applied for Athens, in this section we try 

to verify that the moisture amounts present in the lower atmosphere account, to a great 

degree, for the yearly variations observed in surface ducting conditions. Again, we have 

used mixing ratio as a surrogate of the water vapor pressure.  
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Figure 47 shows time series of ducting frequency and mixing ratios for the 

two lower levels of the recorded levels. Both winter and summer parameters are shown. 

By correlating the Frequency with the mixing ratio at the surface, we obtained a very 

high correlation coefficient for summer and no correlation for winter. The lower 

correlation for winter should have been expected, since M lies at the left part of the 

exponential curves (Figure 24), but we did not expect to receive no correlation at all. The 

respective numbers are 0.84r   with 99%p   for the summer, and  0.02r   for the 

winter. 
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Figure 47.   Time series for Izmir in summer (upper panel) and winter (lower panel) of 
Frequency (green lines with triangle markers), moisture mixing ratio at the 

surface level (blue lines with rhombus markers) and moisture mixing ratio at the 
next higher level recorded by the radiosonde sounding (red lines with square 
markers). The correlation between the Frequency and surface mixing ratio is 

shown in the lower right of each panel 
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By correlating the Frequency with the mixing ratio at the surface, we 

received the following correlation coefficients: 0.73r   with significance level 

99%p  for the summer, and 0.02r   for the winter. We expected that the winter 

correlation values would be lower than the summer ones, but we did not expect to receive 

almost zero correlation. A reasonable explanation for that could be that the more complex 

topography of the area surrounding Izmir allows mesoscale and local effects to manifest 

themselves, and eventually to affect surface ducting conditions by modulating the 

climatic large-scale influence upon the last ones 

Based on the methods and the tools described in Chapter II and following 

the same routine as we did for Athens, we demonstrate only the more significant 

correlations, for which an adequate physical interpretation applies. A train of figures 

follows with correlation maps between Frequency at Izmir and selected climate system 

variables. As for Athens, we expect to see correlations dictated by the relationship 

between surface ducting conditions and the existing amounts of moisture. 

Due to the results of the previous section with regard to the resolution, we 

decided to isolate and work with the period 2002–2009 for the winter and 2000–2009 for 

the summer. These periods do not display large resolution variability and we consider 

that trying to correlate ducting parameters with meteorological variables for these 

specific time intervals will give us realistic results, free from resolution-induced biases. 

(1)  Winter.  Figure 48 shows the correlation between Izmir 

Frequency and SLP for winter 2002-2009. Negative correlation is observed over the E. 

Mediterranean and Minor Asia, but the resultant correlation coefficient is not as strong as 

in Athens. More significant correlations occur over the N. Atlantic and Arctic Oceans, 

being related with the NAO and AO modes. Even though the correlations of the ducting 

frequency with the NAO and AO indices proper are not strong enough, it turns out that 

they are significant with the associated SLP patterns. We calculated correlation 

coefficient for the N. Atlantic SLP 0.78r    with significance level 98%p   and for 

the Arctic SLP 0.76p   with 97p  %. Equally important are the correlations that were 

computed between the ducting height and the SLP over these two regions. All the 
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calculated correlation coefficients with their corresponding significance levels are 

summarized in Table 8, after the correlation maps.  

 

Figure 48.   Linear correlations in winter between SLP and Frequency at Izmir for the 
period 2002-2009, based on 1981–2010 NCEP reanalysis dataset. The black 

rectangles indicate areas of strong correlations.  Correlation magnitudes ≥ 0.30 
and greater indicate significance at the 95% level or greater. Figure created at: 

NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 49 illustrates the correlation maps for PR, and RH at 700mb level. 

As in Athens, the correlations with these two meteorological variables seem to be the 

most resilient ones. All the three ducting parameters are considerably correlated with 

them (Table 8), with the Frequency correlations being the highest. The correlation with 

RH takes on the values of 0.86r  and 99%p  , and the correlation with PR assumes 

values of 0.76r   and 97%p  .  
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Figure 49.   Linear correlations in winter between Frequency at Izmir and the: (a) PR (left 
panel); and (b) RH at 700 hPa (right panel) for the period 2002-2009, based on 

1981–2010 NCEP reanalysis dataset. The black rectangles in the eastern 
Mediterranean region indicate areas of strong positive correlation that are over 
and near the Aegean focus region of our study.  Correlation magnitudes ≥ 0.30 
and greater indicate significance at the 95% level or greater. Figures created at: 

NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 50 depicts the correlation maps for ZW and MW at 850 hPa. The 

positive correlations, which have also been observed for Athens, make their presence 

here too, however with less intensity, and being shifted to the southeast. 
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Figure 50.   Linear correlations in winter between Frequency at Izmir and the: (a) ZW at 
850 hPa (left panel); and (b) MW at 850 hPa (right panel) for the period 2002-

2009, based on 1981–2010 NCEP reanalysis dataset. The black rectangles in the 
eastern Mediterranean region indicate areas of strong positive correlation that are 
over and near the Aegean focus region of our study.  Correlation magnitudes ≥ 

0.30 and greater indicate significance at the 95% level or greater. Figures created 
at: NOAA/ESRL Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 51 shows correlation maps for SST. Both concurrent and lagging 

correlations have been plotted. As we did for Athens, we have focused on the positive 

correlation occurring at the Aegean Sea and the negative correlation occurring at the N. 

Atlantic Ocean between SST and the Frequency index lagging by one month. The 

respective values are presented on Table 8. 
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Figure 51.   Linear correlations in winter between Frequency at Izmir and the: (a) SST 
(left panel); and (b) SST leading by one month (right panel) for the period 2002-

2009, based on 1981–2010 NCEP reanalysis dataset.  The black rectangles 
indicate areas of strong correlations.  Correlation magnitudes ≥ 0.30 and greater 

indicate significance at the 95% level or greater. Figures created at: NOAA/ESRL 
Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Table 8 is a summary of all the correlations between ducting 

parameters and meteorological variables for winter 2002-2009 at the Izmir station. 

Correlations with the NAO and AO indices are also included. Among them, the 

correlations with SLP over the N. Atlantic and Arctic Ocean, PR and RH at the 700 hPa 

level over the E. Mediterranean distinguish. As with the correlations in Athens, all three 

ducting parameters (Frequency, Height and Strength gradient) exhibit the same trends; 

that is, all are correlated with the respective meteorological values with the same sign.  A 

comparison between Table 8 and Table 6 for Athens confirms the consistency of 

correlation patterns between the two stations. 
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Table 8.   The winter mean values of the ducting parameters for Izmir (top four rows) and 
the correlations between those parameters and corresponding area-average 

environmental variables for selected regions. Only significance levels greater than 
or equal to 90% are shown. The correlations with significance levels greater than 

or equal to 95% are highlighted in yellow. Correlations with NAO and AO indices 
are also included. The sign of the correlation is indicated by the colored arrows: 

red indicates negative and green indicates positive.  
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The observed correlation patterns (Figure 48–51) and the 

individual correlation values (Table 8) together indicate that surface ducting conditions in 

Izmir  are very consistent with the respective ones for Athens, even if the correlations 

tend to be little lower. As discussed before, a possible reason may be the more active role 

of the local effects. So, the correlation patterns indicate that surface ducting conditions 

are more likely in winter when mid-latitude depressions are occurring in the area. These 

depressions constitute a major source of humidity, especially by producing southwesterly 

moisture advection over the Aegean Sea from the relatively humid regions over the 

Mediterranean (see Figure 10). Additionally, they are accompanied by frontal activity, 

which also improves ducting conditions, as explained in the previous section.  The very 

strong correlations with the PR and the RH (Table 8) over the E. Mediterranean support 

these arguments. 

Additionally, the SST correlations in the Aegean Sea and the North 

Atlantic Ocean (Figure 51) are consistent with the same processes. The negative 

correlation at N. Atlantic Ocean is linked with the negative correlation of SLP over the 

same area (Figure 48), and by extension with the NAO mode. The negative correlation 

with the NAO index confirms this reasoning. Another noteworthy feature is the same 

correlation tendency for all the three ducting parameters (Table 8), a tendency that has 

also been recorded for Athens. 

Figures 52–56 illustrate composite anomaly maps of selected 

climate system variables for the two years that exhibited the highest Frequency during the 

2002-2009 period and the two years that exhibited the lowest Frequency during the 

2002–2009 period.  

The anomaly maps give coherent results with the correlation maps. 

The years of the highest Frequency are those ones with negative phases of the NAO and 

AO modes, as it is evident from the SLP anomaly dipole over the N. Atlantic Ocean 

(Figure 52). During those years, more mid-latitude storms were directed towards the E. 

Mediterranean, as indicated by the negative SLP anomaly over the Aegean region, the 

positive precipitation rate anomaly (Figure 53), the positive RH anomaly (Figure 54) and 

the generally southwesterly flow anomaly indicated by the VW anomalies (Figure 55). 
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The SST anomalies at the Aegean Sea and the North Atlantic are also in agreement with 

the corresponding correlation maps and the physical interpretations given earlier (Figure 

56). 

 

Figure 52.   SLP composite anomaly maps for the two winters with the highest Frequency 
at Izmir (left panel) and the lowest Frequency at Izmir (right panel).   Figures 

created at: NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed February 2012.  

 

 

Figure 53.   PR composite anomaly maps for the two winters with the highest Frequency 
at Izmir (left panel) and the lowest Frequency at Izmir (right panel).  Figures 

created at: NOAA/ESRL Physical Sciences Division website, available online at 
http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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Figure 54.   RH at 700 hPa composite anomaly maps for the two winters with the highest 
Frequency at Izmir (left panel) and the lowest Frequency at Izmir (right panel).  
Figures created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  

 
 
 

 

Figure 55.   VW at 850 hPa composite anomaly maps for the two winters with the highest 
Frequency at Izmir (left panel) and the lowest Frequency at Izmir (right panel).  
Figures created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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Figure 56.   SST composite anomaly maps for the two winters with the highest Frequency 
at Izmir (left panel) and the lowest Frequency at Izmir (right panel).   SST leads 

by one month. Figures created at: NOAA/ESRL Physical Sciences Division 
website, available online at http://www.esrl.noaa.gov/psd/ , accessed February 

2012.  

For the years of the lowest Frequency, we see the opposite 

patterns, even though the opposite anomalies look weaker. Interestingly, during the low 

Frequency years, a southerly flow exists over the Aegean (Figure 55), something that 

contradicts the rest anomalies. Even more interesting is the fact that while the high 

Frequency years are common for both Athens and Izmir, for the low Frequency years, a 

discrepancy emerges; 2009 appears as a low year for Izmir but not for Athens. On the 

contrary, 2009 is a year of relatively high Frequency for Athens. 

In order to understand what lies behind this discrepancy, Figure 57 

shows the Frequency and resolution plots for both stations. By inspecting the 2007–2009 

period we can see that 2007 is a low Frequency year for both stations, then a small 

increase is recorded at 2008 for both stations, but later on, 2009 appears to present 

opposite tendency. Focusing on the resolution graph from 2008 to 2009, we note an 

important difference between the two stations. While the resolution for Athens increases 

from 2008 to 2009 by approximately one-fourth (from 42% to 52%), the resolution for 

Izmir decreases during the same period by approximately one-fourth (from 46% to 36%). 

The implication of this opposite movement is that the recorded Frequency for Athens 
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converges to the real ducting conditions and appears higher than the previous year; 

whereas the recorded Frequency for Izmir diverges from the real ducting conditions and 

appears lower from the previous year. 

 

 

Figure 57.   Time series during winter. The blue line (rhombus markers) connects the 
seasonal means of ducting parameters for each year. The red line (square markers) 

connects the seasonal means of the resolution, represented in %. 

In order to verify that the ducting conditions for the 2009 were 

actually improved, Figure 58 depicts the anomalies of the variables under study for that 
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year. Everything seems to be consistent with the interpretations that we have already 

given. Lower than usual SLP, related with anomalously southerly flow, leads to higher 

than normal PR and increased mid-altitude RH. Indeed, all the necessary ingredients for a 

high-frequency year are in place. In conclusion, we can definitely claim that the 

manifestation of 2009 as a year of low Frequency for Izmir is a superficial event, 

provoked by the resolution issue.          

 

Figure 58.   Winter anomaly maps for the year 2009. The top panes show the SLP 
composite anomaly (left map) and VW at 850mb composite anomaly (right map). 
The bottom panes show the PR composite anomaly (left map) and the RH at 700 
hPa composite anomaly (right map). Figures created at: NOAA/ESRL Physical 
Sciences Division website, available online at http://www.esrl.noaa.gov/psd/ , 

accessed February 2012.  
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One more case with anomalous behavior is the year 2000. It does 

not belong in the 2002–2009 period that we have isolated for further investigation, but it 

seems associated with the odd, spike-like structure of the resolution graph. We think that 

it is worth further observation. The year 2000 appears as one with an excessively high 

Frequency. The other two ducting parameters also exhibit peaks at 2000 (Figure 45), 

signifying an altogether favorable year for the surface ducts.  

Having looked at the atmospheric conditions for this specific year, 

we composed Figure 59 where anomaly maps of the meteorological variables of interest 

are assembled together. The interpretation of these maps indicates 2000 was a year of 

positive NAO, with relatively poor rainy conditions for the Aegean, relatively low RH 

and with a general northerly flow prevailing. All these parameters refer to weak ducting 

conditions. In spite of that, the winter of 2000 appears as a year of enhanced ducting 

conditions. Once more, we hold the resolution responsible for this situation that, for 

reason unknown to us, performed tremendously that year and drove the Frequency up, 

accordingly.   
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Figure 59.   Winter anomaly maps for the year 2000. The top panes show the SLP 
composite anomaly (left map) and VW at 850 hPa  composite anomaly (right 

map). The bottom panes show the PR anomaly (left map) and the RH at 700 hPa  
composite anomaly (right map). Figures created at: NOAA/ESRL Physical 

Sciences Division website, available online at http://www.esrl.noaa.gov/psd/ , 
accessed February 2012.  

 

(2)  Summer.  Correlation maps between Frequency at Izmir and 

selected climatic system variables follow for the summer. As for the winter, only the 

more significant correlations, with a physical linkage between ducting and 

meteorological conditions, are demonstrated. 

Figure 60 shows the correlation map for SLP. Comparing this 

figure with its counterpart for Athens, one can see that the positive correlation over the 

Indian subcontinent remains, although weaker, but the pattern over Europe and the E. 
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Mediterranean has changed, demonstrating weak positive correlation instead of strong 

positive. Another distinguishable feature in this map is the dipole observed over the N. 

Atlantic Ocean. This dipole suggests significant relations between the Frequency at Izmir 

and NAO mode. Indeed, the correlation we computed between these two indices is 

0.67r   with significance level 97%p  . 

 

Figure 60.   Linear correlations in summer  between SLP and Frequency at Izmir for the 
period 2000-2009, based on 1981–2010 NCEP reanalysis dataset.  Correlation 
magnitudes ≥ 0.30 and greater indicate significance at the 95% level or greater. 
Figure created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

In Figure 61, the correlation maps for ZW and MW, at 850 hPa 

level, are depicted. Very weak positive correlation develops over the Aegean Sea for the 

ZW and a weak negative develops for the MW, in contrast to Athens wind patterns 

(Figure 37), where the correlations for both the wind components were positive and 

stronger. 
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Figure 61.   Linear correlations in summer between Frequency at Izmir and the: (a) ZW at 
850 hPa (left panel); and (b) MW at 850 hPa (right panel) for the period 2000-
2009, based on 1981–2010 NCEP reanalysis dataset.  Correlation magnitudes ≥ 

0.30 and greater indicate significance at the 95% level or greater. Figures created 
at: NOAA/ESRL Physical Sciences Division website, available online at 

http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

Figure 62 shows correlation maps for SST. Both concurrent and 

lagging correlations have been plotted. Although there is consistency between the 

correlation patterns depicted in this maps the respective ones for Athens (Figure 38), 

nevertheless, they appear to be more blurred. 
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Figure 62.   Linear correlations in summer  between Frequency at Izmir and the: (a) SST 
hPa (left panel); and (b) SST leading by one month (right panel) for the period 

2000-2009, based on 1981–2010 NCEP reanalysis dataset.  Correlation 
magnitudes ≥ 0.30 and greater indicate significance at the 95% level or greater. 
Figures created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/ , accessed January 2012.  

In general, summer correlations do not reveal any strong signal, 

with the exception of the NAO correlation, which is the unique statistically significant 

one. Moreover, an inconsistency is exposed, as far as correlations with wind patterns are 

concerned, between Izmir and Athens stations.  

As described for Athens, Izmir lies under the regime of a 

background northeasterly flow at lower levels of the atmosphere, due to the relative 

position between the Azores High and the Indian Thermal Low. The geography around 

the station amplifies the meridional component of that flow, producing a clear northerly 

wind over the city of Izmir, which dominates during summer (Komusku et al., 1998). 

Rare, but not unusual, are situations in which this flow obtains a zonal component and 

shifts northwesterly or northeasterly. Even more rarely, a southwesterly flow is recorded. 

The prevailing northerly flow constitutes the main mechanism that 

regulates the moisture levels over Izmir. Figure 63 shows the geography of the area. 

From the relative position of the land and water masses, it is evident that the northerly 

flow, before reaching the Izmir station, travels over warm sea, getting enriched in water 
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vapor (Sayin 2003). This results in increasing the amounts of moisture over Izmir, and 

consequently, in enhanced ducting conditions. 

 

Figure 63.   Izmir Bay and the surrounding land masses. Izmir radiosonde station is 
denoted with the red balloon. (From Google Maps) 

On the other hand, a little shift of the flow from directly northerly 

to northeasterly is enough to change significantly the advected amount of moisture. 

Northeasterly wind does not flow anymore over the sea and, therefore, it advects dry air 

from continental origin, reducing the total amount of moisture over Izmir. Comparing the 

coastlines of Izmir and Athens (Figure 39), one can see that the Izmir coastline is more 

rugged with a west-east orientation, whereas Athens’ coastline has a nearly north-south 

orientation. This means that the northerly flow for Izmir has an onshore character, while 

the northerly flow for Athens has an offshore character. Moreover Izmir is situated on the 

border where two major, completely different air masses clash—one of a marine nature 

originating from Mediterranean Sea, and the other of a continental nature originating 

from Anatolia plateau (Unal et al. 2010). These differences are crucial and explain 

sufficiently the observed discrepancies on correlation patterns between Athens and Izmir 

for the summer season. 
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In conclusion, the wind correlation patterns in Figure 61 are 

justified by the fact that the northerly flow improves ducting conditions over Izmir by 

advecting more moisture, while an easterly component of the winds deteriorates ducting 

conditions. The reverse scheme is established with southerly flow and a westerly 

component. In general, we repeat that the complex topography around Izmir station 

enables local mechanisms to develop and blend with the ducting effects that the large-

scale phenomena impose. This may be the main reason for the resultant weaker 

correlations, in comparison with the respective ones in Athens.  

Quite peculiar is the situation concerning the correlations 

associated with the SLP presented in Figure 60, and the correlations associated with the 

SST presented in Figure 62. The correlations patterns seem to be blurry, without allowing 

for sufficient interpretation. We consider that the particularity of the terrain surrounding 

Izmir is the main reason for this. Little variation of the isobars orientation cause 

alterations in the wind patterns over Izmir bay, which in turn are capable of generating 

remarkable changes in ducting conditions, as discussed previously. Therefore, we believe 

that even small changes in the relative positions of the Azores High and Indian Low, 

without necessary changes of their magnitudes, can have a large impact on ducting 

conditions at Izmir station. This situation cannot be reflected by the correlation maps, and 

this may be the reason for the weak signal that we obtained. 

Following the same practice we applied for Athens, we also 

present anomaly maps, which help us to better understand the influence of the large-scale 

weather upon ducting conditions. Following the same routine, we selected the four years 

out of the 2002–2009 period with the most anomalous behavior in terms of ducting 

frequency. The years 2002 and 2003 are those with the highest Frequency, and 2006 and 

2009 are those with the lowest Frequency. By using seasonal composites of the anomalies 

of the meteorological variables under question, we have tried to verify the correlation 

patterns that we met before. 

In Figure 64, the SLP anomaly maps do not give a clear signal 

between the two anomalous for the Frequency periods. No tendency of the pressure 

gradient over the E. Mediterranean is uncovered, in accordance with the Azores High and 
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the Indian Low behavior. Despite that, they are in agreement with the respective 

correlation map for summer (Figure 60), which also demonstrate an uncertain signal. The 

same ambiguity holds for the SST anomaly maps in Figure 65, as happens with the 

corresponding correlation map. In Figure 66, the VW at 850 hPa anomaly maps portray a 

general northerly flow over the E. Mediterranean for the high Frequency years, even if 

not evident over the Izmir area, and a southerly flow over the Aegean for the low 

Frequency years. For the first case, the wind travels over the sea before reaching Izmir 

station and gathers moisture from the evaporating water mass below. In the second case, 

of the low Frequency years, the wind travels over warm land and mixes with dryer air 

before arriving at Izmir. All in all, the anomaly maps are consistent with the correlation 

maps and the explanations that we have given before. 

 

Figure 64.   SLP composite anomaly maps for the two summers with the highest 
Frequency at Izmir (left panel) and the lowest Frequency at Izmir (right panel).   
Figures created at: NOAA/ESRL Physical Sciences Division website, available 

online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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Figure 65.   SST composite anomaly maps for the two summers with the highest 
Frequency at Izmir (left panel) and the lowest Frequency at Izmir (right panel).   

The SST leads by one month. Figures created at: NOAA/ESRL Physical Sciences 
Division website, available online at http://www.esrl.noaa.gov/psd/ , accessed 

February 2012.  

 

Figure 66.   VW at 850 hPa composite anomaly maps for the two summers with the 
highest Frequency at Izmir (left panel) and the lowest Frequency at Izmir (right 
panel).   Figures created at: NOAA/ESRL Physical Sciences Division website, 

available online at http://www.esrl.noaa.gov/psd/ , accessed February 2012.  
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D. ANALYSIS OF DUCTING CONDITIONS OVER HERAKLION STATION 

1. Derived Statistics 

Initially, we examined the variation of the ducting parameters over an entire year. 

Figure 67 shows the yearly distribution of these parameters. Summer has the highest 

Frequency, highest Height and highest Strength gradient, suggesting that favorable 

conditions for ducting formation prevail during summer months. In contrast, winter 

exhibits the lowest values of Frequency, Height and Strength gradient. 

 

Figure 67.   Distribution plots of ducting parameters for HERAKLION station. The values 
used for this plot have been derived by averaging the monthly means over the 

1991–2010 period. For the years 1994, 1995, 1997, 2008, and 2009, no data was 
available. 
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The variability of these parameters is quantified by the standard deviation. The 

same patterns as for the two previous stations appear here, which lead to the same 

conclusions. Summer seems to be the season with more robust ducting conditions. 

Another conclusion, deducted from the winter’s large variability in Frequency (compared 

to the mean values), is that ducting conditions during winter follow the variability of 

atmosphere, imposed by the synoptic scale circulation. In contrast, summer’s low 

variability in Frequency can be attributed to the more stable weather during this season. 

Next, we examined the interannual variability of ducting parameters throughout 

the 1991–2010 period, taking into consideration the resolution issue that we had 

confronted with the two other stations. By applying the same methodology as for Athens, 

we calculated the critical levels, below which the major volume of surface ducts are 

expected to be. For winter, we determined a critical level of 91 m from mean SLP altitude 

and for summer, with a critical level of 101 m from mean SLP altitude. 

In Figure 68, the resultant plots for the winter season are presented and linear 

trend lines for the ducting parameters have been added to each plot. A similar situation is 

encountered here, with trends over the ducting parameters revealing statistical biases that 

favor the ducting conditions during the second half of the 1991–2010 period. The 

additional characteristic here on the resolution graph, is that one more shift is recorded 

throughout the 20-year period. The first one happens after 1998, as was the case for the 

other stations. The second one occurs after 2007, giving rise to substantially better 

ducting conditions in 2010. We are not able to define exactly which year this shift on 

resolution emerges, because there are no data for 2008 and 2009.  

Significant positive correlation occur between Height and vertical resolution with 

a value of 0.74r    and significance level 99%p  . The correlations with the other two 

ducting parameters are not significant, but a careful look at the relevant plots uncovers an 

unambiguous dependence between them and the resolution. In general, regarding the 

correlation coefficients along with the relevant plots, we deduce that the observed biases 

are due to the long-term variation of the vertical resolution.  
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Figure 68.   Time series of ducting parameters during winter for Heraklion.  The blue line 
(rhombus markers) connects the seasonal means of ducting parameters for each 

year. The red line (square markers) connects the seasonal means of the resolution, 
expressed in %. The red straight line depicts the linear trend of the ducting 

parameters series. For the years 1994, 1995, 1997, 2008, and 2009, there were no 
data available. 
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Figure 69 shows the respective plots for summer. It can be noticed that the same 

connection between resolution and ducting parameters statistics holds during summer. 

Similar features with the other stations are notable here.  The correlation between 

Frequency and resolution is much weaker than during winter, although remaining 

positive. The same explanation previously given for the other stations applies to this 

differentiation. The first shift after 1998 is evident here too, but the second shift, which is 

observed for the winter season after 2007, does not exist. 

 

Figure 69.   Time series of ducting parameters during summer for Heraklion.  The blue 
line (rhombus markers) connects the seasonal means of ducting parameters for 

each year. The red line (square markers) connects the seasonal means of the 
resolution, expressed in %. The red straight line depicts the linear trend of the 

ducting parameters series. For the years 1994, 1995, and 1997, no data was 
available. 
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2. Ducting Variability 

The derived statistics described on the previous subsection are based on the 

averaging of the seasonal means for the 1991–2010 period. Unfortunately the existing 

data sets regarding radiosonde soundings are incomplete. A few years are missing 

completely and some other years’ seasonal means have been derived by averaging only 

one or two months, instead of the necessary three, because of lack of data. Furthermore, 

the data before 2003 have been collected, based on only once-a-day measurements, 

sometimes during daytime only (12Z soundings), and other times during nighttime only 

(00Z soundings). 

All these discrepancies make the available datasets for the Heraklion station 

unreliable for correlating with meteorological variations. We consider that the biases are 

large, and we cannot trust any resultant correlation accounting for the yearly variation of 

the ducting parameters. For this reason, we have confined our research to only the mere 

reference of the derived statistics, described in the previous subsection. 

E. CONSOLIDATION 

1. Comparisons Among the Stations 

Figure 70 shows the annual cycle of the ducting parameters for all the three 

stations together. The seasonal variations are similar for all the three stations, which gives 

extra creditability to the derived statistics and supports the physical interpretations given 

in the previous sections. For all three stations: (1) the summer Frequency of surface 

ducting is approximately twice that in the winter; and (2) the summer Height and 

Strength gradient are generally greater than in the winter. These similarities were 

expected, since all the three stations belong to an area with relatively uniform climate 

patterns, and are influenced by the similar weather systems and climate variations. The 

relatively small differences between the stations are due to the particularities of each 

individual station, dictated by specific geography and local effects.. 
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Figure 70.   Annual cycle of ducting parameters for all the three stations based on 
averaging the monthly means for the 1991–2010 period. 
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Figures 71 and 72 show the interannual variations in the ducting parameters for 

the winter and summer for all three stations. Table 9 summarizes the correlations between 

Athens and Izmir. Correlations between Heraklion and the other stations are not 

presented due to the incompleteness of the Heraklion datasets. Together, Figures 71-72 

and Table 9 indicate a low to high degree of interannual correlation between the stations.  

Visual inspection of the previous plots, along with the corresponding correlations, reveals 

some notable ambiguities, but some important conclusions can still be drawn. Frequency 

correlations are stronger during winter and nonexistent to negative during summer, which 

is consistent with the earlier analyses concerning the differences in the processes that 

determine ducting conditions during winter and summer. Winter ducting conditions are 

governed by synoptic scale weather conditions, which tend to be very similar for all three 

stations. But summer ducting conditions are significantly influenced by local mechanisms 

due to the relative absence of synoptic scale weather events in the summer. 
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Figure 71.   Time series of ducting parameters during winter.  The markers represent the 
seasonal means of ducting parameters for each year. The gaps denote years with 

missing data. 
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Figure 72.   Time series of ducting parameters during summer.  The markers represent the 
seasonal means of ducting parameters for each year. The gaps denote years with 

missing data. 
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Table 9.   Correlation coefficients and significance levels between Athens and Izmir. 
Significance levels lower than 95% are not included. 

ATHENS - IZMIR Frequency Height 
Strength 
Gradient 

Winter r = 0.47      p = 95% r = 0.49    p = 96% r = 0.27 
Summer r = -0.07 r = 0.75    p > 99% r = 0.19 

 
 

2. Measurements Errors and Statistics Uncertainties 

This study was based on data derived from the processing of radiosonde 

measurements. In particular, our results were based on the recorded sounding 

measurements at the first few levels in the lower atmosphere, including the ground level. 

Significant biases can be caused by temporal variations in the number and elevation of 

these levels. Other biases can result from the use of different instruments for the 

measurements of the very first two levels. It is important to highlight that the 

measurements at the first level, the ground level, are always taken from the ground 

station and not from the radiosonde itself. This means that biases can ensue, due to the 

use of different instruments. This can produce misleading results, especially concerning 

reversals at the base of the M profile. However, M reversals can be substantiated if they 

are indicated by the data from more than two levels (i.e., one on the ground and at least 

two more above).  

During winter, the majority of the surface ducts were determined based on data 

from only two measured levels — the first one being on the ground and the second one 

being several meters above. During summer, the majority of them were determined based 

on data from at least three levels. This calculation of the summer M  profiles indicates 

that our summer results are relatively free from biases induced by the use of different 

instruments. This conclusion is supported by the similar annual cycles in the ducting 

parameters for all three stations (Figure 70). 

We calculated many correlation coefficients. From a probabilistic perspective, a 

few of the correlations coefficients would be large, just by chance. Therefore, we 

recommend focusing on the correlations with a significance level greater than or equal to 
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99%.  However, for many of the correlations with lower significance levels, the 

composite anomaly results indicated that the correlations represented physically plausible 

dynamical relationships that were physically consistent with the relationships indicated 

by the correlations with higher significance levels.  
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

The purpose of this study was to establish how climatological factors affect the 

surface ducting conditions in the Aegean Sea Region. In order to accomplish our task, we 

used radiosonde soundings as a primary source of data. By analyzing this data, we were 

able to identify major spatial and temporal characteristics of surface ducting in the 

Aegean region. We did so for three different radiosonde stations in the Aegean region for 

a period of 20 consecutive years, 1991-2010.  

We used the NCEP reanalysis dataset as the main source of data on regional and 

large scale climate patterns and variations. Based on these datasets and with the aid of the 

ESRL/PSD online tools, we were able to create seasonal mean time series for selected 

climate system variables and to correlate them with time a series of ducting parameters. 

We investigated links between the ducting and regional and large scale conditions, with a 

focus on seasonal and interannual variations in the ducting and correlated climate 

variations. 

Many important relationships were identified, and even more important biases 

were uncovered. In our effort to interpret these relationships, we came up with 

explanations that are governed by physical rules and refer to fundamental climate system 

principles. Consequently, they can have applications beyond the limits of this study. The 

most important results and conclusions are listed below. 

 Surface ducts constitute a special class of ducts with particular 
characteristics and relationships to local and regional environmental 
conditions. A main reason for this is surface ducts are attached to the 
ground, within the surface layer of the atmosphere. Because of their 
shallow nature, they tend not to conform to general theories that apply to 
other duct categories --- for example, that ducting is strongly associated 
with capping inversions occurring at the top of the ABL.  

 Surface ducting tends to be better developed during summer and less well 
developed during winter. The major reason for this is that there are higher 
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amounts of low-level atmospheric moisture in the summer. Large-scale 
subsidence forced by anticyclones seems not to significantly affect surface 
ducting. 

 The amounts of moisture at the lower atmosphere are similarly responsible 
for the interannual variability of the ducting conditions. Moist conditions 
in the lower atmosphere leads to enhanced surface ducting, while dry 
conditions lead to the reduced surface effect. 

 For the Aegean, the main source of moist air is the Mediterranean Sea, and 
the main source of dry air is the surrounding land, especially continental 
areas to the north and northeast of the Aegean. Moist and dry air advection 
into the Aegean region plays a major role in determining the moisture 
conditions that strongly affect surface ducting in the region.   

 Winter ducting conditions are strongly influenced by the occurrence or 
absence of mid-latitude depressions over or near the Aegean. Their 
occurrence (absence) leads to increased (decreased) moisture in the 
Aegean due to the moisture in the depressions and moisture advection 
induced by the depressions. The AO and NAO influence the presence of 
these atmospheric disturbances and thus impact ducting in the Aegean 
region. 

 Summer ducting conditions are governed by the dry and moist air 
advection associated with persistent large-scale circulations features, 
especially the Azores High and the thermal low over southwest and south-
cental Asia.  These features tend to produce dry air advection from the 
northeast over the Aegean. Intraseasonal to interannual variations in these 
features can cause corresponding variations in surface ducting in the 
Aegean region. The relative lack of synoptic weather systems in summer 
allows mesoscale and local effects to manifest themselves, modulate the 
effects of large-scale circulation features, and thereby affect surface 
ducting conditions. The geography, coastline orientation, and topography 
are all important factors affecting summer surface ducting conditions. 

 Substantial biases were discovered in our analyses due to temporal 
variations in the vertical resolution of the radiosonde data. The lower the 
resolution, the higher the divergence of the statistics from the real ducting 
conditions appeared to be. Extra care is required in the analysis of ducting 
statistics based on radiosonde datasets. 

In conclusion, we believe that through this work we have set solid foundations for 

ducting studies from a climatological perspective in the Aegean Sea region and other 

regions. We expect that the results of our study will be useful, not only for ducting 

climatology studies in other regions, but also in investigations of the nature of surface 

ducting. 
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B. RECOMMENDATIONS  

We recommend that analogous research to ours be conducted in the near future 

for other regions of the globe but with similar geographic characteristics. Potentially 

similar results with ours will give rise to the development of surface ducting climatology 

for coastal areas. Moreover, future research should investigate the elevated ducting 

conditions for the same region in order to identify whether the same relationships hold 

between climate system variables and ducting parameters. Highly beneficial would be the 

conducting of a similar study employing other methods, than the use of radiosonde data, 

for determining surface ducts. In this way, an extremely useful validation would result 

providing more accurate and valid knowledge around the surface ducting conditions. 
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APPENDIX  A 

The seasonal statistics of ducting parameters, in tabular format, are contained in 

this appendix. All the values represent seasonal means that were derived from averaging 

the respective monthly means. 
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Table 10.   Winter ducting statistics for Athens, between 1991 and 2000. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

ATHENS / DEC ‐ JAN ‐ FEB 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Throughout the Day (Frequency of duct - percentage) 8.33 26.54 20.72 40.35 22.86 16.53 15.78 22.58 30.78 23.07

Radiosonde Resolution % (measurements below 61m) 4.00 8.67 6.67 22.33 23.67 6.33 9.67 16.67 51.00 54.00
Daytime (Frequency of duct - percentage) 6.67 15.05 14.41 30.89 13.08 11.09 10.12 15.00 34.29 33.28
Nighttime (Frequency of duct - percentage) 13.06 38.10 26.67 50.08 33.11 21.90 22.61 31.49 27.78 12.57

Mean Heihgt (m) 63.13 63.05 63.81 62.28 60.68 57.69 67.12 61.24 40.73 39.00
Lower Quartile of Duct's Heights 57.50 60.17 60.00 54.83 50.17 47.67 61.50 54.67 29.17 30.00
Median of Duct's Heights 63.25 65.17 65.50 61.67 54.33 57.33 71.33 62.17 37.83 41.67
Higher Quartile of Duct's Heights 68.75 68.00 70.67 67.17 71.33 69.17 74.50 69.33 53.00 49.33
Std. D. of Duct's Heights 8.23 13.80 11.01 13.24 16.58 18.22 12.57 15.99 15.55 12.04

Mean of Strength of Ducts 4.53 3.74 3.06 6.29 4.45 3.89 4.22 3.72 3.71 3.01
Lower Q. Strength of Ducts 2.91 1.94 1.16 3.31 2.33 1.61 1.63 1.57 1.28 0.98
Median of Strength of Ducts 4.05 2.96 3.00 5.60 4.25 2.81 4.01 3.04 2.89 2.87
Higher Q. of Strength of Ducts 6.15 4.68 4.57 8.99 6.65 5.67 5.84 5.79 4.89 3.78
Std.D. of Strength of Ducts 2.16 2.76 2.35 3.72 2.48 3.13 2.98 2.81 3.45 2.72

Mean of Strength Gradient of Ducts 0.09 0.09 0.07 0.15 0.11 0.19 0.10 0.10 0.24 0.20
Lower Q. Strength Gradient of Ducts 0.06 0.04 0.02 0.07 0.05 0.04 0.04 0.03 0.06 0.05
Median of Strength Gradient of Ducts 0.08 0.06 0.07 0.13 0.11 0.08 0.08 0.07 0.13 0.09
Higher Q. of Strength Gradient of Ducts 0.12 0.13 0.10 0.21 0.17 0.32 0.14 0.16 0.36 0.31
Std.D. of Strength Gradient of Ducts 0.04 0.08 0.05 0.10 0.08 0.24 0.12 0.09 0.30 0.24

Min Height of Ducts 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Max Height of Ducts 70.50 93.33 80.67 102.00 104.00 85.67 81.00 91.33 73.33 55.67

Mean of Mdeficit 4.53 3.74 3.06 6.29 4.45 3.89 4.22 3.72 3.71 3.01
Lower Quartile of Mdeficit 2.91 1.94 1.16 3.31 2.33 1.61 1.63 1.57 1.28 0.98
Median of Mdeficit 4.05 2.96 3.00 5.60 4.25 2.81 4.01 3.04 2.89 2.87
Higher Quartile of Mdeficit 6.15 4.68 4.57 8.99 6.65 5.67 5.84 5.79 4.89 3.78
Std. D. of Mdeficit 2.16 2.76 2.35 3.72 2.48 3.13 2.98 2.81 3.45 2.72  
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Table 11.   Winter ducting statistics for Athens, between 2001 and 2010. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

ATHENS / DEC ‐ JAN ‐ FEB 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-'10

Throughout the Day (Frequency of duct - percentage) 28.16 31.40 44.87 44.42 42.09 28.40 15.35 17.43 36.39 44.17 33.27

Radiosonde Resolution % (measurements below 61m) 43.00 54.67 55.33 55.33 58.00 43.33 39.33 41.67 51.67 55.67 49.80
Daytime (Frequency of duct - percentage) 23.65 34.24 52.15 55.70 39.35 24.34 8.26 11.32 33.64 40.60 32.32
Nighttime (Frequency of duct - percentage) 32.70 28.75 38.06 33.07 44.82 30.86 21.46 23.65 39.13 48.85 34.13

Mean Heihgt (m) 41.85 41.58 39.63 41.38 40.31 40.75 37.74 39.54 39.93 42.10 40.48
Lower Quartile of Duct's Heights 27.00 26.00 25.33 25.67 28.33 30.33 25.00 28.00 27.00 25.33 26.80
Median of Duct's Heights 37.50 33.50 35.00 36.83 36.33 34.83 36.33 39.83 36.83 38.17 36.52
Higher Quartile of Duct's Heights 52.17 47.00 49.17 52.83 49.33 54.00 52.50 48.67 49.33 55.00 51.00
Std. D. of Duct's Heights 16.44 21.43 15.93 18.51 14.90 16.88 11.35 14.15 16.84 19.84 16.63

Mean of Strength of Ducts 4.71 3.68 4.10 4.28 4.44 4.92 4.21 4.43 5.31 4.39 4.45
Lower Q. Strength of Ducts 2.03 2.31 1.67 2.01 1.39 1.69 0.79 1.67 1.93 1.86 1.74
Median of Strength of Ducts 4.22 3.41 3.48 3.49 3.18 2.93 3.63 3.58 3.52 3.91 3.53
Higher Q. of Strength of Ducts 7.06 5.05 6.18 6.14 5.36 5.14 7.62 6.30 7.80 6.44 6.31
Std.D. of Strength of Ducts 3.27 2.11 3.14 2.97 5.69 6.45 3.67 4.01 4.69 3.34 3.93

Mean of Strength Gradient of Ducts 0.32 0.23 0.29 0.29 0.28 0.31 0.30 0.33 0.37 0.31 0.30
Lower Q. Strength Gradient of Ducts 0.07 0.06 0.09 0.07 0.05 0.07 0.03 0.06 0.07 0.05 0.06
Median of Strength Gradient of Ducts 0.19 0.16 0.15 0.16 0.17 0.16 0.15 0.14 0.18 0.16 0.16
Higher Q. of Strength Gradient of Ducts 0.41 0.33 0.41 0.38 0.34 0.34 0.58 0.42 0.50 0.47 0.42
Std.D. of Strength Gradient of Ducts 0.40 0.23 0.35 0.33 0.35 0.50 0.36 0.46 0.45 0.38 0.38

Min Height of Ducts 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Max Height of Ducts 76.67 99.00 88.33 93.00 82.67 109.00 57.67 66.00 82.33 143.00 89.77

Mean of Mdeficit 4.67 3.68 4.07 4.25 4.44 4.52 4.20 4.43 5.31 4.15 4.37
Lower Quartile of Mdeficit 1.80 2.31 1.61 1.95 1.39 1.52 0.75 1.67 1.93 1.86 1.68
Median of Mdeficit 4.22 3.41 3.47 3.49 3.18 2.93 3.63 3.58 3.52 3.40 3.48
Higher Quartile of Mdeficit 7.06 5.05 6.18 6.14 5.36 5.14 7.62 6.30 7.80 6.02 6.27
Std. D. of Mdeficit 3.31 2.11 3.16 2.99 5.69 5.26 3.68 4.01 4.69 3.12 3.80  
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Table 12.   Summer ducting statistics for Athens, between 1991 and 2000. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

ATHENS / JUN ‐ JUL ‐ AUG 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Throughout the Day (Frequency of duct - percentage) 60.10 51.97 62.18 66.52 53.00 61.55 67.45 68.19 64.82 50.48
Radiosonde Resolution % (measurements below 91m) 39.33 37.00 36.00 36.67 35.00 32.67 38.67 81.00 87.33 75.67
Daytime (Frequency of duct - percentage) 60.54 51.16 56.30 55.53 47.42 58.25 67.23 68.89 65.95 55.78
Nighttime (Frequency of duct - percentage) 59.76 52.46 68.21 76.61 59.27 66.12 67.67 67.30 63.74 45.12

Mean Heihgt (m) 98.13 104.94 116.85 102.60 112.31 115.77 96.55 73.67 64.65 67.72
Lower Quartile of Duct's Heights 64.83 72.50 68.50 66.00 78.67 66.00 65.67 51.00 38.83 38.00
Median of Duct's Heights 96.17 105.17 107.33 101.00 107.00 117.83 88.83 68.50 59.33 59.33
Higher Quartile of Duct's Heights 117.67 127.67 143.50 127.00 124.33 139.17 122.83 89.67 84.83 92.17
Std. D. of Duct's Heights 39.76 37.61 61.45 43.36 54.45 50.11 41.07 33.29 37.10 37.79

Mean of Strength of Ducts 12.94 12.30 14.98 13.60 11.59 14.64 14.12 13.78 12.13 12.03
Lower Q. Strength of Ducts 4.38 3.85 4.33 3.97 4.12 6.76 4.61 5.17 4.78 3.90
Median of Strength of Ducts 10.24 10.06 14.15 11.33 10.68 14.01 10.83 11.20 10.30 10.81
Higher Q. of Strength of Ducts 19.50 18.36 22.70 20.19 17.99 21.66 21.77 20.95 16.99 17.75
Std.D. of Strength of Ducts 10.69 9.89 11.23 11.50 8.51 9.92 11.56 10.70 9.04 9.94

Mean of Strength Gradient of Ducts 0.20 0.17 0.21 0.22 0.16 0.20 0.23 0.33 0.38 0.31
Lower Q. Strength Gradient of Ducts 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.08 0.12 0.09
Median of Strength Gradient of Ducts 0.13 0.12 0.13 0.13 0.10 0.13 0.14 0.20 0.23 0.19
Higher Q. of Strength Gradient of Ducts 0.30 0.25 0.34 0.31 0.21 0.31 0.36 0.44 0.42 0.41
Std.D. of Strength Gradient of Ducts 0.21 0.17 0.20 0.25 0.15 0.19 0.25 0.37 0.44 0.35

Min Height of Ducts 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Max Height of Ducts 241.67 222.67 359.33 296.00 346.33 259.33 214.33 229.67 253.67 218.00

Mean of Mdeficit 12.91 11.92 14.97 13.40 11.57 14.60 13.88 13.72 11.88 11.57
Lower Quartile of Mdeficit 4.25 3.16 4.33 3.97 4.12 6.58 4.61 5.17 4.60 3.48
Median of Mdeficit 10.24 9.59 14.15 11.33 10.68 14.01 10.83 11.20 9.55 10.47
Higher Quartile of Mdeficit 19.50 18.02 22.70 19.61 17.99 21.66 21.29 20.81 16.99 16.95
Std. D. of Mdeficit 10.72 9.81 11.25 11.33 8.54 9.97 11.33 10.74 9.09 9.97  
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Table 13.   Summer ducting statistics for Athens, between 2001 and 2010. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

ATHENS / JUN ‐ JUL ‐ AUG 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-'10
Throughout the Day (Frequency of duct - percentage) 62.42 65.63 69.71 66.97 75.15 55.68 60.95 64.06 64.50 74.53 65.96
Radiosonde Resolution % (measurements below 91m) 86.67 80.67 82.67 82.00 83.33 84.33 92.67 88.00 83.67 73.33 83.73
Daytime (Frequency of duct - percentage) 67.08 72.53 72.20 76.73 84.29 67.43 76.48 87.50 87.50 85.49 77.72
Nighttime (Frequency of duct - percentage) 57.79 59.52 67.38 56.67 66.34 44.31 52.07 61.77 64.17 72.58 60.26

Mean Heihgt (m) 70.05 66.19 71.89 67.70 63.48 60.89 71.70 62.31 59.66 68.53 66.24
Lower Quartile of Duct's Heights 42.33 44.50 42.50 34.67 37.33 38.17 39.83 39.00 36.00 42.67 39.70
Median of Duct's Heights 67.17 58.33 58.67 52.83 59.17 54.00 51.33 53.83 54.17 66.67 57.62
Higher Quartile of Duct's Heights 93.50 87.33 101.00 92.83 79.83 72.50 88.83 77.67 71.17 86.00 85.07
Std. D. of Duct's Heights 34.29 31.23 38.93 40.27 30.66 35.50 50.35 37.19 37.26 33.58 36.93

Mean of Strength of Ducts 12.09 11.94 14.65 12.13 11.91 11.93 13.58 11.86 10.88 12.47 12.34
Lower Q. Strength of Ducts 5.60 4.94 6.65 5.25 3.57 4.78 5.35 5.50 5.03 5.21 5.19
Median of Strength of Ducts 9.67 9.19 12.78 9.88 9.91 8.95 10.64 9.27 9.84 10.36 10.05
Higher Q. of Strength of Ducts 16.72 16.14 19.32 17.08 19.81 17.92 20.58 18.86 14.64 17.20 17.83
Std.D. of Strength of Ducts 10.12 10.12 10.61 9.41 9.28 9.74 10.15 8.22 7.56 10.48 9.57

Mean of Strength Gradient of Ducts 0.32 0.33 0.41 0.38 0.40 0.39 0.37 0.38 0.51 0.43 0.39
Lower Q. Strength Gradient of Ducts 0.10 0.10 0.10 0.11 0.09 0.12 0.10 0.11 0.12 0.10 0.11
Median of Strength Gradient of Ducts 0.21 0.23 0.23 0.24 0.23 0.25 0.22 0.24 0.29 0.23 0.24
Higher Q. of Strength Gradient of Ducts 0.36 0.44 0.47 0.45 0.49 0.46 0.37 0.44 0.61 0.46 0.45
Std.D. of Strength Gradient of Ducts 0.39 0.32 0.53 0.51 0.49 0.48 0.52 0.44 0.73 0.61 0.50

Min Height of Ducts 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Max Height of Ducts 261.00 171.00 233.00 193.33 202.00 181.00 232.00 226.33 168.00 188.00 205.57

Mean of Mdeficit 11.66 11.79 14.09 11.81 11.80 11.44 13.06 11.22 10.67 12.40 12.00
Lower Quartile of Mdeficit 5.34 4.83 6.64 4.89 3.57 4.35 4.35 4.14 5.03 5.00 4.81
Median of Mdeficit 8.86 9.20 12.27 9.46 9.91 8.51 10.44 9.20 9.73 10.36 9.79
Higher Quartile of Mdeficit 15.91 15.84 17.83 16.67 19.70 17.29 19.43 18.08 14.26 17.20 17.22
Std. D. of Mdeficit 10.21 10.09 10.19 9.49 9.23 9.52 10.03 7.78 7.47 10.52 9.45  
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Table 14.   Winter ducting statistics for Izmir, between 1991 and 2000. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

IZMIR / DEC ‐ JAN ‐ FEB 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Throughout the Day (Frequency of duct - percentage) 0.00 6.69 9.80 5.09 0.00 4.12 2.77 2.92 5.05 41.83

Radiosonde Resolution % (measurements below 71m) 5.00 10.67 13.33 16.33 9.00 11.00 11.33 8.67 28.33 87.67
Daytime (Frequency of duct - percentage) 0.00 8.90 9.21 8.02 0.00 6.00 5.17 7.02 5.19 51.31
Nighttime (Frequency of duct - percentage) 0.00 4.42 10.35 2.34 0.00 2.27 2.15 1.19 4.94 32.10

Mean Heihgt (m) NaN 49.18 54.12 58.22 NaN 52.42 124.50 57.13 57.64 42.26
Lower Quartile of Duct's Heights NaN 42.00 45.33 40.17 NaN 49.50 46.00 40.00 37.00 37.00
Median of Duct's Heights NaN 49.83 54.50 57.67 NaN 52.33 123.00 56.50 58.00 42.50
Higher Quartile of Duct's Heights NaN 57.67 63.67 76.83 NaN 53.75 62.00 46.50 46.50 47.67
Std. D. of Duct's Heights NaN 8.02 11.81 23.80 NaN 1.69 5.23 2.39 1.65 5.52

Mean of Strength of Ducts NaN 3.44 3.51 8.12 NaN 3.90 3.73 10.00 3.64 3.21
Lower Q. Strength of Ducts NaN 1.10 1.10 3.25 NaN 2.79 1.98 0.44 0.61 1.48
Median of Strength of Ducts NaN 3.20 3.59 6.55 NaN 3.83 2.25 9.18 3.48 2.35
Higher Q. of Strength of Ducts NaN 5.94 5.58 12.99 NaN 6.31 9.02 5.79 2.71 4.58
Std.D. of Strength of Ducts NaN 2.85 2.64 6.64 NaN 1.69 3.32 2.05 0.50 2.42

Mean of Strength Gradient of Ducts NaN 0.18 0.18 0.33 NaN 0.18 0.15 0.29 0.12 0.28
Lower Q. Strength Gradient of Ducts NaN 0.05 0.04 0.15 NaN 0.13 0.06 0.03 0.03 0.10
Median of Strength Gradient of Ducts NaN 0.19 0.16 0.31 NaN 0.17 0.07 0.27 0.13 0.18
Higher Q. of Strength Gradient of Ducts NaN 0.30 0.30 0.51 NaN 0.32 0.53 0.34 0.16 0.47
Std.D. of Strength Gradient of Ducts NaN 0.14 0.19 0.25 NaN 0.09 0.20 0.10 0.03 0.24

Min Height of Ducts NaN 29.00 29.00 29.00 NaN 29.00 29.00 29.00 29.00 29.00
Max Height of Ducts NaN 58.67 120.00 167.00 NaN 54.00 131.50 60.50 59.00 53.67

Mean of Mdeficit NaN 3.44 3.18 6.18 NaN 3.90 3.73 10.00 3.64 3.21
Lower Quartile of Mdeficit NaN 1.10 1.10 3.09 NaN 2.79 1.98 0.44 0.61 1.48
Median of Mdeficit NaN 3.20 3.59 5.49 NaN 3.83 2.25 9.18 3.48 2.35
Higher Quartile of Mdeficit NaN 5.94 4.77 9.28 NaN 6.31 9.02 5.79 2.71 4.58
Std. D. of Mdeficit NaN 2.85 2.19 4.08 NaN 1.69 3.32 2.05 0.50 2.42  



 117

Table 15.   Winter ducting statistics for Izmir, between 2001 and 2010. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

IZMIR / DEC ‐ JAN ‐ FEB 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-10

Throughout the Day (Frequency of duct - percentage) 5.32 37.14 54.22 54.78 24.26 12.91 11.39 13.72 6.83 8.59 15.37

Radiosonde Resolution % (measurements below 71m) 18.33 33.33 37.67 45.67 43.33 39.33 40.67 46.33 35.67 26.67 28.42
Daytime (Frequency of duct - percentage) 6.04 41.86 63.82 57.60 30.87 17.63 19.81 22.10 9.21 13.49 19.16
Nighttime (Frequency of duct - percentage) 4.57 32.41 44.62 51.87 17.68 8.00 3.26 5.49 4.53 3.71 11.80

Mean Heihgt (m) 51.00 64.06 64.07 57.78 50.75 48.89 43.20 43.53 46.47 43.97 56.07
Lower Quartile of Duct's Heights 41.50 42.67 45.33 37.17 36.00 36.75 36.75 34.33 42.33 37.00 40.38
Median of Duct's Heights 50.17 56.83 62.67 50.17 39.50 46.67 42.33 41.00 46.00 39.50 53.84
Higher Quartile of Duct's Heights 73.50 72.00 74.50 74.00 62.00 57.17 55.33 51.83 50.50 53.50 59.94
Std. D. of Duct's Heights 14.57 29.52 21.90 23.06 20.25 11.44 8.34 9.32 5.54 9.29 11.85

Mean of Strength of Ducts 3.20 5.50 5.15 5.54 4.31 1.42 1.42 1.82 6.51 6.91 4.52
Lower Q. Strength of Ducts 2.55 2.35 2.94 2.48 2.00 0.43 0.46 0.51 1.02 1.29 1.60
Median of Strength of Ducts 2.63 4.82 4.65 4.43 3.87 1.37 1.41 1.64 3.32 2.66 3.62
Higher Q. of Strength of Ducts 8.11 8.30 7.14 8.65 6.00 2.29 2.16 2.95 11.43 12.78 6.82
Std.D. of Strength of Ducts 2.20 4.17 3.38 3.97 3.22 1.22 1.05 1.32 8.31 8.51 3.30

Mean of Strength Gradient of Ducts 0.25 0.30 0.29 0.45 0.40 0.12 0.13 0.15 0.41 0.40 0.26
Lower Q. Strength Gradient of Ducts 0.08 0.08 0.07 0.08 0.07 0.03 0.04 0.04 0.09 0.09 0.07
Median of Strength Gradient of Ducts 0.17 0.15 0.17 0.25 0.34 0.08 0.10 0.14 0.22 0.34 0.19
Higher Q. of Strength Gradient of Ducts 0.63 0.48 0.38 0.83 0.66 0.20 0.19 0.33 0.70 0.57 0.44
Std.D. of Strength Gradient of Ducts 0.22 0.33 0.34 0.49 0.39 0.14 0.13 0.17 0.50 0.37 0.24

Min Height of Ducts 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00
Max Height of Ducts 65.33 168.00 120.00 110.00 99.00 71.00 62.67 61.33 112.33 131.50 94.75

Mean of Mdeficit 3.20 5.50 5.15 5.54 4.31 1.42 1.41 1.82 5.25 5.02 4.22
Lower Quartile of Mdeficit 2.55 2.35 2.94 2.48 2.00 0.43 0.46 0.51 1.01 1.29 1.59
Median of Mdeficit 2.63 4.82 4.65 4.43 3.87 1.37 1.41 1.64 3.32 2.47 3.55
Higher Quartile of Mdeficit 8.11 8.30 7.14 8.65 6.00 2.29 2.16 2.95 8.30 6.59 6.05
Std. D. of Mdeficit 2.20 4.17 3.38 3.97 3.22 1.22 1.06 1.32 7.27 5.93 2.94  
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Table 16.   Summer ducting statistics for Izmir, between 1991 and 2000. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

IZMIR / JUN ‐ JUL ‐ AUG 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Throughout the Day (Frequency of duct - percentage) 14.56 65.53 72.91 32.29 34.10 71.52 8.44 65.80 70.34 53.83
Radiosonde Resolution % (measurements below 81m) 51.67 61.67 49.33 65.67 76.00 71.67 40.33 52.00 95.67 82.00
Daytime (Frequency of duct - percentage) 17.02 80.32 83.41 83.33 54.52 74.77 6.13 74.13 83.00 65.41
Nighttime (Frequency of duct - percentage) 12.22 50.50 62.69 28.84 12.42 28.57 10.45 57.63 57.80 41.85

Mean Heihgt (m) 81.79 80.43 88.31 77.61 78.37 79.16 91.57 85.48 50.15 62.29
Lower Quartile of Duct's Heights 59.17 63.17 66.33 59.00 56.00 57.33 67.50 75.33 38.33 46.83
Median of Duct's Heights 82.67 82.17 87.50 74.00 72.17 72.00 96.50 84.83 46.50 56.83
Higher Quartile of Duct's Heights 97.00 96.50 111.67 95.00 89.50 97.00 116.00 94.00 56.33 71.67
Std. D. of Duct's Heights 29.19 24.84 29.37 24.64 33.70 25.69 25.90 15.24 14.03 22.59

Mean of Strength of Ducts 10.44 11.31 12.95 13.39 8.54 14.32 7.34 7.45 10.66 14.35
Lower Q. Strength of Ducts 3.21 3.80 4.99 6.30 2.78 5.94 0.87 3.29 4.37 6.65
Median of Strength of Ducts 11.11 7.82 10.73 12.38 7.37 14.66 5.12 6.54 8.75 11.73
Higher Q. of Strength of Ducts 15.11 18.30 19.70 20.77 12.22 20.48 11.59 10.95 15.28 20.47
Std.D. of Strength of Ducts 8.70 9.73 9.36 8.68 7.04 10.16 7.66 5.05 9.04 11.51

Mean of Strength Gradient of Ducts 0.32 0.43 0.41 0.41 0.25 0.49 0.14 0.16 0.71 0.87
Lower Q. Strength Gradient of Ducts 0.05 0.07 0.08 0.12 0.06 0.09 0.02 0.07 0.18 0.23
Median of Strength Gradient of Ducts 0.18 0.15 0.19 0.35 0.14 0.27 0.09 0.13 0.47 0.60
Higher Q. of Strength Gradient of Ducts 0.47 0.34 0.44 0.71 0.38 0.79 0.15 0.23 0.87 0.99
Std.D. of Strength Gradient of Ducts 0.50 0.75 0.65 0.34 0.29 0.54 0.22 0.13 0.77 0.98

Min Height of Ducts 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00
Max Height of Ducts 126.67 211.67 164.67 126.33 185.67 137.33 120.00 116.33 93.67 124.00

Mean of Mdeficit 10.44 11.01 12.93 13.34 8.54 14.24 7.34 7.45 10.66 14.35
Lower Quartile of Mdeficit 3.21 3.80 4.99 5.99 2.78 5.71 0.87 3.29 4.37 6.65
Median of Mdeficit 11.11 7.62 10.73 12.38 7.37 14.66 5.12 6.54 8.75 11.73
Higher Quartile of Mdeficit 15.11 17.02 19.70 20.77 12.22 20.48 11.59 10.95 15.28 20.47
Std. D. of Mdeficit 8.70 9.58 9.38 8.73 7.04 10.25 7.66 5.05 9.04 11.51  
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Table 17.   Summer ducting statistics for Izmir, between 2001 and 2010. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. 

IZMIR / JUN ‐ JUL ‐ AUG 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-'10
Throughout the Day (Frequency of duct - percentage) 78.11 94.02 96.70 71.19 35.76 31.56 34.72 38.60 25.63 3.26 50.96
Radiosonde Resolution % (measurements below 81m) 79.33 82.33 86.00 75.00 81.00 81.00 87.00 85.67 77.00 66.00 80.03
Daytime (Frequency of duct - percentage) 86.88 100.00 100.00 79.76 60.24 58.06 63.03 62.63 45.98 6.56 66.31
Nighttime (Frequency of duct - percentage) 69.05 88.14 93.41 62.58 12.08 6.53 6.67 14.34 5.67 0.00 35.85

Mean Heihgt (m) 72.88 69.65 64.40 69.41 52.38 50.48 50.18 55.47 54.57 72.78 61.22
Lower Quartile of Duct's Heights 58.00 49.50 41.33 52.33 44.33 40.83 39.17 44.00 41.17 41.50 45.22
Median of Duct's Heights 73.67 67.00 58.33 67.67 50.83 48.17 46.33 51.50 51.33 74.33 58.92
Higher Quartile of Duct's Heights 87.67 84.00 84.83 83.00 61.33 58.50 53.00 62.83 64.00 79.50 71.87
Std. D. of Duct's Heights 19.46 27.59 25.27 24.58 12.97 13.39 15.80 18.01 14.88 15.72 18.77

Mean of Strength of Ducts 14.25 22.85 22.73 6.86 4.08 4.37 4.21 6.16 13.31 5.37 10.42
Lower Q. Strength of Ducts 6.06 12.95 13.86 3.26 1.92 1.69 1.85 2.68 1.33 1.27 4.69
Median of Strength of Ducts 13.39 22.37 21.04 6.18 3.93 3.92 3.82 4.96 4.13 2.78 8.65
Higher Q. of Strength of Ducts 20.89 30.92 31.08 9.46 6.08 6.68 5.60 7.72 23.17 12.05 15.36
Std.D. of Strength of Ducts 9.79 12.29 12.62 5.22 2.59 3.22 3.16 5.79 18.76 6.59 8.00

Mean of Strength Gradient of Ducts 0.48 1.05 1.37 0.22 0.27 0.28 0.30 0.38 0.52 0.12 0.50
Lower Q. Strength Gradient of Ducts 0.13 0.28 0.28 0.07 0.08 0.10 0.10 0.10 0.06 0.02 0.12
Median of Strength Gradient of Ducts 0.29 0.64 0.83 0.17 0.18 0.18 0.20 0.19 0.19 0.08 0.30
Higher Q. of Strength Gradient of Ducts 0.64 1.46 2.03 0.35 0.34 0.35 0.35 0.46 1.05 0.25 0.73
Std.D. of Strength Gradient of Ducts 0.55 1.08 1.47 0.25 0.30 0.28 0.36 0.61 0.71 0.13 0.57

Min Height of Ducts 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00
Max Height of Ducts 115.00 169.00 140.33 162.67 83.67 89.00 105.33 152.33 223.00 120.33 136.07

Mean of Mdeficit 14.25 22.85 22.73 6.86 4.08 4.36 4.21 6.13 9.41 5.03 9.99
Lower Quartile of Mdeficit 6.06 12.95 13.86 3.26 1.92 1.63 1.85 2.66 1.33 1.27 4.68
Median of Mdeficit 13.39 22.37 21.04 6.18 3.93 3.92 3.82 4.96 3.95 2.72 8.63
Higher Quartile of Mdeficit 20.89 30.92 31.08 9.46 6.08 6.68 5.60 7.72 17.01 11.10 14.65
Std. D. of Mdeficit 9.79 12.29 12.62 5.22 2.59 3.22 3.16 5.81 11.66 6.02 7.24  
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Table 18.   Winter ducting statistics for Heraklion, between 1991 and 2000. Besides the ducting parameters that have been analyzed in this 
thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. Missing values 

mean that no data were available. 

HERAKLION / DEC ‐ JAN ‐ FEB 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Throughout the Day (Frequency of duct - percentage) 8.59 17.02 9.09 3.52 7.23 16.43 3.62

Radiosonde Resolution % (measurements below 91m) 12.50 19.67 32.00 30.00 27.33 39.00 51.00
Daytime (Frequency of duct - percentage) 8.59 17.02 9.09
Nighttime (Frequency of duct - percentage) 3.59 6.14 16.43 3.62

Mean Heihgt (m) 106.75 86.00 83.50 73.00 89.67 76.73 67.75
Lower Quartile of Duct's Heights 81.00 78.00 80.00 73.00 63.33 47.00
Median of Duct's Heights 108.75 84.50 83.50 73.00 88.33 75.00 67.75
Higher Quartile of Duct's Heights 90.00 93.50 87.00 94.00 95.00 64.00
Std. D. of Duct's Heights 4.17 8.12 4.95 0.00 7.81 17.13 6.01

Mean of Strength of Ducts 5.21 8.93 6.60 0.43 5.74 2.67 1.82
Lower Q. Strength of Ducts 2.77 5.32 3.47 2.09 1.03 0.07
Median of Strength of Ducts 3.83 8.32 6.60 0.43 5.05 2.07 1.82
Higher Q. of Strength of Ducts 13.55 10.46 9.73 7.64 4.02 6.41
Std.D. of Strength of Ducts 3.94 4.08 4.42 0.00 2.15 2.26 2.24

Mean of Strength Gradient of Ducts 0.10 0.19 0.15 0.01 0.13 0.09 0.21
Lower Q. Strength Gradient of Ducts 0.05 0.12 0.07 0.04 0.02 0.00
Median of Strength Gradient of Ducts 0.08 0.20 0.15 0.01 0.09 0.09 0.21
Higher Q. of Strength Gradient of Ducts 0.30 0.24 0.24 0.26 0.15 0.80
Std.D. of Strength Gradient of Ducts 0.08 0.08 0.12 0.00 0.08 0.06 0.28

Min Height of Ducts 39.00 39.00 39.00 39.00 39.00 39.00 39.00
Max Height of Ducts 109.00 98.50 87.00 73.00 97.33 104.00 72.00

Mean of Mdeficit 5.21 8.93 6.60 0.43 5.74 2.67 1.82
Lower Quartile of Mdeficit 2.77 5.32 3.47 2.09 1.03 0.07
Median of Mdeficit 3.83 8.32 6.60 0.43 5.05 2.07 1.82
Higher Quartile of Mdeficit 13.55 10.46 9.73 7.64 4.02 6.41
Std. D. of Mdeficit 3.94 4.08 4.42 0.00 2.15 2.26 2.24  
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Table 19.   Winter ducting statistics for Heraklion, between 2001 and 2010. Besides the ducting parameters that have been analyzed in this 
thesis Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. Missing values 

mean that no data were available. 

HERAKLION / DEC ‐ JAN ‐ FEB 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-'10

Throughout the Day (Frequency of duct - percentage) 11.67 10.63 14.32 16.11 10.97 12.64 4.24 46.17 15.84

Radiosonde Resolution % (measurements below 91m) 45.00 49.67 49.67 48.33 37.00 45.67 26.50 60.00 45.23
Daytime (Frequency of duct - percentage) 20.58 21.13 10.73 13.96 6.90 48.50 20.30
Nighttime (Frequency of duct - percentage) 11.67 10.63 12.39 9.58 11.33 6.67 1.67 43.51 13.43

Mean Heihgt (m) 65.00 67.92 73.37 66.87 68.19 58.78 62.40 64.48 65.88
Lower Quartile of Duct's Heights 47.00 61.17 52.67 51.17 51.00 49.33 56.00 50.17 52.31
Median of Duct's Heights 67.00 69.17 72.83 56.83 53.00 55.33 64.00 58.50 62.08
Higher Quartile of Duct's Heights 99.00 74.67 86.33 80.67 83.75 71.67 72.00 71.00 79.89
Std. D. of Duct's Heights 13.11 10.16 26.06 24.17 24.80 14.09 6.69 18.01 17.14

Mean of Strength of Ducts 1.80 1.90 2.20 3.00 2.02 5.18 3.72 6.10 3.24
Lower Q. Strength of Ducts 1.12 1.15 0.33 0.98 0.74 2.03 0.91 2.80 1.26
Median of Strength of Ducts 1.32 1.88 1.52 1.98 1.74 4.67 2.06 5.35 2.56
Higher Q. of Strength of Ducts 5.27 2.65 2.87 4.02 3.37 8.33 7.36 9.75 5.45
Std.D. of Strength of Ducts 1.12 1.05 2.93 3.04 1.66 4.57 3.72 4.36 2.81

Mean of Strength Gradient of Ducts 0.08 0.06 0.07 0.15 0.16 0.35 0.19 0.46 0.19
Lower Q. Strength Gradient of Ducts 0.03 0.04 0.01 0.05 0.03 0.14 0.04 0.13 0.06
Median of Strength Gradient of Ducts 0.09 0.06 0.04 0.09 0.10 0.24 0.10 0.32 0.13
Higher Q. of Strength Gradient of Ducts 0.14 0.08 0.12 0.16 0.32 0.56 0.38 0.69 0.31
Std.D. of Strength Gradient of Ducts 0.03 0.03 0.09 0.17 0.18 0.33 0.22 0.47 0.19

Min Height of Ducts 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00
Max Height of Ducts 77.00 74.67 133.67 118.33 115.50 84.33 72.00 147.00 102.81

Mean of Mdeficit 1.80 1.90 1.81 3.00 2.02 4.08 3.72 6.04 3.04
Lower Quartile of Mdeficit 1.12 1.15 0.33 0.98 0.74 1.68 0.91 2.64 1.19
Median of Mdeficit 1.32 1.88 1.29 1.98 1.74 3.97 2.06 5.35 2.45
Higher Quartile of Mdeficit 5.27 2.65 2.71 4.02 3.37 6.48 7.36 9.51 5.17
Std. D. of Mdeficit 1.12 1.05 2.25 3.04 1.66 3.31 3.72 4.38 2.57  
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Table 20.   Summer ducting statistics for Heraklion, between 1991 and 2000. Besides the ducting parameters that have been analyzed in 
this thesis Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. Missing values 

mean that no data were available. 

HERAKLION / JUN ‐ JUL ‐ AUG 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Throughout the Day (Frequency of duct - percentage) 63.02 22.82 42.73 20.12 42.10 16.94 14.47

Radiosonde Resolution % (measurements below 101m) 47.33 37.67 33.67 40.00 77.00 79.67 81.00
Daytime (Frequency of duct - percentage) 63.02 22.82 42.73
Nighttime (Frequency of duct - percentage) 20.12 42.10 17.10 14.47

Mean Heihgt (m) 121.13 125.11 125.93 128.03 103.07 89.93 81.83
Lower Quartile of Duct's Heights 95.67 78.75 91.25 86.83 78.67 74.00 70.50
Median of Duct's Heights 108.50 128.67 109.67 119.33 89.50 85.67 83.00
Higher Quartile of Duct's Heights 125.67 167.50 186.25 147.33 133.50 103.67 94.17
Std. D. of Duct's Heights 48.00 34.36 45.78 62.14 40.44 19.78 16.57

Mean of Strength of Ducts 12.22 9.42 9.03 5.50 6.14 5.29 8.38
Lower Q. Strength of Ducts 4.41 3.82 6.26 2.15 2.37 3.18 2.35
Median of Strength of Ducts 9.02 9.03 7.25 3.83 4.95 4.64 5.83
Higher Q. of Strength of Ducts 17.20 20.76 16.94 6.73 8.37 7.70 9.41
Std.D. of Strength of Ducts 10.73 6.92 7.19 5.96 5.11 2.81 9.48

Mean of Strength Gradient of Ducts 0.20 0.09 0.17 0.06 0.13 0.17 0.34
Lower Q. Strength Gradient of Ducts 0.07 0.05 0.04 0.03 0.06 0.09 0.05
Median of Strength Gradient of Ducts 0.10 0.07 0.06 0.05 0.08 0.11 0.11
Higher Q. of Strength Gradient of Ducts 0.25 0.13 0.19 0.09 0.15 0.18 0.25
Std.D. of Strength Gradient of Ducts 0.24 0.07 0.35 0.04 0.13 0.13 0.66

Min Height of Ducts 39.00 39.00 39.00 39.00 39.00 39.00 39.00
Max Height of Ducts 271.33 251.67 294.67 260.00 198.00 141.33 164.33

Mean of Mdeficit 11.98 8.98 8.64 5.25 6.10 5.06 6.18
Lower Quartile of Mdeficit 4.41 3.82 6.18 1.21 2.37 3.18 2.02
Median of Mdeficit 9.02 8.96 6.67 3.58 4.89 4.57 3.06
Higher Quartile of Mdeficit 17.20 19.54 15.84 6.73 8.37 6.85 6.12
Std. D. of Mdeficit 10.00 6.27 7.21 6.11 5.12 2.55 8.25  
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Table 21.   Summer ducting statistics for Heraklion, between 2001 and 2010. Besides the ducting parameters that have been analyzed in 
this thesis, Strength, M deficit, Maximum and Minimum Heights were calculated and are displayed in this table. Missing 

values mean that no data were available. 

HERAKLION / JUN ‐ JUL ‐ AUG 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Average '91-'10

Throughout the Day (Frequency of duct - percentage) 13.52 27.68 33.33 30.26 10.91 29.39 73.23 64.41 65.02 64.37 41.21

Radiosonde Resolution % (measurements below 101m) 78.67 69.33 73.00 77.67 76.00 77.33 89.50 89.00 74.50 80.33 78.53
Daytime (Frequency of duct - percentage) 53.33 47.70 17.86 40.79 89.00 73.46 82.61 95.00 62.47
Nighttime (Frequency of duct - percentage) 13.52 27.68 13.33 14.27 3.70 18.26 57.47 55.75 59.59 55.34 31.89

Mean Heihgt (m) 102.14 104.74 74.20 79.30 83.17 81.82 78.11 92.95 87.65 80.39 86.45
Lower Quartile of Duct's Heights 70.33 55.33 58.00 59.00 74.00 59.67 63.25 65.00 60.75 59.17 62.45
Median of Duct's Heights 100.83 71.33 66.00 67.67 77.50 72.00 72.75 80.50 78.00 78.33 76.49
Higher Quartile of Duct's Heights 137.00 95.50 81.00 82.33 97.00 92.33 92.50 96.50 105.00 91.33 97.05
Std. D. of Duct's Heights 36.97 93.75 20.15 43.26 12.61 34.55 23.13 65.77 37.38 29.26 39.68

Mean of Strength of Ducts 4.46 7.89 5.78 9.40 10.24 8.18 11.02 13.48 11.44 11.55 9.34
Lower Q. Strength of Ducts 1.86 2.38 2.08 2.67 3.54 1.84 4.40 5.70 4.64 5.34 3.44
Median of Strength of Ducts 4.71 7.82 4.62 7.29 7.69 3.94 9.05 9.59 8.70 9.90 7.33
Higher Q. of Strength of Ducts 6.66 12.52 6.99 12.89 15.53 11.85 15.74 17.48 17.30 14.81 13.18
Std.D. of Strength of Ducts 2.71 5.75 4.81 8.35 9.17 10.06 9.13 12.67 8.59 8.16 7.94

Mean of Strength Gradient of Ducts 0.08 0.48 0.23 0.34 0.19 0.25 0.44 0.47 0.51 0.63 0.36
Lower Q. Strength Gradient of Ducts 0.04 0.06 0.06 0.08 0.07 0.04 0.09 0.09 0.08 0.13 0.07
Median of Strength Gradient of Ducts 0.08 0.16 0.18 0.23 0.11 0.10 0.26 0.21 0.23 0.26 0.18
Higher Q. of Strength Gradient of Ducts 0.10 0.77 0.34 0.47 0.31 0.35 0.60 0.48 0.50 0.62 0.45
Std.D. of Strength Gradient of Ducts 0.04 0.71 0.21 0.35 0.17 0.32 0.49 0.63 0.72 0.92 0.46

Min Height of Ducts 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00
Max Height of Ducts 160.33 313.00 244.00 275.67 229.00 348.67 235.00 422.00 262.50 166.33 265.65

Mean of Mdeficit 2.97 7.89 4.91 8.11 6.57 6.07 10.88 12.68 11.01 11.52 8.26
Lower Quartile of Mdeficit 1.28 2.38 1.98 2.30 2.62 1.84 3.57 5.29 4.42 5.31 3.10
Median of Mdeficit 2.29 7.82 4.38 6.34 4.53 3.58 9.05 9.51 8.58 9.90 6.60
Higher Quartile of Mdeficit 4.74 12.52 6.72 12.45 7.78 8.39 15.74 16.52 16.72 14.81 11.64
Std. D. of Mdeficit 2.09 5.75 3.83 7.40 6.53 6.48 9.24 12.22 8.27 8.19 7.00  
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APPENDIX  B 

This appendix contains the MATLAB codes that were used for the extraction of 

the necessary variables from the raw data and the computation of statistical quantities. 

A. MATLAB CODE TO PREPROCESS THE RAW DATA FILES 

function preprocess(filename) 
% 
% Purpose: Adds a blank line in between individual soundings so that  
%         the "load_sounding" program will work without any  
%         modifications. 
% Written 5/26/11 by Arlene Guest 
%  
% Output filename is same as input filename, but with an 'm' at the 
% beginning, so ATHENS_MAY_2010.txt becomes mATHENS_MAY2010.txt 
% 
% format: 
% LGIR Observations at 00Z 01 Jan 2005 
% ----------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA     
%     hPa     m      C      C      %    g/kg    deg   knot     K     
% ----------------------------------------------------------------- 
%  1016.0     39    9.6    7.0     84   6.22    160      6  281.5    
%  1009.0     95   12.0    8.5     79   6.94    184      6  284.4   
%  1000.0    168   12.2    6.2     67   5.98    215      6  285.4   
%   987.0    277   11.6    6.6     71   6.23    234      6  285.8   
% Station information and sounding indices 
%                          Station identifier: LGIR 
%                              Station number: 16754 
%                            Observation time: 050101/0000 
%                            Station latitude: 35.33 
%                           Station longitude: 25.18 
%                           Station elevation: 39.0 
%                             Showalter index: 11.02 
%                                Lifted index: 9.45 
%     LIFT computed using virtual temperature: 9.38 
%                                 SWEAT index: 72.32 
%                                     K index: -11.20 
%                          Cross totals index: 17.20 
%                       Vertical totals index: 19.10 
%                         Totals totals index: 36.30 
%       Convective Available Potential Energy: 7.46 
%              CAPE using virtual temperature: 12.88 
%                       Convective Inhibition: -14.83 
%              CINS using virtual temperature: -13.39 
%                            Equilibrum Level: 803.48 
%  Equilibrum Level using virtual temperature: 800.10 
%                    Level of Free Convection: 870.17 
%              LFCT using virtual temperature: 877.40 
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%                      Bulk Richardson Number: 0.11 
%           Bulk Richardson Number using CAPV: 0.18 
%   Temp [K] of the Lifted Condensation Level: 278.77 
% Pres [hPa] of the Lifted Condensation Level: 921.85 
%      Mean mixed layer potential temperature: 285.35 
%               Mean mixed layer mixing ratio: 6.24 
%               1000 hPa to 500 hPa thickness: 5472.00 
% Precipitable water [mm] for entire sounding: 13.18 
%  
% LGIR Observations at 12Z 01 Jan 2005 
% ----------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA   
%     hPa     m      C      C      %    g/kg    deg   knot     K    
% ----------------------------------------------------------------- 
%  1016.0     39   15.8    9.8     68   7.54    350      4  287.6   
%  1014.0     56   13.4    6.4     63   5.98    349      4  285.4   
% 
%  
% ----------------------------------------------------------------- 
fid_in=fopen(filename,'r'); 
if fid_in > 0 
    disp(['Sounding file opened: '  filename]) 
end 
 
% Create a filenumber for the output: 
fid_out=fopen(['m' filename],'wt'); 
 
% counter for all soundings  
nsoundings = 0; 
 
flag = 1; 
while flag 
% get a line from the file:   
  line = fgetl(fid_in); 
if line==-1  % Exit the while loop if we're at the end of the file 
break 
end 
 
% write out the line of data plus a line break: 
  fprintf(fid_out,line); 
  fprintf(fid_out,'\n'); 
 
% Check to see if we're at the last line of the sounding.  If so, 
% write a blank line, count the sounding and go back up to the  
% beginning of the while loop 
if line(1:12)=='Precipitable' 
      fprintf(fid_out,'\n'); 
      nsoundings = nsoundings + 1; 
end 
 
end% end of while loop 
% 
% this is the end.  If we get here, we hit the end of the original 
% file. 
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 fprintf('Wrote out %f soundings \n',nsoundings) 
end 
 

B. MATLAB CODE TO READ THE RAW DATA AND DETERMINE 

DUCTING CONDITIONS 

function load_sounding(filename) 
% 
% Purpose:  decodes for files with format below.  MUST, MUST have   
% a blank line between soundings. 
% 
% format: 
% LGIR Observations at 00Z 01 Jan 2005 
% ---------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA   
%     hPa     m      C      C      %    g/kg    deg   knot     K   
% ---------------------------------------------------------------- 
%  1016.0     39    9.6    7.0     84   6.22    160      6  281.5  
%  1009.0     95   12.0    8.5     79   6.94    184      6  284.4  
%  1000.0    168   12.2    6.2     67   5.98    215      6  285.4  
%   987.0    277   11.6    6.6     71   6.23    234      6  285.8  
% Station information and sounding indices 
%                          Station identifier: LGIR 
%                              Station number: 16754 
%                            Observation time: 050101/0000 
%                            Station latitude: 35.33 
%                           Station longitude: 25.18 
%                           Station elevation: 39.0 
%                             Showalter index: 11.02 
%                                Lifted index: 9.45 
%     LIFT computed using virtual temperature: 9.38 
%                                 SWEAT index: 72.32 
%                                     K index: -11.20 
%                          Cross totals index: 17.20 
%                       Vertical totals index: 19.10 
%                         Totals totals index: 36.30 
%       Convective Available Potential Energy: 7.46 
%              CAPE using virtual temperature: 12.88 
%                       Convective Inhibition: -14.83 
%              CINS using virtual temperature: -13.39 
%                            Equilibrum Level: 803.48 
%  Equilibrum Level using virtual temperature: 800.10 
%                    Level of Free Convection: 870.17 
%              LFCT using virtual temperature: 877.40 
%                      Bulk Richardson Number: 0.11 
%           Bulk Richardson Number using CAPV: 0.18 
%   Temp [K] of the Lifted Condensation Level: 278.77 
% Pres [hPa] of the Lifted Condensation Level: 921.85 
%      Mean mixed layer potential temperature: 285.35 
%               Mean mixed layer mixing ratio: 6.24 
%               1000 hPa to 500 hPa thickness: 5472.00 
% Precipitable water [mm] for entire sounding: 13.18 
%  
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% LGIR Observations at 12Z 01 Jan 2005 
% ---------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA  
%     hPa     m      C      C      %    g/kg    deg   knot     K   
% ---------------------------------------------------------------- 
%  1016.0     39   15.8    9.8     68   7.54    350      4  287.6  
%  1014.0     56   13.4    6.4     63   5.98    349      4  285.4  
% 
% ------------------------------------------ 
% Modified 5/9/11 by M. Jordan, NPS/MR 
% Last modified 10/26/11 by K. Raptis  
% ---------------------------------------------------------------- 
fid_in=fopen(filename,'r'); 
if fid_in > 0 
    disp(['Sounding file opened: '  filename]) 
end 
 
% counter for all soundings ie: 700 soundings/year or  
% 60 soundings/month 
bigcounter = 0; 
 
% initialize matrices to store Date/Time and Station ID 
YYMMDD_HHMM_matrix = []; 
STATION_ID_matrix = []; % to be commented out for IZMIR 
 
 
while 1     %This loop for each sounding 
 
% clear variables before start to read next sounding 
    clear preshghttmpcdwpcrelhmixrdrctsknt 
    clear thtaqMN 
 
% Skip first five rows header 
for ihead = 1:5; 
        line = fgetl(fid_in); 
end 
% 
%initialize a line counter 
    iline=0; 
% 
%This loop reads each line 
while 1 
%Read each line as a character string 
        line=fgetl(fid_in); 
%This loop finds missing value for dwpt 
while line (22:28) == '       ' 
            line=fgetl(fid_in); 
end 
%This is statement for reading headers 
if line (1:7) == 'Station' 
            line=fgetl(fid_in); 
            station_ID_str = line(46:49); 
            line=fgetl(fid_in); 
            station = str2num(line(46:50)); 
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            station_number = str2num(line(46:50)); 
            line=fgetl(fid_in); 
            date_time_str = line(45:56); 
            date=str2num(line(46:51)); 
            time=str2num(line(53:56)); 
            line=fgetl(fid_in); 
%This loop skip other lines 
while ~isempty(line) %line(44) == ':' 
                line=fgetl(fid_in); 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
end 
end 
 
% Check for the end of one data set (one sounding)...  
% ...this means MUST have a blank line between soundings 
if isempty(line) 
break 
end 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
 
% Increment line counter.  This is the index for each  
% data array 
        iline = iline+1; 
%Reads data from file 
        pres(iline) = str2num(line(1:7)); 
        hght(iline) = str2num(line(8:14)); 
        tmpc(iline) = str2num(line(15:21)); 
        dwpc(iline) = str2num(line(22:28)); 
        relh(iline) = str2num(line(29:35)); 
        mixr(iline) = str2num(line(36:42)); 
 
if line(48:56) =='         ' 
            drct(iline) = NaN; 
            sknt(iline) = NaN; 
else 
            drct(iline) = str2num(line(47:49)); 
            sknt(iline) = str2num(line(54:56)); 
end 
 
end% This is the end of the WHILE Loop 
 
% This is the end of reading and decoding its sounding separetely 
% ATTENTION: Only those values of the very final sounding's  
% parameters are saved. The values of the previous soundings are  
% overwritten by the next each time the while loop runs. 
 
%--------------------------------------------------------------------- 
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% This is the begining of the part which computes all the necessary 
% parameters for ducts calculation 
% Calculate theta & q 
    [thta,q] = theta_q(pres,tmpc,relh); 
 
% Calculate M and N 
    [M,N] = m_n_profile(pres,tmpc,relh,hght); 
 
% increment counter 
    bigcounter = bigcounter + 1; 
 
    STATION_ID_matrix = char(STATION_ID_matrix, station_ID_str); 
    STATION_NUMBER_matrix(bigcounter,1) = station_number; 
    YYMMDD_HHMM_matrix = char(YYMMDD_HHMM_matrix,date_time_str); 
 
%     % plot refractivity its optional 
%     plot_refractivity 
 
% Calculates the Modified Refractivity gradient 
    Mgrad=NaN; 
for n=1:iline-1 ; 
        Mgrad(n,1)=(M(n+1) - M(n)) /(hght(n+1) - hght(n)); 
end 
 
% This portion finds the first three ducts, if 
% they exist 
    ducttop=[0 0 0]; 
    ductmiddle=[0 0 0]; 
    ductbottom=[0 0 0]; 
    Ttop=NaN; 
    Dewtop=NaN; 
    Presstop=NaN; 
    Mtop=NaN; 
    Tmid=NaN; 
    Dewmid=NaN; 
    Pressmid=NaN; 
    Mmid=NaN; 
    Mtop2=NaN; 
    Mmid2=NaN; 
    Mtop3=NaN; 
    Mmid3=NaN; 
 
% Find tops and mids of ducts.... 
    topcounter=0; 
    midcounter=0; 
    topindex=[0 0 0]; 
    midindex=[0 0 0]; 
for m=2:length(Mgrad) 
if ((Mgrad(m-1) < 0) && (Mgrad (m) > 0)) 
            topcounter=topcounter+1; 
            topindex(topcounter)=m; 
end 
if ((Mgrad(m-1) > 0) && (Mgrad (m) < 0)) 
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            midcounter=midcounter+1; 
            midindex(midcounter)=m; 
end 
end 
 
% Align these depending on case..... 
% If the gradient starts negative from the surface, 
% the subsequent indexing is different that for the 
% case if the gradient starts positive from the 
% surface. 
if (Mgrad(1) <  0) 
if (topindex(1) > 0) 
            ducttop(1)=hght(topindex(1)); 
            ductmiddle(1)=hght(1); 
            ductbottom(1)=hght(1); 
end 
if (topindex(2) > 0) && (midindex(1) > 0) 
            ducttop(2)=hght(topindex(2)); 
            ductmiddle(2)=hght(midindex(1)); 
if M(midindex(1)-1) < M(topindex(2)) 
                ductbottom(2)=ductmiddle(2) - ... 
                    (M(midindex(1))-M(topindex(2)))/... 
                    (M(midindex(1))-M(midindex(1)-1))*... 
                    (hght(midindex(1)) - hght(midindex(1)-1)); 
elseif M(midindex(1)-1) > M(topindex(2))&& M(midindex(1)-
2)>M(midindex(1)-1) 
                ductbottom(2)=hght(midindex(1)-1); 
elseif M(midindex(1)-2) > M(topindex(2))&& M(midindex(1)-
3)>M(midindex(1)-2) 
                ductbottom(2)=hght(midindex(1)-2); 
elseif M(midindex(1)-1) > M(topindex(2)) 
                counterindex = 1; 
while M(midindex(1)-counterindex)>M(topindex(2))&&... 
                        (midindex(1)-counterindex)~=1 
                    counterindex = counterindex+1; 
end 
                ductbottom(2)=hght(midindex(1)-counterindex+2) - ... 
                    (M(midindex(1)-counterindex+2)-M(topindex(2)))/... 
                    (M(midindex(1)-counterindex+2)-M(midindex(1)-
counterindex))*... 
                    (hght(midindex(1)-counterindex+2) - 
hght(midindex(1)-counterindex)); 
end 
            Mtop2=M(topindex(2)); 
            Mmid2=M(midindex(1)); 
end 
if (topindex(3) > 0) && (midindex(2) > 0) 
            ducttop(3)=hght(topindex(3)); 
            ductmiddle(3)=hght(midindex(2)); 
if M(midindex(2)-1) < M(topindex(3)) 
                ductbottom(3)=ductmiddle(3) - ... 
                    (M(midindex(2))-M(topindex(3)))/... 
                    (M(midindex(2))-M(midindex(2)-1))*... 
                    (hght(midindex(2)) - hght(midindex(2)-1)); 
elseif M(midindex(2)-1) > M(topindex(3)) 
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                counterindex = 1; 
while M(midindex(2)-counterindex)>M(topindex(3)) 
                    counterindex = counterindex+1; 
end 
                ductbottom(3)=hght(midindex(2)-counterindex+2) - ... 
                    (M(midindex(2)-counterindex+2)-M(topindex(3)))/... 
                    (M(midindex(2)-counterindex+2)-M(midindex(2)-
counterindex))*... 
                    (hght(midindex(2)-counterindex+2) - 
hght(midindex(2)-counterindex)); 
end 
            Mtop3=M(topindex(3)); 
            Mmid3=M(midindex(2)); 
end 
        Ttop=tmpc(topindex(1)); 
        Dewtop=dwpc(topindex(1)); 
        Presstop=pres(topindex(1)); 
        Mtop=M(topindex(1)); 
        Tmid=tmpc(1); 
        Dewmid=dwpc(1); 
        Pressmid=pres(1); 
        Mmid=M(1); 
end 
 
% These are for the cases when the gradient starts 
% positive, and there is a duct present somewhere in 
% the profile 
if (Mgrad(1) > 0) & (topindex(1) > 0) 
if (topindex(1) > 0) & (midindex(1) > 0) &... 
                (M(topindex(1)) < M(1)) 
            ducttop(1)=hght(topindex(1)); 
            ductmiddle(1)=hght(midindex(1)); 
            ductbottom(1)=hght(1); 
end 
 
if (topindex(1) > 0) & (midindex(1) > 0) &... 
                (M(topindex(1)) > M(1)) 
            ducttop(1)=hght(topindex(1)); 
            ductmiddle(1)=hght(midindex(1)); 
if M(midindex(1)-1)<M(topindex(1)) 
                ductbottom(1)=ductmiddle(1) - ... 
                    (M(midindex(1))-M(topindex(1)))/... 
                    (M(midindex(1))-M(midindex(1)-1))*... 
                    (hght(midindex(1)) - hght(midindex(1)-1)); 
elseif M(midindex(1)-1)>M(topindex(1)) 
                counterindex = 1; 
while M(midindex(1)-counterindex)>M(topindex(1)) 
                    counterindex = counterindex+1; 
end 
                ductbottom(1)=hght(midindex(1)-counterindex+2) - ... 
                    (M(midindex(1)-counterindex+2)-M(topindex(1)))/... 
                    (M(midindex(1)-counterindex+2)-M(midindex(1)-
counterindex))*... 
                    ((hght(midindex(1)-counterindex+2)) - 
hght(midindex(1)-counterindex)); 
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end 
 
end 
 
if (topindex(2) > 0) & (midindex(2) > 0) 
            ducttop(2)=hght(topindex(2)); 
            ductmiddle(2)=hght(midindex(2)); 
            ductbottom(2)=ductmiddle(2) - ... 
                (M(midindex(2))-M(topindex(2)))/... 
                (M(midindex(2))-M(midindex(2)-1))*... 
                (hght(midindex(2)) - hght(midindex(2)-1)); 
if M(midindex(2)-1)<M(topindex(2)) 
                ductbottom(2)=ductmiddle(2) - ... 
                    (M(midindex(2))-M(topindex(2)))/... 
                    (M(midindex(2))-M(midindex(2)-1))*... 
                    (hght(midindex(2)) - hght(midindex(2)-1)); 
elseif M(midindex(2)-1)>M(topindex(2)) 
                counterindex = 1; 
while M(midindex(2)-counterindex)>M(topindex(2))&&... 
                        (midindex(2)-counterindex)~=1 
                    counterindex = counterindex+1; 
end 
                ductbottom(2)=hght(midindex(2)-counterindex+2) - ... 
                    (M(midindex(2)-counterindex+2)-M(topindex(2)))/... 
                    (M(midindex(2)-counterindex+2)-M(midindex(2)-
counterindex))*... 
                    ((hght(midindex(2)-counterindex+2)) - 
hght(midindex(2)-counterindex)); 
end 
            Mtop2=M(topindex(2)); 
            Mmid2=M(midindex(2)); 
end 
 
if (topindex(3) > 0) & (midindex(3) > 0) 
            ducttop(3)=hght(topindex(3)); 
            ductmiddle(3)=hght(midindex(3)); 
            ductbottom(3)=ductmiddle(3) - ... 
                (M(midindex(3))-M(topindex(3)))/... 
                (M(midindex(3))-M(midindex(3)-1))*... 
                (hght(midindex(3)) - hght(midindex(3)-1)); 
if M(midindex(3)-1)<M(topindex(3)) 
                ductbottom(3)=ductmiddle(3) - ... 
                    (M(midindex(3))-M(topindex(3)))/... 
                    (M(midindex(3))-M(midindex(3)-1))*... 
                    (hght(midindex(3)) - hght(midindex(3)-1)); 
elseif M(midindex(3)-1)>M(topindex(3)) 
                counterindex = 1; 
while M(midindex(3)-counterindex)>M(topindex(3)) 
                    counterindex = counterindex+1; 
end 
                ductbottom(3)=hght(midindex(3)-counterindex+2) - ... 
                    (M(midindex(3)-counterindex+2)-M(topindex(3)))/... 
                    (M(midindex(3)-counterindex+2)-M(midindex(3)-
counterindex))*... 
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                    ((hght(midindex(3)-counterindex+2))-
hght(midindex(3)-counterindex)); 
end 
 
            Mtop3=M(topindex(3)); 
            Mmid3=M(midindex(3)); 
end 
 
        Ttop=tmpc(topindex(1)); 
        Dewtop=dwpc(topindex(1)); 
        Presstop=pres(topindex(1)); 
        Mtop=M(topindex(1)); 
        Tmid=tmpc(midindex(1)); 
        Dewmid=dwpc(midindex(1)); 
        Pressmid=pres(midindex(1)); 
        Mmid=M(midindex(1)); 
 
if topindex(2)~=0 && midindex(2)~=0 
            Mtop2=M(topindex(2)); 
            Mmid2=M(midindex(2)); 
else 
            Mtop2=NaN; 
            Mmid2=NaN; 
end 
if topindex(3)~=0 && midindex(3)~=0 
            Mtop3=M(topindex(3)); 
            Mmid3=M(midindex(3)); 
else 
            Mtop3=NaN; 
            Mmid3=NaN; 
end 
 
end 
if ductbottom(1) < 0 
        ductbottom(1)=ductmiddle(1)-[ducttop(1)-ductmiddle(1)]; 
end 
if ductbottom(2) < 0 
        ductbottom(2)=ductmiddle(2)-[ducttop(2)-ductmiddle(2)]; 
end 
if ductbottom(1) < 0 
        ductbottom(1) =0; 
end 
if ductbottom(2) < 0 
        ductbottom(2) =0; 
end 
 
% This will assign a true/false value if the lowest duct is  
% "attached" to (Surface Duct) or "elevated" from the surface 
if [ducttop(1) > 0] & [ductbottom(1) > hght(1)] 
        sfcduct=0; %elevated 
elseif ([ducttop(1) > 0] & [ductbottom(1) == hght(1)]) |... 
            ([ducttop(1) > 0] & [ductbottom(1) == 0]) 
        sfcduct=1; %attached 
else 
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        sfcduct=NaN; %technically, it means no duct at all 
end 
% Assigns needed data to the Plotdata matrix 
    Plotdata(bigcounter,1)=station; 
    Plotdata(bigcounter,2)=date; 
    Plotdata(bigcounter,3)=time; 
    Plotdata(bigcounter,4)=Ttop;  %Temp at the top of the first duct 
    Plotdata(bigcounter,5)=Dewtop; %Dewp at the top of the first duct 
%----------------------------------------------------------------- 
    Plotdata(bigcounter,6)=ducttop(1); %Height of the duct's top 
    Plotdata(bigcounter,7)=ductmiddle(1); %First duct from the surface 
    Plotdata(bigcounter,8)=ductbottom(1); %Height of the duct's bottom 
%----------------------------------------------------------------- 
    Plotdata(bigcounter,9)=ducttop(2); 
    Plotdata(bigcounter,10)=ductmiddle(2); %Next duct up above 
    Plotdata(bigcounter,11)=ductbottom(2); 
%----------------------------------------------------------------- 
    Plotdata(bigcounter,12)=ducttop(3); 
    Plotdata(bigcounter,13)=ductmiddle(3); %Next duct up above 
    Plotdata(bigcounter,14)=ductbottom(3); 
%--------------------------------------------------------------- 
    Plotdata(bigcounter,15)=sfcduct; % surface duct or elevated 
 
%All the following parameters concern the surface duct. If it  
% doesn't exist,then no value is assigned to them. 
    Plotdata(bigcounter,16)=Presstop;   
    Plotdata(bigcounter,17)=Pressmid;   
    Plotdata(bigcounter,18)=Tmid;      
    Plotdata(bigcounter,19)=Dewmid; 
    Plotdata(bigcounter,20)=Mtop; 
    Plotdata(bigcounter,21)=Mmid; 
%--------------------------------------------------------------- 
    Plotdata(bigcounter,22)=pres(1); %All these parameters give  
    Plotdata(bigcounter,23)=drct(1); %surface values regardless of    
    Plotdata(bigcounter,24)=sknt(1); %the existance of ducts 
%--------------------------------------------------------------- 
% Duct's thickness 
    Plotdata(bigcounter,25)=ducttop(1)-ductbottom(1); 
    Plotdata(bigcounter,26)=ducttop(2)-ductbottom(2); 
    Plotdata(bigcounter,27)=ducttop(3)-ductbottom(3); 
%--------------------------------------------------------------- 
% Duct's M at the top and at the midle for the second and  
% third duct 
    Plotdata(bigcounter,28)=Mtop2; 
    Plotdata(bigcounter,29)=Mmid2; 
    Plotdata(bigcounter,30)=Mtop3; 
    Plotdata(bigcounter,31)=Mmid3; 
    Plotdata(bigcounter,32)=Mmid-Mtop; 
    Plotdata(bigcounter,33)=Mmid2-Mtop2; 
    Plotdata(bigcounter,34)=Mmid3-Mtop3; 
%--------------------------------------------------------------- 
% Gradient of M - Duct's strength 
    Plotdata(bigcounter,35)=(Mmid-Mtop)/(ducttop(1)-ductmiddle(1)); 
    Plotdata(bigcounter,36)=(Mmid2-Mtop2)/(ducttop(2)-ductmiddle(2)); 
    Plotdata(bigcounter,37)=(Mmid3-Mtop3)/(ducttop(3)-ductmiddle(3)); 



 136

%--------------------------------------------------------------- 
 
    Plotdata(bigcounter,38)=M(1); % The M of the very first segment 
% (measurment) of the sounding 
 
%finds M deficit                               
if Plotdata(bigcounter,15)==1 % = if there is surface duct 
 
        Plotdata(bigcounter,39) = M(1)-Mtop; % it should be positive  
else% or zero       
        Plotdata(bigcounter,39) = NaN; 
end 
%-------------------------------------------------------------------- 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
end 
 
 
fclose(fid_in); % --- end of sounding "decoder" portion 
 
% remove extra lines & columns in data matrices 
STATION_ID_matrix(1,:) = [];  % to be commented out for IZMIR 
YYMMDD_HHMM_matrix(1,:) = []; 
 
% add a variable 
number_of_soundings = bigcounter; 
 
%  prepare the name for the ".mat" file 
%  Logic:  find the "/"s and ".", so we can use the first part of  
%  the name. 
index1=find(filename == '/');       %  find the "/" in the name 
if length(index1) == 0              %  if no "/" in name 
    first=1; 
else 
    iend=length(index1);            %  the last "/" 
    first=index1(iend)+1;           %  first character in matfile 
end%  name   
index2=find(filename == '.'); 
last=index2-1;                      %  use characters before the "." 
matfile= [filename(1,first:last)  '_statistics.mat']; 
 
% clear variables before saving MAT file 
clear preshghttmpcdwpcrelhmixrdrctsknt 
clear thtaqMNstation_ID_strstation_number 
clear date_time_strone_P 
clear ansiheadilineindex1index2lastlinefid_in 
clear indexindex1index2firstlastiendansfilename 
clear time_str_UTCidate_str_YYMMDD 
clear *top*mid*bottom 
 
% save MAT file ... with variables listed 
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eval(['save ' matfile ' Plotdata STATION_ID_matrix 
STATION_NUMBER_matrix YYMMDD_HHMM_matrix number_of_soundings']) 
 
disp(['MAT file written to current directory: ' matfile ]) 
 
% ----- end of function ----------------------------------- 
 

1. This Is the Function to Compute Θ and Q. 

function [thta,q] = theta_q(pres,tmpc,relh) 
% 
%  function [thta,q] = theta_q(pres,tmpc,relh) 
%  
%  written by:  Mary Jordan, NPS Meteorology Dept, 10/9/96 
% 
%  Purpose: Calculates Potential Temperature (thta) and 
%       Specific Humidity (q) 
% 
%  Reference:  Atmospheric Science by Wallace & Hobbs, 1977,  
%  Academic Press 
% 
%  Input:   pres = Pressure (mb) 
%       tmpc = Air Temperature (C) 
%       relh = Relative Humidity (%) 
% 
%  Output:  thta = Potential Temperature (K) 
%          q = Specific Humidity (g/kg) 
% 
% ------------------------------------------------------------ 
 
% 
% define local constants for thermodynamic equations: 
    p0=1000.;R=287.;cp=1004.;L=2.5e6;  
% 
tmpk = tmpc+273.155;            % convert to tmpc to Kelvin 
% 
e_s = 6.1078*exp((17.26939.*tmpc)./(tmpc+237.3));% saturation vapor  
% pressure    
ee = (relh ./ 100.) .* e_s;                      % vapor pressure 
% 
w = 0.622 * (ee ./ (pres - ee));        % mixing ratio (kg/kg) 
q_kg = w ./ (1.0 + w);                  % specific humidity (kg/kg) 
% 
q=q_kg*1000;                        % specific humidity (g/kg) 
% 
thta = tmpk .* ((p0 ./ pres).^(R/cp));  % Potential Temperature (K) 
 
%----------------------    END   --------------------------- 
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2. This Is the Function to Compute the Profile of M. 

function [M,N] = m_n_profile(pres,tmpc,relh,hght) 
% 
%  Purpose: Calculates the vertical profiles of Refractive Index, N,  
%           and the Modified Refractive Index, M, for input vertical  
%           profiles of Pressure, Temperature Relative Humidity and 
%           Height. 
% 
%  Input:   pres = pressure (millibars) 
%           tmpc = air temperature (Celsius) 
%           relh = relative humidity (percent, %) 
%           hght = height (meters) 
% 
%  Output:  M = Modified Refractive Index (dimensionless refractivity  
%                                          units) 
%           N = Refractive Index (dimensionless refractivity units) 
% 
%  Local Variables: 
%      
%           tmpk = air temperature (Kelvin) 
%           e_s  = saturation vapor pressure (millibars) 
%           ee   = vapor pressure (millibars) 
% 
% References 
%  Bean and Dutton, 1968, Equation 1.16.  ... for N 
%  Patterson, et al. (1994), Equation 5, p. 9.  ... for M 
%  Bolton, Monthly Weather Review, 1980...for saturation vapor pres. 
%  Huschke, Glossary of Meteorology, 1959, p. 477...for vapor pres. 
% 
%  History 
%   Version 1.0  17 July 2001 
%   Mary S. Jordan 
%   Dept. of Meteorology, Naval Postgraduate School, Monterey, CA 
%  ----------------------------------------------------------------- 
 
%    ... convert to temperature to Kelvin 
tmpk = tmpc+273.15;      
 
%   ... compute saturation vapor pressure, e_s  
e_s = 6.112*exp((17.67 .* tmpc)./(tmpc+243.5)); 
 
%    ... compute vapor pressure, ee 
ee = (relh ./ 100.) .* e_s;                        
 
%  ... compute Refractive Index, N, and Modified Refractive Index, M 
% 
N = (77.6*pres./tmpk) - (5.6*ee./tmpk) + (3.75e5*ee./(tmpk.^2));   
M = N + 157*hght./1000; 
 
%  ----------------------- end of function -------------------------- 
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C. MATLAB CODE TO CALCULATE THE RELEVANT STATISTICS 

% Purpose: To calculate the basic statistics modes (mean, stdev, 
%          quartiles) for ducting parameters 
% 
% Input: The Plotdata table (derived from the load_sounding 
%        program) must be loaded first and then run this program. 
% 
% Output: Statistics. The derived variable "table" gives all the  
%         computed statistics in tabular form 
% 
% Last modified 9/15/11 by Kostas Raptis NPS/MR 
%_______________________________________________________________ 
 
x=length(Plotdata(:,1)); % number of rows = number of soundings 
 
temp1=0;%temporary variables 
temp2=0; 
temp3=0; 
tmp1=0; 
tmp2=0; 
tmp3=0; 
tempmin1=0; 
tempmin2=0; 
tempmin3=0; 
temp=0; 
 
%____________FREQUENCY OF OCCURANCE_____(line 1 to 3 of table)__ 
%finds duct frequencies of occurance 
%Duct 1 
counter = 1; 
ducts1=0; 
for i=1:x 
if Plotdata(counter,6)>0 %=if top's height of 1st duct>0 
        ducts1=ducts1+1; 
end 
    counter=counter+1; 
end 
 
percent1duct=(ducts1/x)*100; 
 
table=[]; 
table(1,1)=percent1duct; 
 
%Duct 2 
counter = 1; 
ducts2=0; 
for i=1:x 
if Plotdata(counter,9)>0 %=if top's height of 2nd duct>0 
        ducts2=ducts2+1; 
end 
    counter=counter+1; 
end 
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percent2duct=(ducts2/x)*100; 
 
table(1,2)=percent2duct; %it appears on the 2nd column of the 1st line 
 
%Duct 3 
counter = 1; 
ducts3=0; 
 
for i=1:x 
if Plotdata(counter,12)>0 
        ducts3=ducts3+1; 
end 
    counter=counter+1; 
end 
 
percent3duct=(ducts3/x)*100; 
 
table(1,3)=percent3duct; %it appears on the 3d column of the 1st line 
 
%finds frequency of daytime duct1 
counter=1; 
dayduct1=0; 
day=0; 
for i=1:x 
if Plotdata(counter,3)==1200 
        day=day+1; 
end 
if Plotdata(counter,3)==1200 && Plotdata(counter,6)>0 
        dayduct1=dayduct1+1; 
end 
    counter=counter+1; 
end 
percent1ductday=(dayduct1/day)*100; 
table(2,1)=percent1ductday; % it appears on the 1st column of the  
% 2nd line 
 
%finds frequency of nighttime duct1 
counter=1; 
nightduct1=0; 
night=0; 
for i=1:x 
if Plotdata(counter,3)==0 
        night=night+1; 
end 
if Plotdata(counter,3)==0 && Plotdata(counter,6)>0 
        nightduct1=nightduct1+1; 
end 
    counter=counter+1; 
end 
percent1ductnight=(nightduct1/night)*100; 
table(3,1)=percent1ductnight; 
 
%finds frequency of daytime duct2 
counter=1; 
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dayduct2=0; 
day=0; 
for i=1:x 
if Plotdata(counter,3)==1200 
        day=day+1; 
end 
if Plotdata(counter,3)==1200 && Plotdata(counter,9)>0 
        dayduct2=dayduct2+1; 
end 
    counter=counter+1; 
end 
percent2ductday=(dayduct2/day)*100; 
table(2,2)=percent2ductday; 
 
%finds frequency of nighttime duct2 
counter=1; 
nightduct2=0; 
night=0; 
for i=1:x 
if Plotdata(counter,3)==0 
        night=night+1; 
end 
if Plotdata(counter,3)==0 && Plotdata(counter,9)>0 
        nightduct2=nightduct2+1; 
end 
    counter=counter+1; 
end 
percent2ductnight=(nightduct2/night)*100; 
table(3,2)=percent2ductnight; 
 
%finds frequency of daytime duct3 
counter=1; 
dayduct3=0; 
day=0; 
for i=1:x 
if Plotdata(counter,3)==1200 
        day=day+1; 
end 
if Plotdata(counter,3)==1200 && Plotdata(counter,12)>0 
        dayduct3=dayduct3+1; 
end 
    counter=counter+1; 
end 
percent3ductday=(dayduct3/day)*100; 
table(2,3)=percent3ductday; 
 
%finds frequency of nighttime duct3 
counter=1; 
nightduct3=0; 
night=0; 
for i=1:x 
if Plotdata(counter,3)==0 
        night=night+1; 
end 
if Plotdata(counter,3)==0 && Plotdata(counter,12)>0 
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        nightduct3=nightduct3+1; 
end 
    counter=counter+1; 
end 
percent3ductnight=(nightduct3/night)*100; 
table(3,3)=percent3ductnight; 
%___________________HEIGHTS______(line 4 to 8 of table)_________ 
%finds mean height of duct 1 
counter = 1; 
j=1; 
for i=1:x 
if Plotdata(counter,6)>0 
        temp1(j)=Plotdata(counter,6); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(4,1)=mean(temp1); 
 
%finds mean height of duct 2  
 
counter = 1; 
j=1; 
for i=1:x 
if Plotdata(counter,9)>0 
        temp2(j)=Plotdata(counter,9); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(4,2)=mean(temp2); 
 
%finds mean height of duct 3  
 
counter = 1; 
j=1; 
for i=1:x 
if Plotdata(counter,12)>0 
        temp3(j)=Plotdata(counter,12); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(4,3)=mean(temp3); 
 
% find medians of duct's heights 
 
table(6,1)=median(temp1); %Duct 1 
table(6,2)=median(temp2); %Duct 2 
table(6,3)=median(temp3); %Duct 3 
 
% compute 25th percentile (first quartile) for duct1 
table(5,1) = median(temp1(find(temp1<median(temp1)))); 
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% compute 75th percentile (third quartile) for duct1 
table(7,1) = median(temp1(find(temp1>median(temp1)))); 
 
% compute 25th percentile (first quartile) for duct2 
table(5,2) = median(temp2(find(temp2<median(temp2)))); 
 
% compute 75th percentile (third quartile) for duct2 
table(7,2) = median(temp2(find(temp2>median(temp2)))); 
 
% compute 25th percentile (first quartile) for duct3 
table(5,3) = median(temp3(find(temp3<median(temp3)))); 
 
% compute 75th percentile (third quartile) for duct3 
table(7,3) = median(temp3(find(temp3>median(temp3)))); 
 
 
% standard deviations of duct's heights 
 
table(8,1)=std(temp1); %Duct 1 
table(8,2)=std(temp2); %Duct 2 
table(8,3)=std(temp3); %Duct 3 
 
%_______________THICKNESS________(line 9 to 13 of table)_______ 
% find mean, median and std. dev. of duct's thickness 
% Duct1 
counter = 1; 
j=1; 
temp1=0; 
for i=1:x 
if Plotdata(counter,25)>0 
        temp1(j)=Plotdata(counter,25); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(9,1)=mean(temp1); 
table (11,1)=median(temp1); 
table(13,1)=std(temp1); 
 
% compute 25th percentile (first quartile) for duct1 
table(10,1) = median(temp1(find(temp1<median(temp1)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(12,1) = median(temp1(find(temp1>median(temp1)))); 
 
%Duct2 
counter = 1; 
j=1; 
temp2=0; 
for i=1:x 
if Plotdata(counter,26)>0 
        temp2(j)=Plotdata(counter,26); 
        j=j+1; 
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end 
    counter=counter+1; 
end 
table(9,2)=mean(temp2); 
table (11,2)=median(temp2); 
table(13,2)=std(temp2); 
 
% compute 25th percentile (first quartile) for duct2 
table(10,2) = median(temp2(find(temp2<median(temp2)))); 
 
% compute 75th percentile (third quartile) for duct2 
table(12,2) = median(temp2(find(temp2>median(temp2)))); 
 
%Duct3 
counter = 1; 
j=1; 
temp3=0; 
for i=1:x 
if Plotdata(counter,27)>0 
        temp3(j)=Plotdata(counter,27); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(9,3)=mean(temp3); 
table (11,3)=median(temp3); 
table(13,3)=std(temp3); 
 
% compute 25th percentile (first quartile) for duct3 
table(10,3) = median(temp3(find(temp3<median(temp3)))); 
 
% compute 75th percentile (third quartile) for duct3 
table(12,3) = median(temp3(find(temp3>median(temp3)))); 
 
%----------------SURFACE DUCTS------(column 4 of table)------- 
 
%M starting negative 
 
%_____________Frequency of Occurance__(line 1 to 3)____________ 
 
clear temp 
counter=1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,7)==Plotdata(counter,8) && Plotdata(counter,7)>0 
    temp(j)=Plotdata(counter,6); %height of duct's top 
    j=j+1; 
end 
    counter=counter+1; 
end 
if temp>0 
a=length(temp); 
else 



 145

a=0;     
end 
table(1,4)=(a/x)*100; % occurance throughout the day 
 
%______________Heights Statistics______(line 4 to 8)___________ 
table(4,4)=mean(temp); 
table (6,4)=median(temp); 
table(8,4)=std(temp); 
% compute 25th percentile (first quartile) for duct1 
table(5,4) = median(temp(find(temp<median(temp)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(7,4) = median(temp(find(temp>median(temp)))); 
 
%M starting positive 
 
%_________Thickness Statistics_____(line 9 to 13)____________ 
% find mean, median and std. dev. of thickness 
% surface duct 
counter = 1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,15)==1 && Plotdata(counter,25)>0  
% if attached but M does not start negative 
        temp(j)=Plotdata(counter,25); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(9,4)=mean(temp); 
table (11,4)=median(temp); 
table(13,4)=std(temp); 
 
% compute 25th percentile (first quartile) for surface duct 
table(10,4) = median(temp1(find(temp1<median(temp)))); 
 
% compute 75th percentile (third quartile) for surface duct 
table(12,4) = median(temp1(find(temp1>median(temp)))); 
%________________________________________________________________ 
counter=1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,3)==1200.... %sounding taken at 1200z 
&& Plotdata(counter,7)==Plotdata(counter,8) && Plotdata(counter,7)>0 
    temp(j)=Plotdata(counter,7); 
    j=j+1; 
end 
    counter=counter+1; 
end 
if temp>0 
a=length(temp); 
else 
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a=0;     
end 
table(2,4)=(a/day)*100; % occurance during daytime 
 
 
counter=1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,3)==0.... % sounding taken at 0000z 
&& Plotdata(counter,7)==Plotdata(counter,8) && Plotdata(counter,7)>0 
    temp(j)=Plotdata(counter,7); 
    j=j+1; 
end 
    counter=counter+1; 
end 
if temp>0 
a=length(temp); 
else 
a=0;     
end 
table(3,4)=(a/night)*100; % occurance during nighttime 
 
 
 
 
%------This the end of surface ducts statistics----------------- 
 
%-----------STRENGTH OF DUCTS-----(line 14 to 23)---------------- 
 
% First duct M strength 
counter = 1; 
j=1; 
for i=1:x 
if Plotdata(counter,32)>0  %indeed, there is a duct 
        tmp1(j)=Plotdata(counter,32); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(14,1)=mean(tmp1); 
table (16,1)=median(tmp1); 
table(18,1)=std(tmp1); 
% compute 25th percentile (first quartile) for duct1 
table(15,1) = median(tmp1(find(tmp1<median(tmp1)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(17,1) = median(tmp1(find(tmp1>median(tmp1)))); 
 
 
% Second duct M strength 
counter = 1; 
j=1; 
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for i=1:x 
if Plotdata(counter,33)>0        %indeed, there is a duct 
        tmp2(j)=Plotdata(counter,33); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(14,2)=mean(tmp2); 
table (16,2)=median(tmp2); 
table(18,2)=std(tmp2); 
% compute 25th percentile (first quartile) for duct2 
table(15,2) = median(tmp2(find(tmp2<median(tmp2)))); 
 
% compute 75th percentile (third quartile) for duct2 
table(17,2) = median(tmp2(find(tmp2>median(tmp2)))); 
 
 
% Third duct M strength 
counter = 1; 
j=1; 
temp3=0; 
for i=1:x 
if Plotdata(counter,34)>0           %indeed, there is a duct 
        tmp3(j)=Plotdata(counter,34); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(14,3)=mean(tmp3); 
table (16,3)=median(tmp3); 
table(18,3)=std(tmp3); 
% compute 25th percentile (first quartile) for duct3 
table(15,3) = median(tmp3(find(tmp3<median(tmp3)))); 
 
% compute 75th percentile (third quartile) for duct3 
table(17,3) = median(tmp3(find(tmp3>median(tmp3)))); 
 
% First duct M gradient 
counter = 1; 
j=1; 
tmp1=0; 
for i=1:x 
if Plotdata(counter,35)>0          %indeed, there is a duct 
        tmp1(j)=Plotdata(counter,35); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(19,1)=mean(tmp1); 
table (21,1)=median(tmp1); 
table(23,1)=std(tmp1); 
% compute 25th percentile (first quartile) for duct1 
table(20,1) = median(tmp1(find(tmp1<median(tmp1)))); 
% compute 75th percentile (third quartile) for duct1 
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table(22,1) = median(tmp1(find(tmp1>median(tmp1)))); 
 
 
% Second duct M gradient 
counter = 1; 
j=1; 
tmp2=0; 
for i=1:x 
if Plotdata(counter,36)>0          %indeed, there is a duct 
        tmp2(j)=Plotdata(counter,36); 
        j=j+1; 
end 
    counter=counter+1; 
end 
table(19,2)=mean(tmp2); 
table (21,2)=median(tmp2); 
table(23,2)=std(tmp2); 
% compute 25th percentile (first quartile) for duct2 
table(20,2) = median(tmp2(find(tmp2<median(tmp2)))); 
 
% compute 75th percentile (third quartile) for duct2 
table(22,2) = median(tmp2(find(tmp2>median(tmp2)))); 
 
 
% Third duct M gradient 
counter = 1; 
j=1; 
tmp3=0; 
for i=1:x 
if Plotdata(counter,37)>0           %indeed, there is a duct 
        tmp3(j)=Plotdata(counter,37);           
        j=j+1; 
end 
    counter=counter+1; 
end 
table(19,3)=mean(tmp3); 
table (21,3)=median(tmp3); 
table(23,3)=std(tmp3); 
% compute 25th percentile (first quartile) for duct3 
table(20,3) = median(tmp3(find(tmp3<median(tmp3)))); 
 
% compute 75th percentile (third quartile) for duct3 
table(22,3) = median(tmp3(find(tmp3>median(tmp3)))); 
 
 
% surface ducts = attached to the surface 
 
% M strength 
counter = 1; 
j=1; 
tmp1=0; 
for i=1:x 
if Plotdata(counter,15)==1 
if Plotdata(counter,32)>0 %indeed, there is a duct 
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        tmp1(j)=Plotdata(counter,32); 
        j=j+1; 
end 
end 
    counter=counter+1; 
 
end 
table(14,4)=mean(tmp1); 
table (16,4)=median(tmp1); 
table(18,4)=std(tmp1); 
% compute 25th percentile (first quartile) for duct1 
table(15,4) = median(tmp1(find(tmp1<median(tmp1)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(17,4) = median(tmp1(find(tmp1>median(tmp1)))); 
 
% M gradient 
counter = 1; 
j=1; 
tmp1=0; 
for i=1:x 
if Plotdata(counter,15)==1 
if Plotdata(counter,35)>0          %indeed, there is a duct 
        tmp1(j)=Plotdata(counter,35); 
        j=j+1; 
end 
end 
    counter=counter+1; 
 
end 
table(19,4)=mean(tmp1); 
table (21,4)=median(tmp1); 
table(23,4)=std(tmp1); 
% compute 25th percentile (first quartile) for duct1 
table(20,4) = median(tmp1(find(tmp1<median(tmp1)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(22,4) = median(tmp1(find(tmp1>median(tmp1)))); 
 
%----This is the end of strength of ducts--------------------------- 
 
%------------------------------------------------------------------- 
% find mins and maxs heights of first duct (line 24,25) 
counter = 1; 
j=1; 
tempmin1=0; 
tempmax1=0; 
for i=1:x 
if Plotdata(counter,8)~=0 
 
        tempmin1(j)=Plotdata(counter,8); 
        tempmax1(j)=Plotdata(counter,6); 
        j=j+1; 
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end 
    counter=counter+1; 
 
end 
table(24,1)=min(tempmin1); %minimum of lower boundary height 
table(25,1)=max(tempmax1); %maximum of upper boundary height 
 
% find mins and maxs heights of second duct (line 24,25) 
counter = 1; 
j=1; 
tempmin2=0; 
tempmax2=0; 
for i=1:x 
if Plotdata(counter,11)~=0 
 
        tempmin2(j)=Plotdata(counter,11);  
        tempmax2(j)=Plotdata(counter,9); 
        j=j+1; 
 
end 
    counter=counter+1; 
 
end 
table(24,2)=min(tempmin2); %minimum of lower boundary height 
table(25,2)=max(tempmax2); %maximum of upper boundary height 
 
% find mins and maxs heights of third duct (line 24,25) 
counter = 1; 
j=1; 
tempmin3=0; 
tempmax3=0; 
for i=1:x 
if Plotdata(counter,14)~=0 
 
        tempmin3(j)=Plotdata(counter,14); 
        tempmax3(j)=Plotdata(counter,12); 
        j=j+1; 
 
end 
    counter=counter+1; 
 
end 
table(24,3)=min(tempmin3); %minimum of lower boundary height 
table(25,3)=max(tempmax3); %maximum of upper boundary height 
 
% find mins and maxs heights of surface duct (line 24,25) 
counter = 1; 
j=1; 
tempmin=0; 
tempmax=0; 
for i=1:x 
if Plotdata(counter,15)==1 && Plotdata(counter,8)~=0 
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        tempmin(j)=Plotdata(counter,8); 
        tempmax(j)=Plotdata(counter,6); 
        j=j+1; 
 
end 
    counter=counter+1; 
 
end 
table(24,4)=min(tempmin); 
table(25,4)=max(tempmax); 
 
%----------------------------------------------------------------------
---- 
 
% finds mean, median, first and second quartiles, std. deviation of   
% Mdeficit of surface ducts (line 26 to 30) 
counter = 1; 
j=1; 
tempdeficit=0; 
for i=1:x 
if Plotdata(counter,39)> 0 
        tempdeficit(j)=Plotdata(counter,39); 
        j=j+1; 
end 
 
    counter=counter+1; 
 
end 
table(26,4)=mean(tempdeficit); 
table (28,4)=median(tempdeficit); 
table(30,4)=std(tempdeficit); 
% compute 25th percentile (first quartile) for duct1 
table(27,4) = 
median(tempdeficit(find(tempdeficit<median(tempdeficit)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(29,4) = 
median(tempdeficit(find(tempdeficit>median(tempdeficit)))); 
 
%--------SURFACE PRESSURE STATISTICS (line 31 to 35)---------------- 
 
%Finds mean, median, lower and higher quartile and std. deviation of  
%surface Plotdata pressure if there is a duct (column 1) 
counter = 1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,6)> 0 
        temp(j)=Plotdata(counter,22); 
        j=j+1; 
end 
 
    counter=counter+1; 
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end 
 
table(31,1)=mean(temp); 
table (33,1)=median(temp); 
table(35,1)=std(temp); 
% compute 25th percentile (first quartile) for duct1 
table(32,1) = median(temp(find(temp<median(temp)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(34,1) = median(temp(find(temp>median(temp)))); 
 
%Finds mean, median, lower and higher quartile and std. deviation of  
%surface Plotdata pressure if there is  no duct (column 2) 
counter = 1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,6)== 0 
        temp(j)=Plotdata(counter,22); 
        j=j+1; 
end 
 
    counter=counter+1; 
 
end 
 
table(31,2)=mean(temp); 
table (33,2)=median(temp); 
table(35,2)=std(temp); 
% compute 25th percentile (first quartile) for duct1 
table(32,2) = median(temp(find(temp<median(temp)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(34,2) = median(temp(find(temp>median(temp)))); 
 
%Finds mean, median, lower and higher quartile and std. deviation of  
%surface Plotdata presssure if there is a surfaceduct (column 3) 
counter = 1; 
j=1; 
temp=0; 
for i=1:x 
if Plotdata(counter,15)==1 
        temp(j)=Plotdata(counter,22); 
        j=j+1; 
end 
 
    counter=counter+1; 
 
end 
table(31,3)=mean(temp); 
table (33,3)=median(temp); 
table(35,3)=std(temp); 
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% compute 25th percentile (first quartile) for duct1 
table(32,3) = median(temp(find(temp<median(temp)))); 
 
% compute 75th percentile (third quartile) for duct1 
table(34,3) = median(temp(find(temp>median(temp)))); 
 
%//end of file 
 
 

D. MATLAB CODE TO EXTRACT THE METEOROLOGICAL 

VARIABLES FROM THE SOUNDING AND COMPUTE THE VERTICAL 

RESOLUTION 

function decode_and_save_soundings(filename) 
% 
% Purpose:  decodes for files with format below.  MUST, MUST have  
%           a blank line between soundings. 
% 
% format: 
% LGIR Observations at 00Z 01 Jan 2005 
% ---------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA  
%     hPa     m      C      C      %    g/kg    deg   knot     K   
% ---------------------------------------------------------------- 
%  1016.0     39    9.6    7.0     84   6.22    160      6  281.5  
%  1009.0     95   12.0    8.5     79   6.94    184      6  284.4  
%  1000.0    168   12.2    6.2     67   5.98    215      6  285.4  
%   987.0    277   11.6    6.6     71   6.23    234      6  285.8  
% Station information and sounding indices 
%                          Station identifier: LGIR 
%                              Station number: 16754 
%                            Observation time: 050101/0000 
%                            Station latitude: 35.33 
%                           Station longitude: 25.18 
%                           Station elevation: 39.0 
%                             Showalter index: 11.02 
%                                Lifted index: 9.45 
%     LIFT computed using virtual temperature: 9.38 
%                                 SWEAT index: 72.32 
%                                     K index: -11.20 
%                          Cross totals index: 17.20 
%                       Vertical totals index: 19.10 
%                         Totals totals index: 36.30 
%       Convective Available Potential Energy: 7.46 
%              CAPE using virtual temperature: 12.88 
%                       Convective Inhibition: -14.83 
%              CINS using virtual temperature: -13.39 
%                            Equilibrum Level: 803.48 
%  Equilibrum Level using virtual temperature: 800.10 
%                    Level of Free Convection: 870.17 
%              LFCT using virtual temperature: 877.40 
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%                      Bulk Richardson Number: 0.11 
%           Bulk Richardson Number using CAPV: 0.18 
%   Temp [K] of the Lifted Condensation Level: 278.77 
% Pres [hPa] of the Lifted Condensation Level: 921.85 
%      Mean mixed layer potential temperature: 285.35 
%               Mean mixed layer mixing ratio: 6.24 
%               1000 hPa to 500 hPa thickness: 5472.00 
% Precipitable water [mm] for entire sounding: 13.18 
%  
% LGIR Observations at 12Z 01 Jan 2005 
% ---------------------------------------------------------------- 
%    PRES   HGHT   TEMP   DWPT   RELH   MIXR   DRCT   SKNT   THTA  
%     hPa     m      C      C      %    g/kg    deg   knot     K   
% ---------------------------------------------------------------- 
%  1016.0     39   15.8    9.8     68   7.54    350      4  287.6  
%  1014.0     56   13.4    6.4     63   5.98    349      4  285.4  
% 
% 
% ---------------------------------------------- 
% Modified 5/9/11 by M. Jordan, NPS/MR 
% ---------------------------------------------- 
% Last modified at 11/15/2011 by Kostas Raptis  
%_________________________________________________________________ 
 
fid_in=fopen(filename,'r'); 
if fid_in > 0 
    disp(['Sounding file opened: '  filename]) 
end 
 
% counter for all data 
bigcounter = 0; 
 
% Preallocate Matrices 
N_sounding = 1000; 
N_rows_each_sounding = 200; 
pres_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
hght_all_soundings =NaN*ones(N_rows_each_sounding,N_sounding); 
tmpc_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
dwpc_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
relh_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
mixr_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
drct_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
sknt_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
thta_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
q_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
M_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
N_all_soundings = NaN*ones(N_rows_each_sounding,N_sounding); 
YYMMDD_HHMM_matrix = []; 
STATION_ID_matrix = []; 
res=0; 
%This loop for all year 
while 1 
 
% clear variables before start to read next sounding 
    clear preshghttmpcdwpcrelhmixrdrctsknt 
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    clear thtaqMN 
 
% Skip first five rows header 
for ihead = 1:5; 
        line = fgetl(fid_in); 
end 
% 
%initialize a line counter 
    iline=0; 
% 
%This loop reads each line 
while 1 
%Read each line as a character string 
        line=fgetl(fid_in) ; 
%This loop finds missing value for dwpt 
while line (22:28) == '       ' 
            line=fgetl(fid_in); 
end 
%This is statement for reading headers 
if line (1:7) == 'Station' 
            line=fgetl(fid_in); 
            station_ID_str = line(46:49); 
            line=fgetl(fid_in); 
            station_number = str2num(line(46:50)); 
            line=fgetl(fid_in); 
            date_time_str = line(46:56); 
            line=fgetl(fid_in); 
%This loop skip other lines 
while ~isempty(line) %line(44) == ':' 
                line=fgetl(fid_in); 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
end 
end 
 
%Check for the end of one data set 
if isempty(line) 
break 
end 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
 
%Increment line counter.  This is the index for each data array 
        iline = iline+1; 
%Reads data from file 
        pres(iline,1) = str2num(line(1:7)); 
%disp(pres(iline)); 
        hght(iline,1) = str2num(line(8:14)); 
        tmpc(iline,1) = str2num(line(15:21)); 
        dwpc(iline,1) = str2num(line(22:28)); 
        relh(iline,1) = str2num(line(29:35)); 
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        mixr(iline,1) = str2num(line(36:42)); 
 
if line(48:56) =='         ' 
            drct(iline,1) = NaN; 
            sknt(iline,1) = NaN; 
else 
            drct(iline,1) = str2num(line(47:49)); 
            sknt(iline,1) = str2num(line(54:56)); 
end 
 
end% This is the end of the WHILE Loop 
 
 
% Calculate theta & q 
    [thta,q] = theta_q(pres,tmpc,relh); 
 
% Calculate M and N 
    [M,N] = m_n_profile(pres,tmpc,relh,hght); 
 
    bigcounter = bigcounter + 1; 
 
% store each sounding variable in Matrix 
    pres_all_soundings(1:length(pres),bigcounter) = pres; 
    hght_all_soundings(1:length(hght),bigcounter) = hght; 
    tmpc_all_soundings(1:length(tmpc),bigcounter) = tmpc; 
    dwpc_all_soundings(1:length(dwpc),bigcounter) = dwpc; 
    relh_all_soundings(1:length(relh),bigcounter) = relh; 
    mixr_all_soundings(1:length(mixr),bigcounter) = mixr; 
    drct_all_soundings(1:length(drct),bigcounter) = drct; 
    sknt_all_soundings(1:length(sknt),bigcounter) = sknt; 
    thta_all_soundings(1:length(thta),bigcounter) = thta; 
    q_all_soundings(1:length(q),bigcounter) = q; 
    M_all_soundings(1:length(M),bigcounter) = M; 
    N_all_soundings(1:length(N),bigcounter) = N; 
 
    STATION_ID_matrix = char(STATION_ID_matrix, station_ID_str); 
    STATION_NUMBER_matrix(bigcounter,1) = station_number; 
    YYMMDD_HHMM_matrix = char(YYMMDD_HHMM_matrix,date_time_str); 
 
% computation of vertical resolution 
if hght_all_soundings(2,bigcounter)<101 % this is the rounded up 
        res=res+1;                          % height of upper quartile 
end 
 
%Check for the effective "end-of-file" 
if line == -1 
break 
end 
end 
res  
percentage=(res*100)/bigcounter 
fclose(fid_in); % --- end of sounding "decoder" portion 
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% remove extra lines & columns in data matrices 
STATION_ID_matrix(1,:) = []; 
YYMMDD_HHMM_matrix(1,:) = []; 
% remove extra columns 
pres_all_soundings(:,bigcounter+1:end) = []; 
hght_all_soundings(:,bigcounter+1:end) = []; 
tmpc_all_soundings(:,bigcounter+1:end) = []; 
dwpc_all_soundings(:,bigcounter+1:end) = []; 
relh_all_soundings(:,bigcounter+1:end) = []; 
mixr_all_soundings(:,bigcounter+1:end) = []; 
drct_all_soundings(:,bigcounter+1:end) = []; 
sknt_all_soundings(:,bigcounter+1:end) = []; 
thta_all_soundings(:,bigcounter+1:end) = []; 
q_all_soundings(:,bigcounter+1:end) = []; 
M_all_soundings(:,bigcounter+1:end) = []; 
N_all_soundings(:,bigcounter+1:end) = []; 
for i = 1:bigcounter 
    one_P = pres_all_soundings(:,i); 
    index = ~isnan(one_P); 
    number_rows_per_sounding(i) = length(one_P(index)); 
end 
NN = max(number_rows_per_sounding)+1; 
% remove extra rows 
pres_all_soundings(NN:end,:) = []; 
hght_all_soundings(NN:end,:) = []; 
tmpc_all_soundings(NN:end,:) = []; 
dwpc_all_soundings(NN:end,:) = []; 
relh_all_soundings(NN:end,:) = []; 
mixr_all_soundings(NN:end,:) = []; 
drct_all_soundings(NN:end,:) = []; 
sknt_all_soundings(NN:end,:) = []; 
thta_all_soundings(NN:end,:) = []; 
q_all_soundings(NN:end,:) = []; 
M_all_soundings(NN:end,:) = []; 
N_all_soundings(NN:end,:) = []; 
 
% add a variable 
number_of_soundings = bigcounter; 
 
%  prepare the name for the ".mat" file 
%  Logic:  find the "/"s and ".", so we can use the first part of  
%  the name. 
% 
index1=find(filename == '/');          %  find the "/" in the name 
if length(index1) == 0                 %  if no "/" in name 
    first=1; 
else 
    iend=length(index1);                %  the last "/" 
    first=index1(iend)+1;          %  first character in matfile name 
end 
index2=find(filename == '.'); 
last=index2-1;                       %  use characters before the "." 
matfile= [filename(1,first:last)  '_all_soundings.mat']; 
 
% clear variables before saving MAT file 
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clear preshghttmpcdwpcrelhmixrdrctsknt 
clear thtaqMNstation_ID_strstation_number 
clear date_time_strone_P 
clear N_rows_each_soundingN_soundingNN 
clear ansiheadilineindex1index2lastlinefid_in 
clear indexindex1index2firstlastiendansfilename 
clear time_str_UTCidate_str_YYMMDD 
 
% save MAT file 
eval(['save ' matfile] ) 
 
disp(['MAT file written to current directory: ' matfile ]) 
 
% ----- end of function ----------------------------------- 
 

E. MATLAB CODE TO GENERATE PLOTS FOR EACH SOUNDING 

PROFILE 

% Purpose: To generate plots for M,T and D profile, for each sounding. 
% file = plot_all_soundings.m 
% 
clear all 
close all 
clc 
% Any time the program needs to run it is required to load the 
% particular file i.e. "ATHENS_2007_JUL_all_soundings.mat",  
% which has been derived from the "decode_and_save_soundings.m" 
load ATHENS_2007_JUL_all_soundings.mat 
 
for i = 1:number_of_soundings 
    hght = hght_all_soundings(:,i);   % extract i-th column 
    tmpc = tmpc_all_soundings(:,i);   % extract i-th column 
    dwpc = dwpc_all_soundings(:,i);   % extract i-th column     
    M = M_all_soundings(:,i);         % extract i-th column 
    DateTime_str = YYMMDD_HHMM_matrix(i,:);   % extract i-th row 
    Station_str = STATION_ID_matrix(i,:);   % extract i-th row 
 
    figure(i)    % use same figure window 
    clf          % clear the figure 
    subplot(1,2,1) 
    plot(tmpc,hght,'b*-',dwpc,hght,'g+-') 
    legend('Temp','DewPt') 
    xlabel('Temperature (C)') 
    ylabel('Height (m)') 
    title([Station_str ', ' DateTime_str])  
    grid on 
    subplot(1,2,2) 
    plot(M,hght,'bx-') 
    xlabel('Modified Refractive Index (unitless)') 
    ylabel('Height (m)') 
    title(['Data Matrix Column number: ' int2str(i)])     
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%eval(['print -dpng ' Station_str '_' DateTime_str(1:6) '_' 
DateTime_str(8:end)]) 
end 
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