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ABSTRACT 
  

YBa2Cu3O7-x (YBCO) + BaSnO3 (BSO) thin films with BSO nanocolumns have 
been shown to have improved critical current density (Jc) in applied magnetic fields.  
Previously, a sectored target was used to grow thick (> 2.5 µm) YBCO + BSO films.  In 
the present study, a premixed YBCO + BSO (20 mol %) target was used to grow thick 
films (> 3 µm) to determine if similar high quality thick films can be obtained as with the 
sectored target approach. In the case of the premixed target, BSO material is 
continuously supplied as opposed to the sectored target method.  YBCO + BSO thick 
film samples processed using a premixed target were also found to have high Jc at high 
fields with Jc > 104 A/cm2 at 8 T at 77 K, whereas typical YBCO films carry only 102 
A/cm2.  Transmission electron microscopy (TEM) on these films indicated that BSO 
nanocolumns with a diameter of ~8-11 nm extend through the thickness of the films.  
The critical transition temperature (Tc) for the films was found to be ~87 K, regardless of 
thickness. 
 
KEYWORDS:  high-temperature superconductors, BaSnO3, critical current density, 
superconducting transition temperature, YBa2Cu3O7-x. 
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INTRODUCTION 
 

YBa2Cu3O7-x (YBCO) coated conductors have  excellent self-field critical current 
density (Jc) but need improvement in applied magnetic fields like in motors, generators, 
and other electrical power applications [1,2].  To provide this improvement, flux pinning 
centers are introduced to the YBCO.  Pinning in YBCO films can be provided via 
crystalline defects or other non-superconducting materials in nanodimensional additions.  
Examples of such material inclusions are Y2BaCuO5, BaZrO3 (BZO), Y2O3, etc when 
dispersed in a controlled manner in a sufficiently high density, to provide this enhancement 
[3-6].  In the case of BaSnO3 (BSO), it has been shown to create nanocolumns in YBCO 
when proper processing conditions were used [7], similar to BZO.  These BSO 
nanocolumns particularly contribute to pinning in the c-axis orientation, with Jc increasing 
by more than 2 orders of magnitude in high fields.   

 In the literature, undoped YBCO also shows rapid degradation in Jc as the thickness 
of the film is increased (>1 µm) [8,9].  In a previous study, thick YBCO + BSO films were 
grown with a sectored target approach to address this issue [10].  By only varying the time 
of the deposition, thick (3 µm) YBCO + BSO films were grown and found to maintain Jc in 
applied magnetic fields due to the presence of the nanocolumns.  These nanocolumns were 
uniformly straight and extended throughout the thickness of the films, for thicknesses 
ranging from 300 nm to 3 µm.  The study presented here was performed to investigate if 
thick YBCO + BSO films with a pre-mixed target in place of a sectored target can achieve 
similar results.  This is not clear since the supply of BSO is fairly continuous during film 
growth in the pre-mixed target case as opposed to an intermittent supply of BSO in the case 
of a YBCO/BSO sectored target. 
 
EXPERIMENTAL 
 

All the films were made by pulsed laser deposition (PLD). The PLD target used in 
this experiment was made using NEXANS YBCO powder and Cerac BSO powder (-325 
mesh, 99%).  The powders were mixed and ground together in the appropriate ratio to yield 
a final composition of YBCO + 20 mol% BSO.  This ratio was used for its similarity to the 
BSO content of the previous experiment that used a YBCO + BSO sectored target.  The 
mixed powder was pressed and then sintered for 72 hours at 850 oC and 168 hours at 920 
oC to an approximate density of ~90%. 

 The film depositions were carried out in a Neocera chamber with a target to 
substrate working distance of ~6 cm.  A Lambda Physik excimer laser (λ=248nm) was 
used to ablate the target.  The laser was operated at 4 Hz, 625 mJ with an energy density on 
the target of ~2-4 J/cm2.  The films were deposited on single crystal (100) LaAlO3 
substrates in a 300 mTorr O2 atmosphere at 780 oC.  Samples were oxygenated during cool 
down at 500 oC, 600 torr O2 for ½ hour, and then cooled to room temperature.   The 
thickness of the films was varied by changing only the deposition time.  Final film 
thicknesses ranging from 250 nm to 3 µm were obtained by varying the deposition times 
from 20 minutes up to 4 hours. 

 Magnetization hysteresis loops were taken in a Quantum Design PPMS Vibrating 
Sample Magnetometer (VSM).  The Bean model was used for calculation of magnetization 
Jc from the data taken from these loops.  The magnetic dipole moment of the sample was 
also measured as temperature was varied in the VSM to obtain the critical transition 
temperature (Tc) of the samples.  The film thickness was measured with a KLA Tencor 
profiler.  X-ray diffraction data was obtained on the samples using a Rigaku DMAX B.  A 
FEI Sirion high resolution scanning electron microscope (SEM) was used to obtain electron 
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micrographs of the samples’ microstructure.  A FEI Tecnai F20 analytical electron 
microscope with a point-to-point resolution of 0.21 nm (TEM) was used after standard 
sample preparation to observe the nanocolumns of BSO in the YBCO matrix. 
 
RESULTS AND DISCUSSION 

 
The Tc data of YBCO + BSO samples of different thickness are shown in FIGURE 1.  

All the films for this study showed a Tc of ~ 87 K.  It can be seen that the Tc does not 
degrade as the film thickness is increased, even up to 3 µm.  This offers initial confirmation  
that 30 min of oxygenation is sufficient for even the thick films.  A slight reduction of Tc to 
87 K is consistent with the thin films of YBCO + BSO as reported earlier [11]. 
 

80

82

84

86

88

90

0 500 1000 1500 2000 2500 3000

T C
 (K

)

Thickness (nm)

YBCO + BSO (20 mol%)

 
FIGURE 1. Tc in YBCO + 20 mol% BSO films with varying thickness. 

 
A plot of the Jc of different thickness samples is shown as a function of applied 

magnetic fields in FIGURE 2.  The results show that the samples continue to maintain their 
Jc very well even when the thickness is increased, especially at higher fields.  At 8 Tesla of  
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FIGURE 2. Jc values for varying thickness YBCO + 20 mol% BSO films at 77 K and H // C. 
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applied magnetic field, the Jc of a YBCO + BSO sample of 2.8 µm thickness was 1.5x104 
A/cm2, which is similar to the Jc of a 260 nm thick YBCO + BSO sample.  Although there 
is some reduction in Jc evident at very low fields, there appears to be a slight improvement 
at the higher fields as the thickness approaches the 1 µm range. 

FIGURE 3 displays several magnetization Jc curves of thick YBCO + BSO samples.  
These are compared with a YBCO 300 nm film standard.  After 1.8 Tesla, all YBCO + 
BSO films show improvement from YBCO.  At 8 T it can be seen that the YBCO + BSO 
films are at least 2 orders of magnitude better than the undoped YBCO. 

Theta - two theta x-ray diffraction data taken from different samples is shown in 
FIGURE 4.  The area of interest has been expanded and compared for 4 representative 
thickness samples.  All the samples show good texture for (00l) type YBCO peaks.  
However, an additional peak appears in the thicker samples which corresponds to YBCO 
(103) peak.  This peak becomes more intense in the 2.8 µm thickness sample.  These 
misoriented grains are expected as the temperature at the growing surface could be lower in 
thicker films than thin films as the films are heated from the back of the substrate.  
Although all YBCO + BSO films show some drop in self field Jc and Tc, the misoriented 
grains could be the primary cause for the greater drop in self-field Jc as observed in films 
with thickness > 2 µm. 
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FIGURE 3. VSM Jc data for selected YBCO + 20 mol% BSO film thicknesses compared with 300 nm 
YBCO at 77 K and H // c. 
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FIGURE 4. θ-2θ x-ray scans of YBCO + 20 mol% BSO of varying thickness. 

 
FIGURE 5 shows the low magnification (1.5k x) scanning electron surface 

micrographs of a) 260 nm and b) 2.8 µm thick YBCO+BSO samples.  The 260 nm shows 
standard surface features for YBCO + BSO with small particles (note that these particles 
are not the planar view of the nanocolumns) on the surface that can be observed at low 
magnification.  The 2.8 µm sample, however, shows misoriented grains such as a-axis 
grain growth occurring in the sample.  Despite the misoriented grain growth (possibly 
created by the lower surface temperature as discussed before) in thick films, the YBCO + 
BSO microstructure still shows nanocolumn formation of BSO continuing into the 
upperparts of the films.  FIGURE 6 shows at higher magnification (150k x) the a) 260 nm 
sample and b) 2.8 µm sample.  Both display a uniform distribution of BSO nanoparticles at 
the surface. These are the cross-sections (a-b planar view) of the BSO nanocolumns as 
observed in cross-sectional transmission electron micrographs shown later. 

 

  
a)       b) 

 
FIGURE 5. SEM photomicrograph showing surface microstructure of a) 260 nm sample and a b) 2.8 µm 
sample 
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a)       b) 

 
FIGURE 6. SEM photomicrograph showing uniform BSO distribution in YBCO on a) 260 nm sample and a 
b) 2.8 µm sample   

 
Cross-sectional TEM was done on the samples to investigate the extent of the BSO 

nanocolumnar formation in the samples as well.  FIGURE 7 shows a YBCO + BSO film of 
a) 750 nm thickness and b) 2.8 µm thickness.  Both samples show nanocolumns with a 
diameter of ~ 8-11 nm.  Both also show continuous nanocolumns that extend through the 
thickness of the film.  They appear to be relatively unaffected by the appearance of a-axis 
growth.  The nanocolumns were similar to the nanocolumns shown in the YBCO + BSO 
thick film made with a sectored target.   

 

  
a)       b) 

 
FIGURE 7. Cross sectional TEM image showing through-thickness, uniform BSO nanocolumns in a) 780nm 
film and a b) 2.8 µm film 
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CONCLUSIONS 
 
It has been shown that quality, thick YBCO + 20 mol% BSO films up to 3 µm can be 

grown by just varying the deposition time.  This quality growth occurs whether BSO is 
supplied from a continuous source like a pre-mixed target or intermittent source as the 
sectored target.  The YBCO + BSO thick films show a Tc of ~87K regardless of the 
thickness.  The samples show little degradation of Jc as thickness is increased, with samples 
ranging from 260 nm to 2.8 µm showing >104 A/cm2 at 8 T, H//C.  The samples also all 
show continuous 8-11 nm nanocolumns of BSO extending throughout the sample despite 
the presence of a-axis growth in the thicker samples. 
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