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Comparative Study Between Similarly
Processed ��������	 
 Films With
�������� or ���
�� Additions

Chakrapani V. Varanasi, J. Burke, L. Brunke, J. H. Lee, H. Wang, and Paul N. Barnes

Abstract—A special��������� � (YBCO) target with a thin
sector of second phase material, in this case either ��������

(Y211) or ������ (BSO), was used to deposit YBCO films
with non-layered nanoparticles on single crystal 	�
��� and
biaxially textured Ni-5 at.% W substrates buffered with ����

and YSZ layers(coated conductors). Although identical processing
conditions were used, TEM images indicated that random Y211
nanoparticles in the case of YBCO+Y211, and evenly spaced
BSO nanocolumns in the case of YBCO+BSO, form in the YBCO
films. While YBCO plane buckling was observed at many places
in the case of YBCO+Y211, a high density of stacking faults
and dislocations were observed in the case of YBCO+BSO near
the BSO columns. In transport critical current density 
 �
angular dependence measurements, the absence of nanocolumns
in YBCO+Y211 films resulted in the absence of a peak at 0 ,

 �, in vs. plots, as compared to a clear peak at 0

observed in YBCO+BSO films with the nanocolumns. The in-field
measurements indicated small low-field enhancements at

77 K in YBCO+Y211 films but more than an order of magnitude
improvement in high-field in YBCO+BSO films due to the
differences in the microstructures.

Index Terms—������, coated conductors, flux pinning, pulsed
laser ablation, Y211.

I. INTRODUCTION

F LUX pining enhancement in coated conductors is highly
desirable for the applications in high magnetic fields

and to improve the engineering current density of the
conductors [1]. Second phase additions during the growth of

(YBCO) are now widely studied by several
groups as a means to enhance the critical current density .
Various second phase particles such as (Y211)
[2], [3], [4], [5] and (BSO) [6] etc.
have been investigated with good success in enhancing the .
Introduction of second phase particles in YBCO films grown
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by pulsed laser ablation was initially done by two methods a)
using two different targets and alternatively switching them
during the growth [2] or b) use a premixed target prepared with
desired amounts of second phase material [5], [7].

Recently a third approach that uses a second phase material
sector on the YBCO target has been discussed using Y211 sector
as an example [3]. Later, similar approaches have been used
to introduce other materials such as yttria stabilized zirconia
(YSZ) etc. into YBCO with good success [8]. Recently, BSO
has been also introduced into YBCO by using the sectored target
approach which yielded YBCO+BSO films with very good
improvements, especially at high fields [6], [10].

However, a comparative study of YBCO films processed
using a similar process and amounts but with different chemical
composition materials is lacking in the literature. This kind
of study is important to understand the composition-struc-
ture-property relationships in YBCO materials. In this paper
magnetization , angular dependence of transport , and
transmission electron microscope images of the cross-sec-
tion of YBCO+Y211 are compared with the YBCO+BSO
films processed by similar processing method and amounts.
The observed angular dependence of the transport current
measurements is discussed in the light of the microstructural
differences between YBCO+Y211 and YBCO+BSO. Results
on YBCO+Y211 films deposited on buffered metallic substrates
are presented as opposed to the initial results of YBCO+Y211
on single crystal substrates that were reported earlier
[3].

II. EXPERIMENTAL

All the YBCO films with Y211 or BSO additions were pro-
cessed using pulsed laser ablation employing a sectored target
approach. A Neocera chamber with Lambda Physik laser

was used for the depositions. A 30 sector cut from a
thin disk of either Y211 or BSO was attached to the top surface
of a YBCO target and it is periodically ablated as the target is ro-
tated during the deposition. The second phase particles (Y211
or BSO) are introduced (expected to be 15–20 at.%) into the
growing YBCO film whenever the laser hits the sector. All the
films were processed using the same conditions: a laser energy
density of 2 , 4 Hz repetition rate, substrate to target dis-
tance of 6 cm, a growth temperature of 780 and 300 mTorr of

ambience. Films were grown to approximately 250–300 nm
thickness on buffered metallic substrates (
buffers on bi-axially textured Ni-5 at.%W) as well as single
crystal (100) (LAO). The films were then annealed

1051-8223/$25.00 © 2009 IEEE
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Fig. 1. Lower magnification image of the YBCO+Y211 coating on buffered
metallic Ni-5 at.%W substrates.

in-situ in the chamber at 500 at 600 Torr of pressure for
30 min. before cooling down to room temperature.

All the scanning electron microscope images of the samples
were taken using a SIRION high resolution scanning electron
microscope. Cross-sectional and plan-view transmission elec-
tron microscopy (TEM) studies on all samples on LAO, in-
cluding high resolution TEM (HRTEM), were performed with
a Philips CM200 analytical electron microscope with point-to-
point resolution of 0.21 nm. All the TEM samples were pre-
pared through a conventional TEM sample preparation routine
including cutting, gluing, grinding, polishing and precision ion
polishing. Focused ion beam cross-sections of YBCO+Y211
sample on metallic substrates were observed using a FEI micro-
scope to characterize the interfaces and to determine the depth of
the pores. Magnetization was calculated from the hysteresis
loops data generated using a Quantum Design PPMS vibrating
sample magnetometer and using the Bean’s model. Transport
current density measurements were taken on bridged samples
in applied magnetic fields using a four probe method. Angular
dependence of transport with the magnetic field orientation
was compared for YBCO+BSO and YBCO+Y211 samples.

III. RESULTS AND DISCUSSION

Fig. 1 shows a SEM plan view image of a YBCO+Y211
film deposited on coated conductor substrate. These films
showed the presence of porosity similar to the YBCO+Y211
films deposited on substrates as reported earlier [3].
It is thought that the Y211 nanoparticles of sufficiently small
size can contribute to the formation of the porosity similar
to the contribution from the vicinal steps on the YBCO films
grown on vicinal substrates as reported in the previous studies
[11]. However, the YBCO+BSO films did not show a similar
porosity, possibly due to the formation of nanocolumns as
opposed to discrete nanoparticles seen in YBCO+Y211, as
discussed later.

A higher magnification SEM image is shown in Fig. 2 where
Y211 nanoparticles in the films can be clearly seen (bright
white discrete particles as shown by arrows). Fig. 3 shows the

Fig. 2. High resolution secondary electron images of the YBCO+Y211
coatings on buffered metallic Ni-5at..%W substrates. Arrows show the
nanoparticles.

Fig. 3. Focused ion beam cross-sectional image of YBCO+Y211 coated con-
ductor on Ni-5 at.%W.

cross-sectional image of a coated conductor sample obtained
by using a focused ion beam technique showing different layers
present in the sample. All different layers of the buffers, namely

, YSZ, and , can be clearly seen. Some formation
of at the interface is observed in these samples. The
cross-sectional image shows that some of the pores can be very
deep extending to more than half of the film thickness. This
porosity is not necessarily undesirable as it can help in rapid
oxygenation of the films. In addition it has been suggested that
pores can also contribute to flux pinning via the surfaces [11].

Fig. 4 shows a TEM cross-sectional image of similarly pro-
cessed YBCO+Y211 sample deposited on substrate
where a number of Y211 particles can be seen as marked. It
is estimated from this figure that, the average particle size is 4

5 nm and the particle density is
. If we assume the density is uniform throughout the

sample thickness, the volume density is . Fig. 5
shows a high resolution image of YBCO+Y211 sample where
extensive YBCO plane buckling was observed. It is believed that
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Fig. 4. Transmission Electron Microscope image of YBCO+Y211 sample de-
posited on ����� substrates showing nanoparticles.

Fig. 5. High resolution Transmission Electron Microscope image showing
YBCO plane buckling in YBCO+Y211 films deposited on ����� .

the buckling is partly caused by the presence of Y211 nanoparti-
cles and compositional fluctuations. Fig. 6 shows the cross-sec-
tional TEM image of a similarly processed YBCO+BSO sample
where evenly spaced BSO nanocolumns can be observed as op-
posed to discrete particles observed in the YBCO+Y211. In
the YBCO+BSO samples, the rod density is estimated to be

. The average BSO nanorod size is about 7.5
nm. In high resolution TEM, a high density of stacking faults
and dislocations were noticed around these nanocolumns as re-
ported elsewhere [9]. YBCO was observed to grow around the
nanocolumns with good c-axis orientation.

Fig. 7 shows the magnetization as a function of magnetic
field of YBCO+Y211 and YBCO+BSO films at both 77 K and
65 K. YBCO+Y211 films seem to have slightly better than
YBCO+BSO at lower fields up to 2 T at 77 K. However, the
YBCO+BSO samples show a much higher at higher fields.

Fig. 6. BSO nanocolumns in a YBCO+BSO sample processed with a 30 BSO
sector on a YBCO target on ����� substrates.

Fig. 7. Magnetization critical current density vs. the applied magnetic field of a
YBCO+Y211 sample as compared to YBCO+BSO sample processed by similar
method on ����� substrates.

More than an order of magnitude improvement in was ob-
served at the higher fields, e.g. at 6 T. As noted before (Fig. 6),
YBCO+BSO samples have nanocolumns perpendicular to the
sample normal, or parallel to the c-axis. Since the magnetic
field is applied parallel to the c-axis, the interaction between the
flux lines and the nanocolumns is expected to be significant, re-
sulting in higher flux pinning. Although YBCO+Y211 include
nanoparticulates, the pinning strength at high fields does not
seem to be as significant. However, at lower fields, due to the
lower density of flux lines and low Lorenz forces, the nanopar-
ticulates could contribute to pinning. In addition, of the films
also may play a role in the differences. It should be noted that
the of the films was found to be 90 K for YBCO+Y211
films, but it is slightly depressed in the case of YBCO+BSO
films to 88 K. The depression in YBCO+BSO (possibly
due to Sn diffusion or strain due to nanocolumns in YBCO) is
partly responsible for depressed at lower fields in these films.
At 65 K, the effect of the difference is not as significant and
so the YBCO+Y211 and YBCO+BSO samples appear to have
similar at low fields. However, at higher fields the improve-
ments seem to occur in YBCO+BSO due to the nanocolumns as
discussed before.

Fig. 8 shows the transport of YBCO+Y211 samples on a
coated conductor substrate. A similar high was noted as seen
on single crystal substrates. The transport was mea-
sured to be higher than the magnetization as shown in Fig. 7,
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Fig. 8. Transport critical current density vs. the applied magnetic field of a
YBCO+Y211 coated conductor sample.

Fig. 9. Comparison of � angular dependence at 1 T for YBCO+Y211 and
YBCO+BSO films on metallic substrates. Absence of peak in H//c can be clearly
seen in YBCO+Y211 samples due to lack of nanocolumns.

consistent with the earlier observations. Fig. 9 shows vs.
of YBCO+Y211 and YBCO+BSO coated conductor samples
normalized to respective values. The YBCO+BSO
clearly shows a peak at 0 , as compared to YBCO+Y211 that
shows a relatively flat region, again confirming the contribu-
tions from the nanocolumns in YBCO+BSO and lack thereof
in YBCO+Y211.

Although both Y211 and BSO have a lattice mismatch with
YBCO (for Y211 7% and for BSO it is 7.7%), the cubic
perovskite structure of BSO is evidently important to form
the nanocolumns in YBCO. Other examples of nanocolumn
formation such as BZO [12] also seem to corroborate well
with the present observations. However, it should also be noted
that the growth of nanocolumns will depend on the processing
conditions. While both Y211 and BSO were introduced into
YBCO films in almost similar amounts by a similar method,
Y211 forms the nanoparticles and BSO forms nanocolumns,
likely caused by the suitable strain induced by the cubic per-
ovskite structure of the BSO [13]. It is also interesting to note
that although high volume fractions of the second phase are

introduced, there is minimal degradation in the biaxial texture
of YBCO films, suggesting that the growth of YBCO is less
influenced by these additions. The presence of nanocolumns
seems to be essential for the observed enhancements at high
fields.

IV. CONCLUSIONS

In conclusion, it is shown that YBCO+Y211 films show
improvements over YBCO+BSO only at low magnetic fields
at 77 K. YBCO+BSO films show more than an order of mag-
nitude improvement in at high fields as compared to the
YBCO+Y211 samples processed under similar conditions. Al-
though similar processes are used, depending upon the crystal
structure and the lattice mismatch, the nanocolumns in YBCO
can form that influence the high field .
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