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Abstract

A comprehensive scheme is described to construct rational solid T-splines from boundary triangulations with arbitrary topology. To extract
the topology of the input geometry, we first compute a smooth harmonic scalar field defined over the mesh and saddle points are extracted to
determine the topology. By dealing with the saddle points, a polycube whose topology is equivalent to the input geometry is built and it serves
as the parametric domain for the solid T-spline. A polycube mapping is then used to build a one-to-one correspondence between the input
triangulation and the polycube boundary. After that, we choose the deformed octree subdivision of the polycube as the initial T-mesh, and
make it valid through pillowing, quality improvement and applying templates to handle extraordinary nodes and partial extraordinary nodes.
The obtained T-spline is C2-continuous everywhere over the boundary surface except for the local region surrounding polycube corner nodes.
The efficiency and robustness of the presented technique are demonstrated with several applications in isogeometric analysis.
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1. Introduction

For tight integration of Design-Through-Analysis, isogeo-
metric analysis [11] was proposed which utilizes spline func-
tions as a basis. The current state-of-the-art in engineering de-
sign and analysis is built on disparate geometric foundations.
Spline representation is popular in design while polygonal mesh
representation is generally used in analysis. This leads to many
translational difficulties which affect the efficiency and accuracy
of the entire process. Isogeometric analysis utilizes the same ba-
sis functions as the geometry representation, and consequently,
analysis can be carried out over an exact spline representa-
tion of the geometry. Similar to other physically-based anal-
ysis, solid models, which can represent both boundary shape
and interior volume, are required for many applications in iso-
geometric analysis. A fundamental step for the unified Design-
Through-Analysis technologies is to automatically construct
solid trivariate spline models from boundary representations.

The advent of T-splines [16] gives more flexibility for ge-
ometric modeling, allowing local refinement, non-rectangular
domains in 2D and non-cubic domains in 3D. T-splines can

∗ Corresponding author: Y. Zhang. Tel: (412) 268-5332; Fax: (412) 268-
3348; E-mail address: jessicaz@andrew.cmu.edu.

represent a complicated design with complex topology as a sin-
gle watertight geometry, avoiding splitting the model into sev-
eral patches. T-splines are a superior alternative to and also are
compatible with NURBS, which is the current geometry stan-
dard in CAD systems. The flexibility of T-splines makes them
an ideal discretization technology for isogeometric analysis.

Several methods have been developed recently to con-
struct solid T-splines. A solid T-spline generation method was
described for genus-zero geometries [4]. In [13], trivariate
T-splines were defined based on the generalized polycube
parametrization. Another spline scheme based on polycubes,
called restricted trivariate polycube splines, was developed
in [21]. This algorithm is based on semi-standard T-splines.
It requires calculation of weights and the obtained T-spline
elements are uniform. For all these methods, the polycube is
generated manually for a given geometry. In addition, the con-
structed T-spline model may contain some negative Jacobian
elements, which is unsuitable for analysis.

In our earlier work, we developed a mapping-based ratio-
nal solid T-spline construction method for genus-zero geom-
etry from the boundary surface triangulation [23]. To extend
this algorithm to more general geometry, we first extract the
topology of the input geometry and build a polycube which ap-
proximates the input geometry, by computing a harmonic field
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and dealing with its critical points. Due to its regular structure,
the polycube is suitable for serving as the parametric domain
of the tensor-product spline representations. Here, a trivariate
solid T-spline is built upon the generated polycube. We then
build a parametric mapping between the triangulation and the
boundary of the polycube. In the following steps, an octree sub-
division is applied to the polycube and the initial T-mesh is a
deformation of its subdivision. The subdivision continues until
the surface approximation error is less than a given tolerance.
After that, the valid T-mesh is obtained through pillowing, T-
mesh quality improvement, and applying templates to handle
extraordinary nodes and partial extraordinary nodes. Finally,
Bézier elements are extracted with all positive Jacobians, and
they are suitable for isogeometric analysis.

Compared with other existing methods, our solid T-spline
construction scheme has several attractive properties: (1) it can
be used for arbitrary topology and the polycube is created au-
tomatically; (2) the obtained trivariate T-spline has a one-piece
representation and it contains very few irregular nodes where
the continuity degenerates; (3) it employs rational T-spline ba-
sis, which guarantee partition of unity by definition; (4) it pro-
duces high quality analysis-suitable T-spline elements with all
positive Jacobians; and (5) with an adaptive refinement scheme,
the resulting T-spline model is an efficient representation for
analysis.

The remainder of this paper is organized as follows. Section
2 reviews related work. Section 3 presents an overview of the
construction algorithm. The polycube construction algorithm
is presented in Section 4. The T-mesh construction algorithm
from the polycube is described in Section 5 and solid T-spline
construction is presented in Section 6. Section 7 presents ex-
amples and Section 8 draws conclusions.

2. Previous Work

Harmonic Fields. A harmonic field is the solution to the
Laplace equation with given boundary conditions and it defines
a scalar or vector field over the domain. For a given mesh, har-
monic fields can be computed by solving a linear system of alge-
braic equations with imposed boundary conditions. Harmonic
fields have certain desirable properties, such as smoothness,
and are free of extraneous critical points. Due to these proper-
ties, harmonic fields have been shown to provide effective tool
for a number of geometry processing problems. Dong et al. [3]
traced the integral lines through the gradient and orthogonal
vector fields of a harmonic field for quadrilateral remeshing of
arbitrary manifolds. Based on a harmonic map, a 3D geomet-
ric metamorphosis method was developed for any two objects
which are topologically equivalent to a sphere or a disk [12].
Joshi et al. [19] utilized harmonic coordinates, which are gen-
eralized barycentric coordinates, in volume deformation.

Surface Parameterization. A surface parameterization is a
one-to-one mapping from one surface in 3D to a suitable planar
domain. Parameterization is a powerful tool and necessary for
many geometry processing tasks, including data fitting, texture
mapping, and remeshing. Many significant advances have been
made for surface parameterization [5, 6, 18]. In [8], a conformal

mapping method was presented to map a genus-zero closed
surface onto the unit sphere by minimizing the harmonic energy
of the map. For parameterization of an arbitrary genus object
to simpler surfaces of the same genus, the mesh is usually
first segmented into disk-like patches and then each patch is
mapped onto the corresponding plane. In [7], Gu et al. solved
the problem of global conformal parameterization for surfaces
of arbitrary topology, with or without boundaries.

Polycube Generation and Application. A polyube is a solid
composed of cubes. It can be used to very roughly approxi-
mate the geometry of a 3D object while faithfully replicating its
topology. Due to its highly regular structure, the polycube can
be used as the parametric domain for surface parameterization
and spline modeling. However, in practice due to the complexity
of shapes, polycubes are usually constructed manually, entail-
ing considerable effort. In order to produce polycubes with less
user intervention, He et al. [9] developed a method to construct
a 3D polycube by extruding the axis-aligned polygons which
approximate the horizontal curved intersection contours. Based
on the polycube, a global parameterization technique, polycube
map [19], was first used for seamless texture mapping. Wang
et al. developed a technique to build the polycube splines upon
the polycube map for surface modeling [20]. In [13], an algo-
rithm was developed to construct trivariate T-splines over gen-
eralized polycubes with a global “one-piece” representation for
general volumetric data. In [21], a theoretical volumetric mod-
eling framework was presented to construct restricted trivariate
polycube splines, in which the blending functions are strictly
bounded within the solid polycube domain.

Solid Spline Modeling. Only a few works have been de-
voted to solid spline modeling. In [10], a trivariate simplex
spline modeling method was developed based on a tetrahedral
decomposition of any 3D domain with complicated geometry
and arbitrary topology. In [24], a skeleton-based method was
developed to construct solid NURBS for isogeometric analysis
of arterial blood flow. A method was presented in [1] to gener-
ate NURBS parameterizations of swept volumes by sweeping a
closed curve, and isogeometric analysis was applied to the gen-
erated NURBS model. Based on discrete harmonic functions,
a volumetric parameterization was used to construct a single
trivariate B-spline [14]. By using adaptive tetrahedral meshing
and a mesh untangling technique, an algorithm was developed
to construct a trivariate T-spline representation of genus-zero
solids [4].

It is still a challenging problem to automatically create poly-
cubes for high genus geometry and use them in constructing
analysis-suitable trivariate T-splines. In this paper, we utilize a
harmonic field defined over the input mesh to build the polycube
automatically, and then construct the rational solid T-spline over
the polycube. We include pillowing and quality improvement
techniques to guarantee that the obtained solid T-spline can be
used for analysis directly.

3. Algorithm Overview

As shown in Figure 1, there are three main stages for con-
structing a solid T-spline from a given boundary triangle mesh
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with arbitrary genus topology. From the input triangle mesh,
we first compute a harmonic scalar field defined over the mesh,
extract the geometry topology, and then generate the polycube
with the same topology. Adopting the polycube as the paramet-
ric domain, we build the valid T-mesh in the second stage and
construct solid T-splines in the last stage.

Fig. 1. An overview of the solid T-spline construction algorithm from the
given boundary triangle mesh with arbitrary topology.

The polycube generation stage consists of two steps:
(i) Harmonic Field Calculation - We build a smooth har-

monic scalar field defined over the input mesh. Based on
this field, we compute its gradient field and an orthogo-
nal vector field;

(ii) Handing Critical Points - From the harmonic field, we
determine all the critical points where the first partial
derivatives vanish. These critical points include extreme
points and saddle points. We design different methods to
deal with each type of point in order to build the polycube.
The polycube edges are traced along the gradient and
isocontour directions.

Based on the polycube, the T-mesh is constructed. There
are four different kinds of nodes in the solid T-mesh: regular
nodes, partial extraordinary nodes, extraordinary nodes and T-
junctions. A regular node is a node around which the local
T-mesh is a structured mesh, like node A in Figure 2(a). Both
partial extraordinary nodes and extraordinary nodes are irreg-
ular, and they can be distinguished using reflection edges. Re-
flection edges are a pair of adjacent edges with one common
node, and the set formed by all the elements sharing one edge
is topologically symmetric with the set of elements sharing the
other. For example, AB and AC in Figure 2(b) are a pair of
reflection edges. A partial extraordinary node is an irregular
node about which some but not all of its adjacent edges have
reflection edges, like node A in Figure 2(b). An extraordinary
node is an irregular node about which none of its adjacent
edges has a reflection edge, such as node A in Figure 2(c). A
T-junction terminates a row of control points in one or more

parametric directions, which may lie on an edge or a face. In
solid T-splines, an edge T-junction is a T-junction which lies
on one edge, such as node M in Figure 2(d). A face T-junction
is a T-junction lying on one face, such as node P in Figure 2(e).

(a) (b)

(c) (d) (e)

Fig. 2. Four types of nodes in solid T-meshes. (a) Regular node; (b) partial
extraordinary node; (c) extraordinary node; (d) edge T-junction; and (e) face
T-junction.

The T-mesh construction stage consists of four steps:
(i) Parametric Mapping - We build a parametric mapping

between the input triangle mesh and the boundary of the
generated polycube;

(ii) Octree Subdivision and Projection - An initial T-mesh is
obtained by an octree subdivision of the polycube and
each node on the polycube boundary is projected onto
the boundary surface based on the mapping;

(iii) Pillowing and Quality Improvement - We insert one pil-
lowed layer on the boundary and improve T-mesh quality
by smoothing and optimization;

(iv) Handling Extraordinary Nodes and Partial Extraordinary
Nodes - In order to obtain a gap-free T-mesh, we apply
templates to each extraordinary node and partial extraor-
dinary node in the initial T-mesh.

In this stage, we use the polycube as the parametric domain
for the solid T-spline construction. In the octree subdivision
step, we choose the existing T-junction parametric values to
subdivide each octree cell as much as possible, instead of al-
ways using the central parametric value. Based on the valid T-
mesh, the knot vectors for each node are determined by travers-
ing T-mesh faces and edges [17], and the solid T-spline is con-
structed based on the rational T-spline definition [22]. Bézier
elements are extracted to serve as the primary computational
objects in isogeometric analysis. See [2, 15] for elaboration.

4. Polycube Generation

In this section, we discuss the detailed algorithm of the poly-
cube generation from the input boundary triangulation. The
polycube must be constructed in a geometrically approximate
and topologically equivalent way. To achieve this goal, we first
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compute a harmonic function defined over the input mesh T ,
derive two orthogonal fields from the harmonic function, and
extract the topology structure of T by examining critical points.

4.1. Harmonic Field Calculation

To extract the topological structure of the input mesh T ⊂
R3, we construct a harmonic function f : T →R, such that

4 f = 0 (1)

subject to the boundary condition that vertices in the predefined
set S min and S max have the minimum and maximum values. 4
is the Laplace operator. S min and S max are either given by the
user, or they can also be determined by selecting the bottom-
most and top-most points on T . Basically, computing such a
harmonic function is to assign a scalar value to each vertex in
T . For a triangle mesh, we use the discretization of the Laplace
operator

4 fi =
∑
j∈Ni

wi j( f (V j)− f (Vi)) = 0, (2)

where Vi,V j ∈ T , wi j is the weight and Ni is the number of
vertices adjacent to Vi. Here, we choose the weights, wi j =

cotαi j +cotβi j, where αi j and βi j are the opposite angles of the
edge Vi −V j. From the discretization of the Laplace operator,
the scalar function f can be obtained by solving a linear system.
Figure 3(a) shows the scalar function defined over the “Eight”
model. The red region has the maximal scalar value and the
blue region has the minimal scalar value.

From the scalar field f , we compute both the gradient g1 =∇ f
and one orthogonal vector field g2 (the isocontour field). Due to
the properties of a harmonic scalar field, the obtained direction
fields are guaranteed to be smooth and free of extraneous critical
points. For one triangle (Vi,V j,Vk), suppose−→n is the unit normal
vector. The gradient vector g1 = ∇ f is obtained by solving the
following linear system [3]:

V j−Vi

Vk −V j

−→n


[
g1

]
=


f j− fi

fk − f j

0

 . (3)

The field g2 is along the isocontour directions of f . Hence, for
one scalar value, we simply find out its isocontour to obtain
the vector field g2 for the triangle mesh. Once we obtain the
two orthogonal vector fields g1 and g2, we can trace along
the flow lines. A flow line is a piecewise-linear curve defined
over the mesh whose edges are along one of the vector fields.
There are two cases for tracing the gradient flow, the regular
case and the edge case. As shown in Figures 3(b-c), vertex A
is the starting point, the green arrows represent the gradient
direction for each incident triangle, and we wish to trace the
flow line from A by walking across the incident triangles along
the gradient direction. For the regular case in (b), starting from
A we extend the gradient line by crossing one of its incident
triangles. In this case, we add one new vertex B to advance the
flow line. For the edge case in (c), the flow field converges on

an edge AB and we simply follow this edge. In Figures 3(b-c),
the red edges are the newly obtained flow line segments. The
next step is to consider vertex B and trace the flow line from it
using the same procedure.

(b)

(a) (c)

Fig. 3. (a) Harmonic scalar field with saddle points rendered in pink for the
“Eight” model. (b-c) Two cases for tracing the gradient flow line from a
given vertex A. (b) Regular case; and (c) edge case.

In addition, based on the scalar field, we can then determine
all the critical points of f , that is, those points whose partial
derivatives vanish. These points include:
– Minimal point - Points in set S min;
– Maximal point - Points in set S max;
– Splitting saddle point - Points where the geometry splits;
– Merging saddle point - Points where the geometry merges.

(a) (b) (c) (d)

Fig. 4. Configurations around a regular (a), minimal (b), maximal (c), and
saddle point (d).

Figure 4 shows the configurations of a regular, minimal, max-
imal and saddle point. The red points denote the vertices with
a larger scalar value compared with the center point and the
blue points denote the vertices with a smaller scalar value. As
shown in Figure 4(a), around one regular point, vertices on one
side all have a larger scalar value and vertices on the other side
all have a smaller scalar value. For a minimal/maximal point,
all the vertices surrounding it have a larger or smaller scalar
value. For a saddle point, the sign changes alternately along its
circumferential direction.

Discussion: The harmonic field is controlled by the user-
defined minima and maxima constraints, it then affects the poly-
cube generation and alignment of the solid T-spline. To ensure
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(a) (b) (c) (d)

Fig. 5. (a-b) Handling the minimal level; and (c-d) handling one splitting saddle point S .

the harmonic field follows the geometric shape of the input sur-
face, generally it is better to place these constraints on the tips
of the geometry and also consider symmetry. For example, in
the “Eight” model (Figure 3(a)), we assign the constraints at
the top and the bottom.

4.2. Handing Critical Points

We need to handle various critical points: minimal, maximal,
splitting saddle and merging saddle points. We first compute
all the scalar levels or isocontours at which there are critical
points. Let fi denote the isovalue of Li and Ci denote the
corresponding isocontour. For level Li with saddle points, two
sets of isocontours, C−i and C+

i , are computed by using the
isovalue fi with a small perturbation δ. For the minimal or
maximal level, only one isocontour is computed.

Suppose level Li contains one minimal point. At level Li,
four seed points (Pl

i, j, j = 0, . . . ,3) are chosen for each closed
curve as shown in Figures 5(a-b), which correspond to the four
lower corners of the cube Ci with the unit parametric length.
The parametric value of the other vertices lying on this isocon-
tour will be computed using the chord-length parameterization.
From these seed points Pl

i, j we trace the gradient flow line un-
til it intersects with the isocontour C−i+1 of the next level Li+1
at Pu

i, j (Li+1 may contain a saddle or maximal point). The red
curves in Figure 5 are traced gradient lines, and the black ones
are isocontours. The four vertices Pu

i, j ( j = 0, . . . ,3) correspond
to the four upper corners of Ci. The traced four curves are then
mapped onto the four vertical edges of the cube, and Pl

i, j and
Pu

i, j serve as the eight corners. Then the polycube construction
process advances to the next level.

For level Li with a splitting saddle point S as shown in
Figures 5(c-d), we

(i) Parameterize the lower isocontour C−i using Pl
i, j = Pu

i−1, j
as four corners (assuming the associated cube before
splitting is Ci−1);

(ii) Find the shortest path from the splitting saddle point S
to C−i , get the intersection node Q0 on C−i , and calculate
point Q1 on the opposite edge with the same parametric
value;

(iii) Compute the shortest path between Q0 and Q1 (see the
blue curve in Figure 5(c), the path can not contain any
edge on this isocontour);

(iv) Determine two sets of points onC+
i , Q0

0−Q0
1 and Q1

0−Q1
1,

which have the shortest distance from Q0−Q1 to C+
i ;

(v) Construct two cubes C0
i and C1

i by using Pl
i,0-Q0-Q1-Pl

i,3
and Q0-Pl

i,1-Pl
i,2-Q1 as the lower corners, respectively;

(vi) continue tracing the gradient flow until the flow line in-
tersects the isocontour at the next level.

Basically, for one splitting saddle point, we aim to find one
isoparametric line to split one cube into two. Here, the isopara-
metric line connecting Q0 −Q1 is used to split the upper face
of the cube Ci−1 as shown in Figures 5(c-d). Similarly, for each
merging saddle point, we use the same procedure to find one
isoparametric line to merge two neighboring cubes and ensure
they match with each other seamlessly.

(a) (b) (c)

Fig. 6. Polycube construction and mapping results for the “Eight” model. (a)
The constructed polycube in the parametric space; (b) the polycube in the
physical space; and (c) the polycube mapping result.

By dealing with all the critical points, the polycube is con-
structed level by level. We always map the isocontour onto
the horizontal isoparametric edges of the polycube and map
the gradient flow lines onto the vertical edges. Figure 6 shows
one polycube construction result for the “Eight” model. The
red lines in Figure 6(b) denote the curves corresponding to the
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edges of the polycube. This polycube construction algorithm
does not consider the symmetry property of the input geom-
etry. However, if S min and S max are given symmetrically, the
obtained polycube and the constructed solid T-spline can be
symmetric for a symmetric input geometry.

Discussion: Here, we only consider Morse saddle points
whose multiplicity is 1. Morse saddle points are handled by
splitting one cube into two, or merge two cubes into one. In
general, for saddle points of any multiplicity, one cube may be
split into an arbitrary number of cubes. If there are two or more
saddle points on one level, multiple sets of Q0-Q1 need to be
computed.

5. T-mesh Construction

The T-mesh construction stage aims to build one valid T-
mesh from the given boundary triangulation and the constructed
polycube. There are four main steps in this stage: parametric
mapping, adaptive octree subdivision and projection, pillowing
and quality improvement, handling extraordinary and partial
extraordinary nodes.

5.1. Parametric Mapping

This step aims to build a one-to-one parametric mapping
between the input triangle mesh T and the boundary of the
obtained polycube, which serves as the parametric domain of
the solid T-spline. From the constructed polycube, we have the
correspondence between the traced gradient or isocontour lines
and the edges of the polycube. Based on the traced lines on
the triangle mesh, we can divide the input mesh into N sub-
meshes, T i (i = 0, . . . ,N), where N is the number of boundary
faces of the polycube. Each sub-mesh is associated with one
face of the polycube, FCi(i = 0, . . . ,N). We then use the surface
parameterization to map each sub-mesh T i to its corresponding
polycube face FCi.

For each sub-mesh, we first map its boundary to the boundary
of FCi by a chord length parameterization. The parameteriza-
tion for the interior vertices is calculated by solving a linear sys-
tem formed by the harmonic equation

∑
j∈Ni

wi j( f (V j)− f (Vi)) =

0, where wi j = cotαi j +cotβi j. For the curve shared by two ad-
jacent sub-meshes, we use the same parameterization. Figure
6(c) shows the mapping result for the “Eight” model. To guar-
antee a conformal boundary between two neighboring cubes,
we always choose the same parameterization for all the edges
shared by them. Note that the two neighboring cubes A and B
do not share faces. There are two duplicated faces in the para-
metric space but they are separate in the physical space.

5.2. Adaptive Octree Subdivision and Projection

An initial T-mesh is generated by applying an adaptive octree
subdivision to the polycube C and projecting to the boundary.
For each cube in C, we create one hexahedral element, using
the same parametric length and considering the physical length
difference in three directions. Then we obtain a root T-mesh for

the whole polycube and treat it as one single piece, instead of
treating each cube separately. Starting from the root T-mesh, we
subdivide one element into eight smaller ones recursively to get
the refined initial T-mesh after projection. For each boundary
element, we check the local distance from the T-mesh boundary
to the input triangular mesh, and subdivide the element if the
distance is greater than a given threshold ε.

Each obtained node has both parametric and physical coor-
dinates. The parametric coordinates represent its position in C.
For each boundary node, the physical coordinates are its asso-
ciated position on the triangular mesh based on the polycube
mapping. The physical coordinates of each interior node are cal-
culated by a linearly interpolation. Note that the three isopara-
metric planes are not always in the middle. If one element con-
tains T-junctions, the parametric values of the T-junctions are
used to subdivide the element. If there are more than two T-
junction parametric values in one direction, the one closest to
the middle is used. For example, the purple element in Figure 7
has one T-junction on the ξ-edge and two T-junctions on the η-
edge. For the ξ direction, the parametric value ξ1 is used, while
for the η direction η2 is used during subdivision, because it is
closer to the parametric middle. The dash lines are inserted to
refine this element. In this way we can minimize the number
of T-junctions in the initial T-mesh.

Fig. 7. T-mesh subdivision. Green nodes denote T-junctions.

The octree subdivision and projection processes continue un-
til the local distance from each boundary element to the input
mesh is less than ε and each element has at most one edge T-
junction for an edge, or one face T-junction for a face. Figure
8 gives one result. (a) shows the parametric coordinates for the
nodes in the T-mesh and (b) shows their physical coordinates.

5.3. Pillowing and Quality Improvement

To improve the T-mesh quality, we adopt the pillowing,
smoothing and optimization techniques. Pillowing is a sheet-
insertion technique that inserts one layer around the boundary
[23]. Here we insert one pillowed layer for the initial T-mesh,
which helps to improve the T-mesh quality and the T-spline
surface continuity.

Figure 9 illustrates the pillowing operation for the polycube.
The cubes Ci are rendered in different colors. As mentioned
earlier, C1 and C2 do not share a face in the parametric space.
In (b), we use two separate faces. The dark blue lines show the
pillowed layer. In pillowing, each boundary face is duplicated
to form one pillowed element, and each pillowed element has at
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(c)

(a) (b) (d)

Fig. 8. The subdivision, projection, pillowing and optimization results for the
“Eight” model. (a) The subdivision result in the parametric domain; (b) the
initial T-mesh; (c-d) Interior of the T-mesh before and after pillowing and
optimization.

most one face lying on the boundary. For the pillowed layer, the
edge knot interval is a predefined constant along the pillowing
direction, which stays the same for the other two directions.

As shown in Figure 9(b), after pillowing the yellow cor-
ner nodes become interior extraordinary nodes. The nodes on
the blue polycube edges become interior partial extraordinary
nodes. The red corner nodes, pillowed from the yellow nodes,
are extraordinary nodes on the boundary surface. The con-
structed T-spline surface is C0-continuous around these red
boundary extraordinary nodes up to the 2-ring neighborhood,
C1-continuous from the 2-ring to 3-ring neighborhood, and C2-
continuous everywhere else. Note that after pillowing, the sur-
face continuity across the polycube edges is improved from C0

to C2. The interior region is C0-continuous around each interior
extraordinary node until the 3-ring neighborhood. For the inte-
rior region across the polycube edges, the continuity is C0 until
the 2-ring neighborhood, C1 from 2-ring to 3-ring neighbor-
hood, and C2 everywhere else. Since here we introduce some
extraordinary and partial extraordinary nodes, we use a local
parameterization for each element in the following steps.

After pillowing, smoothing and optimization are used to im-
prove the T-mesh quality. For smoothing, each node is moved
toward its mass center, and for optimization each node is moved
toward an optimal position that maximizes the worst Jacobian.
For one T-mesh element, the Jacobian is defined as

J = det(JM) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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7∑
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yi
∂Ni

∂ξ

7∑
i=0

yi
∂Ni

∂η

7∑
i=0

yi
∂Ni

∂ζ
7∑

i=0

zi
∂Ni

∂ξ

7∑
i=0

zi
∂Ni

∂η

7∑
i=0

zi
∂Ni

∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4)

(a) (b)

Fig. 9. The polycube before (a) and after (b) pillowing.

where Ni is a trilinear shape function. The scaled Jacobian is

Js =
J

‖ JM(·,0) ‖ ‖ JM(·,1) ‖ ‖ JM(·,2) ‖
, (5)

where JM(·,0), JM(·,1) and JM(·,2) represent the first, second
and last column of the Jacobian matrix, JM , respectively. To
handle T-junctions during smoothing and optimization, we add
some “virtual nodes” to refine the local region and convert the
local T-mesh to a hexahedral mesh. Figure 8(d) shows the result
after pillowing and optimization for the “Eight” model.

5.4. Handling extraordinary and partial extraordinary nodes

Unlike regular nodes, extraordinary nodes or partial extraor-
dinary nodes may introduce gaps to the solid T-spline. In this
step, we apply templates given in [22] to make the T-mesh gap-
free. Figure 10(a) shows the template for a partial extraordinary
node, in which the magenta edge has a reflection edge. Figure
10(b) shows one general template for an extraordinary node.

(a) (b)

Fig. 10. The general template for a partial extraordinary node (a) and an
extraordinary node (b). The magenta node is a partial extraordinary node,
the red one is an extraordinary node, and the blue ones are inserted nodes.
The magenta edge is the edge with a reflection edge and the red edges have
zero knot interval.

6. Solid T-spline Construction and Bézier Extraction

In this stage, we aim to infer the local knot vectors for each
node, build the rational solid T-spline from the T-mesh, and
then extract embedded Bézier elements [2, 15]. The concept
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of rational T-splines was given in [22], with basis functions
satisfying a partition of unity by definition. The rational solid
T-spline is defined as

S (ξ,η,ζ) =

n∑
i=0

wiCiRi(ξ,η,ζ)

n∑
i=0

wiRi(ξ,η,ζ)

, (ξ,η,ζ) ∈Ω, (6)

where

Ri(ξ,η,ζ) =
Nξ

i (ξ)Nη
i (η)Nζ

i (ζ)∑n
j=0 Nξ

j (ξ)N
η
j (η)Nζ

j (ζ)
(7)

is the rational B-spline basis function, Nξ
i , Nη

i and Nζ
i are B-

spline basis functions defined by the local knot vectors at node
Ci which, for degree d = 3, are given by ~ξi = [ξi0, ξi1, ξi2, ξi3,
ξi4], ~ηi = [ηi0, ηi1, ηi2, ηi3, ηi4] and ~ζi = [ζi0, ζi1, ζi2, ζi3, ζi4].

From the T-mesh, we first compute the knot intervals for
each node by traversing T-mesh edges and faces. Note that we
repeat knots whenever we meet an extraordinary node during
the traverse. Then for each domain, we determine all the nodes
with non-zero basis functions and use them to build the solid
T-spline element. The entire solid T-spline model is built by
looping over all the local domains.

Bézier extraction provides a finite element representation of
T-splines for isogeometric analysis. Similar to [23], we first
compute the “Bézier mesh”, which includes all the reduced
continuity lines by adding all the knot vector inference lines
or isoparametric planes for T-junctions and L-junctions to the
T-mesh. Then for each element in the Bézier mesh, the trans-
formation matrix Me between the T-spline basis functions and
the Bézier basis functions is calculated satisfying:

Be
t = MeBe

b, (8)

where Be
t is the vector formed by the nonzero T-spline basis

functions in this element and Be
b is the vector formed by the

trivariate Bézier basis functions.

7. Results and Isogeometric Analysis

We have applied the construction algorithm to several models
(Figures 11-14). The constructed solid T-spline is tricubic and
C2-continuous except in the vicinity of partial extraordinary
and extraordinary nodes. Statistics for all the tested models are
shown in Table 1. The Bézier Jacobian is calculated using the
scaled Jacobian at the eight Gauss quadrature points for each
Bézier element. The algorithm is efficient and all the results
were computed on a PC equipped with an Intel X3470 processor
and 8GB main memory.

The Isis model has genus zero and its polycube only con-
tains one single cube. For the kitten model, there are three sad-
dle points (one merging saddle point and two splitting saddle
points). We only consider two of them, and the splitting sad-
dle point close to the maximum point is skipped to get a more
simplified polycube. The sculpture model has genus two and

(a) (b) (c)

Fig. 11. The solid T-spline construction result for the “Eight” model. (a) The
constructed solid T-spline and T-mesh; (b) the extracted solid Bézier mesh
with some elements removed to show the interior (blue) and one pillowed
layer (magenta); and (c) the isogeometric analysis result.

five saddle points. Again, we skipped the one near the max-
imal level. The time used for each model not only depends
on the input mesh size, but also depends on the T-mesh size,
which is determined by the given surface error tolerance and
the complexity of the topology and geometry. One advantage
of this harmonic function based T-spline construction is that
the isoparametric lines are basically aligned with the geometric
structure of the model.

We have developed a 3D isogeometric analysis solver for
static mechanics analysis, which uses rational T-splines as the
basis, and we used it to test the obtained solid T-spline models.
For all the models, we fix all the control points on the bottom
and apply unit displacement on the top. The Young’s modulus
E = 72.4GPa, and the Poisson’s ratio ν = 0.3. The obtained
displacement results are given in Figures 11(c), 12(e), 13(g) and
14(g). From these results, we can conclude that the obtained
rational T-splines can be used in isogeometric analysis directly
and reasonable simulation results can be obtained.

8. Conclusions

We have presented a new algorithm to construct solid T-
splines for arbitrary-genus geometries from boundary triangu-
lations. Our method is efficient and the resulting solid T-spline
is analysis-suitable with C2-continuity except for the local re-
gion around a few irregular nodes. In this paper, we only con-
sider the geometries with Morse saddle points, and as part of
our future work we will extend the algorithm to geometries
with arbitrary saddle points. We will also consider engineering
designs with sharp features.
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(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 12. Isis model with genus zero. (a) The input boundary triangle mesh; (b) the harmonic scalar field; (c) the constructed solid T-spline and T-mesh; (d)
the extracted solid Bézier elements; (e) the isogeometric analysis result; (f) the constructed polycube and the mapping result; (g) the subdivision result for the
parametric domain; and (h) the extracted solid Bézier mesh with some elements removed to show the interior (blue) and one pillowed layer (magenta).
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Table 1. Statistics of all the tested models

Model Genus Input mesh T-mesh Extraordinary nodes Interior partial Bézier Bézier Jacobian Time

(vertices, elements) nodes (Boundary, Interior) extraordinary nodes elements (worst, best) (s)

Isis 0 (5,863, 11,722) 9,310 (8, 8) 244 5,335 (0.12, 1.0) 52.0

Kitten 1 (5,377, 10,754) 4,825 (12, 12) 140 2,883 (0.08, 1.0) 14.8

Eight 2 (766, 1,536) 5,735 (16, 16) 200 1,440 (0.10, 1.00) 8.5

Sculpture 2 (8,635, 17,276) 10,549 (16, 16) 252 7,072 (0.09, 1.00) 41.5

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Kitten model with genus one. (a) The input boundary triangle mesh; (b) the harmonic scalar field; (c) the constructed polycube and the mapping result;
(d) the subdivision result for the parametric domain; (e) the constructed solid T-spline and T-mesh; (f) the extracted solid Bézier elements; (g) the extracted
solid Bézier mesh with some elements removed to show the interior (blue) and one pillowed layer (magenta); and (h) the isogeometric analysis result.
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(a) (b) (c) (d)

(e) (f)

(g)

(h)

Fig. 14. Sculpture model with genus two. (a) The input boundary triangle mesh; (b) the harmonic scalar field; (c) the constructed polycube and the mapping
result; (d) the subdivision result for the parametric domain; (e) the constructed solid T-spline and T-mesh; (f) the extracted solid Bézier elements; (g) the
extracted solid Bézier mesh with some elements removed to show the interior (blue) and one pillowed layer (magenta); and (h) the isogeometric analysis result.
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