
AEROSPACE REPORT NO
ATR-2012(9010)-2

Agile Software Development in Defense Acquisition - A Mission Assurance
Perspective

March 23, 2012

Peter Hantos
Software Acquisition and Process Department
Software Engineering Subdivision

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Senior Vice President, Engineering and Technology Group

Approved for public release; distribution unlimited.

aoUc£23>o;r7

AEROSPACE REPORT NO
ATR-2012(9010)-2

Agile Software Development in Defense Acquisition - A Mission Assurance
Perspective

March 23, 2012

Peter Hantos
Software Acquisition and Process Department
Software Engineering Subdivision

Prepared for:

Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Senior Vice President, Engineering and Technology Group

Approved for public release; distribution unlimited.

(A\ AEROSPACE
^•^ Aautoff $m MK*I? taH

AEROSPACE REPORT NO
ATR-2012(9010)-2

Agile Software Development in Defense Acquisition - A Mission Assurance Perspective

Approved by:

Leslie J^ollpway, Department Director
Software Acquisition and Process
Department
Computers and Software Division
Engineering and Technology Group

© The Aerospace Corporation, 2012.

SQ0109(1. 5846,86, JAB)

Acknowledgements

This work would not have been possible without the support of the
following people of The Aerospace Corporation
- Asya Campbell
- Suellen Eslinger
- B. Zane Faught
- Dr. Leslie J. Holloway

Special thanks
- Steven Kropp, Florida Department of Economic Opportunity, Labor Market

Statistics Center

Funding Source
• The Aerospace Corporation's Aerospace Technical Investment Program

(ATIP) Software Acquisition Long Term Capability Development (LTCD)
Project

@AEROSPACE

Outline

• Motivation
• Objectives
• Agile Software Development - The 64,000-foot View
• Still Flying High - Context and Building Blocks
• Fasten Your Seatbelt and Prepare for Landing

- The Life Cycle Perspective of Agile Software Development
- Agile Software Development Values
- extreme Programming (XP)

• The State of Affairs - Agile Software Development in the Commercial,
Market-Driven World

• Is Agility Really the Answer to Fix the Broken Acquisition System?
• Conclusions
• Acronyms
• References
• Backup

@AEROSPACE

Background

Emergence of new buzzwords in software development
- Competitive pressures of the 1990s forced software companies to reexamine

their development processes and adopt radical approaches. As a result, the
industry has been flooded with buzzwords like "internet time," "extreme," and
"agile, "just to mention a few

Management buzzwords have been flooding over the past 30 years...
- There has been a "bandwagon effect" of popular management movements

such as total quality management (TQM), management by objectives,
reinventing government, reengineering, the balanced scorecard, lean, and
Six Sigma®. However,

• companies that claimed excellence on the basis of these practices later
turned out to be mediocre or outright failures [Paparone 2009]

- Consequently, a relatively recent, interesting recommendation to the
Pentagon brass: "Stay away from management bestsellers..." [Erwin 2009]

Six Sigma has been registered in the U. S. Patent and Trademark Office by Motorola
(g) AEROSPACE

Motivation

History notwithstanding...
- Agility seems to be a simple concept

- It is commonly perceived as a virtue

- Agile methods are making inroads into software development

Despite of Ms. Erwin's advice, Pentagon brass does not seem to be
able to stay away from management bestsellers after all ©

Consequently, the idea of bringing agile concepts into defense
acquisition requires a closer look

(g) AEROSPACE

Objectives

Readers will be able to
- Name popular agile software development methods
- Describe representative agile software development practices
- Compare agile and traditional development methods
- Assess the appropriateness of an organization's software development

practices
- Appreciate the spirit and usefulness of mission assurance in carrying out the

evaluations of the defense contractors' software development practices
- Differentiate between agility in acquisition and agility in development

(g) AEROSPACE

What is Agility? ..■■%

• The narrow, dictionary definition [Collins 2012]:

- Quick in movement; nimble
• Agility implies both the capacity and capability to act immediately

- Agility is perceived a virtue
- In business, agility is considered an important organizational capability

• Unfortunately, in most contexts it is ill-defined or inconsistent

- Agility does not simply equate with speed, as the following examples show

• Agility may conflict with speed
- The Titanic's ability to turn sharply is far more likely to avert disaster

than increasing its top speed charging straight ahead

• Agility requires speed but also requires balance

- e.g., in martial arts

- "Lean" does not always equate with "agile"

• e.g., applying lean concepts might increase the rigidity of a process

- This rigidity results from constraining the process in order to optimize
the case "right now"

Agility is like the Elixir of Life or the Fountain of Youth - Mysterious and Elusive
~ Anonymous I

@AEROSPACE

Agility in Defense

• The warfighter perspective
- A confusion exists about the need for systems enabling warfighter

agility vs. the need for agile acquisition of weapon systems
• No argument about the value of warfighter agility. However,

- Warfighter agility can be primarily supported via weapons
design and flexible architecture

- Faster access to new weapons is not always the right solution
- The tradeoff between faster access and features is promoted,

but the underlying, hidden quality concessions are always
controversial and the associated decisions are very difficult

• The acquisition perspective
- Essential concerns exist that need to be clarified and answered

• To what extent would agile software development contribute to
the achievement of agile acquisition of weapon systems?

• How is fast procurement different from agile acquisition?
• Under what circumstances is agile software development

acceptable or even desirable for weapon systems acquisition?

For operational responsiveness we need "agile products" and not "agile processes" i
@AEROSPACE

(Our) Definition of Agile Software Development

Agile software development methods employ practices that are
consistent with the Agile Manifesto's value statements and principles
- There are numerous, "brand-name" methods that are considered agile*

- However, "new" approaches are published almost every day that are mostly
mix-and-match medleys of existing practices

History of the Agile Manifesto**
- Created on February 11-13, 2001 at the first meeting of agile proponents,

the 17 founding members of the Agile Alliance

Agile values:
- "We are uncovering better ways of developing software by doing it and

helping others doing it. Through this work we have to come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan."

* See the backup charts; ** For the complete text see [Agile 2001]
(g) AEROSPACE 10

The Agile Manifesto Principles

• The following principles are used to select development practices
(1) Early and continuous delivery to satisfy customers
(2) Welcoming changing requirements

(3) Delivering working software frequently

(4) Close collaboration with business people

(5) Motivation of developers through trust

(6) Using face-to-face conversations to convey information
(7) Working software is the primary measure of progress

(8) Sponsors, developers, and users maintain a constant pace

(9) Continuous attention to good design
(10) Simplicity, maximizing the amount of work not done

(11) The best work is always expected from self-organizing teams

(12) Team reflection and behavior adjustment at regular intervals

11 @AEROSPACE

In Contrast, Principles of Modern Software Management

• "Modern" software management predates the Agile Manifesto
- However, its principles are drastically different from the "traditional," waterfall

development

- Modern management is indeed plan-based, process and tools-focused*

• Modern software management principles
(1) Architecture-first approach

(2) Iterative life-cycle process

(3) Component-based development
(4) Establish a change management environment
(5) Enhance change freedom through tools that support round-trip engineering

(6) Rigorous, model-based notation

(7) Objective quality control

(8) Demonstration-based approach to assess intermediate artifacts

(9) Intermediate releases with evolving levels of detail

Additionally, we will need to put software development in the acquisition context I

* Source: [Royce 1998]
12 (g) AEROSPACE

(2) AEROSPACE
^^^ ^^^ ^—-* Assuring Space Mission Success

^^ lllilll ui il

Still Flying High - - Context and Building Blocks ^|

Defense Acquisition (The Big "A" Acquisition Process...)

JCIDS
Determines required

capabilities
("Requirements")

OSD,
White House
(Executive Branch)

Congress
(Legislative Branch)

Legend:

DOD 5000.02

$
DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & "Time to Need" Requirements
$ Allocated Funding

Controls
implementation,
flow of funding

Weapon
Systems

—>

14 (2b AEROSPACE

Agile Software Development of New Weapon Systems

JCIDS
Allied

Capabilities

*

Threats Combatant
Command«;

PPBE

DOD 5000.02

$ Legend:
DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & "Time to Need" Requirements
$ Allocated Funding

j
Management

R

Agile
Software

Development
Practices

Software
Development

Hardware
Development

Agile software development affects only the smaller context of DOD 5000.02 QL ACDQCDACE

Key Stakeholders in the Big "A" Acquisition Process

JCIDS

Threats

Allied
Capabilities

Legend:
DOD Department of Defense
JCIDS Joint Capabilities Integration & Development System
JROC Joint Requirements Oversight Council
OSD Office of the Secretary of Defense
PPBE Planning, Programming, Budgeting & Execution
R Performance & "Time to Need" Requirements
$ Allocated Funding

Note how removed development is from the actual user and customer
16 @AEROSPACE

v^

Acquisition is a Contact Sport...

• Because of different motivation and behavior, there is a

tension between *■
- Stakeholders of the acquisition process (e.g., Congress, DOD, etc.) <**
- Stakeholders of the oversight organizations (e.g., acquisition program offices

(APOs*), and the development organizations (contractors)
- Stakeholders of the development organizations themselves

• Management vs. developers
• Hardware developers vs. software developers

• Some hard facts to face
- Typically the conflicts are not between equals
- Different stakeholders have different political weight and capabilities, hence

in most cases "win-win" solutions are either not feasible or not pursued

• New valuation considerations for agile software development practices
- Potential impact on existing tensions in the overall acquisition system
- Loyalty factor, i.e., whose interest should be acknowledged as the most

important in a particular context

The fundamental source of tension is which stakeholder will bear the risk

* APO is a generic term; program offices are called differently in different services
17 (ja) AEROSPACE

The Risk Pendulum - Who is Going to Bear the Risks?

Basic Funding Patterns Cost-based Time-based

Promise Best effort

Cash flow As incurred

Customer control Maximal

Risk to contractor or developer Low

Risk to customer or management High

Best effort

As incurred

Maximal

Fixed Price

Shall deliver

On delivery of item

Minimal

Low

High

High

Low

* Note that these patterns have their formal,
contracting equivalents and variations in
the Federal Acquisition Regulation (FAR)

Customer or
management

The Risk Pendulum -<■

Contractor or
developer

The interesting paradox is that despite higher customer control - which is perceived to
18 drive down risk - cost-based and time-based patterns are still risky... £3) AEROSPACE

Clarifying Loyalties

• Actual users and the customer are far removed from actual
development

• The primary stakeholders we need to help are the people in APOs
- They play the complex role of both surrogate user and surrogate customer

by
• Providing technical input as surrogate user
• Providing contract management as surrogate customer

• The main objective of these primary stakeholders is mission success
- Of course, this is not different from the actual users' and actual customer's

objective

• However, only they have the direct, tactical means via mission
assurance

19 @AEROSPACE

Mission Assurance Definitions*

• Mission Success
- The achievement by an acquired system (or system of systems) to singularly

or in combination meet not only specified performance requirements but also
expectations of users and operators in terms of safety, operability, suitability,
and supportability

- Mission success is evaluated after operational turnover, according to
program-specific timelines and criteria

• Mission Assurance
- The disciplined application of general systems engineering, quality, and

management principles towards the goal of achieving mission success, and
towards this goal, this disciplined application provides confidence in its
achievement

20
Source: [Guarro 2007] (g) AEROSPACE

Mission Assurance is Development Process-neutral

• Software mission assurance does not assume any particular software
development methodology, programming language, or tools

• Mission assurance is the exclusive responsibility of the APO, a defense
acquisition oversight organization
- Note that Air Force APO's enjoy direct help from multiple entities, such as

• Federally Founded Research and Development Centers (FFRDCs)
• Systems Engineering and Technical Assistance (SETA) contractors
• Systems Engineering & Integration (SE&I) contractors

• The APO's mission assurance activities do not assume the presence of
any similar, or similarly named (i.e., "Mission Assurance") effort from the
contractor
- If such effort exists then, from the APO's perspective, it needs to be treated

as an integral part of the contractor's software development process

Software mission assurance tasks are inherently essential for the assurance
of any software development endeavor in defense acquisition

21 @AEROSPACE

The Main Exposure to Mission Success: Software Defects

• Definition of a software defect
- Any software attribute or characteristic that represents a deviation from

specified attributes or characteristics
- Software defects can cause unanticipated cost and schedule overruns and in

operational systems performance deficiencies

• Definition of a software fault
- A software fault is a software defect that can result in a significant system

function failure during the execution of the code
• Hardware-induced vs. software-induced failures

- Hardware-induced failures
• Software always depends on hardware; certain hardware defects might

manifest themselves as software defects (e.g., a single-event upset
(SEU) in the onboard computer's memory or registers as a result of
naturally occurring cosmic rays, trapped protons, and solar energetic
particles)

- Software-induced failures
• Majority of such failures are rooted in software design or specification

flaws; essentially the system enters into an unanticipated and/or poorly
understood operational regime

* Definitions courtesy of Myron Hecht [Guarro 2008]
22 @ AEROSPACE

Software-induced Failure* Types
Pssssst!!!

• Deterministic vs. random failures
- Deterministic ("Bohrbugs")

• Repeatable
• Traceable to root cause(s) under control of developer or user

- Deterministic failures can be prevented through the use of a
disciplined development process

- Random ("Heisenbugs")
• Not repeatable; many failures can be fixed by reset
• Caused by transient states of the software (timing, buffer overflows,

queues, memory leaks, etc.)
• Indistinguishable from SEUs, power fluctuations, or hardware timing

errors

• Recoverable vs. non-recoverable software failures (space example)
- Recoverable software failures are events that occur in spacecraft processors

that cause a loss or performance degradation of the bus orpayload, which
carUx^vstomc^

Application of a disciplined development process itself is not a guarantee
for preventing random failures or mitigating recoverable failures i

* For sake of simplicity they will be referenced as software failures /JL AcDnopAPc

Preventing Random Software Failures

• The following approach is recommended*

- Collect software failure data during integration testing

• Use relevant operational profiles, not just requirements, to define test
plans

• Record software operating time

• Record all failure events

• Collect recovery time and data to determine the probability of recovery

- Select an appropriate software reliability model

• This model will be used to extrapolate behavior from test data

- Evaluate parameters

• Software behavior must be analyzed and validated via formal, systematic
means that take into account a variety of nominal and off-nominal
operational scenarios

- Integrate findings into the appropriate system stochastic or reliability model

Most likely the contractors use similar, complex models; verifying the
correctness of the contractors' analyses is a critical mission assurance task i

24
Source: [Guano 2008] ^ AER0SPACE

The Life Cycle Perspective of Agile Software Development

26 (A) AEROSPACE

Agile Life Cycle Example: Scrum

Daily
Scrum
Meeting

Monthly
Sprint
Meeting

Scrum is a lean approach to software development
- Simple "inspect and adapt management framework, using time-boxing
- Based on the scrum metaphor for new product development [Takeuchi 1986]
- No declared, method-specific development practices
- "Backlog" is a metaphor for requirements

The process was first formalized by Ken Schwaber [Schwaber 95]
27 (g) AEROSPACE

In Contrast, an Iterative-Incremental Life Cycle, IBM/RUP

Core Workflows

Requirements

Analysis

Design

Implementation

Test

Deployment

g
Q.
LU u

IBM/RUP Phases

<
cc
O
cu
<
_i
LU

i—r

u
Z>
cc
\-
co
z
o u

O

<
Cd

Iterations

The Rational Unified Process (RUP) is a comprehensive process model*
- Workflows are essentially life cycle processes with detailed descriptions

- The process encompasses the earlier outlined, "modern" principles [Royce 1998]

- It has been renamed IBM/RUP after the acquisition of Rational Corp. by IBM

28 Discussion is based on [Jacobson 1999] @AEROSPACE

After We Remove the Fluff (i.e., the Metaphors...)

Iterative-Incremental Development (HD)
Content (Requirements) Driven

Factors to be compared

Iteration/Increment duration

Iteration content in the context of an increment

Difficulty of iteration planning

Difficulty of increment planning

Micro-estimation fidelity

Macro-estimation fidelity

Naturally fitting contracting pattern

Time-box
Calendar ("Clock") Driven

IID Time-box

varying set

planned upfront not planned upfront

moderate easy

difficult difficult

moderate higher than IID

high low

cost-based time-based p
Red flag marks the customers' primary concerns i

29 (g) AEROSPACE

Agile Software Development Values

30 (g) AEROSPACE

Examining Agile Software Development Values

31

Agile software development values revisited
- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

During the analysis the following, typical figures should be considered
- Space vehicle (embedded, large, including bus software and payload(s)):

• -512 thousand delivered source instructions (KDSI)
- Ground systems:

• Space Shuttle software -2,000 KDSI
• Satellite control systems software -4,700 KDSI

- The mentioned space vehicle software development of 512 KDSI would
require roughly a 6,420 person-month effort, spreading over 41 months,
involving ~157 full-time equivalent software personnel

(g AEROSPACE

Individuals and Interactions Over Processes and Tools

• Let's focus on processes first
- Agile proponents believe that one should only declare and rely on practices

instead of processes to increase the agility of software development

• A practice usually refers to an individual activity while a process is an
aggregate structure of multiple activities

- Relying only on practices certainly ensures a greater level of flexibility,
however:

• This flexibility comes with unavoidable ambiguities and may create
tension among the stakeholders

- Consider the example's 157 developers working shoulder-to-shoulder

- Consider the problems of concurrent hardware-software development

- In pursuing mission success we found that even the use of so-called mature
processes, such as defined by the CMMI®, proved to be inadequate

The government must make a robust software standard contractually compliant
[Eslinger 2006] I

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University
32 @ AEROSPACE

Lean
• The term "lean production" was coined in the 80's [Krafcik 1988]

- The underlying ideas represent the so-called lean thinking about processes
• Current (mis)use of the term

- Lean is a popular buzz-word for general cost-cutting efforts
- Lean may be used in conjunction with Six Sigma®, another, also

manufacturing-rooted, process improvement method ("Lean Six Sigma")
• Unfortunately, this term is misleading: "lean" does not mean applying lean

thinking to Six Sigma but using Six Sigma tools to carry out lean practices
• Key principles of lean systems thinking [Rule 2011]

- Understand value from the stakeholders' perspective
- Identify all steps in the value stream
- Enable value to flow smoothly
- Respond to the pull of stakeholder demand
- Continuously seek perfection

• Mission assurance exposure
- Difficult to sort out what is really important due to stakeholder conflicts
- Lean Six Sigma rule of thumb is that usually only 5% of total process cycle

time adds value to outputs; mission assurance is valued low by developers

® Six Siqma is reqistered in the U. S. Patent and Trademark Office by Motorola ^_
33 @ AEROSPACE

Major Areas in a Typical Software Development Standard
System and Software (SW) Architecture

Human Systems Integration

Interoperability and Standardization

Reliability, Safety, Information
Assurance

Project Planning and Oversight

SW Development Environment

System Requirements Analysis

SW Requirements Analysis

SW Design

SW Implementation and Unit Testing

Unit Integration and Testing

SW Qualification Testing

Transition to Operations and
Maintenance

SW Configuration Management

SW Peer Review/Product Evaluation

SW Quality Assurance

Corrective Action

Joint Technical and Management
Reviews

Risk Management

SW Management Indicators (Metrics)

Security and Privacy

Subcontractor Management

Interface with SW IV&V Agents

i The "lean" question: Which ones do not add value? Which ones to get rid off?

34
Source: [Adams 2005] (g) AEROSPACE

What Does My Dentist Know About Mission Assurance?

Sign in my dentist's office:
"Brush only those teeth you wish to keep..." i

(g) AEROSPACE

Individuals and Interactions Over Processes and Tools-2

• Tools
- The typical 3-4 year long development and a minimum 5-10 year long

operation and sustainment for a space vehicle require strong tools support

• Development must be based on an architecture-first approach

- Architecture modeling artifacts need to be documented with rigorous
notation and handled with appropriate (preferably visual) modeling
tools

- The dynamics of concurrent workflows by different teams working on
shared artifacts necessitates a rigorously controlled change
management environment

• Tools are also necessary to keep all the engineering information in
different formats synchronized and to support bidirectional traceability

- System requirements, software specifications, design models, source
code, executable code, scripts, test cases, test data, etc.

• True change freedom cannot be realistically achieved without the
support of an appropriate, integrated environment [Royce 1998]

Even in a stable labor force tacit knowledge sharing is not sufficient

36 (g) AEROSPACE

Work Force Volatility
The work force in the information sector is very volatile* even during
recessions when the overall net employment change is lower than average

Periods of Information Sector Federal Sector
Recession** Hires Separations Hires Separations

2001-2002

2008-2010

36.5% 43.3%

23.7% 27.8%

19.75% 19.4%

22.13% 21.0% I

How to interpret the data
- Unfortunately, the Bureau of Labor and Statistics (BLS) is not collecting the

exact data we would be interested in, i.e., programming-related turnover in the
defense industry

- However, one can see that the turnover rate is quite high even in the federal
sector, which is considered less volatile than the private sectors

- Additionally, the BLS database does not track internal company turnover

*
37

Insisting on tacit knowledge sharing is inappropriate
in case of such a volatile work force

Source: Bureau of Labor and Statistics database; ** [Bruyere 2011] Oh AEROSPACE

Working Software Over Comprehensive Documentation

• Agile proponents essentially do not dispute that documentation plays an
important role in software development [Ambler 2011]
- Author makes a point from an agile perspective that customers must

understand the total cost of ownership (TCO) for a document, and they must
explicitly decide to invest in that document

- This a good advice under any circumstances, of course
• However, this value statement is about interim progress assessment

- The idea is not new; modern processes are already using the demonstration-
based approach to assess intermediate artifacts [Royce 1998]

• The concern regarding the agile approach is the impact on the customer
- Principle #8 of the Agile Manifesto represents a strong imposition on the

customer: "Sponsors, developers, and users maintain a constant pace"
Unfortunately, maintaining such a pace is not feasible on large projects

- Issues:
• Embedding users/customers with the necessary expertise into every team
• Users/customers need to approve technical decisions in the short cycles
• Coordination of an extensive network of user/customer representatives

In short, this agile value does not scale up in a large project

@AEROSPACE 38

Customer Collaboration Over Contract Negotiation

As it was shown, actual users and customers are far removed from the
development organization
- JROC, DOD, and Congress are high-inertia organizations with complex,

bureaucratic processes for interaction
- These are stakeholders with different political weights; building true

collaborative relationships is difficult if not impossible
With the current, rigid "upstream" relationship the flexibility of the
surrogate customer is very limited
- Agile development will not improve the agility of the acquisition process; in

fact, insisting on developer agility may exacerbate the existing tensions
It is an unfortunate fact of life that when things do not go well,
collaborative resolution becomes less and less feasible
- The stakeholders have their own, different risk perspectives and motivations

and their differences cannot be easily reconciled via voluntary actions
You would not remodel your kitchen without a detailed contract, so why
would you deemphasize the importance of contracts for billion-dollar
weapon system acquisitions?
- Well, actually we did it in the 1990s; it was called "Acquisition Reform"

(g) AEROSPACE 39

Responding to Change Over Following a Plan

• The essential motivation is the recognition that solution details to complex
problems cannot be successfully determined upfront
- This is not a new idea; that's why modern, but pre-agile software development

methods are adaptive and use iterative/incremental processes. How
requirements risks are handled in modern methods:

• On micro-level: The emphasis during the planning of iterations is on
facilitating a successively refined understanding of requirements

• On macro-level: New or changing requirements are expected to be handled
via evolutionary acquisition and development strategies

• Agile principle #2 ("Welcoming changing requirements') is directly
flowing from the discussed agile value statement
- Unfortunately, this is a disingenuous statement, to say the least

• In reality, everybody likes to work on stable grounds with clear, unchanging
expectations; Don't you?

• However, if anyone still has doubts, listen to Yogi Berra:

"If you don't know where you are going, you will
wind up somewhere else" i

40 (g) AEROSPACE

Beyond Unavoidable Requirements Volatility

Even though Yogi Berra was right, a certain level of requirements volatility
is unavoidable
- Consequently, whatever process is used, some level of flexibility is needed to

deal with such volatility

However, lack of control may still lead to the erosion of process discipline
- "Just because you have a detailed requirements specification that has been

reviewed and signed off, that doesn't mean that the development team will
read it, or if they do, that they will understand it, or if they do, that they will
choose to work to the specification." ~~~ Scott W. Ambler [Ambler 2007]

Only diligent mission assurance can prevent this from happening i

41 (g) AEROSPACE

extreme Programming

42 @AEROSPACE

extreme Programming (XP)*

• What is extreme Programming?
- XP is a lightweight, low-ceremony software development methodology

• Based on Kent Beck's early experiences at Daimler Chrysler Corporation
• Why is it Extreme?

- Does not involve bungee cords; no relationship to Windows XP either... ©
- XP adopts well-known software development practices and attempts to take

them to their logical extremes
• Example: The "You Aren't Gonna Need It" (YAGNI) Concept

- YAGNI is a general refrain when someone suggests building
functionality for the system that is not present in the current
requirements set. The assumption is that it can be added later if it
becomes necessary

- YAGNI is supposed to be the opposite of "Big Design Upfront" (BDUF)
- However, remember the importance of diligent, strategic architecting

and design we described earlier to prevent random software failures

BDUF might have its problems, but from a mission assurance perspective
we need at least a balanced approach; "extreme" is not really desirable i

43 *Source: lBeck 200°] (2h AEROSPACE

XP Practices
• The original* XP practices

- The planning game

- Small releases

- Metaphor

- Simple design

- Continuous integration

- Continuous testing

- Refactoring

- Pair programming

- Collective code ownership

- 40-hour work week

- On-site customer

- Coding standards

* This list is based on [Beck 2000]
44 @AEROSPACE

The Planning Game

The planning game is a metaphorical name for requirements engineering
and increment/iteration planning

- It is essentially a meeting where the team is working through a stack of index
cards that contain the user stories

- Each required feature is described and elaborated in a user story (another
metaphor...)

Responsibilities during the planning game*

Customer

Define scope of the release

Define order of delivery

Set dates and times of release

Developer

Estimate how long each user
story will take

Communicate technical impacts
of implementing requirements

Break down user stories into
tasks and allocate work

45
Source: [Baird 2002] (g) AEROSPACE

The Planning Game - 2

However, the needed overall systems engineering process that provides the
context for software development is more complex [INCOSE 2003]

It is
recursive

and
Iterative

Process
Input

I

Requirements Loop

Mr. Weasel also says.

Verification

Functional
Analysis/Allocation

Design Loop

Synthesis

Process
Output

System
Analysis &

Control

46

Well, Mr. User, are you ready to take direct responsibility for the progress?

@AEROSPACE

Small Releases

Start with the smallest feature set, release early and often
Duration
- Releases may be provided every 1-3 months

Concerns

- The earlier mentioned customer problem

• The need for excessive participation and associated responsibility in the
planning and validation of these releases are not feasible

- Scaling issue

• In large systems it might be difficult to come up with a finite, incremental
feature set to field tangible releases that the customer could appreciate

Having small, internal releases is a good engineering practice but the
customer should not be responsible for validating these releases i

47 (g) AEROSPACE

Metaphor

Each project is supposed to have an organizing metaphor
- Metaphors facilitate the dialog between the user and developer
- Metaphors serve as a bridge between the terminology of the customer's

domain and the software engineering jargon
- A metaphor of the metaphor: "Tribal Language"

Example metaphor
- "Describing an agent-based information retrieval system, we might say that

this program works like a hive of bees, going out for pollen and bringing it
back to the hive"*

This practice is quite benign (as opposed to "extreme") and its cost is
negligible. However, its value has not been proven.

Use of metaphors do not seem to represent any risks i

Source: [Stack 2008]
48 (g) AEROSPACE

Simple Design

Keep the design as simple as possible for the moment and don't add
features that are not needed for current functionality
- The reasoning behind this practice is that if a feature is not valuable now, it

is not worth the investment until it becomes valuable
- Simple design is the practice-level implementation of the earlier introduced

YAGNI concept and the avoidance of the supposedly bad approach of BDUF

Keeping designs simple is a good idea in general

However, the operative phrase in this definition is "for the moment"
- Remember Heisenbugs? Prudent consideration for all the overarching,

nonfunctional requirements (like reliability, availability, etc.) requires
extensive upfront design and thorough follow-up during development

A shortsighted, "extreme" implementation of this practice might lead
to a mission assurance exposure

49 @AEROSPACE

Continuous Integration and Continuous Testing

• Continuous Integration
- Integrate with the whole system as often as feasible

• Continuous testing
- Unit testing and acceptance testing are alternating according to the rhythm of

the process, which is driven by the duration of the applied timeboxes
• Unit tests, written by developers to test functionality as they implement it

- Conceptually, it is not different from any other approaches
- In agile development a test-driven strategy is preferred where the unit

test suite is developed before coding starts and the execution of these
tests is automated - no particular mission assurance exposure here

• Acceptance tests
- Tests themselves are supposed to be specified by the user/customer
- User/customer has to observe all tests or review test runs

• In either case the user/customer is expected to approve test results
according to the dictated process' rhythm

• However, see our earlier interim progress tracking concerns:

50

This is an undue burden on the customer - continuous
acceptance tests are not feasible in a large project

(g) AEROSPACE
i

Refactoring

Refactoring is a technique to improve code without changing functionality
- It is a declared XP virtue to refactor late in the design to increase performance

Examples
- Repartitioning the code to smaller, easier to maintain chunks
- Renaming some variables to be more descriptive
- Re-evaluating the need for temporary variables
- Extracting common behavior into a single code segment
- Candidates for refactoring may be found via the "smell test"

• Large program segments or classes
• Deeply nested code
• Long parameter list
• Presence of switch (case) statements
• Redundant code (e.g., a class that does not seem to do anything,) etc.

Risks
- Every technique that changes a running or working system is not immune ifyj

to introducing errors, even if it is claimed that no functionality is impacted \
- "Refactoring in the small" can be helpful but "refactoring in the large" does not

make sense and it is a dangerous practice

Refactoring must not be used as a replacement for proper architecting I

(g) AEROSPACE 51

Pair Programming
Collaborative programming is not a new idea; it has been explored before1

Pair programming is a collaborative technique to ensure quality code
- People are paired-up at a workstation and working together
- However, it is not like a piano duet on the computer keyboard ©

- The members of the pair have different roles and those roles may change
- People may change pairs too as needed

Pair programming is one of the most debated agile practices
- Its effectiveness is evaluated on the following three dimensions when it is

compared to solo programming: Effects on quality, duration, and effort.

52 * See [Nosek 1998] (g) AEROSPACE

The Effectiveness of Pair Programming

The reported results are based on a meta-analysis of 18 detailed
studies*
- The goal of a meta-analysis is to estimate the overall, combined effect

- Rigorous meta-analysis ensures the standardization of the reported
data sets and provides comparable effect estimates

- In meta-analysis, rather than computing a simple mean, more weight is
assigned to studies that carry more information

Authors used two different statistical models; we present their
conclusions for a so-called "fixed-effects model"
- A fixed-effects model assumes an unknown but fixed population

- All 18 studies are seen as data drawn from the same population and
variances between individual studies are viewed as results of subject
variability

Caveat: Effort, duration, and quality are not well defined in
general and are operationalized in very diverse ways i

•

53 Source: [Han nay 2009] @ AEROSPACE

Reported Meta-analytic Effects of Pair Programming

• A little statistics
- The standardized measure of effect size is Hedges' g*

• An effect size of .5 indicates that the mean of the pair programming
group's distribution is half a standard deviation larger than the mean of
the reference group's (the solo programmer's) distribution
- Effect sizes larger than 1.0 are "large," 0.38-1.00 are "medium,"

and 0 - 0.37 are "small"
• Effect sizes from the meta-analysis

Effect on Effect Size [g] Description of Effect

Quality +0.23 Small significant positive

Duration +0.40 Low-medium significant positive

Effort - 0.73 Medium significant negative

• In plain English: Minor quality improvement and some schedule
compression can be achieved at the price of somewhat higher cost

In even plainer English, "Faster, Better, Cheaper" does not work here either**

54 * [Hedges 1981]; ** [Voas 2001] @ AEROSPACE

Mission Assurance Risk in Pair Programming

XP, while it does not explicitly forbid formal inspections, treats them as M0
redundant and unnecessary
- XP proponents claim that inspection happens all the time through pair

programming

- However, that pair programming is a general improvement over formal
inspections (also called Peer Reviews) remains unproven*

Unique benefits of formal inspections
- Inspectors' independence from the creator of the inspected work product

• "The issue is closeness, not ability. That's why every writer needs an editor
- Note that we used the term "work product," which is broader than "code"

- Knowledge transfer (although should not be treated as a training vehicle...)
- Improving the process, like adding items to checklists, recommending tools like

a static code analyzer, recommending changes to coding standards, etc.
- Reevaluating assumptions that were made earlier about requirements
- Capturing and evaluating quality metrics, identifying common problem areas

**»

Despite its positive impact on quality, pair programming is
not an acceptable replacement for formal inspections i

55 * [Palmer 2010]; ** [Cohen 2011] @ AEROSPACE

Collective Code Ownership

• No single person "owns" a module
- Any developer is expected to be able to work on any part of the code-base

at any time

• In theory this is a good practice regardless of the used software
development methodology

• Caveat: In reality the practice does not scale up
- There are limits to how much code evolution somebody can follow real-time
- Also, programmers are no longer equal - like in medicine, high-level

specialization is the current reality
• Specialization examples

- Database developers, graphical user interface (GUI) developers,
algorithm developers, networking specialists, infrastructure
specialists (formerly called "system programmers"), etc.

Collective code ownership, if applied properly, has a positive impact

@AEROSPACE 56

40-Hour Work Week

• Programmer welfare is considered important
- XP development is considered a stressful environment
- Programmers should go home on time

• Up to one week of overtime is allowed (Note that this is an XP guidance
and not a Human Resources (HR) policy)

• Consecutive weeks of overtime is a sign that the process might be failing

• My take
- Not just XP but software development in general is a stressful endeavor

- Everybody should go home on time, not just programmers ... ©

57 (g) AEROSPACE

On-site Customer

• According to this practice, the developers have continuous access to
a real, live customer
- Note that this is different (and much more involved) than the traditional

Rapid Application Development (RAD) approach, where the customer
primarily participated in early prototyping

- It is also different from the prevailing, periodical program management
reviews where customer representatives are present

• In case of large, geographically distributed teams this expectation is
not feasible
- Development of large systems usually involves geographically distributed

teams; the distributed structure of the organization is essentially a liability
and source of numerous risks that need to be dealt with

• The excessive burden on government personnel makes the practice
also infeasible

However, the main risk is the underlying issue that the customers
are now made implicitly responsible for all decisions and progress i

58 (g) AEROSPACE

Coding Standards

The written code must be homogeneous

- One should not be able to tell by looking at the code who on the team wrote
or corrected a piece of it

- This practice is closely related to Collective Code Ownership

Following coding standards is an unconditionally good practice
regardless of the software development methodology used

59 (g) AEROSPACE

XP Practice Evolution - New XP Practices*

• The planning game
- Quarterly Cycle and Weekly Cycle are replacing the old practice

• Small releases
- Incremental Deployment and Daily Deployment are introduced

• Metaphor
- It was always the least understood practice and now it is eliminated

• Simple design
- Incremental Design and Single Code Base are introduced

• Continuous integration
- No change

• Continuous testing
- Emphasis on Test-First Programming

• Refactoring
- Eliminated as a formal practice; became part of Incremental Design

• Pair programming
- No change

*
60 See [Beck 2004] for the description of new XP practices Qh AEROSPACE

New XP Practices-2

Collective code ownership
- It is now called Shared Code

40-hour work week
- Eliminated; Energized Work and Slack replace this practice

• Energized Work is a reinterpretation of the sustainable pace concept
• Slack means to mark things that can be dropped if you get behind

On-site customer •

- Sit Together, Whole Team, and Real Customer Involvement practices
were introduced

• Coding standards
- Not called out anymore but still a foundation of Shared Code

• There are more new practices, a new value, and several new principles
but we were only focusing on the evolution of the original 12 practices

61 (g) AEROSPACE

Mission Assurance Consequences

• A reviewer's opinion about the 2nd edition of Beck's book:
- "... the 2nd edition describes a new process that is different from the process

Beck describes in the first book. It seems, he has invented a new process
(based on his experience with XP) and gave it the same name"*

• The importance of process documentation and use of standards
- XP is a good example of how fluid the agile field still is and how difficult it is

to pin down specific practices
- High-quality, detailed process documentation is needed to mitigate upfront

agile process ambiguities; carrying out the oversight function is very difficult
without documented, agreed-upon terminology and processes

- The customer must understand that (s)he will only get what (s)he explicitly
asks for; after the contract is signed, the customer is at the mercy of the
contractors and will be separately charged for every request that is deemed
to be "new"

- For a more detailed analysis see the earlier mentioned report [Eslinger 2006]

Use of standards is one of the most effective tools for the
customer to go on record with process-related expectations i

62
Source: [Stansell 2004] @AEROSPACE

Top 12 Reasons Named in 2010 for Adopting Agile*

• Accelerate time to market
• Enhance ability to manage changing priorities
• Increase productivity
• Enhance software quality
• Improve alignment between information technology (IT) and business

objectives
• Improve project visibility
• Reduce risk
• Simplify development process
• Enhance software maintainability and extensibility
• Improved team morale
• Reduce cost
• Improve and increase engineering discipline

Some of these expectations are clearly counter-intuitive, showing
a lack of true understanding of these methodologies

i4 * [VersionOne 2010] (g) AEROSPACE

Top 12 Concerns in 2010 About Adopting Agile

Loss of management control
Lack of upfront planning
Management opposed to change
Lack of documentation
Lack of predictability
Lack of engineering discipline
Development team opposed to change
[Lack of] engineering talent
Inability to scale
Regulatory compliance
Reduced software quality
Other

65

It is not on the list, but one of the main concerns should be lack of
consistent metrics and reliable data to verify if any of the objectives

stated on the previous slide have been met

[VersionOne 2010] (g)AER0SPACE

Agile Software Development from a Commercial
Perspective
• Using agile software development is a business strategy, based on a

particular value proposition

• Choosing a development method should be based on the home grounds
of the organization and project, characterized by the following factors*
- Project size (expressed by the number of development personnel involved)
- Criticality (loss due to impact of defects)
- Level of software understanding in development personnel
- Dynamism (% requirements-change/month)
- Culture (thriving on chaos vs. preferring order)

• When these metrics are considered, agile software development
certainly seems to be a promising approach for small, low-criticality
projects with rapidly changing requirements, where the
organization's culture embraces high degrees of freedom, and the
developers are highly experienced

Unfortunately, the applicability of these methods outside of
the above described home grounds has not yet been proven i

66 [Boehm 2004] Q AEROSPACE

(2h AEROSPACE
^—^ Assuring Space Mission Success

How do We Know that it is Broken?

JCIDS

R DOD 5000.2

68

Defense Acquisition Performance Assessment (DAPA) summary in 2006
- "As early as 1971 it has been identified that [defense] acquisition processes

have significant shortcomings leading to loss of confidence by congress and
the defense community"

- "Many improvements to the DOD's acquisition system have been made as a
result of past reviews ... However, the ability to deliver operational
performance of mqjor systems within predicted cost and schedule has
not improved over the last 20 years"

(g) AEROSPACE

Selected* DAPA Recommendations in 2006

• Replace the Joint Capability Integration Development System (JCIDS)
with a new, two-year recurring planning process based on the 15-year
extended plans submitted by combatant commands

• Stabilize the Planning, Programming, Budgeting, and Execution
(PPBE) process

• Introduce a new requirements process with 2-year duration
• Establish a distinct, stable Program Funding Account
• Increase program predictability
• Program all accounts to a high, 80/20 confidence level
• Establish very early a realistic capability delivery rate
• Establish very early all test plans

- Complete Test & Evaluation Management Plan (TEMP) and Initial
Operational Testing & Evaluation Plan (IOT&EP) prior to Milestone B

Clearly, the DAPA panel valued stability and
predictability as opposed to agility

* There were more recommendations but those did not have potential agile ^-* —
• implications ^AEROSPACE

Acquisition Problems Identified in 2011 by the
Government Accountability Office (GAO)*

• Alternatives not considered
- Clearly, no relationship to agile development

• Funding unstable
- Actually, agile development is supposed to be an adaptive mechanism that

might be helpful in dealing with unstable funding, but only at the price of
delaying or dropping requirements

• Inadequate contracting strategy
- The report is referring to the failure of Total System Performance

Responsibility (TSPR) and lack of evolutionary strategies in certain
acquisitions; neither has agile software development implications

• Inadequate contractor oversight
- This concern is also related TSPR; While some agile principles would embed

more government personnel in the development process, due to lack of
contracting rigor this involvement would be costly and ineffective

- Also, increasing the acquisition work force has been suggested, but in
the current climate of drastic budget cuts it is not feasible

• $148-$178B DOD cuts planned between 2012 and 2016 **

70 [Chaplain 2011], **[Weisgerber2011] Qk AEROSPACE

More, GAO-identified Acquisition Problems
• Optimistic cost and schedule estimates

- The operative word seems to be "optimistic," which has nothing to do with
the details of development methodologies. Additionally, due to the difficulties
with macro-estimation in agile development, one can expect further
dissatisfaction with the accuracy of cost and schedule estimates

• Requirements unstable
- Because of its adaptive nature, agile development is supposed to help with

handling unstable requirements. However, regardless of the implemented
agile project management strategy, volatile requirements will yield inaccurate
cost and schedule estimates, ultimately resulting in customer dissatisfaction

• Software needs poorly understood
- This is also a requirements and early architecting issue. Again, selected

agile development practices do facilitate the gradual, more effective
discovery of software-level requirements, but still, software estimates,
particularly the early ones, will be grossly inaccurate

• Technology immature
- This has not been a software issue on the reviewed acquisitions

Agility and agile software development still do not seem to be the answers

71 (g) AEROSPACE

What May the Future Bring?

z\

A . A

3 I 3

The most significant recent directive by Congress that could shape the
future of defense acquisitions is
- Public Law 111-84, The National Defense Authorization Act for Fiscal

Year 2010; Section 804. Implementation of New Acquisition Process
for Information Technology Systems

The central question is this: Is it true that the law directs the
incorporation of agile methodologies in DOD software acquisitions? i

72 (g) AEROSPACE

Does Section 804 Direct the Incorporation of Agile
Methodologies in DOD Software Acquisition?

• Why are we even asking the question?
- Quotes from the November 14-15, 2011 National Defense Industry

Association (NDIA) Agile Scrum Workshop's invitation
• "The law [Section 804] directs the incorporation of Agile methodologies in

DOD software acquisition ... Agile cannot fail. Unequivocally, Agile cannot
fail."

• However, what Section 804 actually requires is an acquisition process
with the following characteristics:
- Early and continual involvement of the user
- Multiple, rapidly executed increments or releases of capability
- Early, successive prototyping to support an evolutionary approach
- Modular open systems approach (MOSA)

• Again, Section 804 requires a new acquisition process but congress
cannot (and should not) legislate a software development process

i
73 @ AEROSPACE

The wording is indeed inspired by agile ideas, but the connection to
specific agile software development practices is very weak or nonexistent

Conclusions - 1

Continuing problems in the software enterprise (earlier the symptom
was called the "software crisis") pushed organizations to continuing
experimentation with new development methods
- Part of this experimentation is manifested in the rediscovery and

sometimes just renaming of known processes
- Experimentation is further fueled by the "bandwagon effect"
- Unfortunately, there is no sufficient data with acceptable quality available

to properly characterize the emerging agile methods and establish a
reliable performance baseline

In the meantime, defense acquisitions of software-intensive systems
are still struggling and there is no effective solution in sight
- The demand for bigger and more sophisticated weapon systems is

constantly increasing while the scaling problem of processes and the
management of the continuously growing scope are not resolved

- Also, a tendency for blind copying of industry practices is present due to a
persistent opinion that "industry knows what to do and we should just
adopt industry practices"

• Unfortunately, the associated risks are not well understood and in some
cases are explicitly covered up ^ .„^Ä_^

(A\ AEROSPACE 75

Conclusions - 2

What APO personnel needs to do

- Continuously educate itself on the emerging development methods

- In the contracting phase must insist on the use of robust development
standards

• The government should not settle for vague references to agile
programming; it must insist on a detailed software development plan
(SDP) that fully characterizes all planned life cycles, their internal
relationships, and the planned implementation details of all life-cycle
processes and associated activities

• Mission success criteria and synergy with mission assurance needs must
to be used to validate the SDP before acceptance for the contract

- In the contract monitoring phase must implement an effective mission
assurance program

• Mission assurance is essentially an ingrained instrumentation of the
development process; it is a necessity and must not be allowed to be
viewed by the development organization as a "nice-to-have," negotiable
feature

76 (g) AEROSPACE

Conclusions - 3, or What You Really Need to Remember

"The temptation to 'cut corners,1 even in the name of being efficient or
'expedient,' is ever-present, especially in a global business that is

economically unforgiving...
That is why 'getting it right* must be a 2417 commitment/'

- Dr. Wanda Austin, President and CEO, The Aerospace Corporation

77 (g) AEROSPACE

Acronyms

APO Acquisition Program Office

ATIP Aerospace Technical Investment Program

BDUF Big Design Up Front

CEO Chief Executive Officer

CMMI Capability Maturity Model Integration

COTS Commercial Off-the-shelf

DAPA Defense Acquisition Performance Assessment

DoD Department of Defense

FAR Federal Acquisition Regulation

FFRDC Federally Funded Research & Development Center

GAO General Accountability Office

GUI Graphical User Interface

IBM International Business Machines

HD Iterative-Incremental Development

IOT&EP Initial Operational Testing & Evaluation Plan

IT Information Technology

IV&V Independent Verification & Validation

JCIDS Joint Capabilities Integration & Development System

JROC Joint Requirements Oversight Council

KDSI Thousand Delivered Source Instructions

LTCD Long Term Capability Development

MOSA Modular Open System Architecture

NDIA National Defense Industry Association

OSD Office of the Secretary of Defense

OT&E Operational Test & Evaluation

PPBE Planning, Programming, Budgeting & Execution

RAD Rapid Application Development

RUP Rational Unified Process

SE&I Systems Engineering & Integration

SETA Systems Engineering and Technical Assistance

SEU Single Event Upset

SW Software

TCO Total Cost of Ownership

TEMP Test & Evaluation Management Plan

TQM Total Quality Management

TSPR Total System Performance Responsibility

XP extreme Programming

YAGNI You Aren't Gonna Need It

78 (g) AEROSPACE

References -1
Adams 2005 Adams, R. J., et al, Software Development Standard for Space Systems, The Aerospace Corporation Technical

Report TOR-2004(3909)-3537, Revision B, March 11, 2005
Agile 2001

Ambler 2006
Agile Alliance, Manifesto for Agile Software Development, 2001, <http://wwwagilealliance.org>
Ambler, S. W., The Agile Unified Process, <http://www.ambvsoft.com/unifiedprocess/aQileUP.html>

Ambler 2007 Ambler, S. W., Agile Documentation Strategies, Dr. Dobb's Journal, February 05, 2007
Ambler 2011 Ambler, S. W., Agile/Lean Documentation: Strategies for Agile Software Development,

<http://www. aqilemodelinq. com/essa ys/aqileDocumentation. htm>
Baird 2002 Baird, S., Extreme Programming Practices in Action, December 6, 2002, <http://www.informit.com/articles>
Beck 2000 Beck., K., Extreme Programming Explained: Embrace Change, Addison-Wesley 2000
Beck 2004 Beck., K., Extreme Programming Explained: Embrace Change (2nd Edition), Addison-Wesley, 2004

Boehm 2004 Boehm, B., Turner, R., Balancing Agility and Discipline - A Guide for the Perplexed, Addison-Wesley, 2004
Bruyere2011 Bruyere, C. N., et al, Employment dynamics over the last decade, Monthly Labor Review, August 2011, pp 16-29

Chaplain, C. T., DOD Delivering New Generations of Satellites, but Space System Acquisition Challenges
Remain, Government Accountability Office Report GAO-11-590T, May 11, 2011

Chaplain 2011

Cockburn 2004 Cockburn, A., Crystal Clear: A Human-powered Methodology for Small Teams, Addison-Wesley, 2004
Cohen 2011 Cohen, J., Does Pair programming Obviate the Need for Code Review?

<httD://www.softwareaualitvconnection.com/2011/04/does-Dair-Drooramminq-obviate-the-need-for-code-review/>.
April 1,2011

Collins 2012 Collins Free Online English Dictionary, http://www.collinsdictionarv.com/dictionary/enqlish/agile
DAPA 2006 Defense Acquisition Performance Assessment (PAPA) Report, March 2006

DoD 2008 DoD 5000.02, Instructions on the Operation of the Defense Acquisition System, Signed 8 December 2008
INCOSE 2003 INCOSE Systems Engineering Handbook, INCOSE-TP-2003-016-02, Version 2a, June 1, 2004

Erwin 2009 Erwin, S. I., Pentagon brass: Stay away from management bestsellers, National Defense, August 1, 2009
Eslinger 2006 Eslinger, S., Mission Assurance-driven Processes for Software-intensive Ground Systems, The Aerospace

Corporation Technical Report ATR-2006(8056)-1, September 30, 2006
Guarro 2007 Guarro, S. B. and Tosney, W.F. (editors), Mission Assurance Guide, The Aerospace Corporation Technical

Report TOR-2007(8546)-6018, 1 July 2007
Guarro 2008 Guarro, S. B. and Hecht, M., Risk and Reliability Assessment of Software-Intensive Systems, Space Systems

Engineering and Risk Management Symposium, Los Angeles, California, 26 February 2008
Hannay 2009 Hannay, J. E., et al, The effectiveness of pair programming: A meta-analysis, Information and Software

Technology 51(2009), pp 1110-1122

79 (g) AEROSPACE

References - 2
Hedges 1981 Hedges, Larry V., Distribution theory for Glass's estimator of effect size and related estimators, Journal of

Educational Statistics 6 (2): 107-128, 1981
Highsmith 2000 Highsmith, J. A., Adaptive Software Development - A Collaborative Approach to Managing Complex Systems,

Dorset House Publishing, 2000
Jacobson 1999 Jacobson, I., et al, The Unified Software Development Process, Addison-Wesley. 1999
Jacobson 2006

Krafcik 1988
Jacobson, I., The Essential Unified Process - an Introduction, <http://www.ivariacobson.com/essup.cfm>
Krafcik, J. F., Triumph of the lean production system, Sloan Management Review 30 (1): 41-52, 1988

MSF 2006 Microsoft Solution Framework for Agile Software Development Process Guidance,
<http://www.microsoft.com/downloads>

Nosek1998 Nosek, J. T., The Case for Collaborative Programming, Communications of the ACM, March 1998/vol.41, No. 3
Palmer 2002 Palmer, S.R., and Feising, J.M., A Practical Guide to Feature-Driven Development, Prentice Hall, 2000
Palmer 2010 Palmer, S. R., Inspections,

<http://www. step-10. com/SoftwareProcess/General/lnspectionNotes. html>
Paparone 2009 Paparone, C.R., From Not-So-Great to Worse - The Myth of Best Practice Methodologies, Defense AT&L, July-

August 2009
Poppendieck 2003 Poppendieck, M., Poppendieck, T., Lean Software Development: An Agile Toolkit for Software Development

Managers, Addison-Wesley, 2003
Poppendieck 2006 Poppendieck, M., Poppendieck, T., Implementing Lean Software Development: From Concept to Cash, Addison-

Wesley, 2006
Royce 1998 Royce, W., Software Project Management -A Unified Framework, Addison-Wesley, 1998

Rule 2011 Rule, P. G., What do we mean by "Lean?",
<http://www.smsexemplar.com/wp-content/uploads/20110921-what-do-we-mean-bv-lean-v1b-lncludingNotes.pdf>

Schwaber 1995 Schwaber, K., Scrum Development Process, Business Object Design and Implementation, OOPSLA '95 Workshop
Proceedings, Springer-Verlag Telos, 1997

Stack 2008

Stansell 2004

What is a metaphor in the context of XP?, blog,
< http://stackoverflow.com/guestions/211557/what-is-a-metaphor-in-the-context-of-xp>
Stansell, J., "Extreme Programming Explained: Embrace Change Second Edition" book review,
<http://c2.com/cgi/wiki7ExtremeProgrammingExplainedEmbraceChange>

Stapleton 2003 Stapleton, J., DSDM: Business Focused Development, Addison-Wesley, 2003
Takeuchi1986 Takeuchi, H., Nonaka, I., The New Product Development Game, Harvard Business Review, January-February 1986

The State of Agile Development- State of Agile Survey 2010, VersionOne, 2010 VersionOne2010
Voas 2001 Voas, J., Faster, better, and cheaper, IEEE Software 18 (3) (2001) 96-99

Weisgerber 2011 Weisgerber, M., DoD expects up to $100B more in cuts, White Paper, Federal Times, March 28, 2011

@AEROSPACE 80

Representative Agile Software Development Methods

Agile UP (Agile Unified Process) [Ambler 2006]
ASD (Adaptive Software Development) [Highsmith 2000]
Crystal Clear [Cockburn 2004]
DSDM (Dynamic Systems Development Method) [Stapleton 2003]
Ess UP (The Essential Unified Process) [Jacobson 2006]
XP (extreme Programming) [Beck 2000], [Beck 2004]
FDD (Feature-Driven Development) [Palmer 2002]
Lean Software Development [Poppendieck 2003, Poppendieck 2006]
MSF (Microsoft Solution Framework) for Agile Development [MSF 2006]
Scrum [Schwaber 1995]

82 (g) AEROSPACE

Use of Trademarks, Service Marks, and Trade Names

Use of any trademarks in this material is not intended in any way to
infringe on the rights of the trademark holder. All trademarks,

service marks, and trade names are the property of their
respective owners.

The clip art on slides 8, 17, 23, and 48 is courtesy of Animation Library
The clip art on slide 18 is courtesy of Florida's Educational Clearing House

The illustration on slide 27 is courtesy of Mountain Goat Software
The clip art on slide 35 is courtesy of PicGifs

The clip art on slide 46 is courtesy of Bee Kirk
The picture on slide 52 is courtesy of Dr. David Bader

The clip art of a witch on slide 72 is courtesy of All-free-download
All other clip art on slide 72 is owned by The Aerospace Corporation

83 (A) AEROSPACE

