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ABSTRACT

We state and prove a useful theorem on manipulating rotation order which,
while not new, is barely present in the literature. This theorem allows the
order of a sequence of rotations to be reversed, provided that the sense of the
axes of rotation is changed from “body” to “space fixed” or vice versa. We use
the theorem to aid calculations in geodesy (constructing a local north–east–
down coordinate system) and aerospace theory (relating yaw–pitch–roll rates
to vehicle angular velocity). The new notation here sheds light generally on the
field of orientation theory, as well as giving insight to standard terms relating
to wind direction used for treating ship motion. Although we present our
analyses in the style of a tutorial in the general subject of spatial orientation
theory, there is new notation here, along with alternative and novel ways of
treating problems that are often seen as difficult or obscure by practitioners.
This report follows on from the 2005 DSTO report DSTO–TN–0640, but is
completely self contained, and DSTO–TN–0640 need not be read beforehand.
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A Pseudo-Reversing Theorem for Rotation and its
Application to Orientation Theory

Executive Summary

This report is a much-evolved follow-on from the 2005 DSTO publication DSTO–TN–0640,
“Using Rotations to Build Aerospace Coordinate Systems”, that explained the construction
of coordinate systems used in aerospace calculations. That report followed a step-by-
step approach to implement its calculations. In the current report we rephrase those
calculations in a more efficient language, while incorporating a very useful theorem that
is known but almost absent from the literature. This “Pseudo-Reversing Theorem” allows
the order of a sequence of rotations to be reversed, provided that the sense of the axes of
rotation is changed from “body” to “space fixed” or vice versa. The current report is self
contained, so that familiarity with the content of DSTO–TN–0640 is not necessary.

The current report places the theorem and the reworked examples of DSTO–TN–0640
into the greater context of orientation/rotation theory. We first introduce the theorem,
then establish a solid mathematical language necessary for quantifying the orientation of
an object. We cover the background of how to rotate a vector, using either a matrix
or a quaternion. We then rework the examples in DSTO–TN–0640: constructing a local
north–east–down set of axes from a given latitude and longitude, and calculating where a
pilot must look to see a distant aircraft. We also make an extended revisit to the subject
of conversions within the Distributed Interactive Simulation environment for handling
orientation information, since this often causes problems to practitioners who must deal
with several coordinate systems at once. We end the main report by showing how the
Pseudo-Reversing Theorem can be used to simplify some of the concepts behind dead
reckoning an object’s changing orientation.

The report ends with an appendix that applies its notation and general approach to
the task of constructing the appropriate course a ship must steer in order for the wind
to appear to come from some given direction with some given speed. This is a nontrivial
problem that is handled well in a novel way by the orientation-matrix language of this
report, although its solution doesn’t require the Pseudo-Reversing Theorem.
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1 Introduction

Since publishing a DSTO report [1] covering the basics of rotation/orientation theory
in 2005, I have received several emails from practitioners with various questions prompted
by its subject matter. These questions suggest to me that a second edition of that report
would be useful.

There are several reasons to update the 2005 report. The subject of 6 degree-of-freedom
modelling is a comparatively modern one, requiring the use of fast computers to update an
object’s state sufficiently accurately to represent the real world usefully. Perhaps because
of this, straightforward information about the subject has yet to appear in nonspecialised
textbooks. The calculations in [1] were written to fill a perceived gap, having both ped-
agogical and logical content. But they were certainly longer than necessary. Only after
writing that report did I become more aware of a known theorem that would have simpli-
fied some of its analysis. I think that this theorem is not given the significance it deserves
in the literature; in fact, while some practitioners are aware of it, a statement of it with
a discussion of its use is hard to find anywhere—perhaps because having no widely used
name makes it difficult to search for. I have called it the Pseudo-Reversing Theorem here,
or PRT. It has been called the Rodrigues Transposition Theorem in [2], but no provenance
is given there for the choice of name, which doesn’t appear to be used anywhere else. An
example of the theorem is given in [3], which gives a proof in the context of orthogonal
axes, although the theorem doesn’t actually require such axes.

The Pseudo-Reversing Theorem can often be invoked to give a different pedagogical
basis to the many analyses and recipes abounding in orientation theory that can, for some,
seem quite opaque. Part of the subject’s difficulty is due to a divide in the orientation
community: some books base their analysis on the concept of an“active rotation”, whereas
others use a“passive rotation”. I suggest that knowledge of the Pseudo-Reversing Theorem
forms a good bridge between these two approaches, so that one can more easily appreciate
the reason why both approaches have historically been used.

Confusion over whether a sequence of rotations is active or passive can result in that
sequence being written in the wrong order, possibly with wrong signs of the angles turned
through. But orientation theory is a subject in which a procedure’s lack of validity will
quickly become obvious when it’s implemented on a computer. It does not seem to me that
a great deal of pedagogical effort has found its way into the proofs of some of the subject’s
recipes; and when they work well, there is little incentive for anyone to highlight the places
where the analyses are unclear and to provide an explanation for why, nonetheless, those
analyses work. I have tried to address that in this report by explaining some representative
analyses in detail. And although I use only active rotations here and in [1], I do discuss how
passive rotations can be used, and where they fit into the general scheme of the subject.

Another reason for this follow-up report is to establish a good set of notation that helps
simplify rotation/orientation analysis. I rework the examples in [1] using this notation.
I have added an appendix that uses the notation to aid calculations of wind velocity
as perceived by a ship. This is a standard task in navigation that is rendered more
transparent by an appreciation of the difference between proper vectors and coordinate
vectors, as discussed in Section 3.

Finally, Section 5.4 on “DIS conversion” was prompted by a question that I’ve been
asked several times regarding the DIS example in Section 4.3 of [1], an example that has
been useful for DIS practitioners. That original calculation was certainly correct, but
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readers were apt to confuse the roles of Earth-centred Earth-fixed and local north–east–
down and so arrive at a wrong answer. To address this, I’ve rewritten the discussion of [1]
differently and in far more detail here.

2 The Pseudo-Reversing Theorem

The following thought experiment encapsulates the core of the calculations in this report.

Consider the viewpoint of an audience watching the famous mime Marcel Marceau on
stage. Marcel orientates his body in some way, and then rotates his hand about his wrist.
We, the audience, seek to describe that hand’s final spatial orientation from a knowledge
of these two procedures. Orientating Marcel’s body can be described by some action, an
“operator”, which we write as O and assume known. To incorporate the new orientation
of Marcel’s rotated hand, we can write another operator that rotates that hand about the
wrist. But simply saying “the rotation was about the wrist” is useful mathematically only
if we know where the wrist currently points. So we wish to specify the vector, independent
of Marcel’s body, along which his wrist points. The act of bodily orientating himself has
changed the direction of Marcel’s wrist, in which case we must distinguish between the
initial direction (vector) of his wrist, here denoted by the subscript “wrist”, and the final
direction vector of his wrist, here denoted by the subscript “〈wrist〉”.

If we write the operation of Marcel orientating himself bodily as O, and follow this
with a rotation R〈wrist〉 of his hand about the latest direction of his wrist, then the entire
procedure of orientating Marcel’s hand is written

final orientation = O → R〈wrist〉 . (2.1)

Now realise that Marcel can achieve exactly the same result by first rotating his hand
about his wrist, and then orientating himself bodily as before. We still describe the bulk
orientation with O, but we must now rotate the hand about a different vector: the initial
direction of Marcel’s wrist. Write this rotation as Rwrist to obtain

same final orientation = Rwrist → O . (2.2)

We have“almost” swapped the two procedures in the mathematical description of Marcel’s
movements, provided we understand the operator that rotates the hand to be different in
each description. This simple result forms the core of what we’ll soon call the Pseudo-
Reversing Theorem:

O → R〈wrist〉 = Rwrist → O . (2.3)

In the descriptions to follow, we’ll use a phrase such as “the latest snapshot of the vector
describing Marcel’s wrist” to reinforce the fact that there can be two wrist vectors being
discussed, which refer to the direction of Marcel’s wrist at different times in an orientation
procedure. The vector“wrist”describes where his wrist was initially and is unchanging; the
vector “〈wrist〉” describes where his wrist is now, and is subject to change as he orientates
his body. We might consider the initial vector as being rotated to become the final vector,
but it’s useful to view the initial vector as set in stone, and a snapshot of this vector is
then physically rotated to become the final vector.

More generally, consider a sequence S of rotations about the latest snapshots of vec-
tors u1,u2,u3. We wish to describe the following set of rotations. First, rotate snapshots
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of u1,u2,u3 around u1 to give a new set labelled u′
1,u

′
2,u

′
3 respectively. Now rotate

snapshots of each of these vectors around u′
2 to give a new set labelled u′′

1 ,u
′′
2,u

′′
3 respec-

tively. Now rotate snapshots of each of these vectors around u′′
3 to give a new set labelled

u′′′
1 ,u

′′′
2 ,u

′′′
3 respectively. Finally, rotate snapshots each of these vectors around u′′′

1 to give
a new set labelled v1,v2,v3 respectively. We can write the sequence of rotations between
initial and final vectors as

{u1,u2,u3} → Ru1
→ Ru′

2
→ Ru′′

3
→ Ru′′′

1
→ {v1,v2,v3} . (2.4)

S is the sequence of four rotations taking initial to final vectors. But this linguistic and
notational description of the sequence is tedious—and we almost certainly will not need
the intermediate vectors—so instead we’ll describe the same procedure as follows. Rotate
snapshots of u1,u2,u3 first around u1, then around the latest snapshot of u2, then around
the latest snapshot of u3, and finally around the latest snapshot of u1, to give a new set
v1,v2,v3. We will write this as

{u1,u2,u3} → R1 → R〈2〉 → R〈3〉 → R〈1〉 → {v1,v2,v3} . (2.5)

The above discussion of Marcel Marceau encapsulated in (2.3) allows us to replace the
R1 → R〈2〉 in (2.5) with R2 → R1. This doesn’t affect the sense of the next vectors 〈3〉
and 〈1〉, since the procedures R1 → R〈2〉 and R2 → R1 have the same effect—they produce
the same final orientation. In that case, (2.5) becomes

S = R2 → R1 → R〈3〉 → R〈1〉 . (2.6)

Now again use the same logic of applying (2.3): think of R2 → R1 as the orientation O,
and swap it with R〈3〉, remembering to change R〈3〉 to R3:

S = R3 → R2 → R1 → R〈1〉 . (2.7)

Finally apply the same idea again to arrive at

S = R1 → R3 → R2 → R1 . (2.8)

Notice that we cannot combine R1 → R〈1〉 in (2.7) into one rotation: R1 refers to a rotation
around u1, while R〈1〉 refers to a rotation around the very latest “incarnation” of u1, which in
general is a completely different vector to u1.

An inductive argument should make it clear that the same reversing procedure holds
regardless of the length of the sequence. There can be repeated subscripts, and the initial
set of vectors need not be mutually orthogonal. For any number of rotations, then, we
have proved the Pseudo-Reversing Theorem:

R1 → R〈2〉 → R〈3〉 → R〈4〉 → . . . = . . .→ R4 → R3 → R2 → R1 . (2.9)

We can equally well express the right-hand side of (2.9) as a purely operator expression,
in which case it uses no arrows because operators act from right to left:

R1 → R〈2〉 → R〈3〉 → R〈4〉 → . . . = R1R2R3R4 . . . (2.10)

Equation (2.10) is a very useful statement of the Pseudo-Reversing Theorem. It says
that when rotating about latest axes, we need only write down—from left to right—the
sequence of rotations nominally around latest axes, but writing them as operators that
rotate about space-fixed axes, which will then be automatically understood to act from
right to left. We’ll do this in the examples to follow.
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2.1 A Related Scenario in Aerospace Kinematics

The above discussion of Marcel Marceau is actually central to quantifying aerospace kine-
matics, and in the interests of clarity, we will reword it using the more complex language
of aircraft axes.

Suppose an aircraft is flying straight and level with its nose and wings pointing in
some given directions relative to north, east, and down. The pilot executes three quick
manoeuvres. First, a yaw through 10◦, followed by a pitch around the wing through 20◦,
followed by a roll around the nose through 30◦. Assuming the directions of north, east,
and down haven’t changed appreciably during the manoeuvres, what is the final aircraft
orientation relative to north, east, and down?

It suffices to specify this orientation by giving coordinates that quantify the aircraft’s
three“body”basis vectors for its nose, starboard wing, and onboard-down direction. These
vectors can be envisaged as arrows embedded in the aircraft’s body. Call these pre-
manoeuvre vectors “nose”, “starboard wing”, and “down”, n0, s0,d0, respectively. Their
coordinates relative to north, east, and down are specified in the scenario. We will be extra
clear here by using the above laboured description of intermediate rotations once more.
The first manoeuvre rotates these vectors around d0 to produce n1, s1,d1. (Of course,
d1 = d0, but a good naming convention helps prevent confusion.) The second manoeuvre
rotates n1, s1,d1 around s1 to produce n2, s2,d2. The third manoeuvre rotates n2, s2,d2

around n2 to produce n3, s3,d3. We require the coordinates of n3, s3,d3 relative to north,
east, and down.1 This sequence of three rotations can be written

{n0, s0,d0} → Rd0
(10◦) → Rs1

(20◦) → Rn2
(30◦) → {n3, s3,d3} . (2.11)

Each of these rotations requires computational effort because each rotation (except the
first) requires a vector produced by the previous rotation, and so cannot be constructed
in advance of the manoeuvres; the intermediate vectors must be calculated. This sort of
calculation was done in [1]. Now, however, we can use the PRT to write the final result
as the simpler sequence of three rotations solely around the initial basis vectors:

{n0, s0,d0} → Rn0
(30◦) → Rs0

(20◦) → Rd0
(10◦) → {n3, s3,d3} . (2.12)

This sequence is easier to implement than (2.11) because no intermediate basis vectors
need be calculated.

The Pseudo-Reversing Theorem has connected these two descriptions of a sequence of
rotations of the aircraft. Both rotation sequences are necessary and useful for application
in geodesy and flight modelling. Rotations about carried-along axes closely match our
physical experience: they are what a pilot flies; but such rotations are not always econom-
ical to describe mathematically because of the need to calculate intermediate vectors to
implement the rotations. Rotations about space-fixed axes are mathematically economical
because intermediate vectors need not be calculated, but these rotations do not match our
physical experience, which can make them more difficult to visualise. (For example, a pilot
performing aerial manoeuvres doesn’t concentrate on rotating the aircraft about the east

1In practice, the final directions of north, east, and down can change during the scenario, but this has
no real bearing on the discussion; we need only choose a coordinate system to express everything in, and
the original north–east–down directions suffice as its axes. We could easily accommodate any change in
the final directions of north, east, and down using Section 3.
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direction; that would require a very complex interaction with the flight controls.) The
PRT allows the best of both worlds: easy mathematics and easy visualisation. It says that
any sequence of rotations in one description is converted to the equivalent sequence in the
other by reversing the order of the rotations and changing their sense to that of the other
description.

3 Language of Vectors and Rotations

Like its position, the orientation of an object must be specified relative to some unchanging
reference orientation. Euler’s theorem of rotation states that any orientation of an object
can always be reached by applying a single rotation to that base orientation [4]. Hence
we can quantify any orientation by writing down this single rotation. Alternatively, we
might prefer to restrict all rotations to a prescribed set of axes, in which case more than
one rotation will generally be needed, and we’ll have to specify the order in which the
rotations are performed.

These procedures necessitate rotating one vector about another, together with good
notation that keeps track of the various coordinate sets that might be involved. We will
begin with a proper vector v, being an arrow that signifies a directed number such as
velocity. Note the distinction between a proper vector—an arrow that might be attached
to one point in space, such as those comprising the velocity field of a moving fluid, and a
position vector (or radius vector), which is an arrow whose tail is anchored to the origin,
with its head serving to quantify a point in space. For example, one position vector minus
another position vector gives a proper vector. We’ll consider this distinction further in
Section 3.2.4.

A coordinate vector [v]S is a column of numbers that quantifies v as a linear com-
bination of a set of basis (proper) vectors S. A proper vector can be described using
any one of an infinite number of bases S, S′, . . . , being represented by coordinate vectors
[v]S , [v]S′ , . . . respectively. These coordinate vectors are all distinct columns of numbers,
each associated with its basis, but all describe the same proper vector v. Proper vectors
can be manipulated in the usual way by “adding” arrows, but a numerical representation
demands a basis, with each proper vector represented by its appropriate coordinate vector
in that basis. To avoid notational clutter, we’ll use e.g. S to refer to a set of axes, and to
the basis vectors of that set.

3.1 Notation of Coordinate Vectors

Orientation analyses simplify when the basis vectors are orthonormal (mutually orthog-
onal and of unit length). Although the PRT applies also to non-orthogonal axes, our
geodesy/aerospace focus assumes orthonormal bases S and S′, with basis vectors writ-
ten as

S basis =
{
ex,ey,ez

}
, S′ basis =

{
ex′ ,ey′ ,ez′

}
, (3.1)

and so on. Now, because a proper vector can be written as a linear combination of basis
vectors

v = vxex + vyey + vzez

= vx′ex′ + vy′ey′ + vz′ez′ , (3.2)
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the coordinate vectors with respect to bases S, S′ are

[v]S =





vx
vy
vz



 =





v ·ex
v ·ey
v ·ez



 , [v]S′ =





vx′
vy′
vz′



 =





v ·ex′
v ·ey′
v ·ez′



 . (3.3)

Central to orientation theory is the description of one coordinate system’s orientation
relative to another. For example, we might require the orientation of an aircraft in the
Earth-centred Earth-fixed coordinate system (ECEF) defined in Section 5.2. The position
of a point such as the aircraft axes’ origin in these ECEF coordinates is not relevant to
specifying its orientation, so the relevant proper vectors can be envisaged as attached to
the aircraft, and are unchanged if the aircraft is merely translated. The orientation of S
in S′ is quantified by an orientation matrix µS

S′ , whose columns are the S′ coordinate
vectors of the S basis vectors:2

µSS′ ≡
[

[ex]S′ [ey]S′ [ez]S′

]

=





ex·ex′ ey·ex′ ez·ex′
ex·ey′ ey·ey′ ez·ey′
ex·ez′ ey·ez′ ez·ez′



. (3.4)

Because basis vectors suffice to quantify any other vector, the matrix µS
S′ suffices to quan-

tify the orientation of an object. The dot products in (3.4) equal the cosines of the angles
between the various basis vectors, so µS

S′ is also called the direction cosine matrix relat-

ing S and S′. Not surprisingly, µSS is the identity matrix. Also, some straightforward
linear algebra can be used to show that

µS
′

S =
(
µSS′

)t
=
(
µSS′

)−1
, (3.5)

where the superscript t denotes the matrix transpose. When the transpose of a matrix
equals its inverse, it’s known as orthogonal ; its rows will be mutually orthonormal, and so
will its columns.

The mathematics of orientation theory can be constructed from the answers to two
fundamental questions.

First Fundamental Question: Given [v]S , what is [v]S′?

[v]S′ =






v ·ex′
...

v ·ez′




 =






(vxex + · · · + vzez) ·ex′
...

(vxex + · · · + vzez) ·ez′




 =






vxex·ex′ + · · · + vzez·ex′
...

vxex·ez′ + · · · + vzez·ez′






=






ex·ex′ . . . ez·ex′
...

ex·ez′ . . . ez·ez′










vx
vy
vz



 = µSS′ [v]S . (3.6)

So the orientation matrix transforms one coordinate vector to another. Equation (3.6) is
an important equation of this report, and we highlight it by putting it in a box:

[v]S′ = µSS′ [v]S . (3.7)

2The symbol “≡” denotes a definition: a ≡ b means that a is defined to equal b. We will occasionally
use the “≡” symbol last in a string of equalities, in which case we mean that the last quantity is being
defined.
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n u

v

θ

Figure 1: Rotating a vector u in a right-handed sense around the vector n

to produce v.

Notice that
[v]A = µBA [v]B = µBA µ

C
B [v]C , (3.8)

but we also know that [v]A = µCA [v]C . In that case we conclude

µCA = µBA µ
C
B , (3.9)

which shows how orientation matrices chain together. The process can be continued in-
definitely of course: µDA = µBA µ

C
B µ

D
C , and so on.

Appendix A discusses an application of orientation matrices to quantifying the various
terms used in discussions of wind motion over a ship.

The “Second Fundamental Question” belongs under the umbrella of how to rotate
vectors, which we look at next.

3.2 Rotation Mathematics

Second Fundamental Question: Suppose S′ was originally coincident with S, but
now has been orientated according to µS

′

S . S′ took a snapshot of a vector u and carried it
along to make a new vector v. We ask: how is [v]S related to [u]S? First, by construction,
the components of v in S′ are just the components of u in S:

[v]S′ ≡ [u]S . (3.10)

In that case we can immediately write

[v]S = µS
′

S [v]S′ = µS
′

S [u]S , (3.11)

so that [v]S relates to [u]S via the orientation matrix.

3.2.1 How to Rotate a Vector using a Matrix

Now refer to Figure 1, in which a vector u (or rather, a snapshot of u) is rotated in a
right-handed sense about an axis vector n to produce v. This rotation is independent of
any coordinate system. Write it as Rθn:

v = Rθn u . (3.12)
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Working with vectors generally requires their components to be specified, and calculating
the components of a rotated vector requires a coordinate system. The core result of rota-
tion analysis is that in S, the rotation (3.12) can be performed by a matrix multiplication
using the matrix representative

[
Rθn
]

S of the rotation:

[v]S =
[
Rθn
]

S [u]S , (3.13)

where the rotation matrix is, for unit-length n,

[
Rθn
]

S = 1 + sin θ [n]×S + (1 − cos θ)
(
[n]×S

)2
. (3.14)

Here the first “1” is the 3 × 3 identity matrix. The cross matrix [n]×S appears widely in
rotation theory, and implements the vector cross product. For any two vectors a, b, we
have [a]×S [b]S ≡ [a × b]S , where

[a]×S =





ax
ay
az





×

≡





0 −az ay
az 0 −ax

−ay ax 0



 . (3.15)

The rotation matrix (3.14) is well known and can be derived by combining equations (4.22)
and (4.25) of [4]. (There, the “[ ]S” notation of this report is suppressed for simplicity
because only one coordinate system is used.) See also [5], whose (1) is equivalent to
our (3.14).

A rotation can be inverted (undone) with a reverse turn, or by reversing the axis:

(
Rθn
)−1

= R−θ
n = Rθ−n , (3.16)

and it can be shown easily from (3.14) that rotation matrices are orthogonal, meaning

[
Rθn
]−1

S
=
[
Rθn
]t

S
. (3.17)

For brevity, we write a rotation about an axis, say Rθex
, as Rθx.

A rotation R1 followed by R2 produces

v = R2(R1u) = (R2R1)u , (3.18)

so that the result is the same as rotating with a single matrix R2R1.

Rotations around the coordinate axes are particularly simple and known as Euler
matrices:

Eθ1 ≡
[
Rθx
]

S =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 , Eθ2 ≡
[
Rθy
]

S =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 ,

Eθ3 ≡
[
Rθz
]

S =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 . (3.19)

We use subscripts 1, 2, 3 for the Euler matrices because they depend not on any particular
basis, but only on the numerical ordering of the relevant axes within the basis set. That is,

Eθ1 =
[
Rθx
]

S =
[
Rθx′
]

S′ =
[
Rθx′′

]

S′′ = . . . (3.20)
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Given two sets of axes S, S′, the orientation matrix of one relative to the other is
precisely a rotation matrix:

µS
′

S =
[
Rθn
]

S . (3.21)

(We use this identity later when dealing with direction-cosine representations.) Prove this
by starting with the fact that µS

′

S gives the orientation of the axes S′ relative to the axes S.
Now consider forming the S′ axes by rotating a snapshot of S by Rθn, so that the x′ axis
is the result of rotating the x axis, and similarly for y and z. The orientation matrix is

µS
′

S =
[

[ex′ ]S . . . [ez′ ]S

]

. (3.22)

Matrix multiplication proceeds column by column—as explained ahead in (5.12)—and
each column of µS

′

S was constructed by rotating the corresponding coordinate vector of S.
That is, because

ex′ = Rθn ex , ey′ = Rθn ey , ez′ = Rθn ez , (3.23)

we can immediately write

µS
′

S =
[

[ex′ ]S . . . [ez′ ]S

]

=
[
Rθn
]

S

[

[ex]S . . . [ez]S

]

︸ ︷︷ ︸

identity matrix!

=
[
Rθn
]

S . (3.24)

So the matrix µS
′

S that gives the orientation of the S′ axes in S coordinates is precisely
the rotation matrix that produced the S′ axes from the S axes. This is an important fact
that aids in relating orientation and rotation matrices, depending on which is more easily
constructed in the problem we wish to solve.

The intricacies and richness of rotation/orientation theory arise because rotations
around different axes don’t commute—meaning they cannot be swapped without changing
the result. (They do commute when around the same axis.) The extent of the noncom-
mutivity is given by examining the value of

[
Rθm, R

φ
n

]
≡ Rθm Rφn −RφnR

θ
m . (3.25)

If that value is zero, the rotations commute, but in general
[
Rθm, R

φ
n

]
won’t be zero. We

can calculate its value using (3.14), omitting the “[ ]S” notation for simplicity since this
analysis uses a single coordinate system. Write

[
Rθm, R

φ
n

]
=
[
1 + sin θm× + (1 − cos θ)m×2 ][

1 + sinφn× + (1 − cosφ)n×2 ]

− [swap: m ↔ n, θ ↔ φ]

= sin θ sinφ
[
m×,n×

]
+ (1 − cos θ) sinφ

[
m×2

,n×
]

+ sin θ (1 − cosφ)
[
m×,n×2 ]

+ (1 − cos θ)(1 − cosφ)
[
m×2

,n×2 ]
. (3.26)

As θ and φ become small, this reduces to

[
Rθm, R

φ
n

]
= θφ

[
m×,n×

]
+ higher-order terms in the angles. (3.27)

That is, the error we make in swapping two rotations is second order in the angles. So ro-
tations commute to first order; the phrase “infinitesimal rotations commute” is often used,
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meaning that we can swap rotations freely when working with infinitesimals. (See Sec-
tion 6 for more on this.) Note that both rotations must be infinitesimal if we wish to swap
them.

In fact, (3.27) can be derived more quickly than we have just done in the last paragraph.
The key is to realise that (3.14) can be written in the compact form

Rθn = eθn
×
, (3.28)

where again we are suppressing the “[ ]S” notation. This exponential is defined as a series

in the usual way. If we now calculate
[
Rθm, R

φ
n

]
by writing each of its rotations as an

exponential series, then the final small-angle result in (3.27) follows in a straightforward
way, although the exact expression of (3.26) is not so easily obtained.

According to (3.27), whereas rotations through small angles can be swapped with ever-increasing
impunity as the angles are made still smaller, rotations through large angles cannot be swapped
without incurring a non-negligible error. We might attempt to swap two large rotations while avoid-
ing the above error of order θφ, by dividing each into infinitely many infinitesimal rotations, then
swapping adjacent rotations to “bubble” one set through the other. In fact, this procedure fails.

To see why, start with two large rotations through θ and φ around distinct axes, and divide
each into N tiny rotations θ/N and φ/N (where N is large). Now perform the required N2 swaps,
where each swap adds an error ∼ θφ/N2. Thus the final error is of order θφ, and we have gained
nothing. The same argument shows that a large rotation cannot even be swapped with an in-
finitesimal rotation. The PRT’s pseudo-swap of large rotations works only because it changes the
rotation axes.

3.2.2 How to Rotate a Vector using a Quaternion

Euler and Rodrigues are credited with having invented a set of four numbers that can be
used to rotate a vector. These numbers turn out to be identical to a set discovered later
by Hamilton, known as unit-length quaternions. We will briefly cover how quaternions are
used; the relevant proofs can be found in [4]. A quaternion can be written as a 4-element
vector, typically denoted (a0,a), where the last three elements are naturally represented
by a 3-element vector.3 In fact, quaternions predate vectors, being invented in the mid
19th century by Hamilton as he sought to generalise the idea of complex numbers a+ bi.
He eventually obtained the expression a0 + a1i + a2j + a3k, where i, j,k had the neces-
sary algebraic properties to allow this generalisation to use a minimum of new ideas.4

This notation eventually split into a “scalar” part—the first component—and a “vector”
part—the last three components, and this split gave rise to the modern notation i, j,k
for generic cartesian basis vectors. So Hamilton’s a0 + a1i + a2j + a3k has become the
modern (a0,a). We must use more descriptive names than i, j,k for our basis vectors in
order to accommodate more than one coordinate system: eX ,eY ,eZ for ECEF, ex,ey,ez
for an aircraft, and so on.

3We are using the symbol for a proper vector a to represent the coordinate vector that the quaternion’s
last three elements can be defined to be. The distinction is understood but not worth dwelling on in this
context, because our discussion of the basic properties of quaternions uses only one set of coordinates.
After all, writing our quaternions using a pre-defined S as

`

a0, [a]S
´

—or really
`

a0, [a]tS
´

—would just be
tedious.

4For Hamilton, the i in this expression generalised the complex number i, but from the point of view
of using quaternions for rotation, it’s actually the quaternion k that generalises the complex number i,
because both of these implement a rotation in the xy plane.
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Addition and scalar multiplication of quaternions is defined element by element, just
as for coordinate vectors. Quaternion multiplication is associative and defined by

(a0,a) (b0, b) ≡ (a0b0 − a ·b, a0b + b0a + a × b) . (3.29)

The quaternion for a rotation around unit vector n through angle θ is

Qθn = (cos θ/2, n sin θ/2) . (3.30)

It can be shown [4] that a vector u is rotated through θ around unit vector n to produce
vector v via a double quaternion multiplication:

(0,v) = Qθn (0,u) Q−θ
n . (3.31)

[We see in (3.31) the beginnings of just why it was that the last three elements of quater-
nions were eventually split off to form a new entity called a vector: because the quaternions
that are used in place of vectors u and v are (0,u) and (0,v).]

Why are there two multiplications in (3.31)? They are the price to be paid for the
simple structure of Qθn, versus the more complicated structure of the matrix Rθn in (3.14).
Notice that the elements of n occur only singly in Qθn; contrast this with Rθn, where the
last term in (3.14) has products of the elements of n sitting inside n×2

. Quaternions’
sparseness gives them simplicity, but the price to be paid is that two multiplications are
needed to incorporate those required products of the elements of n, in order to achieve the
same as a matrix multiplication by Rθn. This double multiplication is also why (3.30) uses
just half the rotation angle.

A quaternion is defined to have length

|(a0,a)| ≡
√

a2
0 + |a|2 , (3.32)

in which case it follows that all rotation quaternions—that is, of the sort (3.30)—have unit
length. This corresponds to the unit determinant of rotation matrices.

The identity quaternion for rotation—corresponding to no rotation at all—isQ0
n = (1,0),

being a rotation through zero angle around any axis. Because (3.30) makes it trivial to
build the quaternion associated with an angle and an axis, quaternions have traditionally
come to be treated as the way to implement the angle–axis approach to quantifying an
orientation. But we should not forget that all they do is rotate a vector, just as does the
matrix in (3.14).

The inverse of Qθn is
(
Qθn
)−1

= Qθ−n = Q−θ
n , (3.33)

and, just as for matrices, the product of quaternions Q1 and Q2 satisfies

(Q1Q2)
−1 = Q−1

2 Q−1
1 . (3.34)

Equations (3.31)–(3.34) show how successive rotations are written with quaternions: a ro-
tation Q1 followed by Q2 produces

(0,v) = Q2Q1 (0,u) Q−1
1 Q−1

2 = Q2Q1 (0,u) (Q2Q1)
−1 , (3.35)

so, just as in (3.18), the result is the same as rotating with a single quaternion Q2Q1.
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3.2.3 The Rotation Matrix and Rotation Quaternion in Quantum
Mechanics

The exponential form (3.28) of the rotation matrix is derived in some quantum mechanics
textbooks, because it’s used in that subject to deal with angular momentum, which is a
property of fundamental particles. If you do refer to a quantum mechanics text, you’ll find
a different notation, perhaps accompanied by an obfuscated way of deriving (3.28). We’ll
pay a brief visit to that notation here to demystify it.

First, omit the explicit [ ]S on all vectors for simplicity, and use the linearity of the
cross operator to expand the cross matrix into three component matrices:5

n× = (nxex + nyey + nzez)
× = nxe

×
x + nye

×
y + nze

×
z . (3.37)

In quantum mechanics the matrices e×
x ,e

×
y ,e

×
z are denoted −iJx,−iJy,−iJz respectively,

and the matrix triplet (Jx, Jy, Jz) is written as J , as though it were a vector. Hence n× is
written −in ·J , and the rotation matrix becomes

Rθn = eθn
×
= e−iθn·J . (3.38)

The only reason for the introduction of i is that the matrices Jx, Jy, Jz eventually become
identified with angular momentum in a quantum mechanical sense.

It’s notationally efficient to derive (3.28) as eθn
×
, and only then to branch off into

quantum mechanics through the use of the angular momentum matrices. Instead of doing
that, the standard quantum mechanical treatment introduces Jx, Jy , Jz at the very start of
the subject—before the rotation matrix has even been derived—by writing e×

x as −iJx and
so on; it thus presents a real, geometrical, analysis using complex numbers that all cancel
internally (since the J matrices are pure imaginary). The effect is rather like writing
2 × 3 = 2i ×−3i = 6. There is no pedagogical value in such a procedure. Of course,
quantum mechanics requires that Jx, Jy, Jz involve complex numbers; that is not the issue.6

Rather, why introduce i into a rotational analysis where it’s not needed? There is nothing
deep or elegant about writing a rotation as e−iθn·J before introducing the concept of
angular momentum, and I suspect that most users of the quantum mechanical notation
would be hard pressed to actually rotate a vector using e−iθn·J—assuming they were aware
that this is what e−iθn·J actually does—despite the pages of obscure analysis that you’ll
find on the subject in quantum mechanics textbooks. If you do refer to the quantum
mechanics approach for some rotation theory, recognise this unnecessary complex-number
baggage for what it is, and the analyses will become a little less confusing.

Similar comments apply to the quaternions used in quantum mechanics. It turns out
that a quaternion can be represented by a 2 × 2 complex matrix [4], and you will find them

5Equation (3.37) shows the compactness of the cross notation. We could also have used its full matrix
form to get the same result:

n
× =

2

4

0 −nz ny

nz 0 −nx

−ny nx 0

3

5 = nx

2

4

0 0 0
0 0 −1
0 1 0

3

5

= e
×
x

+ny

2

4

0 0 1
0 0 0

−1 0 0

3

5

= e
×
y

+nz

2

4

0 −1 0
1 0 0
0 0 0

3

5

= e
×
z

. (3.36)

6On this note, given that quantum mechanics is based on the complex Fourier transform, and given
that the complex Fourier transform can always be replaced by the real Hartley transform [6], perhaps the
last word has yet to be said on this subject. But that doesn’t affect my comments above.
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written that way in quantum mechanics where the fundamental matrices used, analogous
to the basic quaternions 1, i, j,k, are called Pauli matrices. Just as for the Jx, Jy, Jz
matrices in the previous paragraphs, Pauli matrices are highly useful in describing angular
momentum. But being complex, they need to be associated with an extra factor of i (the
square root of −1, not the quaternion) in order to be used to rotate a vector, so it’s best
to avoid this quantum mechanics notation if you want to learn rotation theory.

3.2.4 Rotating One Point About Another

Finally, consider rotating the point (10, 0, 0) by 90◦ about an axis (0, 0, 1) that passes
through the point (9, 0, 0). The result is the point (9, 1, 0), which is easily seen from the
simple geometry involved. How might we use the theory of rotation to rotate points in
general?

To see how, we should be precise in describing the foregoing rotation using vector
language. We rotated the point described by the position vector (10, 0, 0) (necessarily
quantified as a coordinate vector, a notion that we’ll take as given!) by first forming a
proper vector : the arrow from (9, 0, 0) to (10, 0, 0). This arrow, (1, 0, 0), was then rotated
by 90◦ about the axis proper vector (0, 0, 1) to give (0, 1, 0). Finally this arrow (proper
vector) was added to the position vector (9, 0, 0) to give the position vector for the sought-
after point (9, 1, 0).

The general procedure is straightforward to write down. We require to rotate the
point x by angle θ about the point p, through which runs the axis n (a unit vector). The
resulting sought-after point is denoted x′. We simply rotate the proper vector x − p to
produce the proper vector x′ − p:

x′ − p = Rθn (x − p) , (3.39)

so that the required point is x′ = p +Rθn (x − p).

4 Quantifying Orientation

We’ve seen that an object’s orientation can only be expressed relative to some given base
orientation, and is conveniently written within some chosen coordinate system S. It can
be quantified by embedding a set of axes within the object, calling these the S′ axes, and
specifying the coordinates of the S′ basis vectors in S. These coordinate vectors are written
as the columns of the orientation matrix µS

′

S , also called the direction-cosine matrix.

But in (3.24) we saw that µS
′

S is in fact a rotation matrix: we can interpret that equation

as saying that µS
′

S rotates snapshots of the S axes to produce the S′ axes. This allows for
alternative methods of quantifying an object’s orientation, by constructing the orientation
through imagining that the object’s axes were originally coincident with those of S, and
we rotated it in some chosen way to arrive at its final orientation. The three methods that
are used commonly are described below. It’s important to understand that they—and any
others that could be added—all ultimately do the same thing : they construct the S′ basis
vectors from the S basis vectors. The choice of one method over another is partly governed
by the parameters of the problem being solved, and partly by the nuances of any necessary
computer coding.
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Orientation or Direction-cosine matrix: As noted after (3.4), these are alternative
names for the matrix whose columns are the basis vectors of S′ coordinated in S.
This matrix completely specifies the object’s orientation.

Angle–axis: Here we specify an angle θ and a unit-length axis vector n: rotating snap-
shots of the S basis vectors through θ around n produces the S′ basis vectors.

Euler angles: We specify the angles of a sequence of rotations that rotates a snapshot
of the S axes onto the S′ axes; typically 3 rotations are used around the coordinate
axes; these angles are then called Euler angles. The need for three rotations rather
than the angle–axis method’s single rotation is due to the fact that the Euler angles
specify rotations around a prescribed set of cartesian axes. In contrast, the angle–
axis method manages with just one axis—but that axis will seldom coincide with
any “simple” axis such as the cartesian axes.

The first method is specifically a matrix method. The orientation matrix is also a rotation
matrix, as we saw in (3.24). The last two methods involve rotation, and a rotation can be
done using either a matrix or a quaternion. The choice of which of these two tools to use is
ours; the methods stand above the tools used to implement them. But the important point
to remember is that the methods all do the same thing, and in particular the matrices that
can be produced from all three of them will be identical (up to numerical inaccuracies).

Comparing methods: Given that the orientation matrix is identical to using a single
rotation to describe an orientation, the choice of method generally comes down to
using either one or three rotations to rotate the base orientation. Using a single
rotation is as lean and simple as things can be. It presents no great numerical
difficulties and has now become a proven approach. Using three Euler angles does
have its difficulties: the rotations’ lack of commutivity means that users of Euler
angles often find them confusing, and there are numerical problems with using three
angles that we’ll investigate in Section 5.4. Nevertheless, rotating by Euler angles
corresponds to the yaw–pitch–roll language and manoeuvres familiar to pilots, and
this means that there will always be a place for Euler angles in orientation theory,
at least when applied to flight.

Comparing tools: The price we pay for the simplicity of matrix multiplication is that
rotation matrices have redundancy in their elements. A quaternion can be viewed as
a way of “rendering down” a rotation matrix to its core information, but this comes
with a more complicated form of multiplication than that of matrices.

There is an important computational point to be considered here: if we must
extrapolate orientation information (as in Section 6), we’ll be updating matrices
or quaternions using numerical algorithms. Throughout such procedures, we must
always ensure that the matrices produced have determinant 1, as all rotation matrices
do, or that the quaternions produced have length 1, as all rotation quaternions do.
This mitigates problems due to numerical round-off error; if we didn’t at least ensure
our matrices or quaternions had this property, then the results of rotating vectors
would soon begin to look skewed.

A suitable replacement for a quaternion Q whose length has strayed from 1
is to replace Q by itself divided by (meaning each of its elements by) its length,
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calculated in (3.32): Q→ Q/|Q|. This is a simple numerical exercise. In con-
trast, re-orthogonalising a rotation matrix R requires significantly more compu-
tation. A suitable definition for how “close” its replacement R′ should be leads
to R′ = R (RtR)−1/2, which can be evaluated using singular value decomposition.
That is, first use that technique to write R = USV t for matrices U,S, V as outlined
in singular value decomposition theory; their properties quickly produce the simple
expression R′ = UV t.

There persists a view in the orientation community that angle–axis goes hand in hand with
quaternions, whereas Euler angles are involved with matrices. Because of this, the tool
(quaternions) used to implement the angle–axis description of an orientation has gradually
come to be compared with the Euler angles method (three rotations). But that’s comparing
apples and oranges; the three methods described above should be compared on one level,
and the two tools (matrices and quaternions) should be compared on another level.

5 Alternative Approaches to the Applications of

Reference [1]

Sections 4.1–4.3 of [1] gave examples of using rotations to construct orientation scenarios.
We’ll now rework those calculations using the notation of this report. The result will be
a more streamlined approach to the problems being solved.

5.1 Rotation and Flight over a Sphere

Any translation that a body’s centroid undergoes while the body’s orientation is changing
does not affect that orientation. An aircraft that rolls to fly inverted is inverted, irre-
spective of the fact that it’s moving sideways as it turns upside down. We can use this
fact to our advantage when visualising rotation. For example, picture how an aircraft’s
orientation changes as it pitches nose down, rotating through −90◦ about its starboard
wing. We can arrive at the same final orientation by imagining the aircraft to be anywhere
on a sphere—say, a point on the sphere’s equator. Now allow the aircraft to move over
the sphere (like a car being driven, always touching the sphere so that it’s straight and
level at every point) until it has flown to the North Pole. This change in orientation is
precisely a rotation through −90◦ around its starboard wing; the motion over the sphere
is of no consequence. This is a simple example, but we can picture a sequence of more
complicated rotations in the same way, by tracing the aircraft’s path over the sphere.

5.2 Constructing Local North–East–Down Coordinates

Section 4.1 of [1] posed the question “If we are in Adelaide and Earth is transparent, what
is the compass bearing of Brussels if we are looking straight at it through Earth?”. We
can answer this question by finding the local north and east components of the vector rBA
pointing from Adelaide A to Brussels B, and using these with some simple trigonometry
to find the required angle. Calculate these components by constructing the local north–
east–down (NED) axes at Adelaide; this is done by calculating the coordinates of those
axes’ basis vectors in Earth-centred, Earth-fixed coordinates (ECEF), defined shortly.
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Figure 2: The local north–east–down vectors at a given point on Earth’s
surface can be constructed by rotating the ordered set of vectors eZ ,eY ,−eX
(at zero lat/long, lower left) to produce the ordered set n,e,d (upper right)

First, we’ll construct the vector rBA pointing from Adelaide A to Brussels B, specifying
its components in ECEF coordinates E. ECEF coordinates are cartesian with origin at
Earth’s centre, using the X,Y,Z axes of Fig. 2. They often simplify geodesy calculations.
The ECEF system has the following unit-length basis vectors:

1. eX points from Earth’s centre through the Equator at α = ω = 0◦,

2. eY points from Earth’s centre through the Equator at α = 0◦, ω = 90◦, and

3. eZ points from Earth’s centre through the North Pole.

The proper vector rBA pointing from Adelaide to Brussels is found from Brussels’
ECEF position vector rBC (which is relative to Earth’s centre C) and Adelaide’s ECEF
position vector rAC :

rBA = rBC − rAC , (5.1)

where each of these vectors is calculated in the following way. Given a point P ’s latitude α,
longitude ω, and height h above the WGS-84 ellipsoid, its ECEF position, [rPC ]E , is the
(X,Y,Z) triplet of the point using the axes convention of Fig. 2. Using Earth’s semi-major
and semi-minor axis lengths in the WGS-84 scheme,

semi-major: a = 6,378,137 m,

semi-minor: b = 6,356,752.3142 m, (5.2)

an analysis of the shape of an ellipsoid yields P ’s ECEF coordinates as

X =

(

a2

√

a2 cos2 α+ b2 sin2 α
+ h

)

cosα cosω ,

Y =

(

a2

√

a2 cos2 α+ b2 sin2 α
+ h

)

cosα sinω ,
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Z =

(

b2
√

a2 cos2 α+ b2 sin2 α
+ h

)

sinα . (5.3)

(This equation is equivalent to equation (2.2) of [1], but is written here in a way that
treats a and b more symmetrically.) Assume the two cities are at h = 0 and use

Adelaide: latitude α = −34.9◦, longitude ω = 138.5◦,
Brussels: latitude α = 50.8◦, longitude ω = 4.3◦.

Equation (5.3) converts these parameters into two position vectors of the cities with respect
to Earth’s centre C. These positions of Adelaide and Brussels are, respectively,

[rAC ]E =





−3.922
3.470

−3.629



× 106 metres, [rBC ]E =





4.028
0.303
4.920



× 106 metres, (5.4)

and a subtraction gives the vector pointing from Adelaide to Brussels (with all internal
calculations in this report taken to a large number of decimal places and then rounded to
3 decimal places when written down):

[rBA]E = [rBC − rAC ]E = [rBC ]E − [rAC ]E =





7.950
−3.167

8.548



× 106 metres. (5.5)

We have [rBA]E , but require the first two components of [rBA]N , since these are the north
and east components needed to calculate the required bearing of Brussels as seen from
Adelaide. These two coordinate vectors are related by

[rBA]N
(3.7)
=== µEN [rBA]E . (5.6)

The ECEF is particularly easy to calculate within, so we might calculate µEN by first
finding µNE . For this, we need the NED coordinate system N at a given point on Earth at
latitude α and longitude ω, also shown in Figure 2. The NED coordinate axes N are defined
by unit basis vectors n (pointing north), e (pointing east), d (pointing down, = n × e).
We require to find these basis vectors, expressed in ECEF coordinates. That is, we require
[n]E , [e]E , [d]E .

The flying-aircraft analogy of Section 5.1 can be used here. Earth is approximately an
oblate spheroid—not exactly a sphere; but the geodetic latitude α in Figure 2 is defined
in such a way that we can treat Earth as exactly spherical when using α to construct
NED axes. The reason is because the “down” vector at any latitude α is defined to be the
result of rotating the“down”vector at the Equator through the angle α (around local west,
which allows latitude to increase towards the North Pole, purely by historical convention).
This is the same resulting orientation of the “down”vector that would result by rotating it
simply by an angle α—or by flying an aircraft through an arc of angle α in a great circle
around a spherical Earth.

The vectors n,e,d are constructed by rotating eZ ,eY ,−eX respectively twice, corre-
sponding to implementing the changes in latitude and longitude:

{eZ ,eY ,−eX} → {n,e,d} . (5.7)
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X

Y

Z

−eX

eY

eZ

P

α

ω

Q

αω

rotated snapshot of eY

n

e

d

Figure 3: Two methods for implementing the vector construction of (5.7).
We can rotate the original ordered set {eZ ,eY ,−eX} first around −eY
through α (or, equivalently, around eY through −α) to visit point P , and
then around eZ through ω. Alternatively, we can rotate the original ordered
set {eZ ,eY ,−eX} first around eZ through ω to visit Q, and then around
the rotated snapshot of eY through −α, and then use the Pseudo-Reversing
Theorem to avoid having to calculate the rotated snapshot of eY .

Working in coordinates E, the relevant coordinate vectors are

{[
0
0
1

]

,

[
0
1
0

]

,

[
−1

0
0

]}

→
{

[n]E , [e]E , [d]E

}

. (5.8)

Two ways of doing the rotations are immediately apparent in Figure 2. Either of these
can be used, and we’ll do the calculation for each way to contrast them.

First Way to Implement (5.7): Recalling the positive conventions for latitude and
longitude, rotate each vector of the set {eZ ,eY ,−eX} first around −eY through α (or,
equivalently, around eY through −α) to arrive at point P in Figure 3, and then around eZ
through ω to become its corresponding vector in {n,e,d}. The relevant rotations are

{eZ ,eY ,−eX} → R−α
Y → RωZ → {n,e,d} . (5.9)

Second Way to Implement (5.7): Alternatively, we can rotate each initial vector first
around eZ through ω to arrive at pointQ in Figure 3, and then around the rotated snapshot
of eY through −α:

{eZ ,eY ,−eX} → RωZ → R−α
〈Y 〉 → {n,e,d} . (5.10)

But the Pseudo-Reversing Theorem allows us to avoid having to calculate the rotated
snapshot of eY ! That is, applying it to the rotations in (5.10) produces (5.9) straightaway.
You might say that there was no need to use the Pseudo-Reversing Theorem here, since we
could always have chosen the First Way above of doing the rotations. That’s true for this
simple example, but when more than just two rotations are being used, the Second Way is
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usually the most natural way of approaching the rotations—and almost certainly the only
easily visualised way; and then the Pseudo-Reversing Theorem becomes indispensable to
avoid having to calculate the many intermediate snapshots that would be required if we
were to implement the Second Way directly.

The Second Way actually implements a procedure from differential geometry called parallel trans-

port : when we slide the north and east vectors from zero lat/long via point Q in Figure 3, we
are parallel transporting them; the notion doesn’t apply to the down vector, but it’s always the
cross product of north and east anyway. Parallel transport is all about movement along geodesics,
which are the great circles on a sphere. Because great circles are the tracks we would fly (or drive)
if we didn’t turn a steering wheel, they are natural tracks on a surface, and this almost certainly
accounts for their ease of use in visualising rotations.

The two rotations of (5.9) now allow us to implement (5.8) using matrices. The rele-
vant matrices are just rotations about the axes, which are, of course, the Euler matrices
of (3.19):

{[
0
0
1

]

,

[
0
1
0

]

,

[
−1

0
0

]}

→ E−α
2 → Eω3 →

{

[n]E , [e]E , [d]E

}

. (5.11)

The three vectors can be multiplied together, somewhat in parallel. This is because matrix
multiplication proceeds column by column. For suppose we have a matrix A for which

A





1
2
3



 =





a
b
c



 and A





10
20
30



 =





p
q
r



 . (5.12)

Then we can immediately write

A





1 10
2 20
3 30



 =





a p
b q
c r



 . (5.13)

This “block multiplication” allows us to condense the three multiplications of coordinate
vectors into one matrix multiplication by coalescing each set of three coordinate vectors
into a matrix:

[

[n]E [e]E [d]E

]

= Eω3 E
−α
2





0 0 −1
0 1 0
1 0 0





=





cosω − sinω 0
sinω cosω 0

0 0 1









cosα 0 − sinα
0 1 0

sinα 0 cosα









0 0 −1
0 1 0
1 0 0





=





− cosω sinα − sinω − cosω cosα
− sinω sinα cosω − sinω cosα

cosα 0 − sinα



 . (5.14)

The ECEF coordinate vectors for the local north, east, and down vectors at a specific loca-
tion on Earth, such as Adelaide, are now easily found. This city has latitude α = −34.9◦,
longitude ω = 138.5◦. Use these numbers to write (5.14) as

µNE =
[

[n]E [e]E [d]E

]

=





−0.429 −0.663 0.614
0.379 −0.749 −0.543
0.820 0 0.572



 , (5.15)
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so that the ECEF coordinates of the unit vector pointing to local north at Adelaide are
(−0.429, 0.379, 0.820), and similarly for east and down.

Remember now that the transpose of µNE is µEN , so that we have now also obtained the
ECEF’s basis vectors in NED coordinates:

[

[eX ]N [eY ]N [eZ ]N

]

= µEN =
(
µNE
)t

=
[

[n]E [e]E [d]E

]t
. (5.16)

So, for example, the NED coordinates of eX are (−0.429, −0.663, 0.614). Equation (5.15)
has the same information as equation (4.8) in [1].

Alternative methods for producing the orientation matrix (5.14) from rotations exist,
depending on what vectors we take as our initial ordered set that map onto n,e,d. For
example, choosing initial vectors eX ,eY ,eZ to map respectively to n,e,d alters the matrix
multiplication of (5.14) to Eω3 E

−α−90◦

2 , which is completely consistent with the rightmost
matrix in the first line of (5.14) being, in fact, E−90◦

2 .

Finally, the required NED coordinates of the vector pointing from Adelaide to Brus-
sels are

[rBA]N
(3.7)
=== µEN [rBA]E

(3.5)
===

(
µNE
)t

[rBA]E

(5.15)
===





−0.429 0.379 0.820
−0.663 −0.749 0

0.614 −0.543 0.572









7.950
−3.167

8.548



× 106 metres

=





2.403
−2.896
11.495



× 106 metres. (5.17)

The first two components of this vector were given in equation (4.9) of [1], and we can
see that the calculations of the two reports agree. The bearing of Brussels as seen in a
straight line through a transparent Earth is given by

− tan−1 2.896

2.403
≃ −50.3◦ . (5.18)

5.3 The Direction in which a Pilot Sights an Aircraft

The example in Section 4.2 of [1] placed an aircraft over Adelaide, flying north-east, pitched
up at 20◦ at an altitude of 30,000 metres. The following question was posed. We who
pilot the aircraft sight another aircraft flying over Sydney at the same altitude. In which
direction in our cockpit must we look to see that aircraft?

This calculation is very similar to that of Section 5.2. We construct the vector pointing
from us to the other aircraft, then produce its coordinates using our aircraft’s axes as
opposed to the NED axes of Section 5.2. The coordinate vector pointing from us to the
other aircraft is constructed in the same way as was done for Adelaide and Brussels in the
previous section: begin with the locations of the Adelaide and Sydney aircraft:

Adelaide: latitude α = −34.9◦, longitude ω = 138.5◦, height 30,000 m
Sydney: latitude α = −33.9◦, longitude ω = 151.2◦, height 30,000 m.
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x

y

z

Figure 4: Conventional labels of the cartesian body axes of an aircraft, with
directions of positive rotation indicated

Now apply (5.3) to find the position vector of the Adelaide aircraft A with respect to
Earth’s centre C, in ECEF coordinates E, and likewise for the Sydney aircraft S:

[rAC ]E =





−3.941
3.486

−3.646



× 106 metres, [rSC ]E =





−4.666
2.565

−3.554



× 106 metres. (5.19)

The vector pointing from us in the Adelaide aircraft to the Sydney aircraft, in ECEF
coordinates E, is

[rSA]E = [rSC ]E − [rAC ]E =





−7.252
−9.213

0.920



× 105 metres. (5.20)

We need only convert this vector to our aircraft’s coordinates. Call these coordinates “Us”,
so that we require

[rSA]Us = µE
Us

[rSA]E . (5.21)

Given (5.20), it remains to find

µE
Us

=
[

[eX ]Us [eY ]Us [eZ ]Us

]

. (5.22)

As before, label the ECEF’s axes X,Y,Z, and now label our aircraft’s axes x, y, z. These
are shown in Figure 4. There are two main ways that we can list the procedure to con-
struct µE

Us
: one is easy to visualise but needs the Pseudo-Reversing Theorem, while the

other is perhaps harder to visualise, but doesn’t need the Pseudo-Reversing Theorem.
There are other ways that permute the steps we outline, but they are just more of the
same and needn’t be considered here.

First Way to Construct µE
Us

: Work in the ECEF, so invoke µE
Us

=
(
µUs

E

)t
to allow us

first to calculate µUs

E :

µUs

E =
[

[ex]E [ey]E [ez]E
]
. (5.23)
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This might be more naturally constructed than µE
Us

, because µUs

E refers directly to the
aircraft’s axis vectors ex,ey,ez , and these are easily constructed by rotating snapshots
of the ECEF’s X,Y,Z axes to “build” our aircraft’s x, y, z axes in the following way.
Imagine the aircraft initially at zero lat/long, with its x, y, z axes parallel to the ECEF’s
X,Y,Z axes respectively, balancing with its tail on the ground and with starboard wing
pointing east. In the following rotations, imagine rotating the actual aircraft to bring
it to the required orientation at the required place on Earth—recalling the comments of
Section 5.1 and the discussion of geodetic latitude in Section 5.2. Start with snapshots
of the ECEF’s basis vectors eX ,eY ,eZ which will be embedded in the aircraft’s body to
eventually become the required ex,ey,ez vectors. Now:

1. rotate this“base”aircraft through −90◦ around its starboard wing, being the ECEF’s
Y axis. This produces a new set of “latest” basis vectors, orientated so that the latest
(rotated) snapshot of eX (embedded in the aircraft’s nose) points north, the latest
(rotated) snapshot of eY (the starboard wing) points east, and the latest (rotated)
snapshot of eZ points down.

2. Now rotate these new axes (that is, the aircraft!) 138.5◦ around the latest snapshot
of eX (north, and the aircraft’s nose), which brings them to the longitude of Adelaide,
then

3. rotate them +34.9◦ around the latest snapshot of eY (starboard wing), which brings
them to the correct latitude of Adelaide and now makes them the basis vectors of
an aircraft flying level north over Adelaide, then

4. rotate the axes (the aircraft) 45◦ around the latest snapshot of eZ (down), which
yaws the aircraft to head north-east, then finally

5. rotate the axes (the aircraft) 20◦ around the latest snapshot of eY (starboard wing),
which pitches the aircraft up 20◦.

This sequence of rotations is

µUs

E = R20◦

〈Y 〉 R
45◦

〈Z〉 R
+34.9◦

〈Y 〉 R138.5◦

〈X〉 R−90◦

Y





1 0 0
0 1 0
0 0 1



 . (5.24)

ր ↑ տ
[eX ]E [eY ]E [eZ ]E

Equation (5.24) is a recipe for constructing the basis vectors ex,ey,ez . The three initial
coordinate vectors [ex]E , [ey]E , [ez ]E can be block multiplied by the relevant rotation ma-
trices, and so written as columns of a matrix in (5.24)—which is just the identity matrix,
and so can be excluded from the product:

µUs

E = R20◦

〈Y 〉 R
45◦

〈Z〉 R
+34.9◦

〈Y 〉 R138.5◦

〈X〉 R−90◦

Y . (5.25)

Now, to avoid having to calculate the intermediate “latest” vectors as was done in [1],
we invoke the Pseudo-Reversing Theorem to convert all the rotations to be around the
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original ECEF axes, thus allowing us to use Euler matrices throughout:

µUs

E = R20◦

〈Y 〉 R
45◦

〈Z〉 R
34.9◦

〈Y 〉 R138.5◦

〈X〉 R−90◦

Y

= R−90◦

Y R138.5◦
X R34.9◦

Y R45◦
Z R20◦

Y (Pseudo-Reversing theorem!)

= E−90◦

2 E138.5◦
1 E34.9◦

2 E45◦
3 E20◦

2

≃





−0.935 −0.166 0.313
−0.060 −0.798 −0.600

0.349 −0.580 0.736



 . (5.26)

The required orientation matrix is the transpose of this:

µE
Us

=





−0.935 −0.060 0.349
−0.166 −0.798 −0.580

0.313 −0.600 0.736



 . (5.27)

Second Way to Construct µE
Us

: This approach calculates µE
Us

directly. It doesn’t
need the Pseudo-Reversing Theorem, and is the same sequence described in the First Way
above, but now as seen by the aircraft itself: we describe events from our viewpoint in
the cockpit. This requires us to imagine that Earth (actually, the whole universe) rotates
around us. We now rotate snapshots of our aircraft’s x, y, z axes to the ECEF’s X,Y,Z
axes by doing the following.

As in the First Way above, start with the aircraft initially at zero lat/long, with its
x, y, z axes parallel to the ECEF’sX,Y,Z axes respectively. In the following steps, imagine
rotating Earth to bring it to the required orientation with Adelaide below the aircraft; the
aircraft is considered to be at rest throughout the procedure. Start with snapshots of
the aircraft’s basis vectors ex,ey ,ez which will be embedded in Earth itself to eventually
become the required eX ,eY ,eZ vectors. Then follow the motions of these snapshots as
they rotate with Earth around us.

1. Again, the aircraft has started out balanced on its tail, so rotate Earth through +90◦

around the aircraft’s y axis. This sets the ground squarely under the aircraft.

2. Now rotate Earth by −138.5◦ around the aircraft’s nose ex, which brings the longi-
tude of Adelaide underneath the aircraft, then

3. rotate Earth by −34.9◦ around ey, which brings Adelaide exactly under the aircraft,
then

4. rotate Earth by −45◦ around ez, which lines north-east up ahead through the wind-
screen, then

5. rotate Earth by −20◦ around ey, which pitches Earth’s surface down by 20◦.

This is probably harder to visualise than the First Way above! It produces

{eX , . . . ,eZ} = R−20◦
y R−45◦

z R−34.9◦
y R−138.5◦

x R90◦
y {ex, . . . ,ez} , (5.28)
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so that

µE
Us

=
[

[eX ]Us [eY ]Us [eZ ]Us

]

= R−20◦
y R−45◦

z R−34.9◦
y R−138.5◦

x R90◦
y

[

[ex]Us [ey]Us [ez ]Us

]

︸ ︷︷ ︸

= identity matrix
= E−20◦

2 E−45◦

3 E−34.9◦

2 E−138.5◦

1 E90◦
2 , (5.29)

which will give the same result as (5.26). Why? Because to invert the last expression
in (5.29) in order to compare it with (5.26), we must reverse the order of its matrix
factors and invert each (that is, [ABCDE]−1 = E−1D−1C−1B−1A−1), and each inverts
by changing the sign of its rotation angle.

Whichever way we choose to construct µE
Us

, we can now write (5.21) as

[rSA]Us = µE
Us

[rSA]E

≃





−0.935 −0.060 0.349
−0.166 −0.798 −0.580

0.313 −0.600 0.736









−7.252
−9.213

0.920



× 105 metres

≃





7.654
8.016
3.933



× 105 metres. (5.30)

This last coordinate vector gives the other aircraft’s position relative to us in our coor-
dinates: the other aircraft lies at a point roughly 765 km ahead, 802 km in the starboard
direction, and 393 km down. From these numbers it’s easy to see that we sight the aircraft
at azimuth φ (direction positive from north to east) and elevation θ (positive upwards),
where

sinφ =
802√

7652 + 8022
, cosφ =

765√
7652 + 8022

, θ = tan−1 −393√
7652 + 8022

. (5.31)

So φ ≃ 46◦ and θ ≃ −20◦: we in the cockpit must look to our right by 46◦ and down 20◦

to sight the aircraft flying over Sydney.

5.3.1 A Comment on Active and Passive Rotations

All the rotations of this report have been active, meaning that we are rotating vectors. The
discussion of Section 5.3 above is essentially worded differently in some books on rotation
theory, and is called the passive rotation approach. The idea is to narrate the sequence
of rotations of the First Way on page 22 that take the aircraft from its datum orientation
at zero lat/long and produce the required orientation over Adelaide, while accompanying
this with a merger of the Second Way’s (5.29) with (5.30). This approach allows one to
ignore the fact that the rotations are being done around latest axes on page 22, in that
it requires a sequence of rotations to always use latest axes. It rewrites each of these
rotations as about a space-fixed axis through minus the angle turned through, giving the
Euler matrices in (5.29)—which has the effect of introducing a left-handedness into its
conventions. The resulting sequence multiplies (5.20) to give the required [r]Us in (5.30).
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Passive rotations are all about rotating a set of axes, in contrast to the active approach’s
explicitly rotating vectors. Of course, a set of axes can be considered as a set of basis
vectors, so that rotating them can be done actively; this is precisely what I have done in
this report. The passive approach can certainly be used to produce (5.30). But I think it
becomes strained when we really wish to model the rotation of a physical object described
by a set of coordinate vectors. The active approach that I have used throughout this
report really rotates each vector, and we have a physical picture of the object rotating. In
contrast, the passive approach doesn’t explicitly rotate the object. Instead, it rotates the
coordinate axes the other way, producing all coordinate vectors of the unrotated object in
the rotated axis set. These now must be recognised as equalling the required coordinate
vectors of the rotated object in the unrotated axis set. Users of the passive approach may
or may not be aware that this is what they are doing, but newcomers to the subject can
find it all very confusing.

The active-rotation approach of this report is aimed at explicitly constructing coordi-
nate sets—of which there might be several—and then forming required coordinate vectors
by finding components using the dot product. This is all neatly encapsulated in (3.7).

5.4 DIS Conversion

In the precursor [1] to the current report, I gave details of how to convert position–
orientation information into and out of the IEEE standard [7] known as the Distributed
Interactive Simulation environment, or DIS. In this section I present an alternative ap-
proach to the DIS calculations of [1], which perhaps will better disentangle the set of
calculations necessary to implement the standard.

DIS position–orientation information of an object—say, an aircraft—is recorded in the
following way. The aircraft’s position is given by its ECEF (X,Y,Z) coordinates. Its
orientation is specified by the set of three Euler angles that enable that orientation to be
constructed by three rotations. These rotate snapshots of the ECEF’s XYZ axes onto the
aircraft’s xyz axes. The three rotations are, first, by the angle φ around the ECEF’s X,
then by θ around Y , and finally by ψ around Z. The Pseudo-Reversing Theorem tells us
that this is identical to rotating first by ψ around Z, then by θ around the rotated snapshot
of Y , and finally by φ around the latest rotated snapshot of X; this is the sequence as it’s
described in the DIS standard itself, so that the three angles are usually specified in the
order of ψ, θ, φ. Writing the orientation of the aircraft A relative to ECEF E as µAE, this
all means that

µAE = Eψ3 E
θ
2 E

φ
1 . (5.32)

Often, the orientation of the aircraft is specified by its location along with three non-
DIS Euler angles: the angles through which snapshots of the local NED axes would be
rotated to become the aircraft axes. How do we convert these Euler angles to the DIS Euler
angles? We start by showing how to extract Euler angles from any orientation matrix;
to be completely general for the moment, we won’t yet insist on conforming to the DIS
convention on the ranges that the Euler angles must take. Remember that an orientation
matrix is a rotation matrix, as we showed in (3.24). In fact, it’s not hard to show by
construction [4] that any orientation can be built from three rotations conforming to the
DIS standard, although we’ll take such a construction as a given here.
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To extract the DIS Euler angles from a rotation matrix, let’s write a general rotation
matrix resulting from the three DIS Euler-angle rotations above. If a snapshot of axes S
is rotated through ψ, θ, φ in the DIS way to produce axes S′, the orientation matrix is

µS
′

S = Eψ3 E
θ
2 E

φ
1 =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1









cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cosφ − sinφ
0 sinφ cosφ





=








cosψ cos θ − sinψ cosφ
+ cosψ sin θ sinφ

sinψ sinφ
+cosψ sin θ cosφ

sinψ cos θ cosψ cosφ
+ sinψ sin θ sinφ

− cosψ sinφ
+sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ







. (5.33)

Call this matrix R, with ijth element Rij. We calculate each angle by stipulating its sine
and cosine.

Remember this oft-neglected point: to specify an angle α, we always need two pieces of trigono-
metric information. In general, it’s necessary and sufficient to specify one member of the set
{sin α, cos α, tan α}, together with the sign of another member of this set. Usually the sine and
cosine are specified, and many computer languages have a function that takes these two numbers
(or any positive multiple of them) as arguments and returns α. This function is typically called
atan2, but there is no universally agreed order for its arguments, so you should always check. Note
that atan2 is a computer term and not a mathematical function. Many people make the mistake
of writing α = tan−1 sin α

cos α
, but the function tan−1 is not quite defined in this way, and it will only

return the correct angle if −90◦ < α < 90◦.

If cos θ 6= 0 (i.e. R31 does not equal 1 or −1), then we can see by inspecting (5.33) that

sinψ =
R21

cos θ
, cosψ =

R11

cos θ
;

sin θ = −R31 , cos θ = s
√

1 − sin2 θ , where s ∈ {±1} ;

sinφ =
R32

cos θ
, cosφ =

R33

cos θ
. (5.34)

There are two triplets of angles here, depending on an arbitrary choice of s. Also, if
cos θ = 0 (i.e. R31 equals 1 or −1), then sin θ can be 1 or −1 corresponding to θ = ±90◦:

θ = 90◦, implying R =





0 − sin(ψ − φ) cos(ψ − φ)
0 cos(ψ − φ) sin(ψ − φ)

−1 0 0



 ,

or θ = −90◦, implying R =





0 − sin(ψ + φ) − cos(ψ + φ)
0 cos(ψ + φ) − sin(ψ + φ)
1 0 0



 . (5.35)

In other words,

R31 = +1 =⇒ θ = −90◦, sin(ψ + φ) = −R12 = −R23, cos(ψ + φ) = −R13 = R22 ,

R31 = −1 =⇒ θ = +90◦, sin(ψ − φ) = −R12 = +R23, cos(ψ − φ) = +R13 = R22 . (5.36)

Both of these cases yield an infinite number of solutions for ψ and φ, but they are all valid;
all yield the same orientation of the aircraft.
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For DIS, what of the choice of sign s in (5.34)? The two choices of s yield two sets of
Euler angles, ψ1, θ1, φ1, and ψ2, θ2, φ2. It’s not hard to show that each set is as good as
the other, although we won’t do that here. They are related by

ψ2 = 180◦ + ψ1 ,

θ2 = 180◦ − θ1 ,

φ2 = 180◦ + φ1 . (5.37)

The DIS standard actually requires

−180◦ 6 ψ, φ 6 180◦, −90◦ 6 θ 6 90◦. (5.38)

This means that cos θ > 0, which corresponds to choosing s = 1 in (5.34). If R31 does
equal 1 or −1, we can solve (5.36) for whatever ψ and φ obey (5.38).

This last case of θ = ±90◦ allows for multiple choices of ψ and φ, and generally any
numerical algorithm that computes the Euler angles will become difficult to manage as the
aircraft nears that orientation, especially if the algorithm is predicting the Euler angles.
Having θ = ±90◦ corresponds to the nose pointing toward one of the celestial poles—
generally not an extreme orientation to fly.7 For example, such would be the case for an
aircraft on the Equator flying level and pointing north or south.

The fact that an infinite number of such triplets will suffice for θ = ±90◦ means that Euler angles
can present difficulties to numerical algorithms, because they are capable of changing too quickly
for any algorithm to cope with when θ nears either of these two values. As a result, they are often
viewed with suspicion by their users, as if something mathematical just isn’t quite right. But Euler
angles do exactly what they have been set up to do, and they behave completely as they should—
once we understand them, even though this behaviour can conflict with initial expectations that
might misinterpret what the angles were designed to do.

Note that our extraction of the Euler angles in (5.34) didn’t use all of the matrix µS
′

S . This

is fine; being an orientation matrix, µS
′

S has internal symmetry that means its elements
are not all independent of one another. The omitted elements can be used to add some
numerical strength to the calculation, but such a study in numerical stability is outside
the scope of this report.

With the extraction of the DIS Euler angles under our belt, we can now construct DIS
orientation information. We’ll rework the example of [1] here differently to how it was
done in that report. Here is the original question posed in [1]:

Convert Lat–Long–Heading–Pitch–Roll to DIS Position–Orientation Coordi-
nates: An aircraft is flying 10,000 m above Adelaide, pointing south-east, climbing at
a 20 ◦ pitch, and holding a 30 ◦ roll. What are the two sets of triplets that the DIS standard
requires to specify the aircraft’s location and orientation?

The aircraft’s DIS location is its ECEF (X,Y,Z) coordinate triplet. This is found by
applying (5.3) to Adelaide (lat −34.9◦, long 138.5◦, aircraft height 10,000 m), resulting in
the first DIS triplet

(X,Y,Z) = (−3.928, 3.475, −3.634) × 106 m. (5.39)

7I thank David Sambell of DSTO for pointing this out.

UNCLASSIFIED 27



DSTO–TR–2675 UNCLASSIFIED

The DIS Euler angles ψ, θ, φ will be extracted from the orientation matrix µAE of the
aircraft A in the ECEF E, using (5.32) and the equations immediately after it. The
ECEF’s axes are X,Y,Z and the aircraft’s axes are x, y, z. Remember that from (3.11),
for example, [ex]E = µAE [eX ]E, so that µAE is the rotation matrix rotating snapshots of the
ECEF’s basis vectors onto the aircraft’s basis vectors, and this is precisely the matrix from
which we must extract the Euler angles using (5.34); these will be the DIS Euler angles.

We construct µAE from the following sequence of rotations. Align the aircraft with its
x, y, z axes coincident with the ECEF’s X,Y,Z axes. Now:

1. rotate snapshots of eX ,eY ,eZ around eY by −90◦,

2. rotate the resulting three vectors around the rotated version of eX by the longitude
ω = 138.5◦,

3. rotate the resulting three vectors around the rotated version of eY by minus the
latitude, −α = +34.9◦,

4. rotate the resulting three vectors around the rotated version of eZ by heading 135◦,

5. rotate the resulting three vectors around the rotated version of eY by pitch 20◦,

6. and finally rotate the resulting three vectors around the rotated version of eX by
roll 30◦.

This is

µAE
(
which = Eψ3 E

θ
2 E

φ
1

)
= R30◦

〈X〉 R20◦

〈Y 〉 R
135◦

〈Z〉 R+34.9◦

〈Y 〉 R138.5◦

〈X〉 R−90◦

Y , (5.40)

which the Pseudo-Reversing Theorem converts to

µAE = E−90◦

2 E138.5◦
1 E34.9◦

2 E135◦
3 E20◦

2 E30◦
1

=





−0.366 0.928 0.065
−0.564 −0.165 −0.809
−0.741 −0.333 0.584



 . (5.41)

The (3, 1) element of this matrix is nonzero, so apply (5.34)—with s = +1 to select the
DIS convention—to give (retaining more decimal places internally for the final calculation
of the angles)

sinψ =
−0.564

cos θ
, cosψ =

−0.366

cos θ
;

sin θ = 0.741 , cos θ =
√

1 − sin2 θ ;

sinφ =
−0.333

cos θ
, cosφ =

0.584

cos θ
. (5.42)

These have enough information to yield (—refer to the small print on page 26)

ψ = −122.97◦, θ = 47.79◦, φ = −29.67◦, (5.43)
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which are the required DIS angles. Note that we could apply (5.37) to produce the
alternative set of Euler angles that correspond to taking s = −1 in (5.34):

ψalt = 57.03◦, θalt = 132.21◦, φalt = 150.33◦. (5.44)

As expected, θalt is not in the required DIS range of (5.38) here. (A negative cosine will
place an angle into the range 90◦ → 270◦. A value of θ = 90◦ is allowed by DIS, but
cos 90◦ = 0, so in that trivial case either choice of s can be used.) So the angles in (5.44)
don’t conform to the DIS convention. But they are just as correct as those of (5.43) as
far as giving the aircraft’s orientation is concerned.

The second DIS example that was done in [1] was the inverse of the above procedure,
and we’ll repeat it in greater detail now.

Convert the Above DIS Position–Orientation Coordinates of (5.39) and (5.43)
Back to Lat–Long–Heading–Pitch–Roll: An aircraft is at a location and orientation
given by the above DIS coordinates

(X,Y,Z) = (−3.928, 3.475, −3.634) × 106 m,

(ψ, θ, φ) = (−122.97◦, 47.79◦, −29.67◦) . (5.45)

What are its lat–long–height on Earth, and what is its orientation relative to local north–
east–down in terms of the heading–pitch–roll that a pilot flies?

(Again, I have carried through more decimal places from above and have rounded them
here.) The aircraft’s lat–long–height comes from (X,Y,Z) and was calculated in [1], but
we will cover some of the ground again here. We require to solve (5.3) for latitude α,
longitude ω, and height h. There are various methods for solving these equations. The
approach given in [1] is again used here: first, calculate ω from

sinω =
Y

√

X2 + Y 2
, cosω =

X
√

X2 + Y 2
. (5.46)

Now iterate to find α. Begin with a first estimate

α ≃ tan−1

(

a2

b2
Z

√

X2 + Y 2

)

, (5.47)

with a and b from (5.2). Now refine this estimate using

α = tan−1




a2 sin2 α

b2 sinα cosα+
(√

X2 + Y 2 sinα− Z cosα
)√

a2 cos2 α+ b2 sin2 α





(5.48)
(which assumes Z 6= 0, but Z = 0 is a trivial case anyway). This expression for α converges
very quickly, after which we calculate the aircraft’s height h. We can use either of

h =

√

X2 + Y 2

cosα
− a2

√

a2 cos2 α+ b2 sin2 α
(5.49)
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or

h =
Z

sinα
− b2
√

a2 cos2 α+ b2 sin2 α
, (5.50)

depending on which of these formulae gives the best numerical stability; that is, if sinα ≈ 0,
use (5.49); otherwise use (5.50). Using this procedure with (X,Y,Z) from (5.45) returns
the values

latitude α = −34.90◦, longitude ω = 138.50◦, height h = 10,000.00 m , (5.51)

meaning 10,000 metres above Adelaide, as expected.

We now find the aircraft’s heading–pitch–roll relative to local north–east–down. These
are precisely the three Euler angles that would be required to rotate snapshots of the
north–east–down axes onto the aircraft’s axes, in DIS order. They will be extracted from
the orientation matrix of the aircraft relative to local north–east–down using the same
approach as in the first DIS example above. The orientation matrix is µAN , where A is
the aircraft and N is the NED axis set. The DIS numbers refer to the ECEF E, so first
use (3.9) to write

µAN = µEN µ
A
E =

(
µNE
)−1

µAE . (5.52)

We calculate µNE from the just-found latitude and longitude (5.51), and calculate µAE
directly from the DIS ψ, θ, φ (5.32). We showed how to construct µNE in Section 5.2, but
will do it again here in an abbreviated way. Take copies of the ECEF’s basis vectors and
rotate them first around the Y axis by −90◦, then around the latest X by the longitude,
then around the latest Y by minus the latitude:

µNE = R−α
〈Y 〉R

ω
〈X〉R

−90◦

Y

= E−90◦

2 Eω1 E
−α
2 by the Pseudo-Reversing Theorem, (5.53)

remembering that this is only one of many different ways in which we could construct µNE .

Equation (5.32) gives µAE = Eψ3 E
θ
2 E

φ
1 , so (5.52) becomes

µAN =
(
µNE
)−1

µAE

= Eα2 E
−ω
1 E90◦

2 Eψ3 E
θ
2 E

φ
1

= E−34.9◦

2 E−138.5◦

1 E90◦

2 E−122.97◦

3 E47.79◦
2 E−29.67◦

1

=





−0.664 −0.733 0.144
0.664 −0.491 0.563

−0.342 0.470 0.814



 . (5.54)

The heading, pitch, and roll are extracted from this matrix by our realising that these three
angles correspond, respectively, to the ψ, θ, φ that would construct this matrix in the DIS
rotation order: you can picture the process as the pilot beginning with nose pointed north,
straight and level, then yawing the aircraft onto a heading of ψ, pitching it up around the
starboard wing by θ, then rolling it about its nose by φ. So we extract ψ, θ, φ from µAN and
relabel them heading, pitch, and roll respectively. Be careful not to confuse the new ψ, θ, φ
here with the ones calculated in (5.42): they were the answer to a different question!

30 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2675

The (3, 1) element of µAN is nonzero, so apply (5.34) with s = +1:

sinψ =
0.664

cos θ
, cosψ =

−0.664

cos θ
;

sin θ = 0.342 , cos θ =
√

1 − sin2 θ ;

sinφ =
0.470

cos θ
, cosφ =

0.814

cos θ
. (5.55)

These lead to the expected original angles (where, as usual, I have used more decimal
places internally and then rounded)

heading = ψ = 135.00◦, pitch = θ = 20.00◦, roll = φ = 30.00◦. (5.56)

So the exercise is finished: we have calculated the aircraft’s position in (5.51) and its
orientation as flown by a pilot in (5.56). We also have its orientation matrix in (5.54),
which is available for use in other calculations.

6 Dead-Reckoning Aircraft Orientation

We can use the Pseudo-Reversing Theorem as an alternative way to derive the rate of
change of an aircraft’s orientation, given its angular velocity as a function of time. This
angular velocity is typically measured by gyroscopes onboard the aircraft that make all
measurements relative to its body axes. The aircraft’s orientation at time t is specified by
a procedure that constructs this orientation starting from some base orientation. We ask
how the orientation parameters evolve as functions of the angular velocities around each
of the body axes, as measured by the gyros. We’ll answer the question for three different
ways of quantifying orientation: the orientation matrix in Section 6.1, angle–axis using
quaternions in Section 6.2, and Euler angles in Section 6.3.

For this analysis it proves useful to show that, unlike angular displacement, angular
velocity is a vector, so that angular velocities can be added in any order to give a combined
angular velocity. This can be proved in the following way. First, the determination of
angular velocity, and the subsequent integration to calculate orientation, is a first-order
process, meaning that exact expressions for rates of increase result even though we need
“only” calculate to order dt. This first-order approach greatly reduces the labour of the
necessary calculations, but why does it work? When calculating aircraft orientation over
time, we can work with time-dependent quantities by using Taylor’s Theorem. In the
more familiar language of position s(t) and velocity v(t) in one dimension, note that
velocity is a first-order increase in position with respect to time. While we might Taylor-
expand s(t+ ∆t) to write

v(t) ≡ lim
∆t→0

s(t+ ∆t) − s(t)

∆t

= lim
∆t→0

s(t) + s′(t)∆t+ 1
2!s

′′(t)∆t2 + · · · − s(t)

∆t

= lim
∆t→0

s′(t) +
1

2!
s′′(t)∆t+ . . .

= s′(t) , (6.1)
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we can write this analysis in précis as

v(t) =
s(t+ dt) − s(t)

dt
=
s(t) + s′(t) dt− s(t)

dt
= s′(t) . (6.2)

Equation (6.2) is a shorthand way of writing (6.1). Writing “dt” is a way of indicating
that we are effectively writing ∆t + terms of order ∆t2 and higher, along with the proviso
that at some stage we will divide by ∆t and take a limit as ∆t→ 0. In that case, terms
of order ∆t2 and higher won’t survive if there is a ∆t present, and so we needn’t bother
writing those higher-order terms. We signal that we’re following this procedure by writing
the ∆t as dt in (6.2), which is by definition exact.

Position is found by integrating velocity; that is, multiplying velocity by an infinitesimal
time step and incrementing the previous position value,

s(t) = s(t0) +

∫ t

t0

v(t) dt , (6.3)

so that the process of integrating can be viewed as simple multiplication by an infinitesimal
and adding.

For infinitesimal rotations expressed in some arbitrary coordinates S, (3.14) or (3.28)
both give

[
Rdθ

n

]

S = 1 + dθ [n]×S , (6.4)

where “1” is the unit matrix, and we’ll omit the [ ]S notation for brevity in the next few
lines. As noted a few paragraphs up, the way that infinitesimal notation is defined means
that this is an exact expression: there are no higher-order terms to be written. The key
point to notice is that we are now able to represent Rdθ

n by the vector dθn, because this
allows a double rotation Rdα

m Rdβ
n to be written as8

Rdα
m Rdβ

n = (1 + dαm×)(1 + dβ n×)

= 1 + dαm× + dβ n×

= 1 + (dαm + dβ n)×, (6.6)

which can thus be represented by dαm + dβn, as required if the vector representation is
to be meaningful. So infinitesimal rotations behave as vectors, and combining rotations is
represented by adding their vectors. Non-infinitesimal rotations don’t behave as vectors
because they don’t commute, so they don’t conform to the behaviour of vector addition,
which is commutative. This corresponds to attempting to use ∆θn plus higher-order
terms in (6.6): those higher-order terms will prevent any identification of the rotation
with ∆θn.

We’re now in a position to add angular velocities by examing the effect of each over an
infinitesimal time dt. Dividing the corresponding infinitesimal rotations dθ1 n1 and dθ2 n2

by dt retains their vector character; but this just produces vectors whose lengths are the
corresponding angular velocities:

ω1 ≡ dθ1
dt

n1 , ω2 ≡ dθ2
dt

n2 . (6.7)

8It’s useful in (6.6) to remember that the operation (3.15) of “applying the cross” to a vector is linear,
meaning that for scalars α, β,

(αm + βn)× = αm
× + βn

×. (6.5)
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So angular velocity is indeed a vector. Given ω1 and ω2, over a time dt their combined
infinitesimal rotation is represented by

dθ1 n1 + dθ2 n2 = ω1 dt+ ω2 dt (6.8)

= (ω1 + ω2) dt , (6.9)

so that the combined angular velocity is ω1 + ω2, as expected.

With this in mind, consider the three angular velocities measured by the gyros onboard
an aircraft. These make their measurements in an inertial frame that momentarily shares
the aircraft’s linear velocity. They report that the aircraft’s angular velocity about its
x axis (nose) is p(t) (we’ll omit the t for brevity), about its y axis (starboard wing)
is q(t), and about its z axis (the below-fuselage direction) is r(t). In body coordinates B,
the angular velocity coordinate vector about the nose is thus (p, 0, 0), the angular velocity
coordinate vector about the starboard wing is (0, q, 0), and the angular velocity coordinate
vector about the below-fuselage direction is (0, 0, r). The combined angular velocity must
then be the sum of these:

[ω]B =





p
q
r



. (6.10)

The Pseudo-Reversing Theorem clears up any reservations we might have about how the
angular velocities are to be understood, for suppose that these velocities are visualised
as rotations that act first through angle p dt around the nose ex, then through angle q dt
around the latest wing e〈y〉, then through angle r dt around the latest below-fuselage
direction e〈z〉:

Rpdt
x → Rq dt

〈y〉 → Rr dt
〈z〉 . (6.11)

The PRT says that this is equivalent to Rpdt
x Rq dt

y Rr dt
z . We see that any sense of “latest”

axes has now been discarded, and furthermore, these three infinitesimal rotations com-
mute, so can be applied in any order. This is just as well, since the gyros do make their
measurements simultaneously and so no rotation is necessarily “later” than any other.

We’re now in a position to calculate the rate of change of an aircraft’s orientation with
time, as a function of p(t), q(t), r(t).

6.1 Calculating Rate of Change of an Orientation Matrix

The aircraft’s orientation can be specified by the matrix µBW (t) whose columns are the
aircraft body (B) basis vectors specified in some world coordinates W . Write the body
axes as x, y, z. The body basis vectors are rotated over a time interval dt by the angular
velocity ω = ωn, so that

µBW (t+ dt) =
[

[ex(t+ dt)]W . . . [ez(t+ dt)]W

]

=
[
Rω dt

n

]

W

[

[ex(t)]W . . . [ez(t)]W

]

=
(

1 + [ω]×W dt
)

µBW (t) . (6.12)

We conclude that the time derivative of the orientation matrix is

µ̇BW (t) =
µBW (t+ dt) − µBW (t)

dt
= [ω]×W µBW (t) . (6.13)
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But, referring to (6.10), the aircraft gyroscopes give us [ω]B , not [ω]W ; these two coordi-
nate vectors are related by the orientation matrix µBW , but this matrix is precisely what
we are trying to calculate. Address this by interchanging B and W in (6.13), remember-
ing that reversing the viewpoint requires ω → −ω, since the aircraft sees the world spin
oppositely to how the world sees the aircraft spin:

µ̇WB (t) = −[ω]×B µWB (t) . (6.14)

But we require µ̇BW , not µ̇WB ! Remedy this by noting that µWB µ
B
W = 1, which differentiates

to µ̇WB µ
B
W + µWB µ̇

B
W = 0, or

µ̇WB µ
B
W = −µWB µ̇

B
W . (6.15)

That is, we can shift the time derivative from one factor to the other in (6.15) at the cost
of a minus sign. Now post-multiply (6.14) by µBW to give

µ̇WB µ
B
W = −[ω]×B , (6.16)

which (6.15) changes to

−µWB µ̇
B
W = −[ω]×B . (6.17)

Premultiplying this by −µBW gives

µ̇BW = µBW [ω]×B . (6.18)

[Compare this with (6.13).] Equation (6.18) is the standard expression for the time evolu-
tion of the aircraft’s orientation matrix, using the gyro-supplied rotation rates p, q, r. That
is, an inertial navigation system can take these rotation rates and use them to update its
knowledge of the aircraft’s orientation over time. An alternative derivation of (6.18) can be
found in [8]. (Remember that the orientation matrix is usually called the direction-cosine
matrix in the literature.) Relatively long time intervals between gyro updates can be ac-
commodated by solving (6.18) using an efficient differential-equation solver that maintains
long-term accuracy.

6.1.1 An Alternative Derivation of Equation (6.18)

Equation (6.18) can be produced in a more generic way with a careful application of the
Pseudo-Reversing Theorem. Suppose A(t) is some mathematical object that quantifies the
orientation of the aircraft at time t by specifying how to rotate the world basis vectors W
to the body basis vectors B. In practice the world basis vectors are all we have to work
with, so we require [A(t)]W . It might be the orientation matrix µBW , but it could also be
something more exotic and novel. We require the dependence of [A(t)]W on p, q, r.

By definition, the aircraft’s orientation at time t is produced by having A(t) act on a
base orientation. In the next time step dt, the aircraft rotates around ω = pex+ qey+rez
(remember that ex,ey,ez are body basis vectors), and the new orientation is specified
by A(t+ dt):

A(t+ dt) = A(t) → rotate around ω = pex + qey + rez by ω dt . (6.19)
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The PRT converts this to rotations around the W axes xW , yW , zW :

A(t+ dt) = A(t)
(
rotate around pexW

+ qeyW
+ rezW

by ω dt
)
. (6.20)

In W coordinates this is

[A(t+ dt)]W = [A(t)]W
[
rotate around pexW

+ qeyW
+ rezW

by ω dt
]

W
. (6.21)

The theorem doesn’t alter the sense of rotation of A(t), as you can see by recalling (2.10).
Now, the key point to notice is that

[
pexW

+ qeyW
+ rezW

]

W
=
[
pex + qey + rez

]

B
(6.22)

since both equal

[
p
q
r

]

. This converts (6.21) to

[A(t+ dt)]W = [A(t)]W
[
rotate around ω by ω dt

]

B
. (6.23)

For example, if [A(t)]W is chosen to be µBW , then (6.23) becomes

µBW (t+ dt) = µBW (t)
(

1 + [ω]×B dt
)

. (6.24)

This leads very quickly to (6.18), as expected. Equation (6.23) is a generic equation that
can be applied to any choice of [A(t)]W , as we’ll see next when we use a quaternion to
quantify the aircraft’s orientation.

6.2 Calculating Rate of Change of Quaternions for Angle–
Axis Representation

Set [A(t)]W to be the quaternion QBW (t) that rotates the W basis to the B basis. Equa-
tion (6.23) becomes a quaternion multiplication

QBW (t+ dt) = QBW (t) Qω dt
[n]B

(6.25)

(where ω = ωn), because combining multiple rotations using quaternions is accomplished
by multiplying the quaternions, as we saw in (3.35). Now refer to (3.30) to write the
quaternion for the infinitesimal rotation as

Qω dt
[n]B

=
(
1, [ω]tB dt/2

)
=
(
1, [p, q, r] dt/2

)
= (1, 0, 0, 0)

identity quaternion

+ (0, p, q, r)

≡ Ω(t)

dt/2 . (6.26)

Defining a body angular velocity quaternion Ω(t) ≡ (0, p, q, r) (that uses the angular veloci-
ties in body coordinates) allows (6.25) to be written using the identity quaternion (1, 0, 0, 0)
(the quaternion that gives zero rotation, which can just be written as “1”):

QBW (t+ dt) = QBW (t)
[
1 + Ω(t) dt/2

]

= QBW (t) +QBW (t)Ω(t) dt/2 . (6.27)

This reduces to

Q̇BW (t) =
1

2
QBW (t)Ω(t) . (6.28)

An alternative derivation of this well-known differential equation is in [8].
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6.3 Calculating Rate of Change of Euler Angles using

Matrices

The aircraft’s orientation can be specified by giving a sequence of three rotations through
Euler angles that rotate the base orientation. These rotations are conventionally taken
to be around either two or three different cartesian axes. [A(t)]W is usually expressed as
a matrix when Euler angles are used; sometimes it’s written as a quaternion. We’ll use
matrix language in what follows.

Choosing x, y, z to refer to e.g. ECEF axes or some other base set, and invoking the
DIS convention on page 25, the rotation order becomes

A(t) = R
ψ(t)
z → R

θ(t)
〈y〉 → R

φ(t)
〈x〉 . (6.29)

(We’ll omit the explicit t dependence of ψ, θ, φ.) The PRT converts this to

A(t) = Rψz R
θ
y R

φ
x, (6.30)

so that

[A(t)]W = Eψ3 E
θ
2 E

φ
1 , (6.31)

where we have replaced the generic rotations with the Euler matrices of (3.19). Equa-
tion (6.23) now becomes

Eψ+dψ
3 Eθ+dθ

2 Eφ+dφ
1 = Eψ3 E

θ
2 E

φ
1

(

1 + [ω]×B dt
)

. (6.32)

This equation must be solved for the time derivatives ψ̇, θ̇, φ̇ (where e.g. ψ̇ ≡ dψ/dt) in
terms of p, q, r. A straightforward but tedious approach inserts the Euler matrices (3.19)
into (6.32) and then multiplies the matrices to extract ψ̇, θ̇, φ̇. Much easier is to use (6.4)
to write

Eψ+dψ
3 = Eψ3 E

dψ
3 = Eψ3

(

1 + dψ
[

0
0
1

]×
)

, (6.33)

and similarly for the other matrices of the left-hand side of (6.32). These expressions

allow Eψ3 E
θ
2 E

φ
1 to cancel from both sides of (6.32), greatly reducing further labour. The

remaining manipulations are straightforward and yield (as in [8], which uses an alternative
approach)





ψ̇

θ̇

φ̇



 =





0 sec θ sinφ sec θ cosφ
0 cosφ − sinφ
1 tan θ sinφ tan θ cosφ









p
q
r



 . (6.34)

This way of calculating ψ̇, θ̇, φ̇ easily accommodates a change to the Euler order. Suppose
that convention (6.29) was changed to a rotation about two space-fixed axes with one
repeated, defining a different set of angles α, β, γ:

A(t) = Rαz → Rβy → Rγz . (6.35)

The required matrix multiplication is immediately written

[A(t)]W = Eγ3 E
β
2 E

α
3 (6.36)
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without needing the PRT, after which the calculations proceed in the same way as those
following (6.31)—although the final result need not resemble (6.34).

Newcomers to the subject of aerospace orientation sometimes confuse the angular ve-
locities p, q, r measured by gyroscopes with the Euler-angle rates of increase φ̇, θ̇, ψ̇. They
ask why the matrix in (6.34) is so complicated; shouldn’t dφ just equal p dt, so that φ̇ = p,
and similarly for θ̇, ψ̇?

Repeating some of the previous analysis in different language makes the situation clear.
Using the DIS Euler order, the orientation at time t is produced by having Eψ3 E

θ
2 E

φ
1 act

on the base orientation. In the next time step dt, the aircraft simultaneously rolls about
its nose (the latest x) by angle p dt, pitches about the latest y by q dt, and yaws about the
latest z by r dt. Using the PRT, the new orientation—equation (6.32)—becomes

Eψ3 E
dψ
3 Eθ2 E

dθ
2 Eφ1E

dφ
1 = Eψ3 E

θ
2 E

φ
1 E

r dt
3 Eq dt

2 Ep dt
1 . (6.37)

Both sides of this equation contain the Euler rotations Eψ3 , E
θ
2 , E

φ
1 ; but whereas its left-

hand side interleaves these rotations with infinitesimal rotations such as Edψ
3 , its right-

hand side implements all of its infinitesimal rotations Ep dt
1 , Eq dt

2 , Er dt
3 first, before doing

the three Euler rotations. But infinitesimal rotations commute only with each other and
not with non-infinitesimal ones (see page 10), so we are obliged to retain the given order
throughout (6.37). This implies that the infinitesimal angles are generally different on each
side of that equation, so that dφ does not simply equal p dt. The same idea applies to dθ
with q dt, and dψ with r dt. And that explains why the matrix in (6.34) is so complicated.

7 Concluding Comments

The use of the Pseudo-Reversing Theorem is part of a larger context within which vectors
exist independently of coordinate systems, and yet must be expressed using coordinates
for use in numerical calculations. Such expressions require the machinery of coordinate
changes. We are free to calculate using any coordinates we choose, but rotations that
are easy to describe and implement by an aircraft pilot are not always easy to implement
mathematically, and vice versa. The PRT connects these two rotation schemes. It validates
choices of coordinates and rotation order that can sometimes appear mysterious in the
literature when they are accompanied by little or no explanation.
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Appendix A An Application of Orientation

Matrices to Measured Wind in Ship Motion

Section 3 of this report stressed the distinction between proper vectors and coordinate
vectors, and used (3.7) to convert one coordinate representation to another. This view
of vectors is very useful for untangling the concepts involved with the wind that sailors
feel to be flowing over their ship. In this appendix we’ll use that notation to answer the
following often-asked question:

Calculating a Desired Ship Course: A ship is sailing at some given speed on some
given compass bearing. It measures the speed and direction of the wind flowing over it.
What new course should it sail so that the new speed and direction of the wind over the
ship become some given values?

Use the following notation.

– The compass bearing is always relative to local north–east–down, so let N stand for
these coordinates and for the general reference frame attached to these: e.g., think
of N as also representing some nearby island.

– W stands for the wind.

– S stands for the current ship and its coordinates. We’ll take the x axis to point
forward of the prow, and the y axis to point to starboard.

– S′ stands for the “new ship” and its coordinates: those of the new orientation that
we require to sail. The axes of this “new ship” will be just as for the current ship,
but labelled with primes: x′ pointing forward of the prow and y′ pointing starboard.

– vAB is the velocity of object A relative to object B, and is a proper vector. So for
objects A,B,C,

vAB = vAC + vCB . (A1)

It’s worthwhile covering some established terminology relating to the wind.

True wind is vWN , the actual motion of the wind over Earth’s surface, and is a proper
vector. We can think of it as the motion of the wind relative to anything at rest in
the local north–east–down system, such as a nearby island.

Measured wind is vWS, the velocity of the wind relative to the ship: a proper vector.

Apparent wind is [vWS]N , the measured wind in north–east–down coordinates: a coor-
dinate vector.

Relative wind is [vWS]S , the measured wind in current ship coordinates: a coordinate
vector.

Note that there are only two proper wind vectors here: the true wind (velocity relative
to an island) and the measured wind (velocity relative to the ship). The apparent and
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relative winds are coordinate vectors: just two different ways of quantifying the measured
wind.

Now, both the “current ship” and “new ship” agree on what the true wind is (assuming
it didn’t change during the manoeuvre, of course), because the true wind is a proper vector
and so has a reality independent of any ship. So we can write the true wind vector as a
sum of terms using the current ship or the new ship, using (A1):

vWN

true wind

= vWS

current wind
over ship

+ vSN

current ship
velocity

= vWS′

desired wind
over ship

+ vS′N

new ship
velocity

. (A2)

To answer the main question posed above, we seek the new ship course vS′N , which comes
from (A2):

vS′N = vWS + vSN − vWS′ . (A3)

This is the basic vector sum that will be coordinatised with respect to either north–east–
down or the ship, depending on what information we have been given. The main question
above requires us to coordinatise it as follows, using (3.7):

[vS′N ]N = [vWS]N + [vSN ]N − [vWS′]N

= µSN [vWS]S
given

+ [vSN ]N
given

− µS
′

N [vWS′]S′

given

. (A4)

The first“given”term in (A4) is the current relative wind, which is supplied in the question.
The second “given” term is the current ship course. The third “given” term is the desired
relative wind.

Equation (A4) is not straightforward to solve, because the desired ship course on the
left-hand side of (A4) establishes the new orientation via S′, but this orientation is required
in the last term on the right-hand side of (A4). However, we can find an exact solution.

Begin by specifying all coordinates. We who stand on the ship measure the wind
coming at us with speed v1 from an azimuth β1 measured clockwise from the prow:

[vWS]S =

[
−v1 cos β1

−v1 sin β1

]

. (A5)

The velocity of our ship in the north–east–down coordinates is speed v2 along compass
bearing β2:

[vSN ]N =

[
v2 cos β2

v2 sin β2

]

. (A6)

We require to turn such that we’ll measure the wind to be coming at us with speed v3
from an azimuth β3 measured clockwise from the prow:

[vWS′ ]S′ =

[
−v3 cos β3

−v3 sin β3

]

. (A7)

The sought-after new ship velocity is described by some number v along compass bearing β:

[vS′N ]N =

[
v cos β
v sin β

]

. (A8)
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There is nothing to prevent v from being negative, so we’ll refer to it as a velocity rather
than as a speed. For shorthand, set for i = 1, 2, 3,

c ≡ cos β , s ≡ sin β ,

ci ≡ cos βi , si ≡ sin βi . (A9)

Equation (A4) requires the orientation matrices µSN and µS
′

N . We need to know the ship’s
orientation, so will assume it moves without side-slipping. The notation can handle any
orientation at all, but ships do usually move this way. If the ship currently points into the
bearing direction β2, then

µSN =
[

[ex]N [ey]N

]

=

[
c2 −s2
s2 c2

]

. (A10)

Likewise, we’ll assume the “new ship” points into the bearing direction β:

µS
′

N =
[

[ex′ ]N [ey′ ]N

]

=

[
c −s
s c

]

. (A11)

With these, (A4) becomes

v

[
c
s

]

= −v1
[
c2 −s2
s2 c2

] [
c1
s1

]

+ v2

[
c2
s2

]

call this

2

4

a
b

3

5

+ v3

[
c −s
s c

] [
c3
s3

]

= v3

2

4

c3 −s3
s3 c3

3

5

2

4

c
s

3

5

, (A12)

which can be rewritten as
(

v.1 − v3

[
c3 −s3
s3 c3

])[
c
s

]

=

[
a
b

]

, (A13)

where by “v.1” we mean v times the 2 × 2 identity matrix. This last equation becomes

[
v − v3c3 v3s3
−v3s3 v − v3c3

] [
c
s

]

=

[
a
b

]

. (A14)

This must be solved for v, c, and s. To do so, equate the squared lengths of each
side of (A14), remembering that for a matrix A and a column (coordinate vector) x,
|Ax|2 = xtAtAx. (Remember too that the elements of AtA are just dot products of the
columns of A with themselves in turn.) Writing the squared length of [ ab ] as k2, we obtain

[
c s
]

[

(v − v3c3)
2 + v2

3 s
2
3 0

0 (v − v3c3)
2 + v2

3 s
2
3

][
c
s

]

= k2. (A15)

In other words,
(v − v3c3)

2 + v2
3 s

2
3 = k2, (A16)

which is easily rewritten to give the desired new ship velocity as

v = v3c3 ±
√

k2 − v2
3 s

2
3 . (A17)
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There could be any of zero, one or two possible real values of v resulting here. Now we
need only use whatever values of v we have obtained here to invert (A14), making use
of (A16):

[
c
s

]

=

[
v − v3c3 v3s3
−v3s3 v − v3c3

]−1 [
a
b

]

=
1

k2

[
v − v3c3 −v3s3
v3s3 v − v3c3

] [
a
b

]

. (A18)

This last equation gives us cos β and sinβ and hence β itself, remembering the comment
on page 26 that two pieces of trigonometric information are always needed to specify an
angle. So the calculation is finished.

As an example, suppose we on the ship measure the wind coming at us with speed
15 units (it doesn’t matter which units we use, as long as they’re all the same) from an
azimuth 140◦ measured clockwise from the prow:

v1 = 15 , β1 = 140◦. (A19)

Our ship has speed 20 over the ocean, along compass bearing 270◦:

v2 = 20 , β2 = 270◦. (A20)

We require to turn such that we’ll measure the wind to be coming at us with speed 10
from an azimuth 44◦ measured clockwise from the new position of the prow:

v3 = 10 , β3 = 44◦. (A21)

The required ship velocity is v along compass bearing β. Use (A12) to calculate [ ab ], then
find its squared length k2, then apply (A17) to produce v. Finally calculate β from its
cosine and sine in (A18). Two pairs of v, β result:

v = 39.4 , β = 265.2◦, (A22)

and
v = −25.0 , β = 60.8◦. (A23)

The first pair describes the ship moving with speed 39.4 into compass direction 265.2◦,
and is one solution to the original question posed.

The second pair cannot be read as describing a speed of 25.0 into a compass direction
180◦ + 60.8◦ = 240.8◦. Rather, we used the new direction of ship travel to specify its
orientation in (A11): we assumed that the ship points in the direction of its velocity, or
compass direction β. That means the second pair of numbers (A23) must describe a ship
travelling backwards with speed 25, while pointing in the compass direction 60.8◦. Such
a ship would indeed feel the wind coming with speed 10 from an azimuth 44◦ measured
clockwise from its prow; but no ship is going to move in reverse like this. Even so, (A23)
is a valid solution to the question posed.
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infinitesimals
use in dead reckoning, 31

inverting trigonometric functions, 26

matrix representative of a rotation, 8

NED coordinates, 17
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