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Introduction 

The projectʼs goal was to reproduce robust and intelligent decision making capabilities in artificial 
agents by integrating two successful cognitive architectures, ACT-R (Anderson, 2007) and Leabra 
(OʼReiily & Munakata, 2000). The rationale was that such an integration effort would yield insights 
on the general mechanisms that allow rapid decision-making in real-time. Taken separately, ACT-
R and Leabra incorporate different views of how decision-making and robust behavior occur. The 
two architectures have different and complementary strengths and weaknesses and work at 
different levels of abstractions. Thus, an integration of the two would possibly yield a uniform 
framework for understanding the computational basis of robust intelligence and decision-making 
in humans. 

Background 

Robust decision-making covers the human capability of making choices across different tasks 
and situations. In this sense, robust decision-making defies the boundaries of traditional machine-
learning approaches because it focuses on successful performance with multiple representations 
and across multiple domains, instead of optimal behavior in a limited domain and with specific 
data structures. 

In our view, two main features characterize robust decision-making. The first feature is 
integration: robust intelligence requires the dynamic integration of different specific cognitive 
abilities, such as those that allow humans to detect contingencies in the environment and to 
estimate future rewards. The second is flexibility: robust intelligent behavior requires the capability 
of dynamically modifying oneʼs own intentions and behaviors in order to match novel changing 
tasks. Note that integration and flexibility are also general properties of any intelligent and 
autonomous agent, so that our efforts at unveiling the mechanisms behind robust decision also 
contributes to the goal of achieving artificial general intelligence. 

More specifically, our work has proceeded along two converging lines of research, computational 
and experimental. Computational research has focused on uncovering and testing possible 
mechanisms that integrate the decision-making capabilities of two existing general frameworks 
for modeling human cognition, i.e. ACT-R (Anderson, 2007) and Leabra (OʼReilly & Munakata, 
2000). Experimental research has focused on designing tasks that stress the requirements for 
integration and flexibility in decision-making situation, and collecting relevant behavioral data from 
human subjects. These two lines of research did not proceed separately, and each progress in 
one direction spawned novel problems and insights in the other research track. 

For clarity purposes, however, we will present the two areas of research in separate sections, 
occasionally highlighting the intersections between the two. 



Part I: Computational Mechanisms for Robust Decision-Making 
Integration Between Computational Cognitive Architectures 

Robust decision-making is a characteristic of human intelligence. Human cognition can be 
analyzed at different levels and divided into different fields of research. Among the research that 
pursues integrated theories of human cognition, two approaches have become particularly 
influencial: ACT-R and Leabra.  

ACT-R 

ACT-R is a cognitive architecture, i.e., a computational model that aims at providing the basic set 
of computational operations of the human mind. As in Newellʼs (1973) original proposal for unified 
theories of cognition, ACT-R is implemented as a production system, i.e., a mechanism that 
matches and applies IF-THEN rules. Production systems are a flexible instrument for modeling 
complex control, and several cognitive architectures have been and are stlll being developed 
upon them (Just & Varma, 2007; Laird, 2008; Meyer & Kieras, 1997). While production systems 
are typically symbolic, ACT-Rʼs workings are modulated by a large set of subsymbolic parameters 
that determine how higher-level symbolic representations are processed are reflect known neural 
or metabolic processing costs associated to different structures or operations. Thus, ACT-R is not 
only an integrated theory of human cognition, but also a hybrid theory that reflects the known 
underlying biological mechanisms. 

ACT-R is composed of different modules that provide support for visual perception and attention, 
motor programming and execution, long-term declarative memory, goal processing, mental 
imagery, and procedural competence. Perceptual and motor modules are critically important for 
embodied cognition (the visual and manual modules are illustrated in Figure 1). They enable the 
system to be “in the world,” in contrast to past ACT-R systems where all cognition was in the 
head. The development of perceptual and motor capabilities has been heavily influenced by the 
EPIC architecture (Meyer & Kieras, 1997). A critical aspect of learning involves optimizing the 
perceptual-motor components of the system. A number of applications have now appeared where 
one or more ACT-R models interact with other agents and complex external systems. These 
applications depend critically on the ability for external events to interrupt and direct processing. 

 

 
Figure 1: Overview of ACT-R 

 

As can be seen by visiting the ACT-R web site (http://act-r.psy.cmu.edu/), successful models 
have been developed for a wide range of tasks involving attention, learning, memory, problem 
solving, decision making, and language processing. Under the pressure of accommodating this 



range of tasks the architecture has developed fairly detailed modules. Recent years have seen a 
major effort to apply detailed modeling approach in ACT-R to the performance of significant real-
world tasks. These applications have included driving (Salvucci, 2006), aircraft maneuvering 
(Byrne & Kirlik, 2005), and simulated agents for computer-generated forces (Best & Lebiere, 
2006). We have also continued a long-standing tradition of applying ACT-R models to tutoring 
systems of academic skills, particularly high school mathematics (Anderson & Gluck, 2001).  

In parallel to its application to complex real-word tasks, ACT-R has been significantly extended to 
predict and incorporate data from the cognitive neurosciences. This has led to an established 
methodology for predicting the metabolic activity of different brain regions in neuroimaging 
experiments from the computations performed by different modules (Anderson, 2007; Anderson, 
Fincham, Qin, & Stocco, 2008). Examples of this work include research on the nature of semantic 
information retrieval (Danker, Gunn, & Anderson, 2008), problem solving (Anderson, Albert, & 
Fincham, 2005; Anderson, 2005; Stocco & Anderson, 2008) skill acquisition (Anderson, 2005), 
and conflict resolution (Fincham & Anderson, 2006; Sohn, Albert, Stenger, Jung, Carter, & 
Anderson, 2007). 

In summary, ACT-R provides an integrated cognitive architecture that is grounded in the basic 
results of cognitive psychology, and can be dynamically scaled up to model complex tasks, as 
well as scaled down to examine neurocognitive findings. 

Leabra 

Leabra (OʼReilly & Munakata, 2000) is the name of a computational framework that has grown out 
of the original Leabra learning algorirthm for biologically plausible neural network (OʼReilly, 1996). 
The Leabra algorithm is a learning procedure that integrates two forms of learning: local Hebbian 
learning and error-driven feedback learning. The integration of the two mechanisms has several 
advantages over previous learning procedures, and guarantees results. 

The core of the large-scale architecture includes three major brain systems: the posterior cortex, 
specialized for perceptual and semantic processing using slow, integrative learning; the 
hippocampus, specialized for rapid encoding of novel information using fast, arbitrary learning; 
and the frontal cortex/basal ganglia, specialized for active (and flexible) maintenance of goals and 
other context information, which serves to control (bias) processing throughout the system (Figure 
2). This latter system also incorporates various neuromodulatory systems (dopamine, 
norepinephrine, acetylcholine) that are driven by cortical and subcortical areas (e.g., the 
amygdala, ventral tegmental area (VTA), substantia nigra pars compacta (SNc), locus ceruleus 
(LC)) involved in emotional and motivational processing. These neuromodulators are important 
for regulating overall learning and decision-making characteristics of the entire system. Properties 
of basic neural mechanisms suggest this large-scale specialization of the cognitive architecture.  

For example, a single neural network cannot both learn general statistical regularities about the 
environment and quickly learn arbitrary new information (e.g., new facts, people's names, etc.; 
McClelland, McNaughton, & OʼReilly, 1995; OʼReilly & Rudy, 2001; OʼReilly & Norman, 2002). 
Specifically, rapid learning of arbitrary new information requires sparse, pattern-separated 
representations and a fast learning rate, whereas statistical learning requires a slow learning rate 
and overlapping distributed representations. These properties correspond nicely with known 
biological properties of the hippocampus and neocortex, respectively. Many empirical studies by 
ourselves and other researchers, specifically motivated by our computational modeling work, 
have tested and confirmed these and other more detailed properties. A similar kind of reasoning 
has been applied to understanding the specialized properties of the frontal cortex (particularly 
focused on the prefrontal cortex) relative to the posterior neocortex and hippocampal systems. 
The tradeoff in this case involves specializations required for maintaining information in an active 
state (i.e., maintained neural firing, supported by the frontal cortex) relative to those required for 
performing semantic associations and other forms of inferential reasoning (supported by the 
posterior cortex). The prefrontal cortex system also requires an adaptive gating mechanism 



(Braver & Cohen, 2000; OʼReilly & Frank, 2006), to be able to rapidly update some (new) 
information, such as a new subgoal, while simultaneously maintaining other information that 
remains relevant, such as the super-ordinate goal. The basal ganglia have appropriate neural 
properties to provide this function (Frank, Loughry, & OʼReilly, 2001). 

 

 
Figure 2: Overview of the Leabra architecture 

 

At the lower level of fundamental neural mechanisms, Leabra integrates into one coherent 
framework a set of basic neural learning and processing mechanisms (see OʼReilly, 1996; 
OʼReilly, 1998; OʼReilly & Munakata, 2000; OʼReilly, 2001) that have been otherwise separately 
investigated in the neural modeling community. Making all these elements work together in a 
biologically plausible manner is non-trivial, and requires some novel mechanisms, including: a 
point-neuron activation function that uses simulated ion channels to update a membrane potential 
with a nonlinear thresholded output to other neurons; bidirectional (i.e., interactive, recurrent) 
excitatory projections (which are ubiquitous in neocortex) that propagate information throughout 
the network, integrating information processing on a cycle-by-cycle basis across the different 
specialized brain areas; inhibitory competition that greatly constrains and speeds the constraint 
satisfaction process that generates a good representation of the current perceptual inputs; and a 
synthesis of error-driven, Hebbian, and reinforcement learning, which together produce better 
overall learning than any of them alone (OʼReilly, 2001; OʼReilly & Munakata, 2000; OʼReilly & 
Frank, 2006; OʼReilly, Frank, Hazy, & Watz, 2007). 

In summary, Leabra provides an integrated and modular architecture for lower-level and 
biologically plausible models of cognition. 

Integration 

ACT-R and Leabra share a number of similarities. They are both general-purpose architectures; 
they are both modular; they share similar views on the mechanisms governing skill acquisition, 
feedback-driven learning; and they share similar views on the organization of the cortex.  

Both ACT-R and Leabra focus on intelligent behavior as the results of integration of information 
across different specialized modules and different representations. They both share the same 
overall view of how information processing is distributed and integrated across modules. 



 The CONDR Model 

A first step towards integration was the development of the CONDitional Routing (CONDR) 
model. CONDR is a model of the basal ganglia that reflects the biology of this circuit and bridges 
the gap between ACT-R and Leabra.  

Transfer of Information in the Brain 

Besides ACT-R and Leabra, many ambitious architectures of brain function have been proposed 
recently (e.g., Houk 2005; Hawkins and Blakesee 2004). These approaches differ widely from 
each other, but they all have to solve one common problem: the transfer of information among 
brain regions. The simplest solution consists in hard-wiring the communication between brain 
regions as direct connections between layers in a network. However, in the human brain, cortico-
cortical connections are estimated to make up more than 95% of all the external inputs of a single 
brain region. Furthermore, about half of this amount is estimated to come from long-distance 
connections (Braitenberg and Schüz 1991). It is clear, therefore, that some organization needs to 
be overlaid over this massive set of connections.  

The problem of how information is routed between different specialized neural modules deals with 
the core issues of this proposal, i.e. the issues of integration of information and flexibility of 
behavior. It is clear that any computational cognitive architecture that aims at being robust needs 
to incorporate a mechanism that dynamically allocates and routes signals across modules.  

Many different solutions to this problem have been proposed (e.g., Anderson 2007; van der Velde 
and de Kamps 2006). In this wide space of options, ACT-R and Leabra share a surprisingly 
common view, as they both propose that the transmission of information along the cortico-cortical 
pathways is modulated by a subcortical circuit. This circuit comprises important structures such 
as the basal ganglia and the thalamus. By means of this circuit, organized behavior is imposed 
upon an otherwise uncoordinated flow of information within the cortex. 

Despite sharing this general view, the exact implementation choices taken by ACT-R and Leabra 
differ in many substantial ways. ACT-R assumes that the basal ganglia functionally correspond to 
the architectureʼs procedural module, a structure that provides the long-term repository of 
production rules and supervises their serial execution. In Leabra, on the other hand, the basal 
ganglia constitute a gating system that controls the flow of sensory information from the posterior 
cortex to the short-term memory store located in the prefrontal regions (see Figure 1).  

This discrepancy constitutes the biggest obstacle to an integration of the two architectures. 
Therefore, the first step in our project consisted of devising a model of the basal ganglia that 
makes the two architectures compatible. 

Our solution has been implemented as a connectionist computational model. It provides two 
additional advantages over other attempts. First, it shows how the subcortical circuit is 
functionally equivalent to a production system. This equivalence makes an important connection 
between the anatomy of the brain and a widely studied and adopted computational framework. 
Second, it provides a natural framework for skill acquisition and habit learning compatible with 
known biological constraints. 

The Role of the Basal Ganglia 

Before dealing with computational details, this section will review some evidence in favor of the 
hypothesis that the basal ganglia play an important role in coordinating the transfer of information 
between cortical areas. Three converging lines of research support this assumption. 

Physiologically, pathologies of the basal ganglia in humans result in an increase in the amount of 
correlated activity between cortical regions (e.g., Stoffers et al. 2008). This fact can be interpreted 
by assuming that, under normal conditions, resonance of signals along the cortico-cortical 
network is limited by the control function of the basal ganglia.  



The second line of evidence is represented by studies of human working memory. A number of 
experiments have shown that the basal ganglia play an important role in gating new information 
to short-term memory. Neuroimaging data indicating basal ganglia involvement in preparation of 
working memory updates (McNab & Klingberg 2008). Also, genetic differences in basal ganglia 
metabolism correlate with individual performance in working memory tests (Zhang et al. 2007). 
Finally, individual differences in the severity of dopamine depletion in Parkinsonʼs disease also 
correlate with decline of working memory functions. Control of working memory is the central role 
of the basal ganglia in Leabra, and corresponds to the role of the ACT-R procedural module in 
controlling the access to buffers. 

A final hint of the basal ganglia role in shaping cortico-cortical connectivity comes from research 
on learning. It is known that skill acquisition results in a dramatic reorganization of cortical 
connectivity. Moreover, animal studies have shown that lesions of the basal ganglia result in a 
profound impairment in skill acquisition (see Packard & Knowlton, 2002, for a review). In animals, 
it prevents the acquisition of new stimulus-response associations. In humans, it has been proven 
to disrupt the acquisition of new sensory-motor skills (Cohen & Squire, 1980). Correspondingly, 
both Leabra and ACT-R, although with different algorithm and implementations, assume that the 
basal ganglia are required for the acquisition and establishment of new habits. 

In summary, experimental research on the basal ganglia has shown their involvement in a 
number of disparate cognitive functions. This variety of functions can be understood as originating 
in the circuitʼs role in coordinating cortical activity. This overarching hypothesis is common to both 
ACT-R and Leabra. 

A Routing Model for the Basal Ganglia 

We proposed a model for a brain architecture where the basal ganglia have an overseeing role in 
directing and shaping cortico-cortical connectivity. This model, named CONDR (CONDitional 
Routing) is a layered neural network that reflects several aspects of basal ganglia physiology. 
This network has two key properties. First, it can acquire new stimulus-response associations 
through practice. Second, its workings can be shown to be substantially similar to a production 
system. This provides a straightforward mapping between a well-established formalism for 
artificial intelligence and the biology of the brain. 

This architecture works as follows. Let us consider a collection of cortical areas C = {c1… cn}. For 
simplicity, let us assume they are all connected to each other. At each moment in time, each 
region receives signals from n – 1 other regions.  

 

 
Figure 3: Comunication between massively connected cortical regions (left) can be organized by 

a cortico-subcortical circuit (right) that encompasses the basal ganglia (bottom right). 



Essentially, the basal ganglia alert each region to attend to only a particular subset of “source” 
regions S ⊆ C. This process can be repeated for each region, providing a powerful system for 
prioritizing and simplifying the exchange of communication (Figure 3). Intuitively, there should be 
an optimal ratio of |S| to |C|. If |S| is too small, the communication between regions is eventually 
disrupted. If |S| is too large, on the other end, each region receives too many competing signals. 

One can consider a very simple model where the pattern held in each region is simply the sum of 
all the incoming signals from the other regions, ci = c1 + c2 + … + cn. 

When the basal ganglia system is compromised, then S ≈ C, and each region receives almost 
identical and largely overlapping signals. Therefore, spatial correlation between the regions 
increases. The temporal correlation increases as well, since updating events in one region are 
reflected in changes in larger group of connected regions. 

Circuitry 

In order to explain how the model works, one needs to introduce some biology. The basal ganglia 
comprise a number of interconnected nuclei. They include the Striatum, the Internal (henceforth, 
GPi) and External (GPe) Globus Pallidus, the Substantia Nigra (SNr), and the Sub-Thalamic 
Nucleus (STN). The wiring among these nuclei is usually described in the following terms (Albin, 
Young, and Penney 1989). The striatum is the entry point of the circuit, receiving afferents from 
the entire cortex. The nuclei SNr and GPi constitute the systemʼs output. These nuclei project 
mainly to the thalamus, and control the thalamic projections to the cortex. The Striatum and the 
SNr/GPI are connected by two pathways, which exert opposite effects. They are known as the 
direct and indirect pathways. The indirect pathway comprises the GPe and the STN (Figure 4). 

A common interpretation, dating back to Albin, Young, and Penney (1989), is that the two 
pathways simply oppose each other. In particular, the direct pathway conveys excitatory signals 
to the cortex, while the indirect pathway contrasts this effect through direct inhibition. In the 
model, we expanded this interpretation as follows. The direct pathway carries a selection of 
source regions, whose representation has been chosen for transmission. The indirect pathway 
carries a selection of destination regions for each source region. In practice, the indirect pathway 
carries a mask that establishes which region each destination should be attending to. 

The Striatum 

The striatum is the largest nucleus of the circuit. The large majority of its cells are projection 
neurons (Graveland, Williams, and DiFiglia 1985). These neurons can be divided into two groups: 
Striatonigral (SN) cells, whose projections form the direct pathway, and Striatopallidal (SP) 
neurons, whose projections begin the indirect pathway (Figure 4). 

In CONDR, the striatum is modeled as a flat structure (see Wickens, 1997) of projection neurons, 
where SN and SP cells are organized into subdivisions. Each subdivision receives afferents from 
a single corresponding cortical region. Therefore, the striatal organization mirrors cortical 
topology. Subdivisions also possess a second-level, internal organization. Within a single 
subdivision, neurons are grouped into ensembles corresponding to the destination that the source 
region projects to. 

Thus, the model striatal subdivisions reflect cortical topology at two levels. At a macro-level, they 
mirror the organization of cortex into specific regions. At a lower level, each subdivision also 
reflects the cortical connectivity of the corresponding cortical region. This organization is 
compatible with some properties of corticostriatal projection distribution (e.g., Parthasarathy, 
Schall, and Graybiel 1992). 

Physiologically, the activity of projections neurons is controlled by interneurons (IN). Interneurons 
have an elevated tonic and exert a powerful inhibitory pressure (Tepper and Bolam 2004). 
Because of the inhibition coming from interneurons, only a small number of ensembles of 
projection neurons contain active and firing cells. Active neurons in a striatonigral subdivision 



signal that the corresponding cortical region is a source region, and its contents have been picked 
up for routing. Active striatopallidal ensembles within a subdivision, on the other hand, signal 
destinations where the selected representations should not be transferred.  

 

 
Figure 4 Outline of the basal ganglia circuit and connectivity. 

 

In the model, the dominant inhibitory effect of interneurons was modeling by providing projection 
neurons with a high threshold θ that is calculated to match the expected incoming signals from 
the cortex and the inhibitory interneurons: 

 

 θ ≈ ∑i wi E(xi)         (1) 

 

where wi is weight of the synapses formed with pre-synaptic neuron i, and E(xi) is the rate-coded 
expected activation value of i. 

Source and destination information are encoded separately in SN and SP neurons, respectively. 
From there, the two signals travel separately along the direct and the indirect pathway, and 
eventually combine in the output nuclei SNr/GPi. From the output nuclei, the signals reach the 
thalamus and, from there, come back to the cortex to enable the proper transfer path. The overall 
architecture of the model, in a highly simplified rendition, is represented in Figure 5. 

Relation to Production Systems 

From a purely computational point of view, routing operations can be seen as a neural network 
analog to production rules in production systems. Production rules are control statements 
expressed in the form of condition-action clauses (IF-THEN rules). The similarity between the 
conditional routing model and a production system can be seen if one assumes the following 
mappings. 

 

 



 
Figure 5: Overview of the CONDR model 

 

A rule is embedded in the incoming and outgoing synaptic matrices of a set of striatal 
interneurons.  The condition (i.e., left-hand side) part of the rule is represented by incoming 
synapses to striatal interneurons. The synapses encode the specific cortical representation that 
will trigger the interneuron to fire. The action (i.e., right-hand side) is encoded in the outgoing 
synapses to the striatal projection neurons. An action corresponds to the activation of particular 
ensembles of SN or SP projection neurons in the striatum. Their activation triggers the 
transmission of information from the source region of the cortex to the destination region.  

Part of the flexibility of production systems originates from the use of variables in the production 
rules. However, variables are not easily dealt with in neural networks. To overcome this problem, 
a number of procedures have been proposed over the years (e.g., Touretzky & Hinton 1988; 
Smolensky, 1990; Stewart & Eliasmith, 2008). 

In CONDR, the process of biding variables is supported by the special architecture of the model 
striatum. Consistent with neurophysiology, projection neurons in the striatum are mostly silent, 
with only a minority of them actually active at any time. In CONDR the active SN and SP neurons 
correspond to the active combinations of sources and destinations. Ignoring local computations 
that occur within striatal neurons, the final state of the striatum is the block product v ⊗ M of the 
initial vector v of activations in the source cortical area, and the switchboard matrix of allowed 
destinations M. The block product can be seen as a special case of tensor product, a powerful 
mechanism for variable binding in neural networks (Smolensky, 1990). In this case, the variable is 
the destination cortical region, which is bound to the value v, i.e. the original content of the source 
region. 

In addition to variables, production rules can also specify constants, which represent default and 
fixed pieces of information, in CONDR, constants correspond to the transfer of a fixed neural 



pattern to a destination region. This particular content is not dependent on any particular source 
region, and is embedded in the synaptic weights of the circuit. An example of this case will be 
illustrated in the forthcoming sections on learning. 

In summary, the CONDR model provides biological computations that can be akin to the 
operation of a production system. In particular, the activity of the CONDR model bears similarity 
with the execution of ACT-Rʼs production rules, where variables are used to bind the contents of a 
particular destination buffer to the values held in a source buffer. On the other hand, CONDR can 
be seen as a generalization and expansion of the PBWM model in Leabra. Thus, the model 
provides an ideal means to integrate the two architectures. 

Performance of the CONDR Model 

The CONDR model was developed to account for how the basal ganglia can perform general-
purpose signal-routing operations, and how their function can provide a flexible way to organize 
the flow of processing within the cortex. Therefore, the next sections will provide an overview of 
the modelʼs capabilities and performance. First, we will illustrate how the CONDR model can 
perform a simple task. The next section will provide evidence of the modelʼs robustness. 

CONDR Performance of an Example Task 

This section will provide an example of how the model coordinates a series of routing operations 
to perform a task. The example paradigm is an aural discrimination task that has been used as 
part of a dual-task experiment by Schumacher et al. (2001) and Hazeltine, Teague, and Ivry 
(2002). In this task, participants respond to the presentation of a tone. Tones could have three 
different pitches (220, 880 and 3520 Hz), to which participants had to respond “one”, “two”, or 
“three”, respectively. 

This task requires assembling a number of basic cognitive functions in a novel and arbitrary way, 
and therefore depends on controlling the flow of information among cortical areas. It is also 
simple enough that its modeling requires very few assumptions. With some differences in the 
details, various authors (Schumacher et al., 2001; Hazeltine, Teague, & Ivry, 2002; Anderson, 
Taagen, & Byrne, 2005) agree that three basic processing steps are taking place: (1) Stimulus 
classification, during which the stimulus is presented and appropriately encoded; (2) Response 
selection, during which the appropriate response is selected from the set of possible options; and 
(3) Response execution, where the chosen response is eventually vocalized. 

It is rather uncontroversial that the first and the third step rely on the auditory and motor cortices, 
respectively (see Anderson, 2007, for an fMRI investigation that confirmed this fact). More 
uncertain is the localization of response selection. Anderson, Taatgen, and Byrne (2005) 
proposed an ACT-R model that can successfully reproduce most of the experimental findings. 
Following ACT-Rʼs mapping of cognitive process onto brain regions (see Anderson et al., 2008), 
the model implies that response selection recruits the left lateral inferior prefrontal cortex. This 
interpretation is consistent with the established role of this region in selecting among competing 
responses in word generation and pair-associate tasks (Danker, Anderson, & Gunn, 2008; Sohn, 
Goode, Stenger, Carter, & Anderson, 2003; Thompson-Schill, DʼEsposito, & Kan, 1999). The 
specific involvement if this region has been confirmed by an fMRI investigation of this task 
reported in Anderson (2007, Figure 4.15c). 

A simple cortico-basal ganglia circuit was generated to simulate the task. The circuit was 
simplified to contain only the three cortical regions required by the task. Correspondingly, the 
striatum only contained three main subdivisions. It was further assumed that each region was 
connected to the other two. In the model, response selection was simulated as a two-phase step, 
where the cortical region first attends to the encoded tone from the aural region, and then uses it 
as a cue to select the appropriate response. To simulate the selection process, the model 
prefrontal region was connected to a data structure (perhaps corresponding to the hippocampus) 
that could hold the long-term representations of the three possible responses. The prefrontal 



region sends its internal representations to this structure, and receives back the response pattern 
that is associated with the best-matching input representations. Each cortical region contained 
100 artificial neurons.  

Figure 6 illustrates how the model performs such task.  The figure reads top to bottom, left to 
right.  The four panels on the left-hand side represent the activation of the cortical units, divided 
into areas, at the three stages of task execution. Note that the two middle panels represent the 
two phases of response selection. Two routing operations are required to perform this task: they 
are represented in the two right panels. The two routing operations are required to connect the 
three task phases. Their implementation follows the model rules described in Anderson, Taatgen, 
and Byrne (2005). These rules reflect an initial level of task exposure, before participantsʼ 
performance has been optimized by practice. The model was trained to perform these two routing 
operations with a Contrastive Hebbian Learning (CHL) procedure.  

In Figure 6, panel (a) in the top-left corner corresponds to the state of the cortex when the 
auditory signal is first encoded. The first routing operation is applied at this stage, and consists in 
directing the transfer of the tone representation to the prefrontal region. The top right panel 
represents this routing operation. This panel shows that state of activation of thalamic 
subdivisions, organized as a source-destination matrix. The active cells are located in the 
subdivision that projects to the second (“prefrontal”) region from the source region (“aural”). 

Activation of these thalamic terminals determines the transition to the second step, which is 
represented in panel (b).  When the prefrontal region has received the auditory cue, it responds 
by selecting a pattern corresponding to the response associated to the tone. This phase is 
represented in panel (c). Note that the model assumes that this operation occurs within the 
cortex, and the basal ganglia are not involved. The second routing operation (illustrated in the 
bottom right panel) is triggered at this point, and routes the retrieved response to the vocal region, 
where it can be executed as a vocal program. This corresponds to the final stage, illustrated in 
panel (d). 

General Performance 

Having the model reproducing a particular task does not provide sufficient information on its 
generality as an information routing device. A series of simulations were therefore carried out to 
investigate the modelʼs performance. During the simulation, three factors were varied 
parametrically. Two factors were chosen that affect the modelʼs configuration. They were the 
numbers of cortical regions (3, 6, 9, 12 or 15, regions), and the size of each cortical region 
(containing 50, 100, 150, 200, 250 model neurons). The third factor was the number of operations 
learned before being tested (5, 10, 15, 20, or 25 operations). This factor was chosen to examine 
the effect of interference between different possible course of actions.  

While the size of cortical regions was varied parametrically, the size of each striatal subdivision 
was kept constant across simulations. In particular, each striatal subdivision contained 20 
striatonigral and 20 striatopallidal neurons. Also, the number of neurons in each number thalamic 
and SNr/GPi subdivision was kept equal to 10. These values were kept constant, so that each 
different cortical regionʼs size also corresponded to a different ratio of cortex-to-striatum size. 

For each training test, a specified number of operations were generated randomly. Each 
operation was to be performed in response to a different, randomly generated pattern of cortical 
representations, and the model was trained on each of them. Training was performed by means 
of a modified version of Contrastive Hebbian Learning.  During testing, one of the operations was 
then selected at random, and its cortical pattern presented to the model. The pattern was 
propagated through the circuit, and the state of the thalamic subdivisions compared against the 
desired response as in the previous set of simulations.  

 



 
Figure 6: The Aural-Vocal tasks as performed by the CONDR model 

 

The model was tested 100 times for each level of the three factors (number of regions, cortical 
size, and operation complexity). Trial performance was assessed by comparing the state of the 
thalamic subdivisions against the desired response. A trial counted as incorrect whenever (a) 
there were active cells that did not correspond to a proper source/destination binding; or (b) the 
desired cells were not active. 

The number of incorrect trials was counted for each combination of factor levels. Each factor and 
each two-factor interaction was then analyzed independently, using a fixed-effects statistical 
model. The size of cortical regions did not have any significant effect on the modelʼs performance 
[F(4, 120) = 0.23, p = 0.91], and did not interact with the other factors [F(16, 100) < 0.55, p > 
0.92]. On the other hand, the number of cortical regions [F(4, 120) = 23.14, p < 0.0001], of routing 
operations [F(4, 120) = 2.65, p = 0.03] and their interaction [F(16, 100) = 6.38, p < 0.0001] were 
all significant.  

The left panel of Figure 7 illustrates the percentage of errors for each combination of number of 
regions and operations, collapsed across different sizes of cortical regions. It can be seen that the 



probability of making an error increased with the number of possible operations, and decreased 
as the number of regions increased. This increase in errors can be due to the fact that, as the 
number of regions decreases, the routing operationsʼ patterns become increasingly similar. Under 
such circumstances, undesired source-destination bindings, which were supposed to be the 
response of a different operation, might show up in addition to those of the executed operations.  

 

 
Figure 7: Performance of the CONDR model 

 

To examine this possibility, we analyzed a different measure of modelʼs performance. This 
measure was the number of additional bindings. An additional binding was defined as a thalamic 
subdivision that contains active neurons, but does not belong to the desired source-destination 
bindings. The analysis confirmed our prediction. The number of additional bindings was not 
affected by the cortical size or its interaction. However, like the percentage of correct trials, this 
measure decreased with number of regions [F(4, 120) = 11.52, p < 0.0001], increased with the 
number of  operations [F(4, 120) = 2.27, p = 0.06], and was affected by their interaction [F(16, 
100) = 2.17, p = 0.01; see Figure 7, right). 

Summary 

This section has presented an overview of the modelʼs capabilities. The modelʼs capabilities were 
tested in two different ways. First, it was shown how the model performs a simple stimulus-
response task. Second, it was shown how robust the modelʼs performance is when a number of 
changes are made to its configuration (e.g., increasing size or increasing number of cortical 
regions), and the number of available responses is progressively increased. Overall, the modelʼs 
robustness in face of large changes in its structure confirms the efficiency of the basal ganglia 
architecture for routing information. 

Habit Learning and Dopamine in the CONDR Model 

One of the most important functions of the basal ganglia is to enable skill acquisition. This 
capability is particularly crucial in the context of integrating different architectures, as learning 
enables the incremental acquisition of knowledge and procedures that underpins dynamic and 
robust decision-making. 

In fact, both Leabra and ACT-R incorporate mechanisms for acquiring new skills and procedural 
knowledge. In particular, both architectures include special mechanism for dealing with feedback-



related and reward-related learning. One crucial difference is that ACT-R, but not Leabra, 
possesses a mechanism for acquiring new skills with practice, even in the absence of feedback. 
One of the goals of the CONDR model was to overcome this gap by providing a biological 
account of practice-related learning. This account could be used to explain ACT-Rʼs properties at 
a neural level, and eventually integrated in Leabra. 

The learning capabilities of the basal ganglia are crucially modulated by dopamine. Dopamine is a 
neurotransmitter that affects neural plasticity, promoting long-term potentiation and long-term 
depression among neurons. Some properties of the dopamine signal in the basal ganglia have 
been successfully modeled as the error term in Suttonʼs (1988) Temporal Difference algorithm 
(Schultz 2002). That is, the dopamine signal reflects the error between two subsequence 
predictions of a specific stateʼs value. Many models of dopamine function have been proposed 
(see Joel et al. 2002 for a review). Both ACT-R and Leabra provide reinforcement-learning 
mechanism for reward-related learning (OʼReilly & Frank, 2006; Fu & Anderson, 2004). The 
difference between these two mechanisms has been the subject of an experimental investigation 
described in Part II of this report. 

More importantly, the connection between dopamine and procedural learning has been less 
investigated. It is easy to imagine that dopamine also underlies procedural learning. This is 
particularly important because the exact mechanisms by which new skills and habits can be 
acquired have seldom been modeled (See Ashby, Ennis, & Spiering, 2007, for a notable 
exception). 

Habit Learning and Production Systems 

All the learning in CONDR is due to changes in the strength of synapses between neurons. 
Computationally, these changes follow simple Hebbian rules. Hebbian algorithms are regarded as 
a plausible approximation to the biological dynamics of synaptic long-term potentiation and long-
term depression (Brown, Kairiss, & Keenan, 1990). In Hebbian learning, changes in synaptic 
weights (indicated as ∆wi,j ) are proportional to the product of pre- and post-synaptic activations. 
Many variations of this principle have been proposed, differing in mathematical properties such as 
long-term stability and convergence (Dayan & Abbott, 2001; Gerstner & Kistler, 2002). In our 
model, the Hebbian rule was implemented as follows: 

 

 ∆ wi,j = r (xi – 〈xi 〉) (xj – 〈xj 〉)       (1) 

 

where r is the learning rate, and 〈xi 〉 denotes neuron iʼs baseline activity. This rule states that the 
synapses between two neurons are strengthened whenever their firing rates conjointly exceed or 
fall below their baseline activation. A negative value of r was used for inhibitory projections. This 
turns the rule into an anti-Hebbian algorithm, which maintains the correct direction of long-term 
potentiation (LTP) in inhibitory synapses. 

Striatal interneurons are dealt with in a special way. These neurons are characterized by a high 
baseline activity 〈x 〉, and their firing rate decreases when significant cortical patterns are detected 
(see Appendix A for the exact mathematical implementation). To account for this asymmetry, the 
opposite term 〈x〉 – x (instead of x – 〈x〉) was used whenever it referred to striatal interneurons. 

Specialization in the Example Task 

Within our model, this simple form of Hebbian learning is sufficient by itself to capture certain 
features of skill acquisition, namely, specialization and automaticity. Figure 8 illustrates the 
changes in the response of SN projection neurons after a different amount of repetitions of the 
task. The SN neurons belong to the striatal subdivision that receives projections from the 
prefrontal region (source), and transmits information to the vocal region (destination). In the both 
panels, time flows horizontally. The left panel details the activation of SN neurons at different 



levels of practice, corresponding to 0, 3, 6, or 9 repetitions of the very same trial. Their activation 
reflects both the excitatory input from the cortex and the decreased inhibition from interneurons. 
The right panel reflects the contribution of striatal interneurons only, without the cortical 
component. The figure shows that, with practice, the pattern that is embedded in the synapses 
between interneurons and projection neurons comes to resemble the incoming cortical input.  

 

 
Figure 8: Development of specialized representations in the CONDR model 

 

These changes provide a preliminary basis for the development of automaticity. As long as the 
same information is available in the striatal interneuronsʼ projections, the original cortical 
representation is not needed, and the same pattern can be used without the need for cortical 
processing. This fact is consistent with the drop in cortical activation that can be experimentally 
observed with practice (Chein & Schneider, 2005; Hill & Schneider, 2006; Raichle et al., 1994; 
Qin et al., 2003). 

Dopamine and Skill Learning 

Simple associative learning mechanisms cannot go very far. The modulation of dopamine in the 
striatum, however, can strategically direct Hebbian learning, significantly increasing the modelʼs 
learning capabilities.  One important way in which practice can improve performance is by 
eliminating intermediate processing steps that require cognitive control. An example of such 
processing step occurs between stages (b) and (c) in the example task (see Figure 5). In this 
step, the prefrontal region uses the auditory stimulus as a cue to retrieve an associated response 
from long-term memory. With practice, this extra step can be replaced by a specialized routing 
operation that binds the initial auditory stimuli with their associated responses. 

Computationally, the idea of producing novel knowledge by creating direct stimulus-response 
mappings and skipping intermediate steps has been exploited in a number of production system 
learning algorithms. These algorithms include powerful techniques like chunking (Laird, 
Rosenbloom, & Newell, 1986) and production compilation (Taatgen & Lee, 2003). All these 
techniques have a long record of successes in modeling human learning. Furthermore, they can 
be seen as examples of skill learning, which is one of the memory functions of the basal ganglia 
(Packard & Knowlton, 2002). Thus, by providing a mechanism that allows practice-related 
acquisition of new skill the CONDR model can further reduce the gap between ACT-R and 
Leabra. 



In CONDR this kind of learning takes place when the basal ganglia harvest in one cycle a 
representation from the very same cortical source (in the example, the lateral inferior prefrontal 
region) that was the target destination in the previous cycle. The fact that a region that has been 
recently used as a destination now figures among the source of routed representations is an 
important cue that this region has been used for some intermediate processing.  

Learning to skip steps exceeds the capabilities of the simple Hebbian dynamics presented in the 
previous section. It can be accomplished, however, by strategically guiding the Hebbian rules. In 
the model, this is accomplished by the intervention of dopamine, a neurotransmitter that plays a 
crucial role in changing synaptic plasticity in striatum (Calabresi et al., 2000; Wickens, Begg, & 
Arbuthnott, 1996). Biologically, the striatum receives dopamine from two major pathways, the 
mesolimbic pathway from the ventral tegmental area (VTA), and the nigrostriatal originating from 
the SNc.  

Much is known about the response of dopamine neurons to unexpected rewards, and how their 
bursts closely reflect the reward prediction error (Schultz, 1998; 2002). Although the routing 
model can, in principle, also learn from these reward-related responses, this paper focuses on a 
different, practice-related form of learning. This type of learning depends on the release of 
dopamine under specific additional circumstances. In particular, we hypothesized that procedural 
skill acquisition is mediated by dopamine signal carried by the nigrostriatal dopamine pathway 
originating in the SNc. This pathway is essential for habit formation (Faure, Haberland, Conde, & 
El Massioui, 2005), and has been previously included in other models of basal ganglia (e. g., 
Ashby, Ennis, & Spiering, 2007).  

The SNc receives direct projections from the striatum, as well as indirect projection through the 
external pallidus and the SNr (Haber, 2003; Haber, Fudge, & McFarland, 2000; Hajos & 
Greenfield, 1994). Thus, its activity can be modulated by the other nuclei of the circuit.  Among 
these afferents, there is evidence that the influence of direct striatonigral projections is rather 
weak. For instance, the spontaneous activity of dopamine neurons does not change when the 
striatonigral connections are removed (Hajos & Greenfield, 1994). Both the projections from the 
GPe (Hattori, Fibiger, & McGeer, 1975; Smith & Bolam, 1990) and the SNr (Tepper, Martin, & 
Anderson, 1995), on the other hand, have significant effects on the output of dopamine neurons. 
The model dopamine system, whose architecture is shown in Figure 9, is also controlled by the 
SNr/GPi and GPe projections.  

 

 
Figure 9: The dopamine circuit in the CONDR model 

 

Dopamine projection neurons in the SNc receive direct input from the SNr/GPi as well as from 
local SNc interneurons (Hajos & Greenfield, 1994). The proposed mechanism additionally 



assumes that the SNc interneurons receive projections from the GPe, and that their activation 
persists for a sufficient time to provide a delayed memory of the destinations that were used in the 
previous transfers (Figure 3). This delay is crucial because it allows the SNc dopamine neurons to 
directly compare the sources of the representations that are being transferred (SNr/GPi) with the 
destinations of the previous transfers (the delayed signal from GPe). Note that the model does 
not assume that the GPe signal itself delayed with respect to the SNr; it simply assumes that the 
GPe signal can be temporarily maintained for comparison with the subsequent patterns of activity 
from SNr. The discussion section examines other possible mechanisms that produce the same 
effect. Because of this delay, when the current sources figure among the previous destinations, 
the sum of inputs from the SNr and GPe triggers an increase in dopamine output to the striatum. 
This case is visually represented in Figure 9. 

There are different ways of modeling the effects of dopamine. Our model adopts a solution 
proposed by Ashby, Ennis, and Spiering (2007), who captured the role of dopamine by adding a 
third term to the Hebbian rule for striatal synapses. This third term reflects the activity of 
dopamine neurons, and expresses the biological fact that learning in the striatum is due to the 
interaction of pre- and post-synaptic neurons with dopamine (Ashby, Ennis, & Spiering, 2007; 
Miller, Sanghera, & German, 1981). Within our simple Hebbian framework, this three-way 
interaction can be easily reproduced by including the activation xd  of dopamine neurons to 
equation (1): 

 

 ∆ wi,j = r (xi – 〈xi 〉) (xj – 〈xj 〉) (xd  – 〈xd 〉)    (2) 

 

If we indicate (xd – 〈xd 〉) with the symbol d, we can re-write equation (2) as: 

 

 ∆ wi,j = d r (xi – 〈xi〉) (xj – 〈xj 〉)     (3) 

 

Equation (3) makes it apparent that increases and decreases of dopamine modulate synaptic 
plasticity by increasing or decreasing the learning rate. In fact, when dopamine falls below 
baseline (i.e., d < 0), the direction of learning can even be inverted. Although this equation does 
not capture all the subtleties of learning in the basal ganglia, it has the advantages of being 
simple and free of additional assumptions. Therefore, dopamine effects on learning were modeled 
by increasing or decreasing the learning rate term dr. 

In addition to modulating the learning rate, dopamine directly affects the activity of striatal cells. In 
particular, it excites SN neurons and inhibits SP cells (Bolam et al., 2000; Nicola, Surmeier, & 
Malenka, 2000; see Figure 2). These differential effects permit a fine modulation of the direct and 
indirect pathways, which has often been included in basal ganglia models (Frank, Loughry, & 
OʼReilly, 2001; OʼReilly & Frank, 2006). Less frequently modeled, but equally important, are the 
opposing effects of dopamine on GABAergic and cholinergic interneurons (Tepper & Bolam, 
2004). Our model contains one single type of interneuron that captures properties of both. Since 
cholinergic interneurons also control the fast-spiking GABAergic interneurons (Figure 2), their 
reaction to dopamine was taken as the dominant one. Therefore, dopamine inhibits the model 
interneurons. Excitatory and inhibitory effects of dopamine neurons were modeled by simply 
using excitatory or inhibitory projections from SNc dopamine neurons to striatal cells. 

Skill acquisition depends on the dynamics between all these effects. Long-term potentiation in the 
corticostriatal projections increases the probability of SN neurons firing, and of interneurons to 
deactivate in presence of a similar pattern of cortical activity. After repeated exposures, the 
synapses between interneurons and projection neurons encoded the transferred representation 
(see Figure 7); therefore, this representation can be imposed to SN neurons even in absence of 



the original cortical input from the corresponding region.  

Skill Learning in the Example Task 

The simple aural-vocal task described in the previous section is useful for demonstrating these 
effects of learning. In the simple model outlined above, the correct response to a tone had to be 
selected from long-term memory (see Figure 6, stages (b) and (c)). This intermediate step can be 
omitted with practice. The lateral prefrontal cortex figures as the destination of the first routing 
operation (Figure 5, top-right panel) and as the source of the second (Figure 6, bottom-right 
panel). Therefore, the redundant step can be detected in the convergent pathways on the SNc 
neurons. In turn, this triggers dopamine release in the striatum, initiating the learning process 
described above. Figure 10 illustrates how the model performs the task after the learning step 
has happened a sufficient number of times to allow the newly learned routing operation to fire. 
The figure illustrates how the new operation routes an immediate response to the vocal region 
when presented with the original stimulus.  Thus the model transitions from the initial stage to the 
final stage in Figure 10 without the intermediate stages in Figure 6. 

 

 
Figure 10: The Aural-Vocal tasks as performed by the CONDR model after learning has occurred 

 

This form of learning relies on the strategic release of dopamine after the execution of the second 
operation. We have outlined one possible biological mechanism by which this could happen. It 
should be noted, however, that other mechanisms of dopamine control could obtain similar 
results. One of these mechanisms is the simple release of dopamine according to unpredicted 
rewards (Schultz, 1998; 2002). Thus, an increase of the d term after the second operation can 
also be triggered by the initial reward generated by succeeding in the task. 

Summary 

This section has illustrated the learning capabilities of the model. In particular, it has shown how 
the model, with practice, can encode internally certain representations that were originally routed 
from the cortex. This accounts for the proceduralization and the specialization of responses. It 
was accomplished by means of simple Hebbian learning, which is a biologically plausible learning 
rule. When coupled with the effects of dopamine, the Hebbian rule triggers more complex 
dynamics. Eventually, these dynamics enable the acquisition of new skills that skip intermediate 
steps in series of information transfers. The elimination of redundant steps during the learning 
phase accounts for practice speedup and automaticity. Finally, the time course of striatal activity 
is consistent with important established results in the field of habit learning. 



Detecting the appropriate conditions for dopamine release requires a comparison of the current 
sources and the previous destinations in the SNc. In turn, this requires maintaining a delayed 
version of the previous destinations in the SNc interneurons. Although this account is partially 
speculative, many other models have adopted and defended similar mechanisms that compare 
the current signals from the direct pathway with a delayed signal from the indirect pathway (e.g, 
Barto, 1995; see Joel, Niv, & Ruppin, 2002, for a review). It should also be noted that similar 
results could be also accomplished by other mechanism that regulate dopamine release. For 
instance, reward-related changes in dopamine also follow a pattern similar to Figure 10, with 
dopamine decreasing as a task becomes more practiced and rewards become predictable 
(Schultz, 1998; 2002).  

Summary: The CONDR Model 

This paper has presented a connectionist model of the basal ganglia. The model is based on the 
idea that this subcortical circuit oversees and controls the transfer of information among cortical 
brain regions. Because of the large underlying amount of cortico-cortical connections, this circuit 
plays a fundamental role in organizing the flow of information within the brain by selecting proper 
source and destination regions. The model can be seen as a neural implementation of a 
production system, where production rules correspond to routing operations among brain regions. 
This equivalence is important for two reasons. The first is that it provides a biological substrate for 
a powerful and well-known computational framework. Second, this equivalence provides a means 
to understand the neural basis of intelligence and flexible behavior, and bridge the gap between 
low-level and high-level computational descriptions of the brain. 

Instruction Following 

One of the hallmarks of robust and intelligent behavior is the capability of directing oneʼs own 
behavior on the basis of predefined, declarative representations. This capability is useful because 
declarative knowledge is usually more flexible to manipulate than other types of knowledge, and 
can be more easily communicated. Humans routinely exhibit this type of intelligent behavior when 
they are engaged in complex tasks such as planning or problem solving. Perhaps the most 
striking example of this behavior is following instructions, i.e. the capability of translating abstract 
representations of behavior into action. This process is akin to interpreting a programming 
language statement in computer science. Computationally, this process requires some mandatory 
computational steps that are independent of the implementation of the interpreter itself; in 
particular, instructions need to be translated into operations and structures that match the 
underlying hardware. 

The process of following instructions has been successfully modeled in ACT-R (see Taatgen, 
Huss, Dickinson, & Anderson, 2008). In ACT-R, it is possible to represent abstract behaviors as 
chunks of declarative knowledge, and use special production rules to interpret and instantiate 
them. The same process, however, is not easily reproduced in a neural network, and therefore 
this powerful mechanism does not scale down to a Leabra-like architecture. Furthermore, there is 
no direct evidence that links this process to a clear neural substrate. 

In this second part of our computational modeling research, we have provided computational 
evidence that the basal ganglia are crucially recruited in instruction-interpreting behavior, and that 
the CONDR model provides an ideal platform for implementing this mechanism within a biological 
neural network. An experiment validating the modelʼs predictions is discussed in the Experimental 
section.  

The Task 

Instructed behavior is seldom investigated in cognitive psychology, and data from the instructional 
phase of experiments routinely discarded. Thus, we developed a novel task that was used for 
both testing our models and collecting experimental data from participants. The task consists in 



solving a series of arithmetic problems, each of which is combination of three operations, such as 
“divide x by 3”, “multiply y by 2”, and “multiply x and y”. Each problem required exactly two input 
numbers (x and y) and always contained one binary and two unary operations. In order to ensure 
that intermediate and final results were always integer numbers, participants were instructed to 
use the quotient as the result of a division, and discard the remainder (e.g., 7 / 2 = 3). The three 
operations were randomly selected from a set of five, each of which was associated to an 
alphabetical letter A, B…E. Table 1 illustrates the operations used in the experiment and provides 
some examples.  

Each trial consisted of three consecutive phases: (a) An instruction phase, where the problem 
was presented; (b) An execution phase, where the two input numbers where presented and 
calculations were performed; and (c) A response phase, were participants indicated whether a 
certain number was the solution to the problem or not. The structure of a sample trial is illustrated 
in Figure 11. 

Instructions were presented as a string of letters and variables such as AExDy. Instructions were 
in prefix notation, so that the above problem was interpreted as A(E(x), D(y)), which can easily be 
translated as (x / 3) × (y + 1) by looking at Table 1. 

 
Table 1: The five operations used in the experiment 

Operation Meaning Examples 

A(x, y) x × y A(4, 2) = 4 × 2 = 8; A(2, 3) = 2 × 3 = 6 

B(x, y) x / y B(8, 2) = 8 / 2 = 4;   B(6, 3) = 6 / 3 = 2 

C(x) x × 2 C(4) = 4 × 2 = 8;  C(3) = 3 × 2 = 6 

D(x) x + 1 D(7) = 7 + 1 = 8;  D(3) = 3 + 1 = 4 

E(x) x / 3 E(9) = 9 / 3 = 3;  E(6) = 6 / 3 = 2 

 

 
Figure 11: Structure of a sample trial in the experiment 



Models for Interpreting Instruction 

To explore the nature of the processes involved in interpreting instructions, we modeled the task 
in both ACT-R and CONDR. 

The ACT-R Model 

The ACT-R model was designed to execute the entire task, including visually parsing the screen 
and performing simulated motor responses.  During the instruction phase, the model encodes 
each problem as a series of three consecutive steps. Each step is created by scanning the 
instruction string right to left, recursively finding the first unattended letter; retrieving the 
associated operation; and determining whether to apply the operation to either x, y, or both. 
During the execution phase, the model simply retrieves the three steps in order, executing the 
corresponding operations and updating the values of x and y at the conclusion of each step.  

In ACT-R, all the task information must be either available in the buffers or retrieved prior to being 
used. Thus, some choices had to be made on how to distribute the relevant task information. 
These choices are usually constrained both by the specific computations available in a module 
and its established mapping to a brain region (Anderson, 2007). For instance, the intermediate 
values of x and y, together with the current stepʼs position in the series, were stored in a chunk in 
the imaginal buffer. This is consistent with the imaginal bufferʼs association with the parietal 
cortex, a brain region critically involved in visuo-spatial working memory and mathematical 
cognition (Anderson, 2005; 2007; Anderson et al., 2008). 

The two most critical parts of the model are the chunks representing the problem steps and the 
production rules that interpret them. Problem steps were maintained in a special module that 
mimics the computations of the existing goal module. A new module was created because the 
goal module is associated with internal control states and not with declarative templates for future 
actions (e.g., Anderson, 2005; Fincham & Anderson, 2006; Anderson et al., 2008). No 
established association exists between this novel module that processes instructions and a brain 
region, but some speculations are possible. Its role in holding higher-level representations that tie 
together lower-level actions suggests an association with the anterior prefrontal cortex (aPFC), 
which has been often associated with similar functions (Ferrer, OʼHare, & Bunge, 2009). 

The modelʼs second key component is the production rules that interpret instructions. These rules 
differ from standard ACT-R rules in that they use variables to indicate slot names, and not only 
slot values. This procedure is needed to properly instantiate operations are referring to either x or 
y. The execution of production rules has been associated with the basal ganglia, and basal 
ganglia activity has been successfully predicted either simply counting the number of production 
rules fired per time unit (Anderson, 2005; 2007), or by counting the number of variable bindings 
per time unit (Stocco & Anderson, 2008). Thus, the model predicts that the activity of the basal 
ganglia should reflect the increased number of variables in the Execution phase. Results of the 
experimental verification of this production will be presented in Part II. 

The CONDR Model 

The ACT-R model provides only indirect evidence of the neural basis of interpreting instructions. 
More compelling evidence can be obtained by modeling the process of following instructions 
within a framework that directly deals with the underlying biological circuits. The CONDR model 
was chosen because of its direct connection to ACT-R.  

Instructions and the Control of Variable Binding 

The very structure of the model suggests one natural way of interpreting instructions. In the 
routing model, the execution of an operation simply consists in the proper transfer of signals 
between cortical regions.  For example, updating the values of x and y after an operation consists 
in copying the representation held in the prefrontal region that retrieves arithmetic facts to the 
cortical region that temporarily holds either x or y. This transfer is directed by the proper activation 



of cells in the striatum.  In fact, any internal operation can be properly represented as a 
switchboard matrix that shares the same organization of the striatum. 

Following this logic, we expanded the routing model by adding a novel cortical area that shares 
the switchboard organization of M, so that variable bindings in the striatal matrix can be properly 
controlled by the activation of the corresponding cells in the region. In addition to having a 
switchboard organization, neurons in this region need to have a very low tonic activity; this is 
required so that their expected activation value E(x) is low, minimizing the effect in calculating the 
thresholds in Equation (1) and making it easy to bring the activation of projection neurons above 
the threshold θ. In fact, we ran a number of simulations showing that this mechanism is sufficient 
to make the model execute arbitrary operations such as the instructed arithmetic operations 
required by the task. 

One can wonder about the biological plausibility of such a hypothetical region. In fact, the anterior 
part of the prefrontal cortex (aPFC), and in particular the frontal pole, possesses exactly the 
necessary computational characteristics. Specifically, the aPFC receives massive projections 
from the frontal lobe, and these projections are topologically organized, thus providing an 
organization that resembles the frontal projections to the striatum. Also, this region is usually 
silent during the execution of most tasks, with its most polar part actually deactivates during a 
task (Gilbert et al., 2006), thus satisfying the condition of a low expected value. Finally, its 
projections seem to innervate a large part of the head of the caudate nucleus, the most frontal 
part of the basal ganglia (Di Martino et al., 2008). 

Summary 

One crucial feature of robust behavior is the capability of interpreting abstract representations that 
can encode instructions, plans of actions, or intentions. As part of our project, we have developed 
two different models in two different frameworks that can perform a complex instructed task. The 
models can also be used to generate neuroimaging predictions, which are described at the end of 
Part II. 



Part II: Experimental Research on Robust Decision-Making 
Experimentally, we explored the interactions between the basic functions that underlie robust 
decision-making. We have run two studies investigating the role of working memory and reward-
based learning in sequential decision-making. The crucial problem in sequential decision-making 
is credit assignment, i.e. the correct attributions of a reward among the different decisions made 
in a series. While credit assignment for atomic actions is well understood, assignment for 
sequential actions still constitutes a problem. Our experiments tested two alternative hypothesis: 
(a) that the connection between current rewards and past actions is mediated by representation 
in working memory, and (b) that reward is automatically spread, with a temporal discount, among 
recent actions. We replicated the findings of a previous experiment by Fu and Anderson (2008), 
while collecting measures of individual differences in working memory capacity and implicit 
decision-making. Our findings show that experimental manipulations that facilitate working 
memory improve the quality of decisions. Nonetheless, task performance was not correlated with 
working memory capacity. The lack of correlation suggests the existence of multiple systems that 
participants might use to properly credit their decisions. The effect of the manipulation, however, 
suggests that participants can dynamically exploit features of the task to change the balance 
between these systems. 

Experiment 1 

Materials and Methods 

Experiment 1 is a follow-up on the experiment by Fu and Anderson (2008). Participants 
performed a series of 400 trials, each consisting of two decision-making steps. Each decision 
consisted in choosing between two color names. In each pair, one colors was always associated 
with high reward probability (80%) and one with low reward probability (20%). Colors occurring in 
the first choice always had the same reward probability. Instead, reward probabilities associated 
with colors in the second choice set were dependent on the first choice set. For example, “Blue” 
could be a high-reward option after choosing between “Yellow” and “Green”, and a low-reward 
option after “Red” and “Grey”. This made the task non-trivial. 

Two factors were manipulated: (a) The Intermediate Credit, i.e., whether the feedback was given 
only at the end, or intermediate feedback were given after the two choices; and (b) The 
Intermediate context, i.e., whether the previous choice set was visible or not when making the 
second decision. 

Participants 

Twenty-two participants have been run so far. Two participants (#9 and #20) did not complete the 
experiment, and their partial data were discarded. 

Data Analysis 

All trials whose latency was < 200ms were discarded from the analysis. Performance was always 
measured as the proportion of “optimal” choices over a predefined interval. Since these 
proportions are not distributed normally, they were arcsin-root transformed before being 
submitted to analysis. This measure will be referred to as Pʼ in the text. For similar reasons, 
decision latencies were log-transformed before the analysis. 

Reading Span Distribution 

To make sure that the four groups did not differ on their average Reading Span score, each 
groupʼs Reading Span was compared against all the others using a Wilcoxon test. None of the 
groups differed significantly from the other three [W(5) > 5, p > 0.13, uncorrected]. 



Performance by Condition 

It is useful to look at the average performance across the entire experiment by condition. The 
corresponding data were analyzed with a 2x2x2 ANOVA, using Intermediate Credit (True vs 
False) and Intermediate Context (True vs. False) as between-subjects factors, and and Choice 
(First vs. Second) as a within-subjects variable. Figure 12 illustrates the effects, and Table 2 
reports the results of the analysis. 

 

 
Figure 12: Effects of Credit and Context on performance, grouped by Choice 

 
Table 2: Effects of Credit, Context, and Choice on performance 

 DF SSE MSE F P 
Context 1, 16 0.02118 0.02118 0.6540 0.4305 
Credit 1, 16 0.09477 0.09477 2.9262 0.1065 
Context by Credit 1, 16 0.00275 0.00275 0.0850 0.7743 
Choice 1, 16 0.45167 0.45167 45.1702 4.913e-06*** 
Context by Choice 1, 16 0.00040 0.00040 0.0397 0.84460 
Credit by Choice 1, 16 0.03128 0.03128 3.1286 0.09599 . 
Context by Credit by Choice 1, 16 0.00949 0.00949 0.9487 0.34455 

 

This analysis shows a significant effect of Choice. Performance on the second choice is always 
lower than in the first choice. However, the second choice it is not anymore at chance level. In 
addition, the analysis shows a marginally significant effect of Credit, with performance being 
slightly higher when the Intermediate Credit was given (Pʼ = 1.06) than when it was not (Pʼ = 0.97) 
and a marginally significant interaction between Credit and Choice.  

First and Second Choice by Participant 

It is interesting to look at the individual data. Figure 13 shows the difference between First and 
Second choice in all participants. You can refer to Table 1 to check out each participantʼs 
condition. 



 
Figure 13: First and second choice performance by participant 

Besides three of them (#1, #4 and #22, who show almost random performance), participants do 
show some effects of learning in the second choice. Second-choice performance is always 
inferior to the First choice. Nonetheless, performances in the two choices are significantly 
correlated [r = 0.58, t(18) =0.008]. 

Analysis by Block 

To have a better idea of learning, we can look as performance changes through the experimental 
blocks. The experimental trials were divided into 8 blocks of 50 trials each. 

It is difficult to visualize the interactions between Block, Choice, Context, and Credit. Therefore, I 
broke it down into four different figures. Figure 14 shows the effects of Block and Choice on 
Performance, divided by Context. Figure 15 shows the effect of Block and Choice on 
Performance, divided by Credit. Tables 3 and 4 report the results of the corresponding ANOVAs.  

Performance by Block, Choice, and Context 

 
Figure 14: Interaction of Block and Choice on performance, grouped by Context type 



 
Table 3: Effects of Context, Choice, and Block on P' 

 DF SSE MSE F P 
Context 1, 18 0.3638 0.3638 1.013 0.3275 
Choice 1, 18 4.8944 4.8944 50.5353 1.262e-06 *** 
Context by Choice 1, 18 6.589e-06 6.589e-06 0.0001 0.9935 
Block 7, 126 2.1271 0.3039 9.7895 1.054e-09 *** 
Block by Context 7, 126 0.4127 0.0590 1.8996 0.07487 . 
Block by Choice 7, 126 0.35044 0.05006 3.7488 0.00101 ** 
Block by Context by Choice 7, 126 0.21581 0.03083 2.3086 0.03008 * 

 

Not surprisingly, the Choice and Block are both significant. The main effect of Context is not, but 
the Context interacts significantly with Choice, Block, and with their interaction. This means that 
the context affects the learning rate (its effect on the Block factor), and the difference between the 
two choices (its effect on the Choice factor). Interesting, the presence of a Context seems to 
hinder, instead of helping, performance. 

Performance by Block, Choice and Credit 

As we know from the previous analysis, the main effect of Credit is marginally significant. It is 
interesting to notice that the Credit interacts with Block (i.e., facilitates learning for the first choice) 
but does not seem to interact with the effect of Choice, or with the Choice by Block interaction 
(although the interaction with Choice has a low p-level). 

 
Figure 15: Interaction of Block and Choice on Performance, grouped by Credit 

 
Table 4: Effects of Credit, Choice, and Block on P' 

 DF SSE MSE F P 
Credit 1, 18 0.9628 0.9628 2.9551 0.1028 
Choice 1, 18 4.8944 4.8944 58.1077 4.841e-07*** 
Credit by Choice 1, 18 0.2272 0.2272 2.6973 0.1179 
Block 7, 126 2.1271 0.3039 9.0223 5.41e-09*** 
Block by Credit 7, 126 0.0802 0.0115 0.3400 0.9341 



Block by Choice 7, 126 0.35044 0.05006 3.4083 0.002278** 
Block by Credit by Choice 7, 126 0.04775 0.00682 0.4644 0.858702 

 

Correlations with Reading Span 

We did perform a simple individual difference analysis by correlating participantsʼ performance 
with their Reading Span score. Because performance on the first and on the second choice are 
so different, two separate correlation analysis were performed on these two measures. Table 5 
reports the results 

 

Table 5: Correlations between Reading Span and Performance 

Analysis R DF T P 
Reading span with Pʼ 0.07978134 18 0.3395660 0.3690 
Reading span with Pʼ in the First Choice 0.1175037 18 0.5128226 0.3071 
Reading span with Pʼ in the Second Choice 0.0301295 18 0.1273365 0.4500 

 

There does not seem to be any significant correlation between Reading Span and Performance 
(as measure by Pʼ) for either choice.  

Summary 

Experiment 1 provided evidence for the importance of intermediate credit assignment in decision-
making. The existence of intermediate assignment, however, was not sufficient to level the 
difference between the two choices, hinting at the existence of powerful order effects and at the 
difficulty of decision-making when complex dependencies exists between choices. Furthermore, 
making the choice context explicit, which was supposed to highlight the dependency, had the 
counter-intuitive effect of harming performance. 

Experiment 2: Encoding of Action vs. Context 

Rationale 

In the first experiment, the presence of an Intermediate Credit was found to improve participant's 
performance.  Contrary to our expectations, the presence of an Intermediate Context was found 
to have a slightly detrimental effect.  That is, when participants were reminded of the options 
available during the first choice, they tend to perform worse. 

One potential explanation for this inconsistency was that the type of Context provided was 
somewhat misleading.  In Experiment 1, Context was provided by reminding participants of the 
options available in the first choice (i.e., “Blue – Yellow”). Some neuroimaging evidences (e.g., 
Tricomi, Delgado, & Fiez, 2004) suggest that reward-related learning is mediated by direct action 
contingency. That is, rewards are tied to representations of actions, and not simply to their 
context. To test this hypothesis, we decided to modify the context type so that it contains only the 
color participants had actually selected in the first choice.   

Materials and Methods 

The experiment used exactly the same materials as Experiment 1. Only, this time the context was 
changed to the color actually picked by the participants in the first choice (e.g., “Yellow”, instead 
of “Blue – Yellow”). 

Participants 

Thirteen participants were recruited (they are going to be fourteen soon).  One participant (#25) 



was run in the wrong condition, and her data have been discarded from the analysis.  Data from 
one other participant (#24) were corrupted while being transferred from the local computer to the 
data server.   

Instead of running a replica of the entire experiment, only the two conditions that included a 
Context were run.  In both conditions, the Context was always present.  Additionally, the Context 
always consisted of the choice the participants had selected. The Intermediate Credit was 
present in one condition (N = 5 participants) and absent in the other (N = 6 participants). 

As in Experiment 1, a performance index P was calculated as the arcosine of the square root of 
the proportion of correct choices. As in Experiment 1, a choice was considered correct when they 
it corresponded to the color with the highest reward probability, independent of the reward 
actually being delivered or not. Finally, trials where the response latency was < 200ms were 
excluded from the analysis. 

Effect of Credit 

As a first check of our data, we assessed whether the Credit factor had any effect on 
performance. Although the effects were not significant yet [t(6) = 1.24, p = 0.25], the manipulation 
was going in the right direction. Participants who did not see the Intermediate Credit performed 
worse (P = 1.02, SD = 014) than those who did (P = 1.15, SD = 0.18)  

Effect of Context Type 

We compared data from this experiment against data from Experiment 1. A first interesting 
analysis is to compare the effects of two types of Intermediate Context, i.e., “Choices” (as in 
Experiment 2) or “Options” (as in Experiment 1).  To perform this analysis, data from Experiment 
2 were pooled together with the two conditions in Experiment 1 where participants were provided 
with an Intermediate Context.  This way, the Context was always present in this pool of 
participants, and the only factors manipulated were the type of Context and the presence of 
Intermediate Credit. Figure 16 illustrates the Effect of Credit and Context Type on Performance 
for the two choices. Table 6 reports the results of the corresponding ANOVA. 

 
Figure 16: Effects of Credit, Choice, and intermediate Context type on performance 

 



Table 6: Effects of Credit, Choice, and Context type on performance 

Factor  DF  SSE  MSE F p 
Context Type  1, 18  0.09682  0.09682  2.3584  0.14200 
Credit  1, 18 0.15400  0.15400  3.7513  0.06862 
Context Type by Credit  1, 18  0.00142  0.00142  0.0345  0.85466 
Choice  1, 18  0.49161  0.49161  50.2201  1.317e-06*** 
Context Type by Choice  1, 18  0.00006  0.00006  0.0057  0.94068 
Credit by Choice  1, 18  0.04473  0.04473  4.5698  0.04651* 
Context Type by Credit by Choice  1, 18  0.00112  0.00112  0.1147  0.73877 

 

Discussion 

In summary, it seems clear that the Context type does affect performance.  In particular, and as 
expected, when the context is represented as the previous choice (i.e., "Blue") instead of the 
previous options (i.e., "Blue - Yellow" or "Yellow - Blue"), participants tend to do better, in both the 
first and the second choice.   

Re-evaluation of Experiment 1 

We can now go back to Experiment 1 and simply substitute the data from the old participants in 
the two Context condition with the new data from Experiment 2.  This will permit an analysis of 
both Credit and Context factors, but with Context now being the presence of the chosen color 
(instead of the previous options).   

Main Effects of Context and Credit on Performance 

As in the Experiment 1, we started by looking at the effects of Credit and Context on the raw 
performance for First and Second choice. The results are very similar to the homologous results 
in Experiment 1; however, this time the presence of an Intermediate Context is improving, and not 
harming, participants' performance. The results are reported in Figure 17 and Table 7. 

 
Figure 17: Effects of Context and Credit on performance, grouped by choice 



Table 7: Effects of Context, Credit and Choice on performance 

Factor  DF  SSE  MSE F p 
Context  1, 17  0.02773  0.02773  0.6723  0.4236 
Credit  1, 17 0.11871  0.11871  2.8784  0.1080 
Context by Credit  1, 17  0.00638  0.00638  0.1547  0.6989 
Choice  1, 17  0.45497  0.45497  56.9820  7.974e-07*** 
Context by Choice  1, 17  0.00004  0.00004  0.0045  0.9474 
Credit by Choice  1, 17  0.01653  0.01653  2.0702  0.1684 
Context by Credit by Choice  1, 17  0.00205  0.00205  0.2569  0.6188 

 

Experiment 3: Testing Models for Interpreting Instructions 

As part of our experimental investigations, we obtained an award that allowed us to run a pilot 
neuroimaging study. This study was aimed at identifying the neural correlates of adaptive 
behavior. It adopts a novel paradigm where planned changes in behavior can be separated from 
their subsequent execution, thus permitting for the first time to isolate the two corresponding 
networks or regions and their connections. 

Ten participants were recruited to perform the task previously described while lying in a 3T fMRI 
scanner. Their brain activity was recorded at a rate of a full volume acquisition every 2 seconds, 
with 34 oblique slices acquired for each volume. Each participant solved 80 problems, divided into 
four blocks of 20 trials each. Unlike most fMRI experiments, each problem was self-paced. 

In addition to the distinction between encoding and executing a set of instructions, the experiment 
manipulated the amount of practice as a second factor. This manipulation provides an additional 
means to isolate the specific act of interpreting instructions, which is important when analyzing 
data with a limited number of participants (see below). Practice was manipulated by having 
participants perform a subset of the problems before the experiment. During the experiment, half 
of trials were novel and half came from the subset of practiced trials. 

Results 

Data for the experiment were used to test the predictions of two models we developed that could 
perform the task (see above). Because the low number of participants limited the statistical power 
of traditional analysis, we performed a conjunction analysis, using statistical parameter maps 
thresholded at a liberal voxel-level value (p < 0.01, uncorrected) to isolate regions that are 
activated in two or more target contrasts. 

The ACT-R model predicts that the module corresponding to the aPFC region should be more 
active in Novel than Practiced trials, in both the Instruction and Execution phases. Thus, we 
created to statistical parameter maps (one for the Instruction phase, one for the Execution phase) 
that identified those voxels that were statistically more active during the Novel than during the 
Practiced trials (i.e., Novel > Practiced). As predicted, the analysis identified a cluster of voxels 
located in the aPFC region, with smaller cluster located in even anterior position in the frontal 
lobe. The results of this analysis are illustrated in the top part of Figure 18; the crosshairs 
highlight the aPFC regions. 

 



 
Figure 18: Results of Experiment 3 

Both the ACT-R and the conditional routing model predict that the basal ganglia should be more 
active during the Execution phase than during the Instruction phase. Additionally, both models 
predict that this asymmetry should hold for Novel problems only; Practiced problems can be 
executed as a routine, without referring to the original instructions, and there is no reason to 
expect any additional basal ganglia involvement during their execution. To verify this hypothesis, 
we created two new contrast maps that identify those voxels more active in the Execution than 
the Instruction phase (i.e., Execution > Instruction) in the Novel and in the Practiced problems, 
respectively. As predicted, we found one cluster of voxels that was more active during the 
Execution phase and corresponded to the right striatum; it is indicated by the crosshairs in the 
bottom part of Figure 18. As predicted this cluster showed up only in the contrast map obtained 
from Novel trials; Practiced problems did not show, in fact, any voxel that was more active during 
the Execution phase. In summary, our preliminary results support our modelsʼ predictions and 
permit to identify two regions crucially involved in interpreting instructions: the aPFC, probably 
responsible for encoding and accessing abstract representations of cognitive actions, and the 
basal ganglia, probably responsible for performing the necessary variable bindings while 
interpreting instructions. 
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Appendix A: Implementation of the CONDR Model 
This appendix will give an overview of the modelʼs different types of units, their connections, and 
functions. 

Model Neurons 

In the model, neurons were implemented as simple computational units that apply an activation 
function f over an input value η to yield an activation value, denoted by x. The input value η is 
simply the sum of all the activations coming from the projecting neurons, weighted by the 
corresponding synaptic strengths: 

 

 η = ∑j wj xj  

 

where wj is the value (or “synaptic weight”) of the synapse from neuron j, xj is the activation of 
neuron j. This is perhaps the simplest and most common representation for artificial neurons, and 
is widely adopted in many biological models (see Rolls &Treves, 1998; OʼReilly & Munakata, 
2000). The activation value x is obtained from the net input η by applying the activation function f: 

 

 x  = f (η – θ ) 

 

where θ is the neuronʼs threshold, which can be thought of an initial resistance of every neuron to 
be excited. A negative threshold (so that the quantity η – θ is positive in absence of direct 
stimulation) can be used to model neurons with high baseline activities, or to compensate the 
effects of convergent inhibitory projections. The activation value x is supposed to be the 
computational counterpart of a neuronʼs firing rate. Note that a neuronʼs dynamic is completely 
characterized by its activation function and threshold. 

With the exception of striatal interneurons (discussed below), all the neurons in the model use the 
hyperbolic tangent as their activation function: 

  

 x  = tanh( γ [η – θ ]+ ) 

 

where γ is the gain parameter that determines the curvesʼ steepness, and the [x]+ notation 
indicates that negative values of x are treated as zeroes. This ensures that the output of the 
function is in the range [0, 1]. Together with the sigmoid function, the hyperbolic tangent is among 
the simplest formulae that fit the change of spiking rates following changes in membrane potential 
in biological neurons; the curve also closely mimics the variation of spike rates to a change in the 
membrane potentials in biological neurons (see OʼReilly & Munakata, 2000). Table A1 details the 
values of γ and θ for each type of neuron in the model. Figure A1 gives a visual rendition of the 
corresponding activation curves. 

Special Activation Function for Striatal Interneurons 

Striatal interneurons exhibit special dynamics. They are tonically active and exert inhibitory 
pressure on striatal projection neurons, unless cortical activation reduces their firing rates. This 
behavior is likely produced by the interaction between cholinergic and GABA-ergic interneurons 
(e.g., Tepper & Bolam, 2004; see Figure 2). To account for this behavior, the only type of striatal 
interneurons in our model were provided with a special activation function, consisting of a sigmoid 



function with positive exponent. This function is monotonically decreasing, so that increased 
cortical inputs decrease the activity of interneurons. The function and its parameters are reported 
in Table A1, and visually depicted in Figure A1. 

 

 
Figure A1: A visual rendition of the activation functions used in the model. Left: the monotonically 

decreasing function used to simulate the firing rate patterns of striatal interneurons. Right: The 
monotonically increasing functions used to simulate the firing patterns of all the other neurons. 

 

Baseline Activation Values 

Each neuron also has an associated quantity called baseline activation value, which is indicated 
as 〈x〉. The baseline can be interpreted as the neuronʼs tonic activity. The baseline value provides 
a simple means to measure how much of a certain neuronʼs activation is due to its current inputs. 
It plays an important role in the Hebbian learning rule that is used in the model: 

 

 Δwi,j ≈ r (xi – 〈xi 〉) (xj – 〈xj 〉) 

 

In this rule, subtracting the baseline from the activation prevents two neurons to become strongly 
associated when their activity is due to their “usual”, tonic condition. It also makes it possible for a 
synapse to lose strength, whenever activation in one neuron is coupled with a decrease of 
activation in the other. The baselines for each different neuron type were calculated as their 
activation values in absence of stimulation, i.e., when η = 0. 

“Up” and “Down” States in Striatal Projection Neurons 

Projection neurons in the striatum have special dynamics. They cannot be excited while they are 
in the “down” state. Cortical activity puts them in an “up” state; when in “up” state, an increase in 
excitatory input or a decrease of inhibition triggers a response (Wilson, 1993; 1995; Bolam, et al. 
2000). A realistically complex model of this behavior was beyond the scope of our research. A 
simple approximation, however, consists in using neurons with a dynamic threshold. A threshold 
value θ is said to be dynamic when it is allowed to change over time. Some learning rules that 
have been found biological support, such as the BCM rule (Bienenstock, Cooper, & Munro, 1982) 
make use of dynamic thresholds. In the model, the dynamic threshold θp for a projection neuron 
p approximates the expected input from striatal interneurons when cortical patterns are being 
gated.  

  



Table A1: Summary of the different types of neurons 

Neuron Type Activation Function  Gain Parameter Threshold θ 
Striatal interneuron x = 1 / (1 + e γ [η - θ])  γ = 8.0 θ = 1/2 
Striatal projection neuron (SN/SP)  γ = 2.0 θp ≈  ∑i wp,i xi  
Thalamic neuron  γ = 2.0 θ = –1 
SNr/GPi neurons  γ = 2.0 θ = –2 
STN neurons  γ = 3.0 θ = –1 
GPe neuron  γ = 3.5 θ = –1 
SNc interneuron  γ = 2.0 θ = –1 
SNc dopamine neuron 

x = tanh(γ [η – θ]+ ) 

 γ = 2.0 θ = –1 

  

That is, the threshold is adapted to match the amount of inhibition that a projection neuron 
receives from interneurons when the projection neuron is nonetheless firing: 

 

 θp ≈  ∑i wp,i xi*    

 

where xi* indicates the average activation of interneuron i when cortical signals are allowed to 
pass.  This value depends on the routing patterns encoded in the model, and was therefore 
calculated separately for each set of simulations. Note that the values of θp are dynamic because 
they depend on the strength of synapses wp,i. Therefore, they are recalculated every time the 
synaptic weights are changed by Hebbian learning. A model projection neuronʼs activation 
remains constant and equal to 0 until the sum of all its inputs stays below θp. This corresponds to 
the “down” state. When the interneuron inhibition matches the threshold, the neuron reaches the 
“up” state, and any additional input, from either the cortex or interneurons, increases its activation. 

More on Synapses 

Inhibitory synapses were encoded as negative weights, and excitatory synapses were encoded 
as positive weights. While the value of the synaptic change was left free to change according to 
Hebbian learning, no synapse could ever change sign. That is, negative synapses could not rise 
above zero, and positive synapses could not decrease below zero. This reflects the biological fact 
that inhibitory synapses cannot turn excitatory, and vice-versa. The only exception to this rule 
consists in the synapses between cortical neurons and striatal interneurons. The reason for this 
exception is that striatal interneurons represent the net contribution of GABA-ergic and cholinergic 
interneurons.  

Receptive Fields and Representation Compression 

Nuclei in the basal ganglia have increasingly smaller size, which suggests a progressive 
“funneling” of information (Alexander, DeLong, & Strick, 1986). This is an important characteristic 
of the basal ganglia physiology, and needs to be addressed in a realistic model of the circuit. The 
easiest way to model this compression of information is to arrange the synaptic inputs so that a 
neuron from a smaller region receives inputs from many neurons that occupy the same position in 
a larger, input nucleus. Let us suppose that the projecting region has m neuron, and its target 
region contains n neurons (with n < m). If we indicate with j a neuron in the projecting region, and 
with i a neuron in the target region, then the synaptic weight wi,j is given by: 

 

 wi,j  = G (i – j × (n / m), σ) 

 



where G(x, σ) is a Gaussian (normal) function with mean 0 and standard deviation σ. In the 
expression, the term n/m is used to the express the position of the neuron j within a range 
between 0 and n. This way, the relative positions of neurons i and j in the two regions can be 
compared. The term i – j × (n / m) can be read as the difference between the two relative 
positions. When this difference is zero, j is at the center of iʼs receptive field. Figure A2 illustrates 
the shape of such receptive field in the case of projections from the cortex (m = 100) to the 
striatum (n = 10. This m/n ratio is actually close to the ratio of cortical projection neurons to 
striatal projection neurons, as estimated by Zheng and Wilson, 2002). In the model, similar 
functions are used to model connections between all nuclei, which usually differ in size. Notice 
that synaptic weights depend only on m and n and the free parameter σ. In the model, σ = ½ 
across all projections. The only exception was the striatal projections from interneurons to output 
neurons, where σ = n/2. This created an almost uniform inhibitory pressure.  

 

 
 

Figure A2: A visual rendition of the Gaussian striatal receptive fields used in the model. In this 
Figure, ten striatal units receive inputs from 100 cortical units. Their receptive fields are shown as 
bell curves of different colors in the figure. They are shaped in such a way that each striatal unit is 
maximally sensitive to those cortical neurons that occupy a similar position in the cortical regions. 
This way, cortical topology is maintained within striatal subdivision. 
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