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Abstract 

This research has focused on the development, demonstration, and characterization of a new type 

of laser based on optically-pumped gases contained within hollow optical fibers.  These novel 

lasers are appealing for a variety of applications including frequency metrology in the mid-

infrared, free-space communications and imaging, and defense applications. Furthermore, 

because of the hollow core fibers used, this technology may provide the means to surpass the 

theoretical limits of output power available from high power solid-core fiber laser systems.  Gas-

filled hollow-core fiber lasers based on population inversion from acetylene (12C2H2) and 

hydrogen cyanide (HCN) gas contained within the core of a kagome-structured hollow-core 

photonic crystal fiber have now been demonstrated. The gases are optically pumped via first 

order rotational-vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built 

optical parametric amplifier. Narrow-band laser emission peaks in the 3-μm region 

corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped 

vibrational overtone modes and the fundamental C-H stretching modes have been observed in 

both molecules. High gain resulting from tight confinement of the pump and laser light together 

with the active gas permits these lasers to operate in a single pass configuration, without the use 

of any external resonator structure. Studies of the generated mid-infrared pulse energy, threshold 

energy, and slope efficiency as functions of the launched pump pulse energy and gas pressure 

have been performed and show an optimum condition where the maximum laser pulse energy is 

achieved for a given fiber length. The laser pulse shape and the laser-to-pump pulse delay have 

been observed to change with varying pump pulse energy and gas pressure, resulting from the 

necessary population inversion being created in the gases at a specific fiber length dependent on 

the launched pulse energy. Work is on going to demonstrate the first continuous wave version of 

the laser which may be used to produce a single coherent output from many mutually incoherent 

pump sources. 

 

  



  

 
REALIZING A MID-INFRARED OPTICALLY PUMPED MOLECULAR GAS LASER 

INSIDE HOLLOW-CORE PHOTONIC CRYSTAL FIBER 
 
 

by 
 
 

ANDREW MICHAEL JONES 
 
 
 

B.S., Kansas State University, 2006 
 
 

A DISSERTATION 
 

submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Department of Physics 
College of Arts and Sciences 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2012 
 
 
 

Approved by: 
 

Major Professor 
Dr. Kristan L. Corwin 

  



  

Copyright 

ANDREW MICHAEL JONES 

2012 

 

  



vi 

 

 

Table of Contents 

List of Figures .............................................................................................................................. viii 

List of Tables ................................................................................................................................ xx 

Acknowledgements ...................................................................................................................... xxi 

Dedication ................................................................................................................................... xxii 

Chapter 1 - Introduction and Motivation ........................................................................................ 1 

1.1 Introduction ........................................................................................................................... 1 

1.2 Thesis Outline ....................................................................................................................... 4 

Chapter 2 - Molecular Physics of C2H2 and HCN .......................................................................... 7 

2.1 Introduction ........................................................................................................................... 7 

2.2 Molecular Energy States ....................................................................................................... 7 

Chapter 3 - Nonlinear Wavelength Conversion ............................................................................ 16 

3.1 Introduction ......................................................................................................................... 16 

3.2 Optical Parametric Oscillators and Amplifiers ................................................................... 18 

3.2.1 Optical Parametric Amplification ................................................................................ 18 

3.2.2 Optical Parametric Oscillation ..................................................................................... 28 

Chapter 4 - Hollow-Core Photonic Crystal Fibers ........................................................................ 29 

4.1 Introduction ......................................................................................................................... 29 

4.2 Measurements of Mid-Infrared Fiber Loss in Hollow Fibers ............................................. 30 

4.2.1 7-Cell, 3-Ring, 18.75-μm Pitch Kagome-Structured HC-PCF .................................... 39 

4.2.2 7-Cell, 3-Ring, 20-μm Pitch Kagome-Structured HC-PCF ......................................... 40 

4.2.3 7-Cell, 3-Ring, 22.5-μm Pitch Kagome-Structured HC-PCF ...................................... 42 

4.2.4 7-Cell, 3-Ring, 31.25-μm Pitch Kagome-Structured HC-PCF .................................... 44 

4.2.5 1-Cell, 1-Ring, 32-μm Pitch Hypocycloidal HC-PCF ................................................. 46 

4.2.6 1-Cell, 1-Ring, 42-μm Pitch Hypocycloidal HC-PCF ................................................. 48 

Chapter 5 - Lasers Based on Population Inversion from Gas-Filled Hollow Core Fibers: Initial 

Results .................................................................................................................................... 53 

5.1 Introduction ......................................................................................................................... 53 

5.2 First Demonstrations of C2H2 and HCN-Filled Fiber Lasers ............................................. 53 



vii 

 

5.2.1 Quantitative Study of Laser Optical Properties ........................................................... 66 

5.2.2 Experimental Results in Acetylene .............................................................................. 76 

5.2.3 Experimental Results in HCN ...................................................................................... 80 

5.3 Numerical Simulations of OPO-Pumped Laser Performance ............................................ 84 

Chapter 6 - Lasers Based on Population Inversion from Gas-Filled Hollow Core Fibers: High 

Efficiency ............................................................................................................................... 87 

6.1 Introduction ......................................................................................................................... 87 

6.2 Experimental Setup ............................................................................................................. 88 

6.3 Experimental Results: Acetylene ........................................................................................ 92 

6.4 Experimental Results: HCN .............................................................................................. 102 

6.5 Numerical Simulations of OPA-Pumped Laser ................................................................ 105 

Chapter 7 - Continuous Wave Small Quantum Defect Lasers ................................................... 111 

7.1 Introduction ....................................................................................................................... 111 

7.2 High Power 1.5-μm Wavelength Continuous Wave Pump Source .................................. 113 

7.3 Gas-Filled Fiber Laser Resonator Designs for Small Quantum Defect Lasing ................ 116 

7.3.1 Introduction ................................................................................................................ 116 

7.3.2 Gas-Filled Fiber Laser Resonators Based on Polarization Optics ............................. 118 

7.3.3 Gas-Filled Fiber Laser Resonators Based on Dichroic Optics .................................. 124 

Chapter 8 - Summary and Outlook ............................................................................................. 132 

References ................................................................................................................................... 135 

Publications ................................................................................................................................. 139 

Appendix A – Mathematica Code to Calculate Temperature-Dependent Quasi-Phase-Matched 

Signal and Idler Wavelengths in MgO:PPLN ..................................................................... 141 

Appendix B – Optical Parametric Amplifier Simulation Code .................................................. 142 

Appendix C – Single-Pressure Data Plots .................................................................................. 144 

Appendix D – Pulsed Gas-Filled Hollow-Core Fiber Laser Simulation Code ........................... 150 

Appendix E – MATLAB Program to Process Oscilloscope Data .............................................. 155 

 

  



viii 

 

List of Figures 

Figure 2.1 Diagram illustrating basic vibrational and rotational motions of a diatomic molecule. 8 

Figure 2.2 The normal modes of C2H2 and HCN [36].  The small white-filled circles represent 

hydrogen atoms; the larger, gray-filled circles represent carbon atoms, and the medium 

sized blue-filled circles represent nitrogen atoms.  The relative motions of the atoms 

comprising the molecules are indicated by the black arrows (not to scale) above or below 

each atom.  The label ν1 – ν5, corresponding to each normal mode, is shown at the upper left 

of the molecules. ..................................................................................................................... 9 

Figure 2.3 Absorption spectrum of 12C2H2 molecules contained in a 5-cm long gas cell showing 

the R and P-branch transitions between the vibrational ground state and the ν1 + ν3 

vibrational state.  Reproduced from Reference [40]. ............................................................ 13 

Figure 3.1 Schematic of various three-wave mixing processes including sum and difference 

frequency generation, optical parametric amplification, and second harmonic generation. . 16 

Figure 3.2 Setup for the OPA used as the source of tunable 1.5-μm wavelength pulses to pump 

the gas-filled HC-PCF lasers. ............................................................................................... 19 

Figure 3.3 The power in the unobstructed signal beam as a function of knife edge position 

measured just after the MgO:PPLN.  The measured data is shown in blue.  The red data 

points are fit to the measured data using Eq. 3.4 which assumes a Gaussian beam profile. 21 

Figure 3.4 Quasi-phase-matched signal and idler wavelengths from a MgO:PPLN crystal as a 

function of crystal temperature and poling period.  The two idler wavelengths measured 

near 50 °C using the 31.0 μm poling period are just 6-nm longer than the calculated values.

 ............................................................................................................................................... 26 

Figure 3.5 Predicted signal pulse energies produced from the OPA calculated by numerically 

integrating Eqs. 3.8a-c (dashed lines) and using the SNLO program (solid lines) for various 

CW input signal powers.  The nonlinear material is assumed to be a 50-mm long PPLN 

crystal with ideal quasi-phase-matching. .............................................................................. 27 

Figure 3.6 Singly resonant optical parametric oscillator employing a ring cavity resonant at the 

signal wavelength for optical feedback and angle tuning to achieve phase matching. ......... 28 

Figure 4.1 Spectrum of the idler-wavelength pulses emitted from the unseeded OPA.  The 

spectral bandwidth in the 3-μm wavelength region is ~ 10 nm (FWHM). ........................... 32 



ix 

 

Figure 4.2 Setup used to perform cut-back measurements on HC-PCFs at mid-IR wavelengths.  

Idler pulses transmitted through the fiber are observed using a high-sensitivity TEC-cooled 

HgCdTe photodetector.  The signal measured after the fiber is used in conjunction with the 

signal measured from the room-temperature HgCdTe detector before the fiber to remove 

effects from fluctuations in the idler pulse energies from the OPA...................................... 33 

Figure 4.3 Simplified schematic of the typical measurement process for performing two cut-back 

measurements.  The signals ܵ, ܵ, ܵᇱ, and ܵᇱ are the ratio of the voltage amplitudes from 

the pulse transmitted through the fiber to that of the incident pulse.  The primes indicate that 

the combination of neutral density filters at the fibers input may have changed from the 

combination used when the unprimed signals were measured. ............................................ 37 

Figure 4.4 7-Cell, 3-Ring, 18.75-μm pitch kagome-structured HC-PCF (a) cross section and (b) 

near IR loss spectrum.  Both the image and the loss spectrum were taken at the University 

of Bath by collaborators and are reproduced from Ref [52]. ................................................ 39 

Figure 4.5 Mid-IR fiber loss from a 7-Cell, 3-Ring, 18.75-μm pitch kagome-structured HC-PCF.  

Only one cut-back was performed.  The initial fiber length was ~ 2 m, and the length of 

fiber cut was 47.6 ± 0.1 cm.  This image is reproduced from Ref [34]. ............................... 40 

Figure 4.6 7-Cell, 3-Ring, 20-μm pitch kagome-structured HC-PCF (a) cross section and (b) near 

IR loss spectrum.  Both the image and the loss spectrum were taken at the University of 

Bath by collaborators and are reproduced from Ref [52]. .................................................... 41 

Figure 4.7 Mid-IR fiber loss from a 7-Cell, 3-Ring, 20-μm pitch kagome-structured HC-PCF.  

The fiber loss data shown in blue and red correspond to measurements from the individual 

cut-backs.  The average fiber loss is shown in green.  The initial fiber length was ~ 10 m, 

and the lengths of fiber cut were 76.5 ± 0.1 cm (blue data) and 1.773 m ± 0.1 cm (red data).

 ............................................................................................................................................... 42 

Figure 4.8 7-Cell, 3-Ring, 22.5-μm pitch kagome-structured HC-PCF (a) cross section and (b) 

near IR loss spectrum.  Both the image and the loss spectrum were taken at the University 

of Bath by collaborators and are reproduced from Ref [52]. ................................................ 43 

Figure 4.9 Mid-IR fiber loss from a 7-Cell, 3-Ring, 22.5-μm pitch kagome-structured HC-PCF.  

The fiber loss data shown in blue and red corresponding to measurements from the 

individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length was 



x 

 

~ 10 m, and the lengths of fiber cut were 83.4 ± 0.1 cm (blue data) and 60.5  ± 0.1 cm (red 

data). ...................................................................................................................................... 44 

Figure 4.10 7-Cell, 3-Ring, 31.25-μm pitch kagome-structured HC-PCF (a) cross section and (b) 

near IR loss spectrum.  Both the image and the loss spectrum were taken at the University 

of Bath by collaborators and are reproduced from Ref [52]. ................................................ 45 

Figure 4.11 Mid-IR fiber loss from a 7-Cell, 3-Ring, 31.25-μm pitch kagome-structured HC-

PCF.  The fiber loss data shown in blue and red corresponding to measurements from the 

individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length was 

~ 10 m, and the lengths of fiber cut were 1.136 m ± 0.1 cm (blue data) and 46.1 ± 0.1 cm 

(red data). .............................................................................................................................. 46 

Figure 4.12 1-Cell, 1-Ring, 32-μm pitch hypocycloidal HC-PCF cross section.  The optical 

microscope image was taken at the University of Bath by collaborators and is reproduced 

from Ref [52]. ....................................................................................................................... 47 

Figure 4.13 Mid-IR fiber loss from a 1-Cell, 1-Ring, 32-μm pitch hypocycloidal HC-PCF.  The 

fiber loss data shown in blue and red correspond to measurements from the individual cut-

backs.  The average fiber loss is shown in green.  The initial fiber length was ~ 3 m, and the 

lengths of fiber cut were 75.0 ± 0.1 cm (blue data) and 1.06 m ± 0.1 cm (red data). ........... 48 

Figure 4.14 1-Cell, 1-Ring, 42-μm pitch hypocycloidal HC-PCF (a) cross section and (b) near IR 

loss spectrum.  Both the optical microscope image and the loss spectrum were taken at the 

University of Bath by collaborators and are reproduced from Ref [52]. .............................. 49 

Figure 4.15 Mid-IR fiber loss from a 1-Cell, 1-Ring, 42-μm pitch hypocycloidal HC-PCF.  The 

fiber loss data shown in blue and red corresponding to measurements from the individual 

cut-backs.  The average fiber loss is shown in green.  The initial fiber length was ~ 5 m, and 

the lengths of fiber cut were 80.2 ± 0.1 cm (blue data) and 2.017 m ± 0.1 cm (red data). ... 50 

Figure 4.16 Setup used to observe mid-IR mode profile from a 42-μm pitch hypocycloidal HC-

PCF.  Light at 3.3 μm is generated by mixing 1555 nm and 1053 nm light in a fiber-coupled 

ridge waveguide PPLN crystal.  The mid-IR output is coupled from the fluoride-doped 

output fiber to free space and then into the hypocycloidal fiber using CaF2 optics.  The 

mode from the hypocycloidal fiber is imaged directly from the fiber’s end using an IRC191 

thermal camera, employing a liquid-nitrogen cooled, 20-μm pitch 640 x 512 pixel InSb 

focal plane array. ................................................................................................................... 51 



xi 

 

Figure 4.17 Mid-IR mode profile from a 42-μm pitch hypocycloidal HC-PCF.  The shape of the 

profile is not seen to noticeably change when the coupling into the fiber is widely adjusted.

 ............................................................................................................................................... 52 

Figure 5.1 Experimental setup for OPO-pumped gas-filled hollow-core fiber laser.  Pulses from 

an optical parametric oscillator (shown in blue) with center wavelengths of ~ 1.5 μm and 5-

ns duration are coupled into a kagome-structured HC-PCF containing low pressure 

(< 20 torr) acetylene gas.  Pump radiation excites overtone vibrations in the gas which relax 

to fundamental ro-vibrational states while undergoing stimulated emission, producing mid-

IR wavelength laser pulses (shown in green).  Unabsorbed pump light transmitted through 

the fiber is detected using a fast InGaAs detector.  Laser energy is filtered from pump 

energy by a polished germanium wafer and detected by a fast, room-temperature HgCdTe 

photovoltaic detector.  Inset: Close-up partial cutaway showing a fiber end suspended inside 

a vacuum chamber. ............................................................................................................... 54 

Figure 5.2 External transmission of (a) BK7 glass, (b) CaF2, and (c) Germanium substrates of 

various thicknesses.  The transmission values shown here include losses from Fresnel 

reflections from the surfaces of the polished substrates.  Reproduced from Ref [54]. ......... 55 

Figure 5.3 Kagome-structured HC-PCF fiber cross section, guided mode profiles, and loss 

spectrum and group velocity.  (a) Scanning electron microscope image of the cross section 

of the fiber used in the experiment.  The diameter of the hollow core varies from 42.4 – 

48.3 μm.  The fiber pitch is ~ 23 μm, and the typical strut thickness is ~ 0.4 μm.  Calculated 

core mode profiles at (b) 1.52 μm and (c) 3.12 μm.  (d) Wavelength dependence of the 

measured (black circles) and calculated (orange) fiber loss along with the calculated group 

velocity (red).  Figure reproduced from Ref [33]. ................................................................ 56 

Figure 5.4 Spectrum and energy level diagram from the acetylene-filled HC-PCF laser.  (a) The 

laser spectrum was taken at gas pressures of 7.0, 20, and 50 torr using a grating 

spectrometer with ~ 1 nm resolution.  While the relative energy density of the spectral 

features changes with pressure, no spectral shifts or additional features are observed.  The 

two peaks correspond to transitions from the J = 8, ν1 + ν3 excited state to the J = 7 and J = 

9, ν1 state, corresponding to wavelengths of 3123.2 nm and 3162.4 nm, respectively.  (b) An 

energy level diagram showing the pertinent ro-vibrational transitions in the acetylene 

molecules.  The dotted line represents potentially unobserved relaxation pathways. .......... 58 



xii 

 

Figure 5.5 Far-field mid-IR laser beam profile. The profile is taken by measuring the optical 

power in the collimated mid-IR laser beam transmitted through a 750-μm diameter circular 

aperture as the aperture is scanned transverse to the beam.  This data was taken by 

collaborators at the University of New Mexico.  Figure reproduced from Ref [33]. ........... 59 

Figure 5.6 Measured dependence of maximum laser pulse energy (black) and pump-to-laser 

pulse delay (red) on gas pressure from a 12C2H2-filled 23-μm pitch kagome-structured HC-

PCF.  The maximum laser pulse energy increases with gas pressure until it peaks at ~ 6 nJ at 

7 torr.  The peak-to-peak delay between the transmitted pump pulse and the mid-IR laser 

pulse is seen to decrease from ~ 5 ns at ~ 0.5 torr to ~ 1 ns at higher pressures.  The pump 

pulse energy launched into the 1.65 m long fiber was about 1 μJ. ....................................... 61 

Figure 5.7 OPO pump pulse energy transmitted through the C2H2-filled 23-μm pitch kagome-

structure HC-PCF as a function of incident pump pulse energy for various gas pressures.  

The ratio of incident to transmitted pump pulse energy is expected to decrease 

monotonically as the gas pressure is increased in the absence of changes in source-to-fiber 

coupling and center wavelength instabilities. ....................................................................... 62 

Figure 5.8 Gas-filled fiber laser setup using OPA as pump source.  Gas is contained inside the 

HC-PCF.  Pump pulses from an OPA are coupled into the fiber through one end while the 

generated mid-IR light and any unabsorbed pump light are coupled out of the opposite end 

of the fiber.  Mid-IR light passes through a 2-mm thick, un-coated germanium filter at 45° 

incidence and is focused onto a HgCdTe detector.  A large portion of the unabsorbed pump 

light is reflected from the angled germanium filter and sent to a fiber coupled, 25-GHz 

InGaAs photodetector. .......................................................................................................... 63 

Figure 5.9 Single-shot oscilloscope trace showing non-resonant incident and transmitted pump 

pulse detected using a single 25-GHz InGaAs photodetector.  A small fraction of the 

incident pump pulse is detected first, followed ~ 7 ns later by the pulse transmitted through 

the hollow-core kagome fiber.  The pulses are seen to be ~ 1 ns in duration. ...................... 65 

Figure 5.10 Simplified gas-filled fiber laser diagram showing where pulse energies and 

photodetector signals are measured.  ܸ and ܸ௨௧ are the photodetector signals measured 

for the incident and transmitted pump pulses, respectively, using a 25 GHz InGaAs 

photodetector.  ܸ௦ is the photodetector signal measured for the generated laser pulse using 



xiii 

 

a HgCdTe photodetector.  The energy measurements for both the incident and transmitted 

pump pulses are made using a pyroelectric energy sensor. .................................................. 66 

Figure 5.11 Diagram showing Fresnel reflection of light at interface of two materials having 

different indices of refraction.  Reproduce from Ref [58]. ................................................... 68 

Figure 5.12 Polarization and angular dependence of Fresnel reflections from an air-CaF2 (left) 

and air-germanium (right) interface. ..................................................................................... 68 

Figure 5.13 Data and linear fits of the pump pulse energy as a function of the integrated voltage 

signal recorded before the fiber both on (blue) and off (red) resonance, and plot showing 

measured pump pulse energy before the fiber on and off resonance.  While the integrated 

voltage signal is seen to change by ~ 10% in moving from on resonance to off, this change 

is well quantified and can be accurately accounted for. ....................................................... 71 

Figure 5.14 Total pulse energy measured after the fiber as a function of the integrated voltage 

signal from the transmitted pump pulse both on- (blue) and off- (red) resonance.  The slope 

of the line fit through the off-resonance data gives the integrated voltage to energy 

calibration factor.  Since the integrated voltage signal is only sensitive to the transmitted 

pump light, the on-resonance pulse energy after the fiber is observed to be higher than the 

off-resonance pulse energy due to the additional mid-IR laser pulse energy being measured.  

The slope of the on-resonance data provides an estimate of the upper limit to the error 

introduced by using the off-resonance calibration factor with the integrated voltage signals 

measured on-resonance after the fiber. ................................................................................. 74 

Figure 5.15 Plot of the integrated voltage signal measured before the fiber off-resonance versus 

that measured on-resonance.  The slope of the fit line differs from unity indicating that the 

amount of signal observed by the photodetector varies over the ~ 2 GHz tuning range of the 

pump wavelength used to move between on and off resonance. .......................................... 75 

Figure 5.16 (a) OPA-pumped C2H2–filled fiber laser spectrum and (b) the molecular energy level 

diagram showing the relevant transitions.  The laser was pumped on the P(13) transition 

between the vibrational ground state and the ν1 + ν3 vibrational state.  Two peaks are 

observed in the laser spectrum, corresponding closely with the R(11) and P(13) transitions 

at 3114.6 and 3172.4 nm between the excited state and the ν1 vibrational state [37].  The 

monochrometer’s entrance and exit slit widths were 150 μm.  Figure adapted from Ref [60].

 ............................................................................................................................................... 76 



xiv 

 

Figure 5.17 Mid-IR laser pulse energy versus absorbed pump pulse energy for various pressures 

of C2H2 gas contained within a 45-μm core diameter, 23-μm pitch kagome-structured HC-

PCF.  Plots showing each pressure individually are shown in Appendix C. ........................ 78 

Figure 5.18 The observed peak-to-peak delay between the absorption-free transmitted pump 

pulse and the generated mid-IR laser pulse as a function of the laser pulse energy at various 

acetylene pressures.  Plots showing each pressure individually are shown in Appendix C. 79 

Figure 5.19 Setup for synthesis of HCN gas.  The gas is produced by reacting melted stearic acid 

(CH3(CH2)16CO2H) and KCN salt.  The HCN gas produced is dried using phosphorus 

pentoxide and frozen out into a stainless steel sample bottle using liquid nitrogen.  Image 

provided by Professor Chris Levy. ....................................................................................... 81 

Figure 5.20 HCN-filled kagome-structured HC-PCF laser spectrum together with an energy level 

diagram showing relevant transitions.  The laser was pumped via the P(10) transition 

between the vibrational ground state and the 2ν3 vibrational state at a wavelength of 1541.27 

nm [38].  The observed peaks correspond well with the R(8) and P(10) transitions from the 

excited state to the ν3 vibrational state at a wavelengths of 3092.55 and 3146.81 nm 

respectively [38].  Reproduced from Ref [60]. ..................................................................... 82 

Figure 5.21 Laser pulse energy as a function of absorbed pump pulse energy for a 23-μm pitch 

kagome-structured HC-PCF filled with 18.8 torr of HCN gas.  Increasing or decreasing the 

pressure by more than ~ 1 torr caused laser signal to drop below the detection threshold.  

Curve shown includes 3-point adjacent averaging of raw data points. ................................. 83 

Figure 5.22 Experimental and calculated laser pulse energy dependence on pump energy and 

fiber length. Laser pulse energy (a) measured and (b) calculated for various levels of pump 

pulse energy coupled into a 0.9 m long fiber containing 12C2H2 at pressures of 2.5 and 7 

torr. (c) The calculated laser (green curves) and pump (blue curves) pulse energies at 

different positions along the fiber length containing 7 torr of 12C2H2 gas for two different 

launched pump pulse energies; the laser energy is multiplied by a factor of 50. (d-f) The 

calculated temporal profiles of the laser (green), and transmitted pump (blue) pulses along 

with the launched pump (gray) pulse at several positions along the fiber, where the laser 

power is scaled up by a factor of 5.5.  Figure reproduced from Ref [33]. ............................ 86 

Figure 6.1 Measured loss spectrum of the kagome-structured HC-PCF used in the laser.  The 

pump wavelengths are contained within the blue line near 1.5 μm, and the mid-IR laser 



xv 

 

wavelengths are contained within the red line just beyond 3 μm.  Inset: SEM image of the 

fiber end.  The fiber is seen to have a pitch of 18.75 μm and a core diameter of 85 – 94 μm.  

Figure adapted from ref [34]. ................................................................................................ 87 

Figure 6.2 Efficient gas-filled HC-PCF laser setup.  C2H2 or HCN gas is contained inside the 

HC-PCF.  Pump pulses from an OPA are coupled into the fiber through one end while the 

generated mid-IR light and any unabsorbed pump light are coupled out of the opposite end 

of the fiber.  Mid-IR light passes through a 2-mm thick, AR-coated germanium filter at 

normal incidence and is focused onto a HgCdTe detector.  A fraction of the unabsorbed 

pump light is picked off from the main beam using an angled CaF2 window and sent to a 

fiber coupled, 25-GHz InGaAs photodetector. ..................................................................... 89 

Figure 6.3 The measured transmission data of the AR-coated germanium filter and the typical 

transmission of the filter from the manufacturer.  (a) The measured 3478-nm wavelength 

pulse energy emitted from the OPA without the filter present is shown in the green regions 

while the pulse energy measured with the filter present is shown in the red region.  (b) The 

typical transmission through the filter is seen to be ~ 96% to 99% in the region between 3.0 

and 3.5 μm.  A typical transmission curve for an AR-coated filter of this type is reproduced 

from ref [64]. ......................................................................................................................... 91 

Figure 6.4 Energy calibration curve for the room-temperature HgCdTe photodetector measured 

using P(13)-pumped C2H2-filled 1.46-m long kagome HC-PCF laser output. ..................... 92 

Figure 6.5 (a) Measured spectra of the mid-IR laser output taken at different acetylene pressures 

and (b) an energy level diagram showing the relevant ro-vibrational transitions.  While the 

total laser pulse energy which is proportional to the total area under the curve is seen to 

reach a maximum at a pressure of 20 torr, the distribution of energy between the two 

spectral components is not seen to change much.  Figure adapted from ref [34]. ................ 93 

Figure 6.6 Plot of the measured mid-IR laser pulse energy as a function of absorbed pump pulse 

energy for a 1.46-m long, 18.75-μm pitch kagome-structured HC-PCF filled with various 

pressures of C2H2 gas.  Plots of each pressure individually are shown in Appendix C.  

Reproduced from ref [34]. .................................................................................................... 94 

Figure 6.7 The observed peak-to-peak delay between the generated mid-IR laser pulse and the 

absorption-free transmitted pump pulse as a function of the absorbed pump pulse energy at 

various acetylene pressures.  The striation in the delays at low absorbed pump energies and 



xvi 

 

low pressure is due to multiple peak in the laser pulse.  Plots of each pressure individually 

are shown in Appendix C.  Figure adapted from Ref [34]. ................................................... 98 

Figure 6.8 Measured spectrum of the acetylene-filled 45-cm long kagome-structured HC-PCF 

laser output taken at a pressure of 30 torr.  Two spectral peaks are observed, corresponding 

to the R(11) and P(13) transitions between the ν1 + ν3 excited state and the ν1 terminal laser 

state, at wavelengths of 3114.6 and 3172.4 nm respectively.  Unlike the spectra taken from 

the 1.46-m long acetylene-filled fiber, the longer wavelength P-branch transition is seen to 

be favored here over the shorter wavelength R-branch transition. ....................................... 99 

Figure 6.9 Laser pulse energy as a function of absorbed pump pulse energy for the 45-cm long, 

18.75-μm pitch kagome-structured HC-PCF filled with 30 torr of C2H2 gas.  The shape of 

the data is seen to very closely mimic that observed under the same conditions in the 1.46-m 

long fiber of the same pitch. ............................................................................................... 100 

Figure 6.11 (a) Spectrum of the mid-IR laser pulses created in a 45-cm long kagome-structured 

HC-PCF filled with 11.6 torr of HCN gas.  The horizontal dashed red line indicates the 

limitation imposed by the instrument’s sensitivity.  (b) An energy level diagram showing 

the relevant ro-vibrational transitions.  Adapted from Ref [34]. ........................................ 102 

Figure 6.12 Maximum laser pulse energy as a function of absorbed pump pulse energy for 

various pressures of HCN gas contained within a 45-cm long kagome-structured HC-PCF.  

Reproduced from Ref [34]. ................................................................................................. 103 

Figure 6.13 Four-level energy level diagram used to model gas-filled hollow-core fiber laser.  

State |1ۄ is the ground state.  State |2ۄ is the pumped excited state.  States |3ۄ and |4ۄ 

represent the two terminal laser states, which do not couple directly to the ground state. . 105 

Figure 6.14 Geometry used to model four-level gas-filled hollow-core fiber laser system.  The 

fiber is divided into small segments, each of length ݀ݖ, equal to ~ 1 cm or less.  The 

Gaussian pump pulse is divided into time incremenets of ݀ݐ ൌ  where ܿ is the speed of ,ܿ/ݖ݀

light.  The pump pulse is then stepped through the individual fiber segments in time 

increments steps of ݀106 ........................................................................................................ .ݐ 

Figure 6.15 Calculated laser pulse energy as a function of absorbed pump pulse energy for a 

1.46-m long fiber filled with various pressures of acetylene gas.  The linear fiber loss is 

equal to 0.1 dB/m at the pump wavelength and 5 dB/m at the mid-IR laser wavelengths. 110 



xvii 

 

Figure 7.1 Energy level diagram illustrating the process of coherence generation with a small 

quantum defect laser.  Pump transitions are indicated by the blue arrows pointing upwards 

while the laser transitions are indicated by the green arrows pointing downward and only 

occur between dipole-allowed transitions where population inversions exist.  The rotational 

state population in each vibrational state follows a Boltzmann distribution (indicated by the 

gray dashed lines) owing to fast thermalization from collisions between molecules in the 

various rotational levels. ..................................................................................................... 112 

Figure 7.2 Diagram illustrating the use of a doped double clad fiber in a cladding pumped high-

power laser architecture.  A high-power, low brightness pump is coupled into the un-doped 

inner cladding of the fiber.  This pump light overlaps the doped single mode core region, 

allowing amplification of light propagating in the guided mode.  Bragg reflectors are not 

present in the fibers used for amplification only.  Image reproduced from Ref [69]. ........ 113 

Figure 7.3 Electronic energy level diagram for the coupled Er3+ and Yb3+ ions used in the co-

doped double clad fiber.  The amplifier system is pumped via the 2F7/2 → 2F5/2 transition in 

Yb3+ at wavelengths of 800 – 1100 nm.  Population relaxation between these same two 

states causes a resonant excitation from the 4I15/2 state to the 4I11/2 state in nearby Er3+ ions.  

Population then quickly relaxes from the 4I11/2 state to the 4I13/2 state, where stimulated 

transitions back to the 4I15/2 ground state amplify the signal wavelength in the 1.5-μm 

region.  This image is reproduced from Ref [70]. ............................................................... 115 

Figure 7.4 Block diagram of the Er/Yb co-doped double clad fiber amplifier built by Precision 

Photonics Corporation for use pumping a small quantum defect laser in the 1.5-μm 

wavelength region.  The amplifier has a low-power preamplifier stage and a high-power 

power amplifier stage capable of producing a maximum output power of 2 W. ................ 116 

Figure 7.5 An SEM image of the cross section (left image) and a plot (right image) of the 

attenuation (black curve) and D-parameter (red curve) for the 10-μm core diameter PBGF 

from Crystal Fibre.  Figures reproduced from Ref [71]. ..................................................... 117 

Figure 7.6 Initial setup for C2H2-filled PBGF small quantum defect laser using a polarized 

cavity.  Acetylene gas is contained in the 10-μm diameter hollow core of a ~ 1.5-m long 

PBGF.  The laser cavity is formed by the gold-coated fiber mirror connected to the 

polarizing beam combiner and the 99% reflective, plano dielectric mirror which functions as 

the laser output coupler.  Pump light is polarized orthogonal to the polarization that the 



xviii 

 

cavity supports and is coupled into the cavity through the polarizing beam combiner.  The 

losses through various components are labeled in the figure.............................................. 118 

Figure 7.7 Setup for fiber-to-free space recoupling loss measurements using SMF and PBGF 

fibers in conjunction with (a) a 25-mm focal length spherical lens and plano mirror or (b) a 

25-mm radius of curvature concave mirror alone.  Light at 1533 nm is injected into SMF or 

PBGF via ports 1 and 2 of the circulator shown.  Retroreflected light is recoupled and sent 

back to port 2 of the circulator where it is transmitted to port 3 and detected using a large 

area Ge photodetector. ........................................................................................................ 121 

Figure 7.8 Setup for C2H2-filled PBGF small quantum defect laser based on a polarized cavity 

employing a free space plate polarizing beam splitter and a curved mirror.  The vacuum 

chambers and fiber holders are shown in cross section.  The orange circles indicate the cross 

sections of the O-rings used to form a gas-tight seal against various components.  The rib 

structure on the right vacuum chamber indicates a bellows which allows the curved mirror 

to be tilted and translated during alignment to the hollow fiber’s end. .............................. 123 

Figure 7.9 Measured transmission spectrum of 1650-nm plano dichroic mirror for use in C2H2-

filled PBGF small quantum defect laser cavity.  The transmission was measured using a 

supercontinuum source and OSA, by comparing the spectrum of the source recorded with 

and without the dichroic mirror present. ............................................................................. 125 

Figure 7.10 Optical setup used to pulse the Er/Yb co-doped double clad fiber amplifier’s 1533-

nm wavelength output.  The CW pump light at 1533 nm is sent through a fiber coupled 

AOM used to form the pulse.  The pump light is combined together with low power 1545-

nm wavelength protection light and sent to the amplifier’s input.  High power 1533-nm 

pulses are generated at the amplifier’s output as shown in Fig. 7.12. ................................ 127 

Figure 7.11 Temporal profiles of the high-power pump light after the amplifier’s output for 

various pulse durations input to the amplifier.  The power is normalized to that measured 

from the amplifier using CW pump light at the input (the maximum CW power from the 

amplifier is ~ 1.8 W at 1533 nm).  The pulse repetition rate is 1 kHz and the pump pulse 

durations range from 30 ns to 100 μs.  The peak power is seen to spike to almost 10 times 

the CW power.  The exponential tail from this spiking leads to FWHM pulse widths of ~ 

200 ns. ................................................................................................................................. 128 



xix 

 

Figure 7.12 Low loss setup for C2H2-filled PBGF small quantum defect laser based on dichroic 

optics.  The cavity consists of two curved mirrors with radii of curvature equal to 25 mm.  

One of the curved cavity mirrors is dichroic, allowing 1.5-μm wavelength pump light to be 

transmitted while reflecting light at wavelengths longer than ~ 1600 nm.  A flat dichroic 

mirror (which is otherwise identical to the curved cavity mirror) is used to separate the 

pump and lasing wavelengths.  Two additional flat dichroic mirrors are used to further filter 

the lasing light before coupling it into SMF for detection. ................................................. 130 

 

  



xx 

 

List of Tables 

Table 2.1 Frequencies of vibrational normal modes of acetylene [37] and HCN [38]. ................ 10 

Table 3.1 Sellmeier coefficients for the temperature-dependent extraordinary index of refraction 

of MgO doped congruently grown LiNbO3 given by Eq. 3.10 (from reference [44]). ......... 23 

Table 4.1 Summary of the wavelengths (in ascending order) used in HC-PCF loss measurements 

along with the corresponding unseeded OPA crystal configuration required. ..................... 35 

Table 4.2 Summary of HC-PCFs received from the Gas-Phase Photonic Materials group at the 

University of Bath and used in mid-IR fiber loss measurements.  All fibers listed were 

received September of 2011. ................................................................................................. 38 

Table 5.1 Summary of laser threshold and efficiency values for various C2H2 gas pressures. .... 78 

Table 5.2 Summary of laser threshold and efficiency values for HCN-filled HC-PCF laser. ...... 84 

Table 6.1 Summary of laser threshold and efficiency values for various C2H2 gas pressures. .... 95 

Table 6.2 Summary of the calculated absorbed pump pulse energies required to saturate the C2H2 

gas at various gas pressures. ................................................................................................. 97 

Table 6.3 Summary of laser threshold and efficiency values for 45-cm long, C2H2-filled HC-PCF 

laser. .................................................................................................................................... 101 

Table 6.4 Summary of the maximum laser pulse energies and the corresponding laser efficiencies 

for 45-cm long, HCN-filled HC-PCF laser. ........................................................................ 104 

Table 7.1 Summary of results from fiber-to-free space recoupling loss measurements using SMF 

and PBGF fibers in conjunction with a 25-mm focal length spherical lens and plano/plano 

mirror or a 25-mm radius of curvature plano/concave mirror alone. .................................. 122 

 

  



xxi 

 

Acknowledgements 

This work was supported by the Air Force Office of Scientific Research (FA9550-08-1-0344 and 

FA9550-10-1-0515), Army Research Office (W911NF-08-C-0106 and W911NF-08-1-0332), 

National Science Foundation (PHY-0722622), Joint Technology Office (W911NF-05-1-0507), 

Engineering and Physical Sciences Research Council (EP/E039162/1), and Precision Photonics 

Corp.  We thank John Zavada for early discussions leading to the initial idea, P.J. Roberts for his 

assistance with the numerical modeling of the fiber, Kayode Oshin and Professor Christopher 

Levy from the Kansas State University Chemistry Department for synthesizing the HCN, Neil 

Campbell for useful discussions, Josh Perkins for preliminary work, and the James R. Macdonald 

Laboratory staff, especially Mike Wells for custom fabricating of the vacuum chamber systems. 

 I would like to thank Dr. Yingying Wang, Dr. Coralie Fourcade Dutin, Dr. François 

Couny, and Dr. Fetah Benabid, head of the Gas-Phase Photonics Materials research group at the 

University of Bath for providing the hollow-core photonic crystal fibers that are central to this 

work. 

I would like to thank Professor Wolfgang Rudolph for his generous support while 

working on the initial demonstrations of the laser in his laboratory at the University of New 

Mexico.  Additionally, I would like to thank Dr. Vasudevan Nampoothiri for useful discussions 

and indispensable technical expertise in the lab during the initial laser demonstrations, whose 

helpful attitude and tireless dedication contributed directly to the project’s success. 

I would like to thank my advisor Professor Kristan Corwin for all of her terrific support 

and guidance, who I feel truly fortunate and honored to have worked with and gotten to know 

these past six years.  I would like to thank Professor Brian Washburn for valuable training as 

well, who generously provided me with laboratory space for this experimental work at Kansas 

State University. 

Finally, I would like to acknowledge my friends, colleagues, and fellow graduate students 

who have provided invaluable support in the form of helpful discussions, moral support, and 

much need sanity checks through social interaction.  A special thanks to my lab mates past and 

present that I am very glad to know and have worked with: Rajesh Kadel, Shun Wu, Chenchen 

Wang, Dr. Jinkang Lim, Dr. Kevin Knabe, Dr. Rajesh Thapa, Dr. Karl Tillman, and Dr. William 

Hageman.  



xxii 

 

Dedication 

This work is dedicated to my family, whose love and support has kept me going throughout my 

graduate career: to my mother, Sheila, and father, Michael, who have always provided me 

encouragement throughout my life, to my wonderful wife, Ashley, who has shared in the joy and 

endured the pain with me throughout these past six years and who has stood with me steadfast 

through it all, and to my son, Solomon, whose smiling face always brings me joy.  Thank you so 

much, and I love you all. 

  



1 

 

Chapter 1 - Introduction and Motivation 

 1.1 Introduction 
Mid-infrared (mid-IR) laser sources operating at wavelengths from 3 – 12 μm have become 

increasingly popular.  A primary reason for this popularity stems from the fact that this retina-

safe region of the spectrum contains several windows of high atmospheric transmission which is 

desirable in a variety of applications such as remote sensing, space-based terrestrial imaging, free 

space communications, and range finding.  Additionally, the fundamental rotational-vibrational 

transitions of many molecules including hazardous pollutants and greenhouse gases like NO and 

NO2, CO and CO2, N2O, and CH4 correspond to mid-IR wavelengths [1].  The transition 

strengths of these fundamental transitions are generally orders of magnitude stronger than 

corresponding overtone transitions that lie at shorter wavelengths within the near infrared or 

visible regions of the spectrum.  Mid-IR sources are then a natural choice for applications 

involving trace gas detection and molecular fingerprinting such as breath analysis and stand-off 

explosives detection. 

 While there exists a strong desire to capitalize on and explore these interesting 

applications unique to mid-IR wavelengths, the source technology in this spectral region is 

somewhat limited.  Color center lasers like those based on lithium defects in KCl and RbCl 

crystals have been used to generate tunable emissions at wavelengths from 2.3 to 3.65 μm at 

continuous-wave (CW) powers up to ~ 1 W [2, 3].  However, the color centers in these crystals 

are susceptible to diffusion and clustering effects which degrade the overall laser performance 

[4].  To mitigate these effects, the crystals often must be cooled to cryogenic temperatures.  This 

tends to limit the usefulness of these lasers, confining them to relatively well controlled 

environments and making them unsuitable for use in many applications requiring field operation. 

 Semiconductor lasers made of IV-VI materials including lead-salt compounds have been 

demonstrated to produce mid-IR emissions in the region from below 3 μm to beyond 20 μm [5].  

Additionally, spectral tuning on the order of 100 nm of the emission wavelength has been 

demonstrated from these lasers in external cavity configurations [3].  These monolithic solid 

state devices use current injection to drive the recombination of electrons and holes across a 

material band gap just like their near IR and visible semiconductor laser counterparts.  The band 

gaps for these IV-VI materials are less than 0.5 eV [5], allowing them to produce light at 
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wavelengths in the mid-IR.  Unfortunately, these materials are relatively soft and exhibit poor 

mechanical strength and poor thermal stability [5, 6].  Furthermore, these lasers are typically 

operated at near cryogenic temperatures, and while CW output powers of ~ 0.5 W have now 

been demonstrated, typical output powers remain fairly low at the milliwatt level [3, 6].  

A particularly clever approach to developing mid-IR semiconductor lasers comes in the 

form of quantum cascade lasers (QCLs).  These lasers use mature semiconductor materials like 

GaAs and InP to fabricate pn-junctions that incorporate energy well structures to effectively 

produce a reduced band gap device [7].  QCLs have emerged as promising mid-IR sources, with 

commercial sources now capable of producing watt-level output powers and broad wavelength 

tuning (e.g. ± 1.2 μm around 11.2 μm [8]).  QCLs have even been integrated with photonic 

crystal resonator structures [9].  QCLs do suffer from a few drawbacks.  While broader spectral 

coverage has been demonstrated, they typically operate from 4-10 μm [7].  Furthermore, they 

continue to have thermal management challenges and can become multi-mode at high powers 

[10].  Additionally, the structures that determine the bad gap are relatively complex, making 

fabrication of the devices relatively complicated and expensive. 

Nonlinear wavelength conversion has also proved itself a very useful means of producing 

mid-IR emissions.  Optical parametric oscillators can be used to generate tunable, narrow-band, 

watt-level CW powers at wavelengths reaching beyond 6 μm [3, 11], and have achieved pump-

to-idler optical-to-optical efficiencies in excess of 30% for mid-IR wavelengths [11].  

Furthermore, difference frequency generation can be used to extend the range of generated 

wavelengths to ~ 28 μm [12].   While these sources are incredibly versatile, the total cost of the 

nonlinear crystals, pump sources, and cavity mirrors typically makes these sources relatively 

expensive in addition to often being somewhat complex to setup, maintain, and operate. 

Optically pumped gas lasers (OPGLs) offer an attractive means of generating mid-IR 

light.  Efficient excitation of the gas can be accomplished using a narrow-band pump laser which 

is resonant with a particular transition in the gas-phase medium.  These lasers can be pumped in 

the near-infrared to produce mid-IR emissions [13-16].  Compared to solid state laser media, 

gases have attractive properties including high damage thresholds, the possibility of heat 

dissipation through gas circulation, relatively large gain cross-sections, and emission frequencies 

that span from the near to far-infrared.  Many OPGLs have been demonstrated, from the earliest 

CH3F [17], CO2 [18], and OCS [19], to alkali vapor [20], CO [13, 14], HBr [15], C2H2 and HCN 
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[16].  Some of these OPGLs can be pumped via rotational-vibrational (ro-vibrational) overtones 

at wavelengths within the telecommunication bands where commercial pump sources (like 

erbium-doped fiber lasers and amplifiers) are well established and readily available. 

OPGLs based on alkali vapors such as rubidium and cesium can be quite efficient, with 

demonstrated slope efficiencies in excess of 50% for both systems [21, 22].  Furthermore, a total 

optical-to-optical efficiency of 63% has been demonstrated [22].  However, the emission 

wavelengths from these lasers only span from 671 – 894 nm and do not come close to reaching 

into the mid-IR.  Fundamental ro-vibrational transitions in molecular gases provide a means to 

generate longer wavelength emissions.  Early work with HBr gas cells pumped via a second-

order ro-vibrational overtone at 1.3 μm has demonstrated lasing at ~ 4 μm with conversion 

efficiencies of ~ 25% [15].  More recently cascade lasing in HBr at wavelengths near 4 μm 

suggests that conversion efficiencies exceeding 50% are possible [23].  The main disadvantage 

that has limited widespread use of OPGLs and gas lasers in general and prevented their 

integration into many practical optical systems is the bulky, fragile packaging necessary to 

achieve long optical path lengths and extract appreciable laser output due to the dilute nature of 

gas media. 

The problem of weak interaction between light and gas has been solved by employing 

gas-filled hollow-core photonic crystal fibers (HC-PCFs).  HC-PCF [24] consists of a hollow, 

air-filled core surrounded by cladding structure which is comprised of a periodic array of smaller 

air holes.  Unlike glass capillaries, these hollow microstructured optical fibers can be used to 

confine gas and light together to areas on the order of 100 μm2 over distances of tens of 

meters [25] with optical attenuations as low as 1.2 dB/km [26].  HC-PCF is also much less 

susceptible to bending losses.  Furthermore, HC-PCFs can be spliced to solid-core fibers to 

create hermetically sealed all-fiber gas cells [27].  These fiber cells can be made more compact 

and robust than conventional gas cells and should lend themselves well to integration with other 

devices.  A variety of nonlinear optical phenomena [28] have been demonstrated using gas-filled 

HC-PCFs including electromagnetically induced transparency (EIT), saturated absorption 

spectroscopy (SAS), solitonic pulse compression, and the development of a Raman laser [29] 

and a multi-octave spanning Raman frequency comb [30], both of which rely on stimulated 

Raman scattering in hydrogen gas to spectrally shift pump power to the Stokes and AntiStokes 

wavelengths. 
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The focus of this work has been to utilize HC-PCF to eliminate the bulky and 

cumbersome packaging typical of OPGLs while capitalizing on the enhanced interaction of light 

and gas provided by these fibers to create a mid-IR source that combines the best of gas and fiber 

laser technologies.  We have now developed, demonstrated, and begun to patent a new class of 

OPGLs based on population inversion in gas-filled HC-PCF [31].  Gases are confined within 

kagome-structured HC-PCFs [32] whose transmission spans several octaves, providing guidance 

at both the near IR pump and mid-IR laser wavelengths.  OPGLs in fiber waveguides offer many 

advantages over traditional gas laser geometries and have fantastic potential to provide a simple, 

compact, and robust means of generating mid-IR light.  Lasers of this type have now been 

demonstrated to produce light near 3 – 3.2 μm when pumped at 1.5 μm [33, 34], offering a 

potentially robust, efficient, and compact means of producing step-tunable eye-safe mid-IR 

radiation well suited to a multitude of applications.  Additionally, gas-filled HC-PCF lasers offer 

a means to outperform comparable solid-core fiber laser systems in terms of maximum 

achievable output powers/pulse energies.  This comes from the fact that the maximum output 

from cladding-pumped single mode fiber lasers is limited at long fiber lengths by the onset of 

nonlinear processes, namely stimulated Brillouin scattering in the case of narrow-band laser 

emissions [35].  The nonlinear processes limiting the performance of solid-core fiber laser 

systems primarily result from interactions of light with the host material in the fiber’s core and 

not the active dopants.  By using gas-filled HC-PCF we effectively remove the all material but 

the active gas from the high intensity region in the central region of the fiber’s core.  The low 

overlap of the guided light with the HC-PCF’s glass structure together with a higher threshold 

for the onset of nonlinear effects in the dilute gas lead us to expect that the maximum achievable 

power from an HC-PCF laser should be an order of magnitude or more higher than that of a 

comparable solid-state fiber laser system. 

 

 1.2 Thesis Outline 
The primary focus of the research described here is the development and characterization of 

optically pumped gas-filled hollow-core fiber lasers based on population inversion which 

produce light at mid-infrared (mid-IR) wavelengths.  In addition to this primary goal, an effort 

was made to try to develop gas-filled hollow-core fiber lasers that could be pumped and made to 
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lase at similar wavelengths in the near infrared with high efficiency.  Such lasers might be scaled 

to high power because they could be pumped with multiple mutually incoherent pump lasers, or 

coherently combined to create the next generation of high power fiber lasers. 

Chapter 2 focuses on the molecular physics associated with the C2H2 and HCN molecules 

we use in the laser system.  A quantitative description of the energies associated with the 

rotational and vibrational motions of these molecules is presented as energies and motions will 

be used later to describe the particular states of the molecular laser systems. 

 Chapter 3 introduces the optical parametric amplifier (OPA) and optical parametric 

oscillator (OPO) used as the pump sources to demonstrate mid-IR lasing from gas-filled hollow-

core fibers.  The concepts of a nonlinear response and three-wave mixing in particular are 

discussed.  The nonlinear processes produced through three-wave mixing are described, with a 

particular focus on parametric amplification.  The parametric amplifier designed and constructed 

here at Kansas State University is discussed in detail, including results from the modeling which 

helped guide the component selection. 

Chapter 4 describes the special microstructured hollow-core photonic crystal fibers (HC-

PCFs) used to contain the molecular gases and guide the pump light together with the generated 

laser light.  The structure and guidance characteristics of both photonic band gap fiber (PBGF) 

and kagome-structured HC-PCF are discussed.  Measurements of the mid-IR fiber loss for 

several kagome fibers of various dimensions are presented, including a relatively new type of 

kagome fiber with a hypocycloid-shaped silica core-cladding interface.  The measured mid-IR 

mode profile is shown for one of these hypocycloidal kagome fibers.  The OPA discussed in 

Chapter 3 is reconfigured and used as a broadly tunable source of mid-IR light for the fiber loss 

measurements, and as such some discussion of the operation and performance of the 

reconfigured OPA is presented. 

Chapter 5 describes initial results from the first gas-filled hollow-core fiber lasers 

demonstrated.  Both an OPO and an OPA were used to pump C2H2 (acetylene) gas molecules 

contained within ~ 1-m lengths of 23-μm pitch single-cell defect kagome-structured HC-PCFs 

with ~ 20 dB/m loss in the mid-IR near the laser wavelengths.  Measurements of the generated 

~ 3-μm wavelength laser pulse energy, spectrum, and pump-to-laser pulse delay are presented, 

along with some general predictions for a model based on coupled rate equations.  Initial 

measurements from an HCN-filled hollow-core fiber laser are also presented.  The procedure for 
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turning the raw measurement data from oscilloscope traces into the generated laser pulse energy 

and the absorbed pump pulse energy is presented in detail. 

Chapter 6 focuses on the most recent and most efficient OPA-pumped mid-IR gas-filled 

hollow-core fiber laser results achieved using a 7-cell defect kagome-structured HC-PCF 

exhibiting a loss of only ~ 5 dB/m near the laser wavelengths.  Again, measurements of the 

generated ~ 3-μm wavelength laser pulse energy, spectrum, and pump-to-laser pulse delay are 

presented, along with some general predictions from the model based on coupled rate equations 

and some discussion of the how the model predictions compare with the measured data. 

Chapter 7 discusses the various attempts to realize a small quantum defect laser that is 

both pumped and made to lase at near infrared wavelengths.  Several laser configurations are 

explored which rely on a CW or long-pulse (pulse durations on the order of tens of nanoseconds 

or more) pump source and optical cavities resonant at the laser wavelengths.  Resonators based 

on both polarization and dichroic optics are described. 

Chapter 8 provides a summary of this thesis work, and discusses some of the unresolved 

issues pertaining to various aspects of this research.  These remaining questions lead to the 

proposal of additional experimental work in gas-filled hollow-core fiber lasers, and some 

discussion of this future work is presented. 
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Chapter 2 - Molecular Physics of C2H2 and HCN 

 2.1 Introduction 
The mid-IR gas-filled fiber lasers demonstrated in this thesis rely on population inversions in 

molecular gases to create gain down the length of the fibers.  The molecules are excited from the 

ground state via first-order vibrational overtone transitions in the near infrared and lase on 

transitions from this pumped state to fundamental vibrational states.  Central to the concept of 

this laser is an understanding of the fundamental modes and energies associated with the 

rotational and vibrational motions of molecules.  This is introduced in the following section. 

 

 2.2 Molecular Energy States 
Molecules are comprised of two or more atoms which are bound to one another through 

electrostatic forces between the positively charged atomic nuclei and the electrons of the 

combined atomic systems.  Stable molecules remain so, because the total energy of the combined 

system is lower than the energy of a partially or totally separated system of atoms.  Just like the 

atoms they are built from, molecules possess discrete energy levels associated with the particular 

configuration of their electrons.  Additionally, molecules have the ability to vibrate and rotate.  

As we are particularly interested in using rotational-vibrational transitions to create lasers, we 

will focus on these motions and assume in all future discussions that the molecules being 

discussed are in the electronic ground state unless explicitly stated otherwise. 

Basic vibrational and rotational motions are illustrated in Fig. 2.1 for a simple diatomic 

molecule.  The spring shown connecting the two nuclei is symbolic, as the vibrations of the 

nuclei can to a reasonable approximation be assumed to follow the motions of simple harmonic 

oscillators about their equilibrium positions.  However, the harmonic motion takes place within a 

set of normal coordinates of the molecular system which in general are not simply one set of 

coordinates describing the relative nuclear displacements, but instead are linear combinations of 

these displacement positions. 
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Figure 2.1 Diagram illustrating basic vibrational and rotational motions of a diatomic 

molecule. 

 

The vibrational frequencies and the corresponding vibrational eigenvectors (called 

normal modes) are determined by assuming that the nuclei will respond as simple harmonic 

oscillators to small perturbations in their equilibrium positions.  The process of solving for the 

normal frequencies and normal modes is described in detail in reference [36]. 

The total energy associated with ݒ quanta of vibration of a single simple harmonic 

oscillator oscillating at a frequency ߥ is given by [36], 

 

ሻݒ௩,ሺܧ  ൌ ߥ݄ ൬ݒ 
1
2൰, ݒ ൌ 0, 1, 2, … 2.1 

 

where ݄ is Planck’s constant.  The total vibrational energy from all the oscillating vibrational 

normal modes is then just the sum of the individual vibrational energies in each mode and is 

given by [36], 

 

,ଵݒ௩ሺܧ  ,ଶݒ … , ሻݒ ൌ ଵߥ݄ ൬ݒଵ 
1
2൰  ଶߥ݄ ൬ݒଶ 

1
2൰  ڮ  ߥ݄ ൬ݒ 

1
2൰ 2.2 

 

 The normal modes of vibration for the C2H2 molecular are shown in Fig 2.2a while the 

normal modes for the HCN molecule are shown in Fig. 2.2b.  The energies associated with the 

xx

yy

zz

Vibration Rotation
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normal modes of the molecules are shown together in Table 2.1.  While both molecules are 

linear, only acetylene is linear and symmetric. 

 

 

 
Figure 2.2 The normal modes of C2H2 and HCN [36].  The small white-filled circles 

represent hydrogen atoms; the larger, gray-filled circles represent carbon atoms, and the 

medium sized blue-filled circles represent nitrogen atoms.  The relative motions of the 

atoms comprising the molecules are indicated by the black arrows (not to scale) above or 

below each atom.  The label ν1 – ν5, corresponding to each normal mode, is shown at the 

upper left of the molecules. 

 

Acetylene is seen to have three stretching modes and two bending modes for a total of 

five vibrational normal modes.  The ν1 and ν3 modes correspond to the symmetric and 

antisymmetric C – H stretch; the ν2 mode corresponds to the C – C symmetric stretch; and the ν4 

and ν5 modes correspond to the symmetric and antisymmetric C – H bends.  The two stretching 

modes are doubly degenerate as two orthogonal bending modes could be created simply by 

rotating the molecule 90° about the internuclear axis. 

Similarly, HCN is seen to have two stretching modes and one bending mode which is 

doubly degenerate.  The ν1 mode corresponds to the C – N stretch; the ν2 mode corresponds to 

C – H bend; and the ν3 mode corresponds the C – H stretch.  Unlike acetylene, none of the 

(a) C2H2

(b) HCN
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normal modes of HCN have a definite symmetry.  This directly related to the fact that all three of 

the atoms comprising the linear molecular have different masses. 

 

Table 2.1 Frequencies of vibrational normal modes of acetylene [37] and HCN [38]. 

Vibrational Normal Mode* Frequency in 12C2H2 (cm-1) Frequency in H12C14N (cm-1) 

ν1 3397.12 2096.85 

ν2 1981.80 711.98 

ν3 3316.86 3311.48 

ν4 608.73 – 

ν5 729.08 – 
*The motions corresponding to each mode designation are shown in Fig. 2.2 and follow the 

convention used in reference [36]. 

 

The energies associated with the rotational motion of linear molecules in their electronic 

ground states are equal to those of a simple rotator (the angular momentum of electrons about the 

internuclear axis is zero for all known linear polyatomic molecules in the ground state [36]).  

Depending on the symmetry of the configuration, for molecules in an excited electronic state the 

rotational problem may need to be analyzed as a standard symmetric top, specifically including 

the moments of inertia of the electrons.  The rotational energy of a linear molecule without any 

vibrational angular momentum is then given by [36], 

 

ሻܬ௧ሺܧ  ൌ ܬሺܬܤ݄ܿ  1ሻ െ ܬଶሺܬܦ݄ܿ  1ሻଶ, ܬ ൌ 0, 1, 2, … 2.3 

 

where ܿ is the speed of light ܤ and ܦ are rotational constants specific to the molecule (the 

subscript “V” indicates that these constants do have a slight vibrational state dependence) and 

related to the moment of inertia about an axis in the plane perpendicular to the internuclear axis 

and containing the center of mass, and ܬ is the rotational quantum number.  The magnitude of the 

angular momentum of the rotating molecule, |۸|, is given in terms of the rotational quantum 

number by, 
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 |۸| ൌ
݄

ߨ2
ඥܬሺܬ  1ሻ 2.4 

 

The first term in Eq. 2.3 is exactly the energy of rigid rotator where the rotational constant ܤ is 

related to the moment of inertia, ܫ, by, 

 

ܤ  ൌ
݄

ܫଶܿߨ8
 2.5 

 

The second term in Eq. 2.3 is generally much smaller than the first term and accounts for the 

apparent centrifugal force which causes the internuclear distance between molecules to increase 

with increasing angular momentum. 

A molecule initially occupying a particular vibrational and rotational state can make a 

transition to other states by absorbing or emitting a light.  However, there are certain restrictions 

regarding what states molecules can transition between.  The rules governing simultaneous 

rotational-vibrational transitions are generally the same as those governing transitions between 

states having the same type of molecular motion. 

The selection rule for transitions between vibrational states are identical to those of a one-

dimensional simple harmonic oscillator [39], namely,  

 

ݒ∆  ൌ േ1 2.6 

 

For molecules which have more than one normal mode, the total vibrational wavefunction for the 

system of independent harmonic oscillators is written as the product of the individual harmonic 

oscillator wavefunctions.  Therefore, there is the additional stipulation that no more than one 

vibrational transition may occur at a time, forbidding simultaneously transitions in the other 

normal modes, i.e., 

 

ஷݒ∆  ൌ 0 2.7 

 

Molecules can absorb or emit light during a vibrational transition only if the dipole moment 

changes during the transition.  Transitions satisfying this condition are said to be infrared active 
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(named such because many of these transitions interact with light at infrared wavelengths).  

Fundamental transitions (transitions which abide by the rules given in Eqs. 2.6 and 2.7) can only 

occur for vibrational modes associated with a non-zero dipole moment. 

The rules given above are strictly true for molecular vibrations which act like ideal 

independent simple harmonic oscillators.  However, real molecules do not strictly behave as 

ideal harmonic oscillators, but instead can show some anharmonicities.  This non-ideal behavior 

loosens the restrictions dictated by Eqs. 2.6 and 2.7, and allows additional transitions in which 

  can change by multiple quanta and simultaneous transitions within different vibrationalݒ∆

modes are permitted.  These transitions are referred to as overtone transitions, and in general 

they are much weaker than the fundamental transitions which obey Eqs. 2.6 and 2.7. 

For pure rotational transitions (no accompanying change in the vibrational state of the 

molecule) the molecule must have a permanent dipole moment and the selection rule is, 

 

ܬ∆  ൌ േ1 . 2.8 

 

This results from the parity and the orthogonality of the spherical harmonics which are the 

rotational state eigenfunctions.  For simultaneous rotational-vibrational transitions, ∆ܬ ൌ 0 is 

also permitted when the vibrational angular momentum, ݈, of either the initial or final state is 

non-zero [36].  Transitions between rotational levels are labeled P(J’), Q(J’) or R(J’), 

corresponding to a change in rotational angular momentum of DJ = –1, 0, or 1, respectively, as 

determined from the state with the lower total energy, having J = J’.  As the R-branch transitions 

correspond to DJ = +1, they always occur at higher energies than the P-branch transitions, and 

thus always absorb or emit light at shorter wavelengths than P-branch transitions.  This can be 

seen directly from the ν1 + ν3 rotational-vibrational overtone absorption spectrum of acetylene 

shown in Fig. 2.3.  No Q-branch transitions are observed since there is no angular momentum 

associated with either the ν1 or ν3 vibrational modes. 
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Figure 2.3 Absorption spectrum of 12C2H2 molecules contained in a 5-cm long gas cell 

showing the R and P-branch transitions between the vibrational ground state and the ν1 + 

ν3 vibrational state.  Reproduced from Reference [40]. 

 

One interesting feature seen in this absorption spectrum is the difference in absorption 

strength of transitions between initial rotational states with even J as compared to those with odd 

J. The underlying cause for this has deep roots and is a direct consequence of the symmetry 

requirements of the total multi-particle wavefunction under exchange of identical nuclei. 

The total wavefunction, ߰௧௧, describing the multi-particle polyatomic molecular system 

can be written to a good approximation as a product wavefunction of the constituent translation, 

electronic, vibrational, rotational, and nuclear wavefunctions given by [41], 

 

 ߰௧௧ ൌ ߰௧௦߰߰௩߰௧߰௨ 2.9 

 

The total wavefunction is required to be either symmetric or antisymmetric when any two 

identical particles are exchanged.  For a molecule with one or more pairs of identical fermions 

(such as the spin-1/2 hydrogen nuclei), the total wavefunction must be antisymmetric overall 

(this symmetry condition for fermions is referred to as the Pauli exclusion principal).  The 

operation of exchanging identical nuclei is most conveniently thought of in two steps, where all 
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of the particles (electrons and nuclei) are first inverted through the origin of symmetry, and then 

just the electrons are inverted back again.  Let us examine the effect of these processes on each 

of the individual wavefunctions. 

 The translational wavefunction only depends on the position of the molecule’s center of 

mass, and since the center of inversion symmetry always occurs at the center of mass, inversion 

about this point will have no effect on the translational wavefunction.  Additionally, the ground 

state electronic and vibrational wavefunctions are both symmetric with respect to inversion of 

both the electrons and the nuclei [41].  This just leaves the rotational and nuclear wavefunctions 

to produce the overall antisymmetric wavefunction required. 

 The rotational wavefunctions are the eigenfunctions of the simple rotator, which are the 

spherical harmonics, ܻ
ሺߠ, ߮ሻ [39].  Under inversion of the nuclei, ߠ ՜ ߨ െ ߮ and ߠ ՜ ߮    .ߨ

This does nothing to the parity of spherical harmonics with even J but flips the parity of the 

harmonics with odd J [41].  Therefore, to keep an overall antisymmetric wavefunction, the 

nuclear wavefunction must be antisymmetric for even J rotational states and symmetric for odd J 

rotational states.  The nuclear spin states available for the two coupled I = 1/2 hydrogen nuclei 

are the three symmetric triplet states (I = 1) and the one antisymmetric singlet state (I = 0) [39].  

It is this 3 fold increase in the number of states available for odd J rotation states resulting from 

the nuclear triplet states (I = 1) required to maintain an overall antisymmetric wavefunction that 

produces the enhanced absorption on the odd J rotational lines shown in Fig. 2.3. 

 All of this energy level information is put to use when we consider an ensemble of ௧ܰ௧ 

molecules in thermal equilibrium at a temperature ܶ.  The overall population at thermal 

equilibrium follows a Boltzmann distribution, and the population in any particular state is given 

by, 

 

 ܰሺܸ, ;ܬ ሻܫ ൌ ௧ܰ௧
ሺ2ܫ  1ሻሺ2ܬ  1ሻ݁ି൫ாೡ್ሺሻାாೝሺሻ൯/ಳ்

∑ ∑ ሺ2ܫԢ  1ሻሺ2ܬԢ  1ሻ݁ି൫ாೡ್ሺᇱሻାாೝሺᇱሻ൯/ಳ்
ᇱᇱ

 2.10 

  

where ܸ represents the set of vibrational quantum numbers for the state, ܬ is the rotational state, ܫ 

is the total nuclear spin (required for symmetric molecules like acetylene) which is determined 

by the vibrational and rotational state symmetries, and ܧ௩ and ܧ௧ are the vibrational and 

rotational energies given by Eqs. 2.2 and 2.3, respectively.  The double sum in the denominator 
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is the partition function which acts to normalize the distribution such that the sum of all the 

molecules in all states is equal to ௧ܰ௧.  
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Chapter 3 - Nonlinear Wavelength Conversion 

 3.1 Introduction 
A source of energetic and tunable 1.5-μm wavelength pulses is desired to use as the pump source 

to optically excite the molecules used in the gas-filled HC-PCF lasers.  Optical parametric 

amplifiers (OPAs) and optical parametric oscillators (OPOs) offer a convenient solution.  Both of 

these devises rely on the nonlinear optical response of an optically transparent material system to 

generate new spectral components from the incident light.  The process employed in both cases 

is a three-wave mixing process referred to as optical parametric amplification [42]. 

 Three-wave mixing is a second-order nonlinearity (߯ሺଶሻ process) involving three distinct 

fields [42].  Figure 3.1 illustrates several of these processes.  The subscripts ݏ ,, and ݅ denote the 

pump, signal, and idler frequencies which are designated according to the convention ߱  ߱௦ 

߱.  From the expressions for the frequency of the generated fields shown in each process it is 

clear that all of these processes conserve photon energy.  Difference frequency generation is a 

method sometimes employed to generate frequency components at long wavelengths coherently 

from two shorter frequency sources.  The process of parametric amplification is seen from the 

figure to essentially be stimulated difference frequency generation.  Degenerate sum frequency 

generation, in which the two input fields have the same frequency, is the process of second 

harmonic generation, which can be exceedingly efficient and is a very simple means of shifting 

light from easy to generate wavelengths in the near-IR into the visible or ultraviolet. 

 

 
Figure 3.1 Schematic of various three-wave mixing processes including sum and difference 

frequency generation, optical parametric amplification, and second harmonic generation. 
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Most of these processes look schematically identical: two optical fields enter the medium, 

and one new field exits.  It is the phase matching condition which determines if a particular 

process will be favored.  Phase matching comes directly from conservation of momentum and 

essentially requires that sum of the wavevectors corresponding to the incident fields for a given 

process equal the sum of the wavevectors of the fields produced [42].  The magnitude of the 

wavevector, ݇, of a particular optical field of frequency ߱ is given by, 

 

 ݇ ൌ
݊߱
ܿ ൌ

݊ߨ2
ߣ  3.1 

 

where ݊ is the index of refraction of the nonlinear optical material for the optical field having a 

vacuum wavelength ߣ. 

The phase matching is typically expressed in terms of the phase mismatch, ∆݇, which is 

equal to zero for perfect phase matching [42].  The phase matching condition that must be 

satisfied for parametric amplification is given by [42], 

 

  ൌ ௦    3.2

 

or in terms of the magnitude of the phase mismatch by, 

 

 ∆݇ ൌ ݇௦  ݇ െ ݇ 3.3a 

 ∆݇ ൌ ൣ݊ሺ߱௦ሻ߱௦  ݊ሺ߱ሻ߱ െ ݊൫߱൯߱൧ ܿ⁄  3.3b

 

Many of the materials that have strong nonlinear responses also exhibit normal 

dispersion, i.e. ݊൫߱൯  ݊ሺ߱௦ሻ  ݊ሺ߱ሻ, which makes satisfying the phase matching condition 

nontrivial [42].  Fortunately, many of the nonlinear crystals typically used are birefringent, 

allowing the index of refraction for the lower frequency signal and/or idler to be greater than the 

index of the higher frequency pump, i.e. ݊ሺ߱௦ሻ  ݊൫߱൯  ݊ሺ߱ሻ or ݊ሺ߱௦ሻ  ݊ሺ߱ሻ  ݊൫߱൯.  

This permits the right-hand side of Eq. 3.3b to equal zero for certain pump, signal, and idler 

frequencies which are said to be phase matched.  There are two categories of birefringent phase 

matching: type I and type II.  Type I phase matching refers to the case where the signal and idler 
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fields share the same polarization, while the case where the signal and idler fields are 

orthogonally polarized is refer to as type II phase matching [42]. 

The strength of the nonlinear response of the medium to the driving fields depends on the 

polarizations of all the fields involved.  If either type I or type II phase matching is employed, by 

design two of the three fields involved will always be orthogonally polarized.  Birefringent phase 

matching can then never be used to generate fields co-polarized with the pump field.  This would 

be particularly detrimental for materials like LiNbO3 that have a very large effective nonlinearity 

when the polarizations of the incident and generated fields are all parallel.  Luckily, quasi-phase-

matching techniques have been developed to create engineered materials which can phase match 

pump, signal, and idler wavelengths all polarized in the same direction, in order to take 

advantage of the large nonlinearity afforded by this configuration [42]. 

 

 3.2 Optical Parametric Oscillators and Amplifiers 

 3.2.1 Optical Parametric Amplification 

A schematic of the OPA used to pump the gas-filled fiber lasers is shown in Fig. 3.2.  The OPA 

is comprised of three basic components: 1) a high energy pump source, 2) a low energy signal 

source, and 3) a nonlinear crystal used to transfer energy from one to the other. 

The pump source used is a diode-pumped single mode passively Q-switched Nd:YAG 

laser.  Q-switching is a technique used to generate long duration (typically ~ 100 ps or longer), 

high energy laser pulses by controlling the feedback from the optical cavity to the gain medium 

(the degree of loss in the cavity can be quantified by a parameter called the “quality factor”, or 

simply the Q factor).  Passive Q-switching employs a saturable absorber inside of the laser 

resonator.  The saturable absorber is typically made of either a doped glass or crystal (like 

Cr:YAG) or a semiconductor material.  The saturable absorber functions by preferentially 

absorbing more low intensity light than high intensity light.  In this way the saturable absorbed 

acts like an intensity dependent switch, only providing optical feedback to the gain material after 

a certain amplified spontaneous emission (ASE) intensity threshold has been reached.  Once the 

threshold has been reached, the saturable absorber becomes saturated and allows low loss 

feedback from the cavity to the gain medium.  The energy stored in the population inversion 

inside of the gain medium is then rapidly extracted, producing a high energy pulse. 
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The particular Nd:YAG laser used in the OPA produces 1064-nm wavelength pulses 

~ 1 ns in duration with energies of ~ 3 mJ.  The spectral bandwidth of the pulses is ~ 1 GHz.  

The pulse repetition rate can be varied from ~ 1 – 100 Hz, and is typically triggered at 30 Hz 

using TTL pulses from a Stanford Research Systems delay generator.  This particular repetition 

rate was seen to be the highest possible without compromising the pulse energy stability.  At 

repetition rates higher than 30 Hz, random spiking in the pulse energy from the laser has been 

observed. 

At the heart of the OPA is a 50-mm long magnesium oxide doped congruently grown 

periodically poled lithium niobate (MgO:PPLN) crystal.  Inside of this crystal 1064-nm 

wavelength, ~ 100-μJ energy pulses roughly 1-ns in duration from the Nd:YAG pump laser are 

mixed with narrow linewidth CW light from either a tunable fiber laser or an extended-cavity 

tunable diode laser.  A variable attenuator comprised of a half-wave plate and a polarizing beam  

 

 
Figure 3.2 Setup for the OPA used as the source of tunable 1.5-μm wavelength pulses to 

pump the gas-filled HC-PCF lasers.  
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splitter is used to adjust the pump pulse energy incident on the MgO:PPLN crystal.  The damage 

threshold for the crystal is > 500 μJ for nanosecond duration, 1-μm wavelength pulses.  The 

nonlinear process essentially shifts energy from the high-power 1-μm wavelength pulses into 

moderate energy, tunable 1.5-μm wavelength signal pulses.  As the source of this energy transfer 

is difference frequency generation, conservation of energy requires that a moderate energy ~ 3-

μm wavelength idler pulse also be generated.  The wavelength of the OPA output tunes with that 

of the CW signal. 

 Pump pulses are combined together with the signal light using a dichroic mirror which 

reflects the short wavelength pump pulses while transmitting the longer wavelength signal light.  

The signal collimating lens and the telescope just after the Nd:YAG are configured to produce 

collimated beams with roughly the same beam waist.  The telescope before the nonlinear crystal 

is needed to shrink the beam size down to within the full aperture of the crystal.  The 

MgO:PPLN crystal has a minimum full aperture of 800 μm, so the beam waist must be less than 

this. 

The beam waist was measured by attaching a razor blade to a translation stage and 

incrementally moving the blade into the beam while measuring the total pulse energy transmitted 

past the blade from the unblocked portion of the beam.  Assuming that the spatial intensity 

profile of the beam has a Gaussian shape with a 1 ݁ଶ⁄  beam waist ݓ, the CW power or pulse 

energy transmitted past the razor in the unblocked portion of the beam, ܲ, is related to the total 

pulse energy, ௧ܲ௧, by, 

 

 ܲሺݔሻ ൌ
1
2 ௧ܲ௧ · ቂ1  Erf ቀ

ݔ െ ݔ

ݓ ቁቃ 3.4 

 

where ݔ is the relative position of the razor to the center position ݔ of the Gaussian beam, and 

the error function “Erf” is given by, 

 

 Erfሺݖሻ ൌ
2

ߨ√
න ݁ି௭ᇲమ௭


 Ԣ 3.5ݖ݀

 

Data from a knife edge measurement of the signal beam just after the MgO:PPLN crystal is 

shown in Fig. 3.3.  The Gaussian fit to the data is quite good and gives a 1 ݁ଶ⁄  beam waist of 
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335 μm, or a beam diameter or 670 μm.  The distance over which a Gaussian beam will be 

collimated is equal to twice the Rayleigh range of the beam.  The Rayleigh range is defined as 

the propagation distance that a Gaussian beam of initial minimum waist, w0, will travel before 

the waist increases by a factor of √2 (causing the area of the beam to double) [43].  The Rayleigh 

range is given by, 

 

Rݖ  ൌ
ݓߨ

ଶ

ߣ  3.6 

 

where ߣ is the wavelength of the light.  So assuming that the beam waist measured after the 

MgO:PPLN crystal is the minimum beam waist, the beam will only be collimated for about 

25 cm.  It is for this reason that a second telescope is placed after the crystal to expand the beam, 

so that the larger beam can remain collimated for several meters while being transported to the 

laser setup. 

 

 
Figure 3.3 The power in the unobstructed signal beam as a function of knife edge position 

measured just after the MgO:PPLN.  The measured data is shown in blue.  The red data 

points are fit to the measured data using Eq. 3.4 which assumes a Gaussian beam profile. 
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In order for the signal wavelength to be amplified, it must satisfy the phase matching 

condition imposed by conservation of momentum in the crystal.  For a first-order quasi-phase-

matched crystal, the phase mismatch condition for optical parametric amplification can be 

written as [42], 

 

 ∆݇ொெ ൌ ݇ െ ݇௦ െ ݇ െ
ߨ2
߉  3.7 

 

where ߉ is the poling period of the quasi-phase-matched material.  The grating period is defined 

as twice the distance over which the nonlinear coupling coefficient is made to change sign.  For 

our first-order quasi-phase-matched MgO:PPLN crystal, the optimum grating period can be 

calculated by setting the phase mismatch in Eq. 3.7 equal to zero and solving for the grating 

period giving, 

 

߉  ൌ
ߨ2

݇  ݇௦ െ ݇
. 3.8 

 

 The MgO:PPLN contains four separate grating periods with ߉ equal to 30.0, 30.5, 31.0, 

and 31.5 μm.  Since the wavelength from the Nd:YAG pump is fixed, these separate grating 

periods alone only allow four different sets of signal and idler wavelengths to be quasi-phase-

matched with the pump.  However, the indices of refraction of the crystal at the different 

wavelengths is dependent on temperature such that by tuning the temperature nearly all 

wavelengths between ~ 1.5 and 1.8 μm (corresponding to idler wavelengths of ~ 2.6 to 3.6 μm) 

can be quasi-phase-matched. 

 Inverting both sides of Equation 3.8 and using Eq. 3.1 to rewrite the wavevectors in terms 

of the wavelengths gives, 

 

 
1

ሺܶሻ߉ ൌ
݊൫ߣ, ܶ൯

ߣ
െ

݊ሺߣ௦, ܶሻ
௦ߣ

െ
݊ሺߣ, ܶሻ

ߣ
, 3.9 

 

where now the poling period is temperature dependent to account for thermal expansion of the 

crystal, and ݊ሺߣ, ܶሻ is the wavelength and temperature dependent index of refraction of the 
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crystal for light polarized along the extraordinary axis.  The index of refraction for MgO:PPLN 

can be computed from the following Sellmeier equation taken from reference [44], 

 

 ݊
ଶሺߣ, ܶሻ ൌ ܽଵ  ܾଵ݂ሺܶሻ 

ܽଶ  ܾଶ݂ሺܶሻ
ଶߣ െ ܽଷ

ଶ 
ܽସ  ܾଷ݂ሺܶሻ

ଶߣ െ ܽହ
ଶ െ ܽߣଶ, 3.10

 

where ߣ is in units of micrometers, the coefficients ܽ and ܾ are given in Table 3.1, and the 

function ݂ሺܶሻ is given by [44], 

 

 ݂ሺܶሻ ൌ ሺܶ െ 24.5ሻሺܶ  570.82ሻ, 3.11

 

where ܶ is the crystal temperature in degrees centigrade.  The poling periods are typically 

transferred to these crystals through lithographic techniques in a clean room environment at a 

temperature of 19 °C [44].  The temperature dependent poling period, ߉ሺܶሻ, is then given in  

 

Table 3.1 Sellmeier coefficients for the temperature-dependent extraordinary index of 

refraction of MgO doped congruently grown LiNbO3 given by Eq. 3.10 (from reference 

[44]). 

Coefficient Numerical Value 

ܽଵ 5.319725 

ܽଶ 0.09147285 

ܽଷ 0.3165008 

ܽସ 100.2028 

ܽହ 11.37639 

ܽ 0.01497046 

ܾଵ 4.753469 × 10-7

ܾଶ 3.310965 × 10-8 

ܾଷ 2.760513 × 10-5 
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terms of the poling period created from the lithographic process, ߉, by [44], 

 

ሺܶሻ߉  ൌ ሾ1߉  ሺܶߙ െ 19ሻ  ሺܶߚ െ 19ሻଶሿ, 3.12

 

where ܶ is again the temperature of the crystal in degrees centigrade, and 10-5 × 1.53 = ߙ °C-1 

and 10-5 × 5.3  = ߚ °C-2 are the thermal expansion coefficients for undoped congruently grown 

LiNbO3 [44, 45]. 

The temperature-dependent phase matching curves for the MgO:PPLN crystal are 

calculated by solving Eq. 3.9 numerically for temperature at specific wavelengths.  The pump 

wavelength is determined by the Nd:YAG pump laser and is measured to be 1063.81 ± 0.05 nm.  

The signal wavelength can then be varied during the calculation and the corresponding idler 

wavelength resulting from energy conservation is computed as, 

 

ߣ  ൌ ቆ
1

ߣ
െ

1
௦ߣ

ቇ
ିଵ

 3.13

 

Figure 3.4 shows the phase matching curves calculated for the four different poling 

periods using the Mathematica code given in Appendix A.  Along with the calculated curves, 

two data points corresponding to the idler wavelengths measured at two temperatures on the 

31.0-μm poling period are shown.  The idler pulses were generated from the OPA without any 

externally applied signal light (quantum noise takes the place of the signal light that would 

otherwise stimulate the parametric amplification process).  The linewidth of the idler pulses 

measured is therefore fairly broad at ~ 10 nm (FWHM).  Error bars corresponding to this 

linewidth have been placed on the data points, but fall within the data symbols themselves.  The 

measured wavelengths are only 6 nm longer than those calculated from the phase matching 

curve.  This is a great result, as we can calculate the quasi-phase-matched wavelength of the 

generated idler (and signal) pulses with reasonable accuracy from the crystal’s poling period, ߉, 

and temperature.  This is necessary to determine the wavelength of the idler pulses from the 

unseeded OPA which is used to measure the mid-IR fiber losses from various HC-PCFs as is 

discussed in detail in Chapter 4. 
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 Predictions for the generated signal pulse energy were made prior to purchasing the 

Nd:YAG pump laser and the MgO:PPLN crystal, in order to ensure that the OPA would be 

appropriate for use pumping the gas-filled fiber lasers we are interested in developing and 

characterizing. The OPA’s performance was estimated by numerically integrating the coupled 

wave equations for CW plain waves using the Mathematica code shown in Appendix B.  The 

coupled wave equations are taken from Ref [46] and are given by, 

 

 
ܣ݀

ݖ݀ ൌ
2і߱݀ொெሺݖሻ

݊൫߱൯
 ݁ିі∆·௭ 3.14aܣ௦ܣ
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where the effective nonlinearity of the first-order quasi-phase-matched MgO:PPLN crystal,  

݀ொெ, varies with linear distance, ݖ, through the crystal and is given by, 

 

 ݀ொெሺݖሻ ൌ
2
ߨ ݀Sign Sin ൬

ݖߨ2
߉ ൰൨ 3.9 

 

The strength of the nonlinear response is quantified by ݀, which for LiNbO3 with all fields 

polarized along the crystal’s optical axis is equal to 27 V/pm [46].  For comparison, the largest 

݀ that can be achieved in LiNbO3 using birefringent phase matching is only about one-sixth 

as large. 

The “sign” function is used to return either + 1 or – 1 depending on the sign of its 

argument.  The particular argument is a sine function that changes sign from positive to negative 

or negative to positive every time ݖ advances by a distance 2/߉.  This causes the sign of the 

derivatives of the signal and idler fields to flip just as the accumulated phase mismatch advances 
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Figure 3.4 Quasi-phase-matched signal and idler wavelengths from a MgO:PPLN crystal as 

a function of crystal temperature and poling period.  The two idler wavelengths measured 

near 50 °C using the 31.0 μm poling period are just 6-nm longer than the calculated values. 

 

by a value of π, effectively keeping the overall sign of the derivatives of all of the fields 

unchanged and allowing the signal and idler fields to grow monotonically while propagating 

through the crystal. 

Estimates from the CW calculation were compared with results from a more sophisticated 

program designed to simulate nonlinear mixing processes called SNLO (free to download from 

AS-Photonics) that can handle both CW and pulsed inputs directly.  Both models assumed 500-

μm diameter flat-top beams in a 50-mm long periodically PPLN crystal with ideal quasi-phase-

matching, i.e. the grating period is given by Eq. 3.8.  The pump and signal light in both models 

are taken to be at wavelengths of 1064 and 1533 nm, respectively.  The CW model is run using 

the pump power corresponding to the peak power from a 300-μJ energy pulse with a Gaussian 

temporal profile for a range of durations between 5 and 100 ns.  The signal powers used range 
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between 5 and 100 mW.  The pump pulse energy and pulse duration were input directly into the 

SNLO program along with the CW signal power.  Figure 3.5 shows the predicted signal pulse 

energy produced from the OPA as a function of the pump pulse duration for several incident CW 

signal powers calculated by numerically integrating Eqs. 3.8a-c along the length of the 50-mm 

long crystal (dashed lines) and calculated using the SNLO program (solid lines). 

 

 
Figure 3.5 Predicted signal pulse energies produced from the OPA calculated by 

numerically integrating Eqs. 3.8a-c (dashed lines) and using the SNLO program (solid 

lines) for various CW input signal powers.  The nonlinear material is assumed to be a 50-

mm long PPLN crystal with ideal quasi-phase-matching. 

 

 The calculation results are seen to agree reasonable well for the short pump pulse 

durations, and both methods predict that the amplified signal pulse energies will be ~ 100 μJ at 

short pump pulse durations. The numerical integration code actually calculates the CW output 

signal power and not the output signal pulse energy directly.  To convert the signal power to the 

signal energy, the calculated CW signal power is multiplied by the pulse duration of the pump.  

These calculations guided our procurement of the 1-ns duration Nd:YAG pump laser and the 50-

mm long MgO:PPLN crystal. 
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 3.2.2 Optical Parametric Oscillation 

Optical parametric oscillation is a special case of optical parametric amplification where the 

nonlinear medium is placed inside an optical resonator which provides the optical feedback 

responsible for stimulating the amplification process.  The optical cavity is often configured in a 

ring, as the phase matching condition is typically satisfied for light propagating in only one 

direction through the nonlinear medium.  The cavity is typically resonant at the shorter signal 

wavelength, but can be resonant at either the signal or idler wavelength (singly resonant OPO) or 

both (doubly resonant OPO) [42]. 

 A schematic of a singly resonant OPO in a ring cavity configuration is shown in Fig. 3.6.  

OPOs are an attractive alternative to OPAs for a number of reasons.  OPOs offer broad 

wavelength tuning without the need for multiple or broadly tunable signal or idler sources.  

Wavelength tuning is accomplished by adjusting the phase matching condition of the nonlinear 

crystal, typically by angle or temperature tuning a birefringent crystal.  OPOs also tend to be 

more efficient, as much larger circulating field strengths can easily be achieved within a 

resonator [42]. 

 

 
Figure 3.6 Singly resonant optical parametric oscillator employing a ring cavity resonant at 

the signal wavelength for optical feedback and angle tuning to achieve phase matching. 

 

A commercial OPO was used to pump the first gas-filled HC-PCF laser demonstrated.  

The OPO produced tunable 1.5-μm wavelength pulses roughly 10 ns in duration with pulse 

energies up to ~ 10 mJ.  The spectral bandwidth of the pulses was ~ 3.5 GHz.  While this OPO 

worked well enough to pump the first ever demonstration of a gas-filled fiber laser based on 

population inversion, issues with beam quality and frequency instability ultimately limited the 

usefulness of this particular pump source for gathering precise quantitative data.  It was these 

issues that helped inspire the decision to build the OPA described in the preceding section. 
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Chapter 4 - Hollow-Core Photonic Crystal Fibers 

 4.1 Introduction 
The first HC-PCF was fabricated in 1999 by researchers at the University of Bath [24].  HC-

PCFs generally consist of a hollow, air-filled core surrounded by a periodic microstructured 

array of smaller holes.  The fibers are fabricated in a stack and draw technique where silica tubes 

are arranged by hand to give the desired structures, fused together, then heated and pulled using 

vertical draw towers, typically several meters tall [47].  To keep the very delicate structures from 

collapsing due to surface tension forces, different core and cladding regions in the fibers are 

often pressured using a gas flow [47]. 

There are generally two classes of HC-PCFs: photonic band gap fibers (PBGF) and 

kagome-structured fibers.  As the name suggests, PBGF employs a band gap to guide light in its 

hollow core.  Essentially, the cladding structure of the PBGF creates wavelength regions where 

no photonic states are permitted to exist within the cladding.  Therefore, light within this 

wavelength region is confined to the cladding defect, i.e. the hollow core, where it can propagate 

with low loss [24].  Unfortunately, while narrow-band guidance near 3 μm has been 

demonstrated in PBGF [48], generally speaking the spectral width of the band gap region is 

limited to less than the octave we require for our gas-filled fiber lasers [49]. 

Kagome-structure HC-PCFs on the other hand have been demonstrated to guide multiple 

octaves with low loss [30].  Kagome HC-PCF [25] guides via a mechanism akin to Von 

Neumann and Wigner states [50] allowing core and cladding modes to coexist at a given 

wavelength essentially without coupling to each other (in stark contrast to the PBGF mechanism 

where low-loss core guidance relies on the existence of regions devoid of cladding states).  This 

salient feature of kagome-structured HC-PCF permits ultra-broad, multi-octave spanning spectral 

guidance [25], with reasonably low loss (< 1 dB/m) across a broad spectrum.  Just recently, 

kagome fibers with a hypocycloidal core surround have been demonstrated to push the minimum 

fiber loss of these broadband kagome fibers even lower [51].  Additionally, it has been 

demonstrated that these fibers can be spliced to solid-core fibers, creating compact, robust sealed 

gas cells [27].  These self-contained cells could readily be integrated into a wide variety of 

devices. 
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However, because these fibers are made from fused silica and are typically optimized for 

performance at visible and near infrared wavelengths, most existing kagome fibers exhibit 

relatively large loss at mid-IR wavelengths, e.g. ~ 20 dB/m at 3.16 μm [33].  Using finite 

element analysis software like JCMwave to optimize the fiber loss profile, kagome fibers 

exhibiting low loss regions in both the near and mid-IR can be designed which should be suitable 

for use in gas-filled fiber lasers operating in the mid-IR.  Calculating the fiber loss for these 

microstructured fibers is computationally intensive and time consuming.  Instead collaborators at 

the University of Bath have gone with a coarser, much quicker approach where empirical rules 

are used to scale existing designs to create fibers with the desired loss profiles.  These fiber 

designs of varying pitch and strut thicknesses are then sent to us at Kansas State University and 

characterized via cut-back measurements to map out the fiber loss characteristics at mid-IR 

wavelengths.  The spectral loss data is then provided to our collaborators so that they can 

continue to tailor the fiber designs to reduce the mid-IR fiber loss and to hopefully extend the 

guidance to longer wavelengths. 

 

 4.2 Measurements of Mid-Infrared Fiber Loss in Hollow Fibers 
As we are interested in using gas-filled HC-PCFs to create mid-IR laser sources, it is important 

to have a quantitative idea of the fibers’ loss characteristics in the mid-IR spectral region.  After 

fabrication, collaborators at the University of Bath performed in-house characterizations of the 

fiber loss using a simple and straightforward cut-back technique. 

This technique consists of coupling light from a white light source into one end of a 

relatively long (~ 10 m or more, typically) length of the fiber under test.  Light transmitted 

through the other end of the fiber is coupled into a commercial optical spectrum analyzer (OSA), 

where the optical power is spectrally resolved.  A length of the fiber is then carefully cut and 

removed, so as not to disturb the end of the test fiber that is coupled to the light source.  The 

length of fiber that is removed is carefully measured, and the spectrum of the light now being 

transmitted through the end of the fiber is again measured using the OSA.  By comparing the 

spectra before and after a section of the fiber was cut, the loss through the cut section of fiber can 

be calculated for all the wavelengths measured.  Furthermore, by knowing the exact length of 
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fiber that was cut, the loss per unit length can be determined.  It is this length independent fiber 

loss that we use to make comparisons between different fibers. 

Unfortunately, owing to the combination of the white light source and the commercial 

OSA used, these quick and convenient loss characterizations of the HC-PCFs are limited to 

wavelengths within the visible and near infrared (~ 500 – 1800 nm) regions of the spectrum.  

However, by using an appropriate source and detector the same cut-back technique can be 

employed to measure fiber losses at mid-IR wavelengths. 

Long-wavelength idler pulses from the optical parametric amplifier (OPA) discussed in 

section 3.2 are used as the tunable mid-IR source.  The center-wavelength of the idler pulses can 

be tuned roughly 1000 nm, from ~ 2.6 – 3.6 μm, as is indicated by the tuning curves for the 

MgO:PPLN crystal shown in Fig. 3.4.  This is accomplished by changing the phase-matching 

condition of the crystal via the optical poling period and crystal temperature.  In contrast to how 

the OPA is run to amplify signal light at ~ 1.5 μm, no seed light is used to generate the idler light 

described here.  Instead, we rely on quantum noise (fluctuations in the average number-density 

of photons present at the beginning of the crystal) to provide the initial stimulus for down 

converting pump photons into signal and idler photons in the crystal.  While the initial 

production of signal and idler photons relies on this spontaneous down conversion process, once 

signal and idler photons are present their numbers increase rapidly as they stimulate the process 

along the length of the crystal, leading to large pulse energies at the signal and idler wavelengths.  

The quantum noise that begins the process is white, meaning fluctuations in the average 

photon number density per mode are equally probable for all photon wavelengths.  This means 

the pulse bandwidth will no longer be as narrow as when the OPA is seeded with CW signal light 

(as now we are essentially seeding with white light).  The bandwidth is instead limited by the 

phase-matching condition imposed by the 50-mm long MgO:PPLN nonlinear crystal. 

A spectrum of the idler pulses from the unseeded OPA, pumped using 150-μJ energy 

pulses at a wavelength of 1064 nm, is shown in Fig. 4.1.  The spectral bandwidth of the pulse is 

seen to be about 10 nm.  Therefore a ± 5-nm wavelength error will be assumed for the 

wavelengths where spectral losses are measured. 

A schematic of the setup used to perform cut-back measurements on HC-PCFs at mid-IR 

wavelengths is shown in Fig. 4.2.  An AR-coated germanium filter is used to filter out the pump 

and signal light from the mid-IR idler pulses produced by the unseeded OPA.  A small portion 
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(a few percent) of the idler pulse energy is then split off from the main beam and sent to a room-

temperature HgCdTe detector using a CaF2 window oriented at ~ 45° to the incident beam.  The 

majority of the idler pulse energy is coupled into one end of the HC-PCF under test using a CaF2 

lens.  The other end of the HC-PCF is then positioned directly in front of a thermoelectric cooler 

(TEC) cooled HgCdTe photodetector, allowing the mid-IR light transmitted through the fiber to 

be observed with high sensitivity.  Measuring the relative pulse energy before and after the fiber 

allows us to employ a balanced detection scheme, in which we can use the ratio of the two 

detector signals to produce a signal that is insensitive to fluctuations in the pulse energy emitted 

from the OPA. 

 

 
Figure 4.1 Spectrum of the idler-wavelength pulses emitted from the unseeded OPA.  The 

spectral bandwidth in the 3-μm wavelength region is ~ 10 nm (FWHM). 

 

The ends of the test fiber must be prepared prior to coupling any light through the fiber.  

Because these specialty fibers typically use a tough acrylic buffer instead of a softer polymer 

buffer, a razor blade is used to strip the buffer from the fiber cladding.  This is done by holding 

the razor blade firmly against the buffer and then pulling the blade toward the fiber’s end.  This 

is done three or four times, rotating the fiber after each time to remove the buffer from all sides 
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of the fiber.  With the buffer removed, the stripped region of the fiber is wiped with a dry lint-

free optical tissue in preparation for cleaving.  Precision fiber cleavers meant for standard fibers 

usually cannot be used, as these HC-PCFs have variable and nonstandard cladding diameters.  

Instead, flexible fiber optic field cleavers like those made by FIS or FITEL work quite well.  

Hand scoring with a ceramic tile or diamond tipped scoring tool has also been used to achieve 

uniform flat cleaves.  After cleaving, the fiber ends are placed in a fiber splicer so that the 

cleaves can be inspected.  If the cleaves are uniform and flat, the fiber is placed in the 

measurement setup.  If not, the cleaving and inspection procedure is repeated until the fiber ends 

look satisfactory. 

 

 
Figure 4.2 Setup used to perform cut-back measurements on HC-PCFs at mid-IR 

wavelengths.  Idler pulses transmitted through the fiber are observed using a high-

sensitivity TEC-cooled HgCdTe photodetector.  The signal measured after the fiber is used 

in conjunction with the signal measured from the room-temperature HgCdTe detector 

before the fiber to remove effects from fluctuations in the idler pulse energies from the 

OPA. 
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With the fiber ends cleaved and free of any debris, the ends are securely supported using 

grooved fiber clamps.  Mid-IR light is then coupled through the fiber.  A 5-axis fiber stage is 

used to adjust the position of the fiber end relative to the CaF2 focusing lens in order to optimize 

the OPA-to-fiber coupling. 

The center wavelength of the idler pulses can be set to any wavelength within the ~ 2.6 – 

3.6 μm tuning range of the OPA.  While measuring the fiber loss continuously across this entire 

wavelength region is highly desirable, it is not very practical owing to the very long 

measurement times associated with tuning the OPA wavelengths.  The largest factor impacting 

the measurement time is the speed at which the crystal temperature can be tuned.  To ensure that 

the 50-mm long MgO:PPLN crystal is not thermally shocked, the crystal’s temperature is not 

increased or decreased faster than 10 °C/minute.  Furthermore, it can take several minutes for the 

crystal temperature to stabilize after the desired temperature is initially reached. 

In lieu of a continuous scan, fiber losses are measured at 20 different wavelengths 

corresponding to 5 crystal temperatures between 35 and 145 °C and 4 different crystal poling 

periods from 30.0 to 31.5 μm, spaced by 0.5 μm.  Table 4.1 shows the wavelengths that are 

typically measured along with the corresponding crystal temperature and poling period.  The 

wavelength produced at a specific crystal temperature and poling period is calculated directly by 

solving the phase matching equation for the MgO:PPLN crystal given by Eq. 3.9 using the 

Mathematica code shown in Appendix A (the phase matched signal and idler wavelengths are 

plotted in Fig. 3.4). 

The fiber loss measurement procedure begins by setting the crystal temperature and 

allowing it to stabilize.  The temperature is adjusted using a DC power supply connected to two 

flexible silicon heaters which are attached to the aluminum crystal mount.  The crystal 

temperature is shown on a digital read out connected to a resistance temperature detector (RTD) 

which thermally contacts the top of the crystal mount. 

While the temperature is stabilizing, the crystal poling period and fiber end position are 

optimized.  The optimum position of the crystal is determined by maximizing the signal 

amplitude from the room-temperature HgCdTe detector just before the fiber.  Once the crystal 

position is optimized, the fiber end position is adjusted via the 5-axis fiber stage to maximize the 

signal amplitude from the TEC-cooled HgCdTe photodetector after the fiber.  This 
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Table 4.1 Summary of the wavelengths (in ascending order) used in HC-PCF loss 

measurements along with the corresponding unseeded OPA crystal configuration required. 

Wavelength 

(μm) 

MgO:PPLN 

Crystal 

Temperature 

(°C) 

MgO:PPLN 

Crystal 

Poling Period 

(μm) 

Wavelength 

Cont. 

MgO:PPLN 

Crystal 

Temperature 

Cont. 

MgO:PPLN 

Crystal 

Poling Period 

Cont. 
2.585  145.0 31.5 3.202 145.0 30.5

2.669  125.0 31.5 3.246 125.0 30.5

2.756  100.0 31.5 3.297 100.0 30.5

2.844  70.0 31.5 3.351 70.0 30.5

2.928  35.0 31.5 3.407 35.0 30.5

2.936  145.0 31.0 3.431 145.0 30.0

2.991  125.0 31.0 3.469 125.0 30.0

3.053  100.0 31.0 3.513 100.0 30.0

3.119  70.0 31.0 3.560 70.0 30.0

3.185  35.0 31.0 3.610 35.0 30.0

 

photodetector includes a built in amplifier to increase its sensitivity, allowing us to measure the 

loss through ~ 1-m long fibers that have very large attenuations (~ 100 dB/m).  To ensure the 

photodetector does not saturate, combinations of reflective nickel-coated fused silica neutral 

density filters are used to attenuate the mid-IR light just before the CaF2 lens used to couple the 

light into the fiber. 

Selecting the appropriate combination of filters is very important and somewhat time 

intensive.  To avoid having to perform and rely on filter calibrations for every filter (~ 10 total) 

at 20 different wavelengths, the same filters are used for signal measurements made both before 

and after the fiber is cut.  This also precludes signal variations that may arise from coupling 

changes into the fiber occurring as a result of different filter combinations (which would not be 

accounted for simply by measuring the individual filters’ transmissions). 

The filter values are carefully chosen so that the amount of light transmitted through the 

fiber is high enough to create a voltage signal that can be clearly observed above the 

photodetector’s noise floor, but not so high that once a length of the fiber is cut, the resulting 
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voltage signal would saturate the detector, requiring the use of additional filters.  For our 

particular detection system, filter values are chosen to keep the signal amplitude observed from 

the TEC-cooled HgCdTe photodetector between 10 and 20 mV.  The detector saturates at output 

voltages above ~ 1 V.  The maximum total loss that can be measured using this dynamic range is 

~ 20 dB.  However, because we can choose to cut as little fiber as we like, fiber losses of ~ 100 

dB/m can easily be measured simply by using a short initial length of fiber and cutting ~ 20 cm 

or less at a time. 

Occasionally the amount of light transmitted through the fiber is too high after a length of 

the fiber is cut, and the photodetector will begin to show saturation indicated by clipping of the 

voltage near the peak of the signal from the transmitted pulse.  When this happens another filter 

is added to the set of filters already present in front of the fiber, so that the signal measured after 

the fiber is no longer saturated.  This now unsaturated photodetector signal measured after the 

fiber is used to calibrate one additional filter, by measuring how the signal amplitude changes 

with and without this one additional filter as measured on the photodetector after the fiber.  Once 

the calibration is complete, the extra uncalibrated filter is removed, and the additional calibrated 

filter is left in place along with the set of filters that was used in the measurement before the fiber 

was cut. 

With the temperature stabilized, the crystal position optimized, and the filter values set, 

the voltage signals from the photodetectors before and after the fiber are measured, and the 100-

pulse average of the ratio of the transmitted pulse signal amplitude to the incident pulse signal 

amplitude is computed by the Tektronics CSA7404 oscilloscope.  For a given fiber length, this 

measurement is repeated for all 4 poling periods and all 5 crystal temperatures.  To compute the 

fiber loss, a signal must be measured through at least two different fiber lengths and the signals 

compared.  Typically two complete cut-back measurements are performed on the test fiber, 

which requires signals to be measured through three different fiber lengths.  By measuring the 

loss from multiple cut-back measurements, a quantitative estimate can be made of the error 

associated with the measured fiber losses. 

A simplified schematic of the two cut-back measurement process is shown in Fig. 4.3.  

Signal ܵ corresponds to the ratio of the transmitted to incident voltage amplitudes measured 

using the initial, uncut length of fiber.  Signal ܵ corresponds to the same ratio measured after 

cutting a length of fiber, ∆ܮ, with the same neutral density filters present before the fiber’s 
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input as were used when measuring ܵ.  This constitutes one complete cut-back.  Now without 

changing the fiber length, signal ܵᇱ is measured using additional filters before the fiber’s input 

in order to decrease the voltage amplitude measured on the photodetector after the fiber to within 

the 10 – 20 mV range as was done prior to measuring ܵ before the fiber was first cut.  With the 

new filter values still in place, another length of fiber, ∆ܮ, is removed, and the resulting signal, 

ܵᇱ, is measured.  If no additional filters are needed after measuring ܵ, then this single 

measurement value is used for comparison with ܵ and ܵᇱ (where the prime is not really 

necessary in this case as the same filters are used for all three fiber lengths). 

 

 
Figure 4.3 Simplified schematic of the typical measurement process for performing two 

cut-back measurements.  The signals ࡿ ,ࡿ ,ࡿᇱ, and ࡿᇱ are the ratio of the voltage 

amplitudes from the pulse transmitted through the fiber to that of the incident pulse.  The 

primes indicate that the combination of neutral density filters at the fibers input may have 

changed from the combination used when the unprimed signals were measured. 

 

The fiber loss, ܮܨ௫௬, is computed using the expression, 

 

௫௬ܮܨ  ൌ െ10 · logଵ ቆ
ܵ௫

ܵ௬
ቇ ௫௬ൗܮ∆  4.1 

 

where ܵ௫ and ܵ௬ represent the measured signals, and ∆ܮ௫௬ is the length of fiber that was cut 

between measuring the two signals.  The so-called average fiber loss, ۄܮܨۃ, is computed from the 
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average transmission after scaling the measured transmissions to a 1-m length of fiber, and is 

given in units of dB/m by, 

 

ۄܮܨۃ  ൌ െ10 · logଵ൫10ିிೣ ଵ⁄  10ିி ଵ⁄  ڮ ൯  10 · logଵሺܰሻ 4.2 

 

where N is the total number of cut-back measurements performed.  For most of the 

measurements presented here only two cut-backs were performed, simplifying the above 

expression to, 

 

ۄܮܨۃ  ൌ െ10 · logଵ൫10ିிಲಳ ଵ⁄  10ିிಳ ଵ⁄ ൯  10 · logଵሺ2ሻ 4.3a 

 
ൌ െ10 · logଵ ቆ൬ ܵ

ܵ
൰

ଵ/∆ಲಳ

 ൬
ܵᇱ

ܵᇱ
൰

ଵ/∆ಳ

ቇ  10 · logଵሺ2ሻ 4.3b

 

The measured fiber losses are plotted together with the average fiber loss for kagome-structured 

and hypocyloidal HC-PCFs with different pitches and core diameters in the following sections.  

Table 4.2 provides a summary of the HC-PCF fibers whose mid-IR loss characteristics were  

 

Table 4.2 Summary of HC-PCFs received from the Gas-Phase Photonic Materials group at 

the University of Bath and used in mid-IR fiber loss measurements.  All fibers listed were 

received September of 2011. 

Part Number/Structure 
Core 

Diameter 
(μm)

Pitch 
(μm) 

Defect (# of 
missing cells)

# of rings 
in cladding 

Loss at 1550 
nm (dB/m) 

110727-CFD-K7C3R-
C11J11/Kagome 85 – 94 18.75 7 3 0.122 

110708-CFD-K7C3R-
C5J5/Kagome 87.5 – 92.5 20 7 3 0.237 

110727-CFD-K7C3R-
C3J16/Kagome 85 – 93.75 22.5 7 3 0.03 

110903-CFD-K7C3R-
C20J8/Kagome 112.5 – 137.5 31.25 7 3 0.267 

110811-YYW1R-
D1C6B2/Hypocycloid 58 32 1 1 – 

110811-YYW1R-
D1C6B1/Hypocycloid 64 42 1 1 4 
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studied.  These fibers were generously provided to us by Dr. Fetah Benabid, head of the Gas- 

Phase Photonic Materials group at the University of Bath.  All six fibers were received 

September of 2011. 

 

 4.2.1 7-Cell, 3-Ring, 18.75-μm Pitch Kagome-Structured HC-PCF 

Figure 4.4a shows the cross section of fiber 110727-CFD-K7C3R-C11J11 viewed with an 

optical microscope.  From this image three rings of kagome cladding structure resembling a star-

of-David pattern can clearly be seen surrounding the hollow core region.  The fiber’s hollow core 

is created by leaving out the center and the six adjacent hexagonal unit cells from the kagome 

cladding structure during fabrication, leaving a 7-cell defect.  The core diameter ranges from 

~ 85 – 93.75 μm, and the outer diameter of the solid glass cladding is 300 μm.  The pitch of the 

fiber is defined as the spacing between adjacent unit cells, and for this fiber is 18.75 μm.  The 

measured near-IR loss spectrum of the fiber is shown in Fig. 4.4b, from which the loss in the 

wavelength region near 1.5 μm is seen to be below 122 dB/km. 

 

 
Figure 4.4 7-Cell, 3-Ring, 18.75-μm pitch kagome-structured HC-PCF (a) cross section and 

(b) near IR loss spectrum.  Both the image and the loss spectrum were taken at the 

University of Bath by collaborators and are reproduced from Ref [52]. 

 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.5.  Only one cut-

back was performed for this particular fiber.  The initial length of the fiber was ~ 2 m, and 

47.6 ± 0.1 cm of fiber was cut.  This was the first fiber characterized using the mid-IR fiber loss 

setup. 
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The fiber loss is ~ 2.5 dB/m near 2.6 μm and generally increases with the wavelength to a 

maximum loss of ~ 20 dB/m near 3.6 μm.  The measured fiber loss is ~ 5 dB/m for wavelengths 

near 3.14 μm.  This marks a ~ 15 dB/m reduction in the mid-IR loss compared to the fiber 

initially used in the gas-filled fiber laser setup, and so this 18.75-μm pitch fiber was placed in the 

laser setup with the expectation that lasing in this fiber would show improved performance over 

results from the higher-loss fiber first used.  Laser results achieved using this fiber are described 

in detail in Chapter 6. 
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Figure 4.5 Mid-IR fiber loss from a 7-Cell, 3-Ring, 18.75-μm pitch kagome-structured HC-

PCF.  Only one cut-back was performed.  The initial fiber length was ~ 2 m, and the length 

of fiber cut was 47.6 ± 0.1 cm.  This image is reproduced from Ref [34]. 

 

 4.2.2 7-Cell, 3-Ring, 20-μm Pitch Kagome-Structured HC-PCF 

The cross section of fiber 110708-CFD-K7C3R-C5J5 viewed with an optical microscope is 

shown in Fig. 4.6a.  Three rings of kagome-structured cladding surround this fiber’s 7-cell defect 

hollow core, and the fiber pitch is 20 μm.  The hollow core diameter ranges from ~ 87.5 – 

92.5 μm, and the outer diameter of the solid glass cladding is again 300 μm.  The measured near-

IR loss spectrum of the fiber is shown in Fig. 4.6b.  The fiber loss in the wavelength region near 

1.5 μm is seen to be below 237 dB/km. 
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Figure 4.6 7-Cell, 3-Ring, 20-μm pitch kagome-structured HC-PCF (a) cross section and 

(b) near IR loss spectrum.  Both the image and the loss spectrum were taken at the 

University of Bath by collaborators and are reproduced from Ref [52]. 

 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.7.  Two cut-back 

measurements were performed.  The red and blue data show the fiber losses measured from the 

individual cut-backs, while the green data shows the average fiber loss computed using Eq. 4.3b. 

The initial length of the fiber was ~ 10 m.  The length of fiber cut during the first cut-back was 

76.5 ± 0.1 cm, and the length of fiber cut during the second cut-back was 1.773 m ± 0.1 cm. 

The fiber loss is ~ 1 dB/m near 2.6 μm and generally increases with the wavelength to a 

maximum loss below 10 dB/m near 3.6 μm.  The measured fiber loss is below 3 dB/m for 

wavelengths between ~ 2.6 and 3.2 μm, marking a further improvement over the loss of the 

18.75-μm pitch fiber near the mid-IR lasing wavelengths of interest.  One of the cut-back 

measurements showed a negative fiber loss (gain), indicating more light was observed before the 

fiber was cut than after.  This is clearly not indicative of the actual fiber loss, and while the 

source of the fluctuation is not known, it may be related to modal fluctuations in the unseeded 

OPA output, or fluctuations in the center wavelength from the OPA near spectral regions in the 

fiber with vastly different losses. 
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Figure 4.7 Mid-IR fiber loss from a 7-Cell, 3-Ring, 20-μm pitch kagome-structured HC-

PCF.  The fiber loss data shown in blue and red correspond to measurements from the 

individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length was 

~ 10 m, and the lengths of fiber cut were 76.5 ± 0.1 cm (blue data) and 1.773 m ± 0.1 cm 

(red data). 

 

 4.2.3 7-Cell, 3-Ring, 22.5-μm Pitch Kagome-Structured HC-PCF 

Figure 4.8a shows an optical microscope image of the cross section of fiber 110727-CFD-

K7C3R-C3J16.  The fiber again has a kagome-structured cladding comprised of three concentric 

rings with a 7-cell defect hollow core.  The fiber’s pitch is 22.5 μm.  The hollow core diameter 

ranges from ~ 85 – 93.75 μm, and the outer diameter of the solid glass cladding is 300 μm.  The 

measured near-IR loss spectrum of the fiber is shown in Fig. 4.8b, from which the loss in the 

wavelength region near 1.5 μm is seen to be near 32 dB/km. 
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Figure 4.8 7-Cell, 3-Ring, 22.5-μm pitch kagome-structured HC-PCF (a) cross section and 

(b) near IR loss spectrum.  Both the image and the loss spectrum were taken at the 

University of Bath by collaborators and are reproduced from Ref [52]. 

 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.9.  Two cut-back 

measurements were performed.  The blue and red data show the fiber losses measured from the 

individual cut-backs, while the green data shows the average fiber loss computed using Eq. 4.3b. 

The initial length of the fiber was ~ 10 m.  The length of fiber cut during the first cut-back was 

83.4 ± 0.1 cm, and the length of fiber cut during the second cut-back was 60.5  ± 0.1 cm. 

The fiber loss is below 1 dB/m near 2.6 μm and increases to a loss of ~ 8 dB/m near 3.6 

μm.  The measured fiber loss is below 5 dB/m for wavelengths between ~ 3.0 and 3.2 μm.  There 

is a large discrepancy in the measured losses at 3.36 μm, producing uncertainty in the average 

fiber loss reported here which is comparable with the reported loss value itself.  The negative 

fiber loss measured occurs at a slightly longer wavelength than that of the discrepancy observed 

in the last fiber.  It is interesting that both negative values were only seen in the first cut-back, 

but the source of the error is still not clear. 
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Figure 4.9 Mid-IR fiber loss from a 7-Cell, 3-Ring, 22.5-μm pitch kagome-structured HC-

PCF.  The fiber loss data shown in blue and red corresponding to measurements from the 

individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length was 

~ 10 m, and the lengths of fiber cut were 83.4 ± 0.1 cm (blue data) and 60.5  ± 0.1 cm (red 

data). 

 

 4.2.4 7-Cell, 3-Ring, 31.25-μm Pitch Kagome-Structured HC-PCF 

Figure 4.10a shows the cross section of fiber 110803-CFD-K7C3R-C20J8 viewed with an 

optical microscope.  This fiber too is made of a 3-ring kagome cladding structure with a 7-cell 

defect core.  The pitch of this fiber is quite large at 31.25 μm.  The fiber’s hollow core diameter 

ranges from ~ 112.5 – 137.5 μm, and the outer diameter of the solid glass cladding is 400 μm.  

The measured near-IR loss spectrum of the fiber is shown in Fig. 4.10b, from which the loss in 

the wavelength region near 1.5 μm is seen to be near 267 dB/km. 
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Figure 4.10 7-Cell, 3-Ring, 31.25-μm pitch kagome-structured HC-PCF (a) cross section 

and (b) near IR loss spectrum.  Both the image and the loss spectrum were taken at the 

University of Bath by collaborators and are reproduced from Ref [52]. 

 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.11.  Two cut-back 

measurements were performed.  The blue and red data show the fiber losses measured from the 

individual cut-backs, while the green data shows the average fiber loss computed using Eq. 4.3b. 

The initial length of the fiber was ~ 10 m.  The length of fiber cut during the first cut-back was 

1.136 m ± 0.1 cm, and the length of fiber cut during the second cut-back was 46.1 ± 0.1 cm. 

The fiber loss is ~ 5 dB/m near 2.6 μm and reaches to ~ 20 dB/m near 3.31 μm before 

dropping to ~ 10 dB/m near 3.6 μm.  The measured fiber loss is between ~ 5 and 15 dB/m for 

wavelengths between ~ 3.1 and 3.14 μm.  Several of the losses measured during the second cut-

back are below zero.  This is clearly not indicative of the actual fiber loss, and may be the result 

of coupling into different guided modes before the fiber was cut compared with after the fiber 

was cut.  The modest loss of the fiber combined with its much larger core diameter make it less 

desirable for use in the gas-filled fiber laser than the lower loss, smaller diameter kagome-

structured fibers tested, whose results are shown above. 
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Figure 4.11 Mid-IR fiber loss from a 7-Cell, 3-Ring, 31.25-μm pitch kagome-structured 

HC-PCF.  The fiber loss data shown in blue and red corresponding to measurements from 

the individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length 

was ~ 10 m, and the lengths of fiber cut were 1.136 m ± 0.1 cm (blue data) and 46.1 ± 0.1 cm 

(red data). 

 

 The next fibers discussed are based on kagome-structured fibers with a unique 

hypocycloidal core-cladding boundary shape.  This hypocycloidal core surround has been 

demonstrated to further decrease the fiber loss characteristics of kagome fibers while still 

permitting ultra-broad band guidance [53]. 

 

 4.2.5 1-Cell, 1-Ring, 32-μm Pitch Hypocycloidal HC-PCF 

Figure 4.12 shows the cross section of fiber 110701-YYW1R-D1C6B2 viewed with an optical 

microscope, where the hypocycloidal shape of the fused silica structure present at the core-

cladding boundary can be seen quite clearly.  The cladding is comprised of just one ring, and the 

core is a single-cell defect.  The fiber’s pitch is 32 μm.  The hollow core is ~ 58 μm in diameter, 

and the outer diameter of the solid glass cladding is substantially smaller than that of the 



47 

 

previously characterized kagome-structured HC-PCFs, at just ~ 200 μm.  The near-IR loss 

spectrum of this fiber was not measured. 

 

 
Figure 4.12 1-Cell, 1-Ring, 32-μm pitch hypocycloidal HC-PCF cross section.  The optical 

microscope image was taken at the University of Bath by collaborators and is reproduced 

from Ref [52]. 

 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.13.  Two cut-back 

measurements were performed.  The blue and red data show the fiber losses measured from the 

individual cut-backs, while the green data shows the average fiber loss computed using Eq. 4.3b. 

The initial length of the fiber was ~ 3 m.  The length of fiber cut during the first cut-back was 

75.0 ± 0.1 cm, and the length of fiber cut during the second cut-back was 1.06 m ± 0.1 cm. 

Unlike the kagome-structured fibers with non-hypocycloidal core surrounds, the fiber 

loss here is generally highest for shorter wavelengths (~ 17 dB/m near 2.6 μm) and decreases as 

the wavelength increases to ~ 5 dB/m near 3.6 μm.  The average fiber loss in the wavelength 

region of interest between 3.0 and 3.2 μm is between ~ 10 and 3 dB/m.  The core diameter of this 

hypocycloidal fiber is smaller, which makes it attractive for use in the gas-filled fiber laser as 

smaller mode areas produce higher intensities, all other things being equal.  However, there are 

large disparities between the two cutback measurements over nearly the entire measurement 

region, at all but the longest wavelengths, making me wary of using this fiber for anything except 

further cut-back measurements. 
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Figure 4.13 Mid-IR fiber loss from a 1-Cell, 1-Ring, 32-μm pitch hypocycloidal HC-PCF.  

The fiber loss data shown in blue and red correspond to measurements from the individual 

cut-backs.  The average fiber loss is shown in green.  The initial fiber length was ~ 3 m, and 

the lengths of fiber cut were 75.0 ± 0.1 cm (blue data) and 1.06 m ± 0.1 cm (red data). 

 

 4.2.6 1-Cell, 1-Ring, 42-μm Pitch Hypocycloidal HC-PCF 

Figure 4.14a shows the cross section of fiber 110811-YYW1R-D1C6B1 viewed with an optical 

microscope.  This fiber also has a 1-cell defect core with a 1-ring cladding, where the 

hypocycloidal shape of the fused silica structure present at the core-cladding boundary is again 

clearly visible.  The fiber’s pitch is 42 μm.  The fiber’s hollow core is ~ 64 μm in diameter, and 

the outer diameter of the solid glass cladding is about the same as for the smaller pitch kagome 

fibers at ~ 300 μm.  The measured near-IR loss spectrum of the fiber is shown in Fig. 4.14b, 

from which the loss at wavelengths near 1.5 μm is seen to be ~ 5 dB/m.  This is at least an order 

of magnitude higher than the losses from the kagome fibers. 

The fiber’s measured loss spectrum in the mid-IR is shown in Fig. 4.15.  Two cut-back 

measurements were performed.  The blue and red data show the fiber losses measured from the 

individual cut-backs, while the green data shows the average fiber loss computed using Eq. 4.3b. 



49 

 

The initial length of the fiber was ~ 5 m.  The length of fiber cut during the first cut-back was 

80.2 ± 0.1 cm, and the length of fiber cut during the second cut-back was 2.017 m ± 0.1 cm. 

 

 
Figure 4.14 1-Cell, 1-Ring, 42-μm pitch hypocycloidal HC-PCF (a) cross section and 

(b) near IR loss spectrum.  Both the optical microscope image and the loss spectrum were 

taken at the University of Bath by collaborators and are reproduced from Ref [52]. 

 

The average fiber loss is seen to be small (below 5 dB/m) and very flat across the entire 

wavelength region measured.  There are large discrepancies at wavelengths below 3 μm, but the 

two cut-back measurements agree quite well from ~ 3.0 – 3.6 μm, which includes the 

wavelengths of interest for the C2H2 and HCN-filled fiber lasers.  Because the loss near the laser 

wavelengths is only a few dB/m, this fiber will be used in the next round of gas-filled fiber laser 

measurements. 

In addition to measuring the mid-IR fiber loss, initial measurements of the mid-IR fiber 

mode profile were made using equipment at the National Institute for Standards and Technology 

(NIST) in Boulder, Colorado.  The measurement setup is shown in Fig. 4.16.  CW mid-IR light 

at ~ 3.3 μm is generated by mixing ~ 250 mW of 1555 nm light with ~ 100 mW of 1053 nm light 

in a fiber-coupled ridge waveguide PPLN crystal.  The output fiber from the device is a fluoride-

doped fiber which provides reasonable low-loss guidance at mid-IR wavelengths.  The mid-IR 

light is coupled from the fluoride-doped fiber to free space and then into the 42-μm pitch 

hypocycloidal fiber using uncoated CaF2 lenses.  The input side of the hypocycloidal fiber is 

positioned with a 5-axis stage for optimal coupling.  The other end of the fiber is placed in front 
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of an IRC191 thermal camera which employs a liquid-nitrogen cooled, 20-μm pitch 640 x 512 

pixel InSb focal plane array. 
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Figure 4.15 Mid-IR fiber loss from a 1-Cell, 1-Ring, 42-μm pitch hypocycloidal HC-PCF.  

The fiber loss data shown in blue and red corresponding to measurements from the 

individual cut-backs.  The average fiber loss is shown in green.  The initial fiber length was 

~ 5 m, and the lengths of fiber cut were 80.2 ± 0.1 cm (blue data) and 2.017 m ± 0.1 cm (red 

data). 

 

 An image of the 3.3-μm wavelength mode profile from the 42-μm pitch hypocycloidal 

fiber is shown in Fig. 4.17.  The image was taken by placing the fiber end as close to the 

camera’s input window as possible, and is magnified some from the camera optics.  The mode 

shows reasonably good azimuthal symmetry.  More importantly, as the mid-IR coupling is 

changed by adjusting the fiber’s end position via the 5-axis stage, the mode profile is not seen to 

change noticeably.  This is a strong indication that the mid-IR guidance is fairly single mode.  

This near single mode guidance is highly desirable as it may help reduce fluctuations currently 

seen in the mid-IR pulse energy produced from the gas-filled fiber lasers. 
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Figure 4.16 Setup used to observe mid-IR mode profile from a 42-μm pitch hypocycloidal 

HC-PCF.  Light at 3.3 μm is generated by mixing 1555 nm and 1053 nm light in a fiber-

coupled ridge waveguide PPLN crystal.  The mid-IR output is coupled from the fluoride-

doped output fiber to free space and then into the hypocycloidal fiber using CaF2 optics.  

The mode from the hypocycloidal fiber is imaged directly from the fiber’s end using an 

IRC191 thermal camera, employing a liquid-nitrogen cooled, 20-μm pitch 640 x 512 pixel 

InSb focal plane array. 
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Figure 4.17 Mid-IR mode profile from a 42-μm pitch hypocycloidal HC-PCF.  The shape of 

the profile is not seen to noticeably change when the coupling into the fiber is widely 

adjusted.   
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Chapter 5 - Lasers Based on Population Inversion from Gas-Filled 

Hollow Core Fibers: Initial Results 

 5.1 Introduction 
The first demonstration of laser emissions from population inversion in a gas-filled HC-PCF 

took place in Dr. Wolfgang Rudolph’s lab at the Univeristy of New Mexico in October of 2009.  

Following promising results from initial mid-IR fiber loss measurements we conducted in the 

same lab a month or so prior, it seemed we had the best chance for a successful demonstration if 

we combine the HC-PCF fiber setups and associated expertise we had at Kansas State Univeristy 

with the high power OPO pump source and OPGL expertise afforded by Dr. Rudolph’s group.  

So I loaded up my Honda hatchback with our HC-PCF vacuum chamber setup, pressure gauges, 

various optics and photodetectors, and several hollow-core fibers and drove 12 hours and 700 

miles from Manhattan, Kansas to Alberquerque, New Mexico.  Results from the initial 

experiments performed during this and one subsequent trip are presented in Ref [33] and are 

discussed in detail in the following section. 

 

 5.2 First Demonstrations of C2H2 and HCN-Filled Fiber Lasers 
The laser setup is shown in Fig 5.1.  The heart of the laser is the 1.65-m long kagome-structure 

HC-PCF waveguide, which both contains the gas-phase gain medium and serves as the laser 

cavity by guiding only emissions that coincide with the guided mode(s) of the fiber, effectively 

providing the spectral and spatial feedback enabling coherent laser oscillation.  Both ends of the 

kagome fiber are supported inside vacuum chambers within 1 cm of the vacuum windows, as 

shown in the Fig. 5.1 inset, allowing light to be coupled through the evacuated fiber.  BK7 glass 

optics are used to couple ~ 1.5-μm wavelength pump light into the fiber.  CaF2 optics are used to 

couple light out of the fiber, so that both the transmitted pump and the generated mid-IR light 

can be transmitted, focused, and collimated with negligible material absorption.  Polished 

germanium wafers are used to filter transmitted pump light from the mid-IR laser pulses exiting 

the fiber.  Transmission curves for all three of these optical materials are shown in Fig. 5.2. 
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Figure 5.1 Experimental setup for OPO-pumped gas-filled hollow-core fiber laser.  Pulses 

from an optical parametric oscillator (shown in blue) with center wavelengths of ~ 1.5 μm 

and 5-ns duration are coupled into a kagome-structured HC-PCF containing low pressure 

(< 20 torr) acetylene gas.  Pump radiation excites overtone vibrations in the gas which relax 

to fundamental ro-vibrational states while undergoing stimulated emission, producing mid-

IR wavelength laser pulses (shown in green).  Unabsorbed pump light transmitted through 

the fiber is detected using a fast InGaAs detector.  Laser energy is filtered from pump 

energy by a polished germanium wafer and detected by a fast, room-temperature HgCdTe 

photovoltaic detector.  Inset: Close-up partial cutaway showing a fiber end suspended 

inside a vacuum chamber. 
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Figure 5.2 External transmission of (a) BK7 glass, (b) CaF2, and (c) Germanium substrates 

of various thicknesses.  The transmission values shown here include losses from Fresnel 

reflections from the surfaces of the polished substrates.  Reproduced from Ref [54]. 

 

A fast InGaAs photodetector is used to observe pump pulses while a fast HgCdTe photodetector 

observes mid-IR laser pulses. 

The kagome fiber used in the initial demonstration of the laser is the first to demonstrate 

multi-octave spanning guidance that includes the mid-IR.  Its cross section and calculated guided 

modes are shown in Fig. 5.3a-c.  The fiber is formed from high purity, low OH content 

(~ 0.1 ppm) fused silica using a stack and draw technique.  Light out to ~ 3.4 μm is reasonably 

well guided in the fiber, even though fused silica exhibits strong absorption at wavelengths 

beyond ~ 3 μm, because the light that propagates is mostly confined to the hollow central core.  

A 3-ring cladding with a 23-μm pitch surrounds a single-cell defect core ~ 45 μm in diameter, 

with excellent guidance at the pump wavelength of 1.52 μm and weak guidance near the laser 

wavelengths in the mid-IR.  Figure 5.3d shows the measured and calculated fiber loss spectrum 

and the calculated group velocity for this particular fiber.  Standard cut-back measurements were 

performed to measure the wavelength dependent loss of the fiber.  A broadband optical source 

and an optical spectrum analyzer were used at wavelengths below 1.75 μm.  The data at 3.16 μm 

was taken using the long-wavelength idler output of an optical parametric oscillator (OPO) 
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coupled through the fiber and detected by a PbSe photodetector.  The measured fiber loss is less 

than 0.5 dB/m near 1.5 μm and is 20 dB/m at 3.16 μm.  More data points in the region beyond 

1.75 μm can be taken but require a more stable OPO output mode and pulse energy while tuning 

the wavelength than was available.  The calculated fiber loss is a result of the confinement loss 

of the fiber, which arises partially from the fact that the microstructured cladding region is finite 

in size, and partly from the intrinsic guidance mechanism of the fiber whereby there is a residual 

coupling between the cladding continuum modes and the guided core modes [30].  This results in 

a light leakage from core guided modes though the microstructured cladding into the outer bulk 

silica.  The confinement loss was calculated by collaborators at the University of Bath using 

finite element analysis software from JCMwave which was also used to solve the fiber modes.  

The measured and calculated fiber losses are in good agreement, allowing fast and accurate 

numerical customization and optimization of fiber loss profiles in the future. 

 

 
Figure 5.3 Kagome-structured HC-PCF fiber cross section, guided mode profiles, and loss 

spectrum and group velocity.  (a) Scanning electron microscope image of the cross section 

of the fiber used in the experiment.  The diameter of the hollow core varies from 42.4 – 

48.3 μm.  The fiber pitch is ~ 23 μm, and the typical strut thickness is ~ 0.4 μm.  Calculated 

core mode profiles at (b) 1.52 μm and (c) 3.12 μm.  (d) Wavelength dependence of the 

measured (black circles) and calculated (orange) fiber loss along with the calculated group 

velocity (red).  Figure reproduced from Ref [33]. 
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Filling the evacuated fiber with 12C2H2 gas to equilibrium pressures of several tens of torr 

takes only minutes owing to the relatively large core diameter of the fiber.  Based on the relative 

dimensions of the fiber, this implies average flow rates of ~ 1010 molecules/s.  Use of a 19-cell 

defect fiber with core diameters of 50 – 70 μm would further decrease the filling times and allow 

even higher flow rates. 

The laser is pumped using the signal wavelength from the same OPO used previously to 

measure the fiber loss in the mid-IR as described above.  The OPO produces broadly tunable 

~ 1.5-μm wavelength pulses with spectral bandwidths of about 3.5 GHz, pulse durations of 

roughly 5 ns, and pulse energies up to ~ 10 mW.  The pump pulse energy incident on the fiber is 

kept below 100 μJ to avoid damage [55].  Filter wheels containing various neutral density filters 

permit up to 4 filters to be used simultaneously to control the pump pulse energy coupled into the 

fiber. The wavelength of these pulses is then tuned to resonance with the R(7), ν1 + ν3 ro-

vibrational transition in 12C2H2, corresponding to a wavelength of 1521.06 nm [40].  For clarity, 

the normal modes of vibration for the acetylene molecule are shown in Fig. 2.2a.  The ν1 

vibrational mode is seen to correspond to the symmetric C–H stretch, while the ν3 vibrational 

mode corresponds to the anti-symmetric stretch.  Transitions between the vibrational ground 

state and the ν1 + ν3 vibrational state are attractive candidates for laser pumping for several 

reasons.  First, the spectroscopic properties of these transitions are well understood and have 

been measured very precisely by the scientific community [40].  Second, some of these 

transitions lie within the spectral window beyond ~ 1.53 μm where readily available commercial 

laser sources and amplifiers based on gain from excited Er3+ ions like erbium-doped fiber lasers 

and amplifiers could be used, an attractive prospect for eventual commercialization of these 

devices.  The R(7) transition in particular was chosen because it lies very near the maximum R-

branch absorption as can be seen in Fig. 2.3, allowing for stronger absorption of the pump by the 

gas molecules as compared to transitions between most other rotational states. 

A measured spectrum of the mid-IR laser output is shown in Fig. 5.4a together with an 

energy level diagram in Fig. 5.4b showing the relevant transitions for C2H2 gas molecules 

participating in the laser action.  Pump pulses excite acetylene molecules from the J = 7 

rotational state of the vibrational ground state to the J = 8 rotational state of the ν1 + ν3 

vibrational manifold.  Acetylene molecules can then leave this excited state via radiative 
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transitions to the ν1 vibrational state with corresponding emission wavelengths in the 3-μm 

region.  Alternatively, molecules initially in the excited state may exchange energy 

nonradiatively through intermolecular collisions and collisions with the fiber wall, processes that 

can decrease the overall laser efficiency.  The relative contribution of wall collisions is expected 

to be small at pressures above 2 torr, where the calculated mean free path of idealized hard-

sphere gas molecules is < 20 μm. 

 

 
Figure 5.4 Spectrum and energy level diagram from the acetylene-filled HC-PCF laser.  

(a) The laser spectrum was taken at gas pressures of 7.0, 20, and 50 torr using a grating 

spectrometer with ~ 1 nm resolution.  While the relative energy density of the spectral 

features changes with pressure, no spectral shifts or additional features are observed.  The 

two peaks correspond to transitions from the J = 8, ν1 + ν3 excited state to the J = 7 and J = 

9, ν1 state, corresponding to wavelengths of 3123.2 nm and 3162.4 nm, respectively.  (b) An 

energy level diagram showing the pertinent ro-vibrational transitions in the acetylene 

molecules.  The dotted line represents potentially unobserved relaxation pathways. 

  

The laser spectrum was measured by focusing the collimated mid-IR beam from the laser 

onto the entrance slit of a computer controlled grating monochrometer which used a liquid 

nitrogen cooled, cryogenic InSb photodetector.  The spectral resolution of the monochrometer 

was measured to be ~ 1 nm using the second diffraction order of the narrowband (~ 30 pm) 
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pump light.  Just as in the free space acetylene laser [16], only two peaks are observed in the 

laser spectrum.  These peaks fall at 3.123 μm and 3.162 μm and correspond to the R(7) and P(9) 

dipole allowed transitions (ΔJ = ±1) from the J = 8, ν1 + ν3 excited state to the J = 7 and J = 9 

rotational states of the ν1 vibrational state, respectively.  The absence of any other spectral peaks 

indicates insufficient time for molecules in the excited state to rotationally mix through 

intermolecular collisions before the onset of lasing and vibrational relaxation.  Total removal 

rates from the upper pump level are measured to be ~ 10-9 cm3s-1 [56]. 

A measured far-field beam profile of the mid-IR laser output is shown in Fig. 5.5.  The 

mid-IR laser output was collimated from the fiber’s end, and the resulting power transmitted 

through a 750-μm diameter aperture was recorded as the aperture was scanned in the plane 

transverse to the beam.  While the beam is not perfectly symmetric, it does look relatively clean 

with only one hotspot in addition to the central peak intensity region. 

 

 
Figure 5.5 Far-field mid-IR laser beam profile. The profile is taken by measuring the 

optical power in the collimated mid-IR laser beam transmitted through a 750-μm diameter 

circular aperture as the aperture is scanned transverse to the beam.  This data was taken 

by collaborators at the University of New Mexico.  Figure reproduced from Ref [33]. 

 

Figure 5.6 shows maximum laser pulse energies (black) and pump-to-laser pulse timing 

delays (red) measured at various acetylene gas pressures for launched pump pulse energies of 

~ 1 μJ.  The maximum laser pulse energy is seen to increase with increasing gas pressure up to a 

maximum of ~ 6 nJ measured at an acetylene pressure of 7 torr.  Further increasing the gas 
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pressure leads to a decrease in the total amount of laser pulse energy observed.  This is likely a 

result of the pump pulse energy being too strongly absorbed before the end of the fiber, creating 

a smaller population inversion near the end of the fiber.  While any population inversion will 

result in gain and not reabsorption, a decrease in the magnitude of the gain per unit length below 

the 20 dB/m fiber loss means that more light is escaping the guided fiber mode through leakage, 

scattering, and material absorption than is being produced through stimulated emission, reducing 

the total laser pulse energy emitted from the fiber’s end. 

A time delay is observed between the peak of the transmitted pump pulse and that of the 

generated mid-IR laser pulse, with the peak of the pump pulse always occurring before that of 

the laser pulse.  A maximum peak-to-peak delay between the transmitted pump and laser pulses 

of ~ 5 ns is observed at the lowest measured acetylene pressure (~ 0.5 torr) where the pump can 

create the largest population inversion.  As the gas pressure increases, the delay decrease and 

reaches a minimum delay of ~ 1 ns.  Laser pulse durations are observed to be between ~ 3 and 

5 ns (FWHM). 

The lasing threshold occurs at about 200 nJ of coupled pump pulse energy and varies 

with pressure.  The slope efficiency is only ~ 1% in comparison with about 10% from the free 

space acetylene laser [16].  The slope efficiency can be improved by reducing the fiber 

attenuation at the laser wavelength through optimization of the fiber length and pitch.  

Neglecting relaxation processes, the maximum possible slope efficiency for this 4-level laser is 

33% and is a result of saturating the pump and both lasing transitions. 

In the limit of lossless fiber and 33% efficiency the ultimate achievable pulse energies to 

expect from these lasers should be limited by the fiber damage threshold.  Damage fluences for 

8-ns pulses at 1064 nm on the order of 100 J/cm2 were observed for the cladding in HC-

PCFs [55], which roughly corresponds to the critical fluence of bulk fused silica.  In contrast, a 

roughly 10 times higher fluence was demonstrated by the guided mode without causing 

catastrophic damage [55].  If we assume that the damage fluence scales as the square root of the 

pulse duration [55] and is rather wavelength independent we obtain an estimate for the maximum 

pump energy that can be coupled into our fiber on the order of 10 mJ, resulting in a maximum 

laser energy of a few millijoules.  This energy limit can be increased through the use of larger 

core fibers, longer pulse durations, and more efficient lasing schemes. 
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Figure 5.6 Measured dependence of maximum laser pulse energy (black) and pump-to-

laser pulse delay (red) on gas pressure from a 12C2H2-filled 23-μm pitch kagome-structured 

HC-PCF.  The maximum laser pulse energy increases with gas pressure until it peaks at 

~ 6 nJ at 7 torr.  The peak-to-peak delay between the transmitted pump pulse and the mid-

IR laser pulse is seen to decrease from ~ 5 ns at ~ 0.5 torr to ~ 1 ns at higher pressures.  The 

pump pulse energy launched into the 1.65 m long fiber was about 1 μJ. 

 

Pumping the laser with a broadly tunable commercial OPO is a natural choice for the 

initial demonstration of the laser, since the OPO wavelength can be adjusted at the touch of a 

button, and pulse energies corresponding to fluences up to (and in excess of) the estimated 

damage threshold of the fiber can be reached.  However, the mid-IR laser pulse energies 

produced by the OPO-pumped acetylene-filled hollow fiber show large shot-to-shot fluctuations 

at any given pump pulse energy.  Furthermore, the spatial mode produced by the OPO in the 

~ 1.5-μm wavelength region is observed to be asymmetric with several hot spots visible on an IR 

viewing card.  Figure 5.7 shows a measurement of the OPO pump pulse energy transmitted 

through the kagome-structured HC-PCF as a function of pump pulse energy incident on the fiber 

for various acetylene pressures ranging from 0.0 torr (fully evacuated) up to 60 torr.  As the 

pressure is increased the ratio of pump pulse energy exiting the fiber to that incident on the fiber 

is expected to decrease monotonically due to the increase in molecular absorption accompanying 
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the increase in the molecular number density.  However, this ratio is observed to vary somewhat 

sporadically, increasing by up to a factor of 6 between successive pressure measurements from 

0.0 to 1.0 torr, 5.0 to 7.0 torr, and 20 to 25 torr.  These variations are thought to have been caused 

by changes in the fiber-to-source coupling.  Changes in this coupling may be a result of 

fluctuations in the pump mode profile emitted from the OPO and/or by wavelength variations on 

the order of ~ 1 GHz causing the amount of energy absorbed by the gas to change and with it the 

pump transmission through the fiber. 
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Figure 5.7 OPO pump pulse energy transmitted through the C2H2-filled 23-μm pitch 

kagome-structure HC-PCF as a function of incident pump pulse energy for various gas 

pressures.  The ratio of incident to transmitted pump pulse energy is expected to decrease 

monotonically as the gas pressure is increased in the absence of changes in source-to-fiber 

coupling and center wavelength instabilities. 

 

 Switching the pump source from an OPO to an OPA offers a potential solution to these 

problems.  By using a stable, narrow linewidth laser to provide signal light to seed the OPA, the 

OPA can be expected to provide stable, narrowband amplified signal pulses that can be used to 
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pump the gas-filled fiber laser.  Furthermore, by using a laser with a single mode fiber output, 

one can ensure that the beam profile of the signal light to be amplified is near Gaussian, ensuring 

a more spatial stable and higher quality OPA mode profile. 

The OPA constructed is discussed in detail in Section 3.2.  A schematic of the OPA-

pumped laser setup is shown in Fig. 5.8.  The setup is generally the same as that which uses the 

OPO with a few improvements.  Instead of inserting various neutral density filters into the pump 

beam to adjust the pump pulse energy, a variable attenuator constructed using wave plates and a  

 

 
Figure 5.8 Gas-filled fiber laser setup using OPA as pump source.  Gas is contained inside 

the HC-PCF.  Pump pulses from an OPA are coupled into the fiber through one end while 

the generated mid-IR light and any unabsorbed pump light are coupled out of the opposite 

end of the fiber.  Mid-IR light passes through a 2-mm thick, un-coated germanium filter at 

45° incidence and is focused onto a HgCdTe detector.  A large portion of the unabsorbed 

pump light is reflected from the angled germanium filter and sent to a fiber coupled, 25-

GHz InGaAs photodetector. 
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polarized beam splitting cube is used to precisely and continuously adjust the pump pulse 

energy.  Following the attenuator a BK7 wedged window is used to split a small fraction (~ 1%) 

of the pump pulse energy off from the main beam.  This small fraction of the pump pulse energy 

is then further attenuated and coupled into an SMF patch cord.  The majority of the pump light is 

coupled into a 33-cm long piece of gas-filled kagome-structured HC-PCF, whose ends are 

supported inside vacuum chambers, using anti-reflection coated BK7 optics.  This kagome fiber 

is a shortened piece of the same 23-μm pitch fiber used in the OPO-pumped laser. 

While the basic design of the vacuum chambers and fiber holders remain unchanged, 

some effort was made to shrink the total volume of the vacuum chamber system.  This was done 

in order to minimize the total amount of gas required to fill the hollow-core fiber to any given 

gas pressure.  While this is a generally desirable characteristic for any setup that requires 

consumables like molecular gases, our desire to use HCN in the setup and the difficulty of 

procuring HCN gas is the driving force for this design change. 

The generated mid-IR laser light as well as the unabsorbed pump light are coupled out of 

the fiber and collimated using uncoated CaF2 optics.  The distance between the end of the fiber 

and the collimating lens is adjusted to optimize the collimation of the ~ 1.5-μm pump beam.  

This is much easier in practice than trying to collimate the all-but-invisible mid-IR beam.  

Furthermore, precise collimation of the transmitted pump light is more important as the 

unabsorbed pump light is partially reflected from an uncoated polished germanium filter angled 

~ 45° to the incident beam, filtered, attenuated, and then coupled into an SMF patch cord.  The 

quasi-collimated mid-IR beam is transmitted through the 2-mm thick, angled germanium filter 

and either focused onto an exposed 1-mm x 1-mm room temperature HgCdTe photodetector 

(Boston Electronics, P/N PVI-3.4) or focused into a grating monochrometer for spectral 

measurements of the laser output.  The mid-IR output is never fiber coupled, and therefore the 

collimation of this beam is not so critical. 

In order to use a single, fast, fiber-coupled photodetector, both the pump light split off 

from the main beam before the HC-PCF and the pump light transmitted through the HC-PCF are 

coupled into single mode fiber (SMF) patch cords.  The two separate patch cords are connected 

to the input ports of a 50/50 fiber beam combiner.  A single SMF patch cord is then connected 

from the combiner’s output to the input of a fiber-coupled, 25-GHz InGaAs photodetector (New 

Focus, P/N 1414).  This single detector is then used to detect both the pump pulse power incident 
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on the fiber as well as the pump pulse power transmitted through the fiber with sub-nanosecond 

rise times limited by the 4-GHz bandwidth of the CSA7404 digital oscilloscope.  The free-space 

and fiber path lengths are such that the peak-to-peak separation of the incident pump pulse and 

the transmitted pump pulse is ~ 7 ns, which is more than enough separation to fully resolve each 

~ 1-ns duration pulse profile from the one-channel oscilloscope trace.  Figure 5.9 shows an 

oscilloscope trace of the 25-GHz photodetector signal taken off resonance. 

 

 
Figure 5.9 Single-shot oscilloscope trace showing non-resonant incident and transmitted 

pump pulse detected using a single 25-GHz InGaAs photodetector.  A small fraction of the 

incident pump pulse is detected first, followed ~ 7 ns later by the pulse transmitted through 

the hollow-core kagome fiber.  The pulses are seen to be ~ 1 ns in duration. 

 

 With this more stable OPA pump source, the pump wavelength can be maintained very 

precisely or tuned via the CW seed laser without concern that the spatial mode emitted by the 

OPA may change.  This allows the pump pulse energy transmitted through the kagome fiber to 

be measured both at a wavelength resonant with the absorbing pump transition and at a 

wavelength widely (at least a few gigahertz) detuned from this transition.  This is very useful, as 

a close approximation to the absorbed pump pulse energy can be calculated by subtracting the 

measured resonant pulse energy from the non-resonant pump pulse energy transmitted through 

the fiber.  Computing the absorbed pump energy in this way is not exact as resonant pump light 
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that is absorbed after propagating only a short distance in the fiber experiences less fiber loss 

than light that is transmitted through the entire length of fiber.  This makes the computed 

absorbed pump energy a little lower than the actual.  An upper limit on the error can be estimated 

assuming that all the pump absorption happens at the very start of the fiber, and that the 

remaining transmitted light is just attenuated by the fiber loss.  For a 1.65-m long fiber with 0.5 

dB/m loss, the calculated absorbed pump energy would be 83% of the actual energy absorbed by 

the gas.  This is an overestimation, and our collaborators have estimated that the discrepancy is 

only ~ 5% for the same fiber length and fiber loss assuming linear absorption of the pump. 

 

 5.2.1 Quantitative Study of Laser Optical Properties 

Figure 5.10 shows a simplified schematic of the laser setup indicating the relative measurement 

locations for the detected voltage signals and pulse energies for the pump light (green arrows) 

and laser light (red arrows).  The gray arrows correspond to transmission coefficients to account 

for losses due to Fresnel reflections incurred from various optical elements. 

 

 
Figure 5.10 Simplified gas-filled fiber laser diagram showing where pulse energies and 

photodetector signals are measured.  ࡼࢂ and ࢚࢛ࡼࢂ are the photodetector signals 

measured for the incident and transmitted pump pulses, respectively, using a 25 GHz 

InGaAs photodetector.  ࢙ࢇࡸࢂ is the photodetector signal measured for the generated laser 

pulse using a HgCdTe photodetector.  The energy measurements for both the incident and 

transmitted pump pulses are made using a pyroelectric energy sensor. 
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The physical quantities most useful in describing the laser behavior and performance are 

not the quantities that are directly measured.  To convert the photodetector signals into pulse 

energies requires careful calibration and must account for numerous Fresnel reflections.  What 

follows is a detailed discussion of the calibration process. 

Fresnel reflections result from the boundary conditions imposed on the electric and 

magnetic field components at the interface of materials with different refractive indices.  For the 

situation diagramed in Fig. 5.11, The power reflection coefficients for s-polarized light (electric 

field polarization parallel to the plane of the interface) and p-polarized light (electric field 

polarization parallel to the plane containing the propagating light) are given in terms of the angle, 

 , between the incident propagation direction and the vector normal to the boundary plane byߠ

the equations [57], 
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Using Eq. 5.1 and 5.2 the Fresnel power reflection coefficients for s-, p-, and unpolarized 

(average of s- and p-) light can be computed for air-CaF2 and air-germanium interfaces, which 

can then be used to estimate the transmission (given by ௦ܶ//௨ ൌ 1 െ ܴ௦//௨ which represents 

the power transmission coefficient through one boundary of regions with non-identical refractive 

indices) through the various optical elements in the laser setup.  The calculated reflection 

coefficients are shown in Fig. 5.12 as functions of the incident angle, ߠ, for wavelengths in the 

3-μm region near the laser wavelengths (reflection coefficients for CaF2 decrease by a few 

percent at the pump wavelength).  Unless specified, all the calculated transmission coefficients 
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Figure 5.11 Diagram showing Fresnel reflection of light at interface of two materials having 

different indices of refraction.  Reproduce from Ref [58]. 

 

assume un-polarized light.  The wavelength-dependent indices of refraction are given by the 

Sellemeier equation found in reference [59]. 

 

 
Figure 5.12 Polarization and angular dependence of Fresnel reflections from an air-CaF2 

(left) and air-germanium (right) interface. 

 

Photodetector voltage signals can be used to compute pulse energy.  This is best done by 

comparing the integrated photodetector signal to the reading from an energy meter over a range 

of pulse energies.  The signals ܸ and ܸ௨௧ labeled in Fig. 5.11 represent the integrated pump 
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pulse voltage signals (in units of V∙ps) measured before and after the fiber respectively.  ܸ௦ is 

the integrated laser pulse signal measured after the germanium filter.  All of the integrated 

voltage signals are calculated using the MATLAB code shown in Appendix E which computes 

the area under the voltage signal waveforms (like that shown in Fig. 5.9) read out from the 

LabVIEW-controlled oscilloscope. 

The calibration of pulse energy from an integrated voltage signal is done using a 

pyroelectric energy meter.  These integrated voltage signals are proportional to the incident 

pump, transmitted pump, and the mid-IR laser pulse energies.  To calibrate the pump signals in 

terms of pulse energy, a pyroelectric energy sensor is used to measure the observed pulse 

energies at the locations shown before and after the fiber at pump wavelengths both resonant and 

non-resonant with the pump transition in the gas.  This is performed at several different incident 

pump pulse energies for each gas pressure.  The slope from a linear regression performed on the 

data gives the desired calibration factors.  Using these calibration factors, measurements of the 

laser pulse energy as a function of pump pulse energy absorbed by the gas can be made while 

continuously varying the incident pump pulse energy via the variable attenuator after the OPA. 

The initial mid-IR energy calibration of the HgCdTe photodetector was performed using 

idler pulses from the OPA with center wavelengths of 3478 nm.  While this was convenient in 

that it did not require any tuning or reconfiguring of the OPA crystal position or temperature, the 

response of the particular HgCdTe detector used was measured to be about five-times stronger 

(units of V/W) at 3.5 μm as it was at the gas-filled fiber laser wavelengths near ~ 3.2 μm.  A 

simple calibration procedure was used, and consisted of 1) measuring the transmission through 

several filters using the OPA idler, 2) measuring the energy of the mid-IR pulses emitted directly 

from the OPA with a pyroelectric sensor, and 3) placing the filters of known optical density 

between the OPA output and the HgCdTe photodetector and measuring the resulting integrated 

voltage signal.  The filters were necessary to ensure that the photodetector was not saturated by 

the ~ 10-μJ energy mid-IR pulses.  The ratio of the measured pulse energy to the integrated 

voltage signal from the detector multiplied by the filters’ transmission coefficients gives the 

calibration factor (in units of nJ/(V∙ps)).  A similar calibration described in the next chapter is 

repeated using the actual acetylene laser output as the mid-IR source and gives the correct 

calibration factor.  This later, more accurate calibration factor is used in the analysis of all OPA-

pumped laser data presented in this thesis. 
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The laser pulse energy, ܧ௦, can then be computed in terms of the measured integrated 

voltage signal, ܸ௦, measured from the HgCdTe photodetector and is given by, 

 

௦ሺܧ  ܸ௦ሻ ൌ ሺ ܶ௨௧ · ܶ௦ሻିଵ · ݉௦ · ܸ௦ 5.3

 

where ܶ௨௧ accounts for the combined losses from Fresnel reflections of un-polarized light at 

the air-glass interfaces for the uncoated CaF2 window and collimating lens and ܶ௦ accounts for 

the combined losses from Fresnel reflections from un-polarized light at the air-material interfaces 

for the 2-mm thick uncoated germanium filter, and the CaF2 lens used to focus the laser light 

onto the HgCdTe photodetector.  ݉௦ is the voltage to energy calibration factor which is equal 

to the slope of the line fit to the measured pulse energy versus the integrated voltage signal 

measured by the laser photodetector, i.e., 
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The pump pulse energy incident on the fiber on resonance is given by, 

  

,ைே൫ܧ  ܸ,ைே൯ ൌ ሺ ܶሻିଵ · ݉,ைே · ܸ,ைே 5.5

 

where the subscript “ON” indicates that the quantities used are measured at a wavelength “on 

resonance” with the pump transition, and ܶ accounts for the losses from the AR-coated BK7 

window and focusing lens used to couple into the hollow fiber.  The calibration factor, ݉,ைே, 

is determined by performing a linear regression analysis of the average pump pulse energy and 

integrated voltage signal data measured before the fiber, and is given by, 

 

 ݉,ைே ൌ
,ைேܧ∆

∆ ܸ,ைே
 5.6

 

The calibration data is taken for several incident pump pulse energy increments, while on 

resonance with the pump transition.  This analysis is illustrated in Fig. 5.13 which shows the 
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measured data with the fit line and calibration factor (slope of fit equation) both on and off 

resonance.  A corresponding plot of the measured pump pulse energy just before the fiber on and 

off resonance is also shown in Fig. 5.13.  From the plot of the measured pump pulse energy 

before the fiber off resonance versus the pump pulse energy measured before the fiber on  

 

 
Figure 5.13 Data and linear fits of the pump pulse energy as a function of the integrated 

voltage signal recorded before the fiber both on (blue) and off (red) resonance, and plot 

showing measured pump pulse energy before the fiber on and off resonance.  While the 

integrated voltage signal is seen to change by ~ 10% in moving from on resonance to off, 

this change is well quantified and can be accurately accounted for. 
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resonance it is clear that the pump pulse energy emitted from the OPA is quite stable when the 

output is repeatedly tuned over a ~ 2 GHz range, as shown by the slope of 1.0076 in the bottom 

plot in Fig. 5.13.  The integrated voltage signal measured before the fiber is however seen to 

change by ~ 10% when tuning over the same range.  This may be due to slight changes in optical 

fiber coupling or some wavelength-dependent transmission of the optical fiber components 

and/or filters after the position at which the energy meter is inserted.  While this variation is not 

desirable, both the resonant and non-resonant data are linear, allowing accurate calibration 

factors to be calculated in each case. 

To calibrate the pump pulse energy exiting the gas-filled fiber, the energy on resonance is 

measured just after the fiber.  However, this measured energy necessarily has contributions from 

both the pump and laser light.  Therefore, the pump pulse energy exiting the fiber on resonance 

is most precisely given by, 

   

௨௧,ைே൫ܧ  ܸ௨௧,ைே, ܸ௦൯ ൌ ሺ ܶ௨௧ሻିଵ · ݉௨௧,ைே · ܸ௨௧,ைே െ ൫ ܶ௦,ଶ൯ିଵ · ௦ሺܧ ܸ௦ሻ 5.7

 

where, unlike ܧ௨௧,ைிி, the energy measured at the fiber output on resonance, ܧ௨௧,ைே, actually 

contains both the transmitted pump pulse energy and the emitted mid-IR laser pulse energy, and 

the last term in the expression subtracts this additional contribution from the laser pulse energy.  

Since ܸ௨௧,ைே and ܸ௦ are measured simultaneously for every pump pulse, this calculation 

could be done in theory.  However, using the calibration factor, ݉௨௧,ைே, given by,  

   

 ݉௨௧,ைே ൌ
௨௧,ைேܧ∆

∆ ܸ௨௧,ைே
 5.8

 

is problematic because the contribution to ܧ௨௧,ைே from the laser pulse energy is not expected to 

have a linear dependence in general, as the laser pulse energy will certainly saturate at high 

pump pulse energies because the absorbed pump energy saturates.  In order to use the calibration 

factor mentioned above, the actual dependence of ܧ௨௧,ைே on ܸ௨௧,ைே should be measured over 

many small intervals and fit with an appropriate function that reflects the interplay of the 
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transmitted pump and generated laser pulse energy.  This could be done but represents a very 

time intensive measurement. 

Instead, a good approximation to the pump pulse energy exiting the fiber on resonance 

can be made using the measured off-resonance, pump-only pulse energy, ܧ௨௧,ைிி.  This pulse 

energy is directly proportional to the integrated voltage signal recorded by the photodetector 

after the fiber as no mid-IR light is generated off resonance.  Using this approximation the 

calculated pump pulse energy transmitted through the fiber on resonance is given by, 

 

௨௧,ைே൫ܧ  ܸ௨௧,ைே൯ ؆ ሺ ܶ௨௧ሻିଵ · ݉௨௧,ைிி · ܸ௨௧,ைே , 5.9

 

where ݉௨௧,ைிி is given by, 

 

 ݉௨௧,ைிி ൌ
௨௧,ைிிܧ∆

∆ ܸ௨௧,ைிி
. 5.10

 

The behavior of ܧ௨௧ as a function of ܸ௨௧ at pump wavelengths both on and off resonance is 

shown in Fig. 5.14.  The line fit to the off resonance data gives the calibration factor used in the 

analysis.  Only two data points are shown for the on-resonance case because the pulse energy 

after the fiber corresponding to the lowest incident pump pulse energy was too low to be 

measured.  A line with a non-zero y-intercept is fit to this data and serves to put an upper limit on 

the error incurred by using the off-resonant calibration factor with the on-resonant data.  From 

the comparison of these two slopes, the error introduced is less than 9%. 

By comparing this energy to the expected pump pulse energy transmitted through the 

fiber in the absence of any absorption by the gas, ܧ௨௧,ைே
ᇱ , the total absorbed pump pulse energy 

can be calculated.  The expected pump pulse energy transmitted through the fiber without 

absorption in terms of the integrated voltage signal from the incident pulse measured on 

resonance is given by, 

 

 
௨௧,ைேܧ

ᇱ ൫ ܸ,ைே൯

ൌ ሺ ܶ௨௧ሻିଵ · ݉௨௧,ைிி · ቆ
∆ ܸ௨௧,ைிி

∆ ܸ,ைிி
ቇ · ቆ

∆ ܸ,ைிி

∆ ܸ,ைே
ቇ · ܸ,ைே 

5.11 
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Figure 5.14 Total pulse energy measured after the fiber as a function of the integrated 

voltage signal from the transmitted pump pulse both on- (blue) and off- (red) resonance.  

The slope of the line fit through the off-resonance data gives the integrated voltage to 

energy calibration factor.  Since the integrated voltage signal is only sensitive to the 

transmitted pump light, the on-resonance pulse energy after the fiber is observed to be 

higher than the off-resonance pulse energy due to the additional mid-IR laser pulse energy 

being measured.  The slope of the on-resonance data provides an estimate of the upper 

limit to the error introduced by using the off-resonance calibration factor with the 

integrated voltage signals measured on-resonance after the fiber. 

 

where the factor ∆ು,ೀಷಷ
∆ು,ೀಿ

 accounts for the difference in the integrated voltage signal on and off 

resonance, and the factor ∆ುೠ,ೀಷಷ
∆ು,ೀಷಷ

 is used to convert signals measured before the fiber to the 

values that would be expected after the fiber.  Figure 5.15 shows a plot of ܸ,ைிி as a function 

of ܸ,ைே.  The slope of the line fit to this data is less than unity, indicating some wavelength-

dependent fluctuation in the fiber coupled pump signal as evidenced by the discrepancy in the on 

and off resonance energy data shown in Fig. 5.13. 
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Figure 5.15 Plot of the integrated voltage signal measured before the fiber off-resonance 

versus that measured on-resonance.  The slope of the fit line differs from unity indicating 

that the amount of signal observed by the photodetector varies over the ~ 2 GHz tuning 

range of the pump wavelength used to move between on and off resonance. 

 

The total pump pulse energy absorbed by the gas on resonance, ܧ௦, can be calculated 

by subtracting the measured from the expected pump pulse energy transmitted through the fiber 

on resonance.  The absorbed pump pulse energy is then given by, 

 

 
௦൫ܧ ܸ,ைே, ܸ௨௧,ைே൯ ൌ ௨௧,ைேܧ

ᇱ ൫ ܸ,ைே൯ െ ௨௧,ைே൫ܧ ܸ௨௧,ைே൯ 

؆ ሺ ܶ௨௧ሻିଵ · ݉௨௧,ைிி · ቈቆ
∆ ܸ௨௧,ைிி

∆ ܸ,ைிி
ቇ · ቆ

∆ ܸ,ைிி

∆ ܸ,ைே
ቇ · ܸ,ைே െ ܸ௨௧,ைே 

5.12 

 

This quantity is somewhat fundamental to our laser since it represents the amount of energy we 

are actually able to impart on the molecular system which is responsible for the production of the 

mid-IR laser light.  For this reason the absorbed pump pulse energy is a natural metric for the 

laser system and will be used to examine quantities of interest including the laser pulse energy 

and pump-to-laser pulse delay.  Recall that we may be underestimating the amount of absorbed 

pump pulse energy by ~ 5%, due to the 0.5 dB/m loss of the hollow-core fiber. 
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 5.2.2 Experimental Results in Acetylene 

A spectrum of the mid-IR laser output taken at an acetylene pressure of 111 torr is shown in 

Fig. 5.16a along with an energy level diagram in Fig. 5.16b showing the relevant transitions.  

The spectrum was taken using a computer controlled grating monochrometer and a room 

temperature PbSe photodetector (Thorlabs, P/N PDA20H).  A maximum resolution of ~ 0.2 nm 

(FWHM) was determined by looking at the second diffraction order of the narrowband (~ 1 

kHz), ~ 1.5-μm wavelength OPA seed laser, with entrance and exit slit widths of 50 μm.  The 

spectral region from ~ 1.5 to 4.1 μm was examined, but just as in the case of the OPO-pumped 

laser, only two peaks are observed in the laser spectrum. 

For the initial trials of the OPA-pumped laser, the gas was excited via the P(13) transition 

between the vibrational ground state and the ν1 + ν3 vibrational state at a wavelength of  

 

 
Figure 5.16 (a) OPA-pumped C2H2–filled fiber laser spectrum and (b) the molecular energy 

level diagram showing the relevant transitions.  The laser was pumped on the P(13) 

transition between the vibrational ground state and the ν1 + ν3 vibrational state.  Two peaks 

are observed in the laser spectrum, corresponding closely with the R(11) and P(13) 

transitions at 3114.6 and 3172.4 nm between the excited state and the ν1 vibrational state 

[37].  The monochrometer’s entrance and exit slit widths were 150 μm.  Figure adapted 

from Ref [60]. 
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1532.83 nm.  This was preferable to pumping the laser via the R(7) transition utilized in the 

OPO-pumped laser demonstration which would have required using a less powerful and less  

The observed laser pulse energy as a function of pump pulse energy absorbed by the gas 

molecules contained within the 33-cm long piece of 23-μm pitch kagome-structured HC-PCF is 

shown in Fig. 5.17 for acetylene gas pressures ranging from ~ 15 to 75 torr.  As a result of the 

much improved mode quality of the pump beam, more pump energy can be coupled into the 

fiber and absorbed by the gas than was possible with the OPO-pumped laser.  Not surprisingly 

the maximum observed laser pulse energies are seen to exceed those observed from the 1.65-m 

long section of the same fiber used in the OPO-pumped laser.  In general the data show that as 

the pressure increases the laser thresholds increase while the slope efficiencies (defined here as 

the slope of the data in the linear region) and the total optical-to-optical efficiencies decrease.  

These trends are summarized by the quantities tabulated in Table 5.1.  Just as is seen from the 

OPO-pumped laser, the maximum laser pulse energy here is seen to increase as the pressure is 

increased until reaching maximum values at 37.0 – 56.1 torr, after which increasing the pressure 

begins to decrease the maximum laser pulse energy.  Again, this is likely due to the fact that for a 

given fiber length and pump pulse energy available there is a maximum number of molecules 

that can be inverted to produce saturated gain down the entire length of the fiber.  If more 

molecules are added (pressure increased), the gain will drop below the 20 dB/m loss before the 

end of the fiber, and less total laser pulse energy will be emitted. 
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Figure 5.17 Mid-IR laser pulse energy versus absorbed pump pulse energy for various 

pressures of C2H2 gas contained within a 45-μm core diameter, 23-μm pitch kagome-

structured HC-PCF.  Plots showing each pressure individually are shown in Appendix C. 

 

Table 5.1 Summary of laser threshold and efficiency values for various C2H2 gas pressures. 

C2H2 Gas Pressure (torr) Absorbed Pump Pulse Energy 

at Laser Threshold (μJ) 

Maximum Optical-to-Optical 

Laser Efficiency (%) 

15.4 0.26 17 

27.6 0.35 12 

37.0 0.39 12 

56.1 0.71 7.6 

75.0 1.1 4.8 

 

Unfortunately, it is quite clear from the large scatter in the laser pulse energy data shown 

in Fig. 5.17 that pumping the laser with an OPA has not produced the shot-to-shot stability from 

the laser output as was hoped.  One possible explanation comes from the fact that the hollow 
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fiber likely guides multiple transverse modes.  Different transverse modes would likely 

experience slightly different fiber losses and different gain coefficients, the latter owing to 

varying degrees of overlap between different mid-IR modes and the transverse gain profile.  

Unfortunately, this idea is difficult to explore since to the best of my knowledge the mid-IR 

mode characteristics of these kagome-structured HC-PCFs have not yet been measured. 

The observed peak-to-peak delay between the absorption-free transmitted pump pulse 

and the generated mid-IR laser pulse as a function of the laser pulse energy is shown in Fig. 5.18 

for several acetylene pressures.  The delays also show large scatter and range from zero for 

 

 
Figure 5.18 The observed peak-to-peak delay between the absorption-free transmitted 

pump pulse and the generated mid-IR laser pulse as a function of the laser pulse energy at 

various acetylene pressures.  Plots showing each pressure individually are shown in 

Appendix C. 

 

relatively high laser pulse energies to ~ 5.5 ns for the lowest laser pulse energies, near the lasing 

threshold, at an acetylene pressure of 15.4 torr.  This is an interesting effect, and may indicate 
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absorbed.  Thus the laser pulse begins to form near the very tail end of the pump pulse, 

producing large delays and low total laser pulse energies. 

 

 5.2.3 Experimental Results in HCN 

HCN gas was also explored using the OPA-pumped laser setup.  The driving force for exploring 

HCN is related to its potential for creating a small quantum defect laser that can be operate with 

ultrahigh optical-to-optical efficiencies (~ 99%) and has potential to create a strong coherent 

output from many mutually incoherent pump sources – ideas of particular interest for high power 

applications.  These ideas are discussed in detail in Chapter 7.  The current focus is the 

performance characteristics of HCN gas in the same pulsed laser configuration used to explore 

acetylene, shown in Fig 5.8. 

 All of the HCN gas used in the laser experiments was produced in-house at Kansas State 

University by Professor Chris Levy’s research group.  This was a necessity as buying more than 

a small (~ 100 mL) glass sample cell filled with ~ 10 torr of HCN was found to be all but 

impossible.  The gas is synthesized in a single replacement reaction between the organic acid 

CH3(CH2)16CO2H (stearic acid), which is solid at room temperature but has a low melting 

temperature, and KCN salt using the setup shown in Fig. 5.19.  The reaction is carried out under 

vacuum using liquid nitrogen to freeze out the gas and moving it through the setup.  The KCN 

salt and stearic acid are combined together in a flask which is then heated, melting the acid and 

producing HCN gas.  The gas is then passed over phosphorous pentoxide (P4O10), an aggressive 

drying agent, and transferred to a 1.0 L stainless steel sample bottle. 
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Figure 5.19 Setup for synthesis of HCN gas.  The gas is produced by reacting melted stearic 

acid (CH3(CH2)16CO2H) and KCN salt.  The HCN gas produced is dried using phosphorus 

pentoxide and frozen out into a stainless steel sample bottle using liquid nitrogen.  Image 

provided by Professor Chris Levy. 

 

 The HCN laser was pumped via the P(10) transition between the J = 10, vibrational 

ground state and the J = 9, 2ν3 vibrational state at a wavelength of 1541.27 nm [38].  For clarity 

the normal modes of vibration for the HCN molecule are shown in Fig. 2.2b [36].  The ν3 

vibrational mode is seen to correspond to the asymmetric C–H stretch.  In order to seed the OPA 

at this longer wavelength the very stable, narrow linewidth fiber laser used with the acetylene 

laser was switched out for a less-stable, extended-cavity diode laser with a tuning range of 1505 

– 1585 nm. 

Like acetylene, HCN is linear, but unlike acetylene none of the normal modes of HCN 

are symmetric.  This lack of symmetry may allow a more complete relaxation of the excited 

populations permitting more efficient lasing.  However, we do not expect to see contributions to 

the laser pulse energy from transitions between the ν3 states and the vibrational ground states 

because even though these transitions are allowed, the thermal populations in the J = 7, 9, and 11 

vibrational ground states at room temperature should be on the order of the total population 

initially in the J = 10 pump state.  Thus no inversion should exist. 
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The observed laser spectrum is shown together with an energy level diagram for the HCN 

laser in Fig.5.20.  The same computer controlled grating monochrometer used with the OPA-

pumped acetylene laser was used here to measure the laser spectrum.  The structure present on 

both of the spectral peaks is again most likely a result of the instability in the laser pulse energy.  

Just as in the case of the acetylene laser, two peaks are observed in the laser spectrum.  These 

peaks closely correspond with the 3092.55-nm and 3146.81-nm wavelength R(8) and P(10) 

dipole allowed transitions (ΔJ = ± 1) between the J = 9, 2ν3 excited state and the J = 8 and J = 

10, ν3 states [38]. 

 
Figure 5.20 HCN-filled kagome-structured HC-PCF laser spectrum together with an 

energy level diagram showing relevant transitions.  The laser was pumped via the P(10) 

transition between the vibrational ground state and the 2ν3 vibrational state at a 

wavelength of 1541.27 nm [38].  The observed peaks correspond well with the R(8) and 

P(10) transitions from the excited state to the ν3 vibrational state at a wavelengths of 

3092.55 and 3146.81 nm respectively [38].  Reproduced from Ref [60]. 
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Figure 5.21 shows the mid-IR laser pulse energy, calculated using Eq. 5.8, as a function 

of the absorbed pump pulse energy taken at an HCN pressure of 19 torr.  No other pressures are 

shown because lasing is only seen to occur at this single pressure.  A summary of the measured 

laser threshold energy and efficiency are presented in Table 5.2.  The maximum laser pulse 

energy emitted from the HCN laser is seen to be extremely week at ~ 7 nJ, which is roughly a 

factor of 20 times less than the maximum laser pulse energy observed at the lowest measured 

pressure from the acetylene-filled fiber in the same setup.  The maximum observed optical-to-

optical efficiency is also observed to be more than an order of magnitude less than is typical of 

the acetylene-filled fiber laser demonstrated using the very same fiber.  This reduced laser 

performance may be due at least in part to the reduced performance of the OPA as compared to 

its performance when pumping the acetylene.  This could of course be improved simply by 

procuring a CW seed laser similar to the tunable fiber laser used to seed the OPA near 1533 nm. 

 

 
Figure 5.21 Laser pulse energy as a function of absorbed pump pulse energy for a 23-μm 

pitch kagome-structured HC-PCF filled with 18.8 torr of HCN gas.  Increasing or 

decreasing the pressure by more than ~ 1 torr caused laser signal to drop below the 

detection threshold.  Curve shown includes 3-point adjacent averaging of raw data points. 

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

La
se

r P
ul

se
 E

ne
rg

y 
(n

J)

Absorbed Pump Pulse Energy (μJ)

 18.8 torr HCN pressure



84 

 

 

Table 5.2 Summary of laser threshold and efficiency values for HCN-filled HC-PCF laser. 

HCN Gas Pressure (torr) Absorbed Pump Pulse Energy 

at Laser Threshold (μJ) 

Maximum Optical-to-Optical 

Laser Efficiency (%) 

18.8 1.0 0.31 

 

 While both acetylene and HCN were demonstrated to produce mid-IR laser output from 

population inversions, it seems quite likely that the 20 dB/m fiber loss exhibited by the ~ 45-μm 

core diameter, 23-μm pitch kagome-structured HC-PCF is limiting the overall laser performance 

in terms of both the maximum pulse energy and the laser efficiency.  Much time and effort was 

spent constructing a setup and performing mid-IR fiber loss measurements to find a fiber that 

exhibits lower loss at the mid-IR laser wavelengths.  The setup and results from the mid-IR loss 

measurements performed on the various fibers produced by collaborators at the University of 

Bath are discussed in detail in Section 4.2.  From those measurements several fibers with lower 

loss in the mid-IR have been identified, and results from one such fiber used in the gas-filled 

fiber laser setup showing improved performance in the case of both acetylene and HCN gas are 

the focus of Chapter 6. 

 

 5.3 Numerical Simulations of OPO-Pumped Laser Performance 
A simple model is used by collaborators at the University of New Mexico to qualitatively predict 

the trends observed from the initial OPO-pumped laser experiment.  The model system is 

comprised of only three states: a ground state, the pumped excited state, and a terminal excited 

state with no direct path for population to transfer to or from the ground state during our time 

scale of interest.  The absorption cross-section for the pump transition is estimated as        

7.7×10-18 cm2 [61].  Since data for the stimulated emission cross-section for the lasing transition 

is not available, we assume that it is of the same order of magnitude as that for the ν3 → ground 

vibrational state transition, which is estimated to be ~ 2.2×10-16 cm2 using the known Einstein A 

coefficient [61].  A Gaussian pump pulse 5-ns long and 2 GHz in bandwidth spectrally centered 

on resonance with the gas at a wavelength of 1.52 μm enters the fiber, creating a population 
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inversion.  The laser pulse develops from spontaneous emission and co-propagates with the 

pump.  The linear fiber losses at both the pump and laser wavelengths are accounted for. 

The model predicts an optimum pressure where the maximum laser pulse energy is 

produced, like that experimentally observed in Fig. 5.6, which is a function of the fiber length 

and pump pulse energy.  The optimum pressure essentially occurs when a given pump pulse 

energy creates just enough gain by the end of the fiber to balance the fiber loss.  Any further 

increase in pressure causes additional pump absorption, resulting in a reduction of the gain to 

below the 20 dB/m fiber loss before the fiber’s end.  A smaller pressure dependent effect arises 

from broadening of the linewidth of the pump transition (~ 1 GHz at 7 torr [40]) at high 

pressures. 

 The measured and predicted laser pulse energies as a function of pump pulse energy are 

shown in Fig. 5.22a and b respectively for a 0.9-m long kagome-structured HC-PCF.  The 

experimental and calculated data are in good qualitative agreement, showing exponential-like 

small signal gain followed by the onset of saturation as the pump pulse begins to saturate the gas 

absorption at the end of the fiber.  Only relative comparisons between experiment and 

calculation can be made because the exact fiber-to-free space coupling efficiencies are not 

known.  Cut-back measurements to determine the actual efficiencies are complicated by time-

dependent fluctuations in the spatial mode and center frequency of pump pulses from the OPO. 

Mid-IR laser output as a function of fiber length as predicted by the model is shown in 

Fig. 5.22c.  When pumping at 6 μJ (solid curves), the first knee present in the laser pulse energy 

curve occurs when the saturated gain approximately equals the linear fiber loss for the laser 

radiation.  The plateau in the output power persists while the pump is able to maintain (saturated) 

gain that equals the linear fiber loss for the laser radiation, ending when the depleted pump can 

no longer maintain sufficient population inversion.  Figure 5.22d-f shows the evolution of pump 

(blue) and laser (green) pulse power calculated at different positions along the length of the fiber 

for a launched pump (gray) pulse energy of 6 μJ.  Initially the laser pulse develops at the leading 

edge of the undepleted pump pulse (Fig. 5.22d).  As the leading edge of the pump is absorbed 

and saturates the transition, the positive net gain window shifts towards later times during the 

pump pulse.  As a result the laser pulse broadens and its center moves backwards (Fig. 5.22e).  

At long fiber lengths the pump is almost completely absorbed and the laser pulse energy begins 

to decrease as the pump can no longer sustain the inversion necessary to compensate the fiber 
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loss (Fig. 5.22f).  Additionally, the temporal width of the laser pulse broadens as it propagates 

along the fiber and never exceeds the 5-ns duration of the launched pump pulse. 

 

 
Figure 5.22 Experimental and calculated laser pulse energy dependence on pump energy 

and fiber length. Laser pulse energy (a) measured and (b) calculated for various levels of 

pump pulse energy coupled into a 0.9 m long fiber containing 12C2H2 at pressures of 2.5 

and 7 torr. (c) The calculated laser (green curves) and pump (blue curves) pulse energies at 

different positions along the fiber length containing 7 torr of 12C2H2 gas for two different 

launched pump pulse energies; the laser energy is multiplied by a factor of 50. (d-f) The 

calculated temporal profiles of the laser (green), and transmitted pump (blue) pulses along 

with the launched pump (gray) pulse at several positions along the fiber, where the laser 

power is scaled up by a factor of 5.5.  Figure reproduced from Ref [33]. 
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Chapter 6 - Lasers Based on Population Inversion from Gas-Filled 

Hollow Core Fibers: High Efficiency 

 6.1 Introduction 
While the 20 dB/m loss exhibited by the kagome-structured HC-PCF used in Chapter 5 was 

sufficiently low to demonstrate mid-IR lasing based on population inversion, it was expected that 

this relatively high fiber loss was limiting the ultimate laser pulse energies and efficiencies.  

Following these initial laser demonstrations new fibers where designed and fabricated by 

collaborators at the University of Bath.  Some time was then spent to better characterize the mid-

IR loss of these newly designed hollow-core fibers in hopes of developing a lower loss fiber for 

use in the laser, as is discussed in detail in Chapter 4.  These efforts were rewarded with the 

discovery of a much lower loss fiber which has produced lasers with better performance than 

those initially demonstrated with the higher-loss fiber. 

The loss profile of the particular kagome-structured HC-PCF used in the mid-IR laser 

work discussed in this chapter is shown in Fig. 6.1.  The fiber’s kagome cladding structure can  

 

 
Figure 6.1 Measured loss spectrum of the kagome-structured HC-PCF used in the laser.  

The pump wavelengths are contained within the blue line near 1.5 μm, and the mid-IR 

laser wavelengths are contained within the red line just beyond 3 μm.  Inset: SEM image of 

the fiber end.  The fiber is seen to have a pitch of 18.75 μm and a core diameter of 85 – 

94 μm.  Figure adapted from ref [34]. 
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be seen from the scanning electron microscope (SEM) image of the fiber cross section shown in 

the Fig. 6.1 inset.  The fiber loss at 1.5 μm, in the region of the pump wavelengths, is seen to be 

~ 0.1 dB/m, while the loss between 3.1 and 3.2 μm, near the laser wavelengths, is approximately 

5 dB/m.  This represents a more than thirty-fold (~ 15 dB/m) reduction in mid-IR fiber loss from 

the previous fiber used in the laser setup [62]. 

 

 6.2 Experimental Setup 
A schematic of the OPA-pumped C2H2 and HCN-filled HC-PCF laser setup is shown in Fig. 6.2.  

The setup is almost identical to that used with the previous fiber shown in Fig. 5.8, but now 45-

cm or 1.46-m long sections of the lower-loss, 18.75-μm pitch kagome-structured HC-PCF are 

installed in the low volume vacuum chambers.  With the exception of the new fiber, the setup is 

unchanged up to the point where the uncoated polished germanium filter was previously used to 

split off a portion of the pump light that is transmitted through the hollow fiber.  The uncoated 

germanium filter angled at ~ 45° to the incident beam is removed and replaced with an uncoated 

CaF2 window.  An AR-coated polished germanium filter is then placed at normal incidence to 

the pump and mid-IR laser beams after the angled CaF2 window to filter the pump from the 

generated mid-IR light.  This filter transmits more of the generated mid-IR light to the HgCdTe 

detector than the uncoated filter, improving the system sensitivity by more than a factor of 2. 

Using the angled CaF2 window reduces the amount of reflected pump light by almost a 

factor of 10, owing to the much reduced refractive index of CaF2 compared to germanium (1.43 

[59] compared to 4.35 [63] at 1.5 μm, respectively).  This factor of 10 reduction in the reflected 

pump pulse energy can easily be compensated for by adjusting the neutral density filter values to 

remove 10 dB of optical attenuation before coupling the transmitted pump light into the SMF 

patch cord.  The filter previously used to remove mid-IR light from the transmitted pump light 

just prior to coupling the pump light into the SMF patch cord is also removed, as no contribution 

from the mid-IR pulses is observed at the 25-GHz InGaAs photodetector. 

While it was used in the initial OPA-pumped laser setup as a precautionary measure, this 

filter is expected to be unnecessary for several reasons.  First, the ~ 2-mm thick AR-coated 

aspheric lens will be more reflective and have higher material absorption at mid-IR wavelengths 

than at the 1.5-μm pump wavelength where the lens’s transmission is optimal.  Second, coupling 
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into the fiber’s ~ 10-μm diameter guided mode is extremely sensitive to the exact spatial 

alignment of the lens to the fiber’s end.  While some coupling is observed to be maintained in 

switching between near and mid-IR wavelengths while coupling into the large-core kagome 

fibers, an order of magnitude or more drop in the coupling efficiency is typically observed.  This 

effect is expected to be even more pronounced when using a fiber like SMF that has a much 

smaller core diameter.  Third, light coupled into the fiber must travel several meters to reach the  

 

 
Figure 6.2 Efficient gas-filled HC-PCF laser setup.  C2H2 or HCN gas is contained inside 

the HC-PCF.  Pump pulses from an OPA are coupled into the fiber through one end while 

the generated mid-IR light and any unabsorbed pump light are coupled out of the opposite 

end of the fiber.  Mid-IR light passes through a 2-mm thick, AR-coated germanium filter at 

normal incidence and is focused onto a HgCdTe detector.  A fraction of the unabsorbed 

pump light is picked off from the main beam using an angled CaF2 window and sent to a 

fiber coupled, 25-GHz InGaAs photodetector. 
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photodetector, and SMF is fabricated from fused silica which exhibits large material absorption 

for wavelengths beyond ~ 3 μm.  Lastly, even if mid-IR light were to make it to InGaAs 

photodiode, the response of the detector is several orders of magnitude below the response near 

1.5 μm. 

In addition to improving the detection efficiency of the laser system at mid-IR 

wavelengths, the AR-coated germanium filter at normal incidence is expected to be much less 

susceptible to polarization effects than the uncoated filter angled 45° to the incident light, which 

may be responsible for instabilities in the laser pulse energy like those observed in Fig. 5.17. 

For the uncoated, angled germanium filter, the total power transmitted through the filter 

(two air-germanium boundaries) for s- and p-polarized light can be calculated by accounting for 

the Fresnel reflections using Eqs. 5.1 and 5.2, respectively.  Using the index of refraction of 

germanium near 3.2 μm equal to 4.05 [63] and an angle of 45° between the filter’s normal and 

the incident light, the percentage of power transmitted through the filter is 26% for s-polarized 

light and 58% for p-polarized light.  Fluctuations between these two transmission extremes 

would produce fluctuations in the measured laser pulse energy on the order of 50% of the 

maximum value, which is on par with what is observed in the initial laser data shown in 

Fig. 5.17. 

The same analysis performed for the uncoated CaF2 window at the same 45° angle and 

having an index of refraction equal to 1.42 [59] at wavelengths near 3.2 μm gives expected 

variations on the order of 10% of the maximum pulse energy, which would be a noticeable 

improvement over the previous pulse energy fluctuations.  Fluctuations due to shot-to-shot 

variations in the polarization of the mid-IR light could further be reduced by adjusting the setup 

so that the CaF2 window could be put at near normal incidence to the incident pump light.  This 

is clear from the angular dependence of the Fresnel reflections shown in Fig. 5.12, where the 

reflection coefficients for s- and p-polarized light are seen to converge when the angle, ߠ, 

between the propagation direction of the incident light and the vector normal to the plane 

containing the index of refraction boundary is zero (boundary is perpendicular to the propagation 

direction of the light). 

The transmission of the AR-coated germanium filter was measured directly using narrow 

bandwidth, mid-IR idler pulses from the CW-seeded OPA, having a center wavelength of 

3478 nm.  The pulse energy from the OPA was measured using a pyroelectric energy sensor both 
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with and without the filter in the beam path at normal incidence to the beam.  The data 

corresponding to this process is shown in Fig. 6.3a.  The ratio of the pulse energy observed with 

the filter to that observed without the filter present gives the filter’s transmission, which from the 

average of the “With Filter” region (shown in red) and the “Without Filter” regions (shown in 

green), is equal to 96%. 

 

 
Figure 6.3 The measured transmission data of the AR-coated germanium filter and the 

typical transmission of the filter from the manufacturer.  (a) The measured 3478-nm 

wavelength pulse energy emitted from the OPA without the filter present is shown in the 

green regions while the pulse energy measured with the filter present is shown in the red 

region.  (b) The typical transmission through the filter is seen to be ~ 96% to 99% in the 

region between 3.0 and 3.5 μm.  A typical transmission curve for an AR-coated filter of this 

type is reproduced from ref [64]. 

 

 Figure 6.3b shows the AR-coated filters typical transmission curve, provided by the 

manufacturer.  The measured value of 96% near 3.5 μm is in good agreement with the typical 

value.  From this curve it is also apparent that the filter’s transmission should only be different 

by a few percent at the actual laser wavelengths near 3.2 μm. 

The HgCdTe photodetector is also recalibrated for the mid-IR laser pulse energy using 

actual mid-IR output from the acetylene-filled fiber laser.  This is made possible by the laser’s 

much improved performance owing to the lower-loss fiber, and from the much reduced Fresnel 

losses at the mid-IR wavelengths achieved by employing the AR-coated germanium filter.  Pulse 

energies recorded using a pyroelectic sensor placed just in front of the photodetector are 
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compared to the integrated voltage signals measured from the photodetector after removing the 

pyroelectic sensor for a few different incident pump pulse energies.  The calibration curve for the 

HgCdTe photodetector is shown in Fig. 6.4.  The y-intercept of the fit line is set equal to zero, 

since both the laser pulse energy and the integrated voltage signal should tend to zero as the laser 

pulse energy drops, as the backgrounds of these signals have been subtracted off, leaving them 

devoid of offsets. 

 

 
Figure 6.4 Energy calibration curve for the room-temperature HgCdTe photodetector 

measured using P(13)-pumped C2H2-filled 1.46-m long kagome HC-PCF laser output. 

 

 6.3 Experimental Results: Acetylene 
Just as was done in Chapter 5 using the 23-μm pitch fiber, acetylene gas inside of a 1.46-m long 

piece of the new, 18.75-μm pitch kagome fiber is pumped at a wavelength of 1532.8 nm 

corresponding to the P(13) overtone transition between the vibrational ground state and the 

ν1 + ν3 vibration state.  The pump pulse excites a fraction of the population from the J = 13 

ground state to the J = 12 excited state.  This very quickly creates a population inversion between 

the pumped state and both the dipole allowed J = 11 and J = 13, ν1 states, since the thermal 

population of the ν1 states at room temperature is negligible.  Since there is no dipole allowed 

transition from the ν1 states directly to the ground vibrational state, we expect that once the 
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intensity of stimulated emission is sufficient to equalize the populations between the pumped 

state and the ν1 states, the laser action will stop, and no additional transitions will be observed. 

The measured spectra of the mid-IR laser pulses taken at various acetylene pressures 

together with an energy level diagram illustrating the relevant transitions are shown in Fig. 6.5a 

and b, respectively.  Spectra were taken using the same computer-controlled grating 

monochrometer used to take the OPA-pumped laser spectra shown in Chapter 5, with a spectral 

resolution of ~ 0.2 nm for 50 μm entrance and exit slit widths.  The measured peak wavelengths 

match well with the expected R(11) and P(13) transitions between the J = 12, ν1 + ν3 excited 

state and the J = 11 and J = 13, ν1 terminal laser state, at wavelengths of 3114.6 and 3172.4 nm 

respectively.  The total relative energy of the laser pulses which is proportional to the area under 

the spectral curves is seen to reach a maximum at a pressure of 20 torr.  Just as is the case for the 

acetylene laser in the higher-loss kagome fiber, the R-branch transition is seen to always be 

favored by a factor of ~ 2 – 5.  The relative contribution to the laser energy from the two 

transitions involved is not seen to be grossly pressure dependent. 

 

 
Figure 6.5 (a) Measured spectra of the mid-IR laser output taken at different acetylene 

pressures and (b) an energy level diagram showing the relevant ro-vibrational transitions.  

While the total laser pulse energy which is proportional to the total area under the curve is 

seen to reach a maximum at a pressure of 20 torr, the distribution of energy between the 

two spectral components is not seen to change much.  Figure adapted from ref [34]. 
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The measured mid-IR laser pulse energy as a function of absorbed pump pulse energy is 

shown in Fig. 6.6 for various acetylene pressures.  Both the slope efficiency and the total optical-

to-optical efficiency of the laser, defined as the ratio of the laser pulse energy to the absorbed 

pump pulse energy, are seen to reach maximums at a pressure of 2.0 torr, where a maximum total 

efficiency of ~ 31% is observed at ~ 1.0 μJ of absorbed pump pulse energy.  Additionally, the 

laser threshold energy, defined as the amount of pump pulse energy absorbed by the gas at the 

onset of lasing, is seen to be ~ 0.25 μJ.  The laser threshold energy and the maximum total 

efficiency observed at each pressure are summarized in Table 6.1.  As the gas pressure is 

increased from 2.0 torr, laser threshold energy increases while the slope efficiency and the 

maximum total efficiency are generally seen to decrease.  The data at 20 torr are the exception to  

 

 
Figure 6.6 Plot of the measured mid-IR laser pulse energy as a function of absorbed pump 

pulse energy for a 1.46-m long, 18.75-μm pitch kagome-structured HC-PCF filled with 

various pressures of C2H2 gas.  Plots of each pressure individually are shown in 

Appendix C.  Reproduced from ref [34]. 
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Table 6.1 Summary of laser threshold and efficiency values for various C2H2 gas pressures. 

C2H2 Gas Pressure (torr) Absorbed Pump Pulse Energy 

at Laser Threshold (μJ) 

Maximum Optical-to-Optical 

Laser Efficiency (%) 

0.6 0.055 24 

2.0 0.25 31 

5.0 0.40 17 

10.0 0.60 10 

20.0 1.0 16 

29.8 1.5 9.9 

45.5 1.6 5.3 

70.0 2.4 3.4 

 

this and are suspect.  More data should be taken at this pressure to either confirm or dispel the 

seemingly anomalous characteristics present in this preliminary data. 

An interesting feature of the low pressure data, 5.0 torr and below, is the saturation-type 

behavior occurring at high absorbed pump pulse energies.  Saturation behavior like this would be 

expected if the laser pulse energy were plotted as a function of the incident (or transmitted) pump 

pulse energy, since there is a critical amount of energy that can be absorbed by the gas 

corresponding to complete inversion, after which any additional light is simply transmitted 

through the gas.  However, Fig 6.6 shows the laser pulse energy as a function of absorbed pump 

pulse energy, where the laser pulse energy is expected to simply increase until the critical energy 

corresponding to complete inversion is reached.  The saturation behavior would seem to indicate 

the onset of an additional process like excited state pump absorption that may remove population 

from the pumped state at high pump intensities, causing additional energy to be absorbed by the 

gas without creating additional mid-IR laser output. 

The amount of absorbed pump energy necessary to reach saturation can be estimated 

using the initial and the saturated, steady-state ro-vibrational state populations for a four-level 

system. Assume that the system is comprised of a ground state, an excited state, and two terminal 

laser levels in between which only couple only to the excited state (not to the ground state).  

Before the pump pulse enters the gas, the overwhelming majority of the molecular population 
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occupies the vibrational ground state and is thermally distributed according to the Boltzmann 

distribution given by Eq. 2.10. 

The total number of molecules in the J = 13 state, ܰሺܬ ൌ 13ሻ, is equal to the total number 

of molecules contained within the fiber laser system, ௧ܰ௧, multiplied by the fraction of 

molecules in the J = 13 rotational state alone.  At thermal equilibrium, the probability of finding 

an acetylene molecule in the J = 13, vibrational ground state, ܲሺܬ ൌ 13ሻ, can be computed from 

Eq. 2.10 and is equal to 0.082.  Under saturation conditions, the populations in all states will be 

equal.  Under saturation conditions at steady-state the ground state population for this four level 

system will then approach ܰሺܬ ൌ 13ሻ 4⁄ . (as the ground state population is shared evenly 

between all four states) 

The total pulse energy absorbed by the gas to reach saturation, ܧ௦,௦௧, is related to the 

total number of photons absorbed by the gas by, 

 

௦,௦௧ܧ  ൌ ݊,௦ ·
݄ܿ
ߣ

 6.1 

 

where ݄ is Plank’s constant, ܿ is the speed of light in vacuum, ߣ is the wavelength of the pump 

photons, and ݊,௦ is the total number of photons absorbed by the gas which is given by, 

 

 ݊,௦ ൌ ܰሺܬ ൌ 13ሻ െ
1
4 ܰሺܬ ൌ 13ሻ൨ ൌ

3
4 ܰሺܬ ൌ 13ሻ ൌ

3
4 ܲሺܬ ൌ 13ሻ · ௧ܰ௧ 6.2 

 

The total number of molecules in the system, ௧ܰ௧, can be computed using the ideal gas law as, 

 

 
௧ܰ௧ ൌ

 · ܸ
݇ܶ ൌ

 · ߨ
4 ݀

ଶ

݇ܶ  6.3 

 

where  is the gas pressure, ݀ is the mode field diameter of the pump beam, ݇ is the 

Boltzmann constant, and ܶ is the temperature of the gas (room temperature in this case).  

Combining Eq. 6.1 – 6.3 gives the following expression for the absorbed pump energy at the 

point of optical saturation, 
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௦,௦௧ܧ  ൌ
3
4 ܲሺܬ ൌ 13ሻ ·

 · ߨ
4 ݀

ଶ

݇ܶ ·
݄ܿ
ߣ

 6.4 

 

Assuming a mode field diameter of 50 μm, Table 6.2 shows the calculated saturation 

energies at pressures corresponding to those where the data shown in Fig. 6.6 was taken.  For 

acetylene pressures of 5.0 torr and below, absorbed pump pulse energies equal to those necessary 

to saturate the gas contained inside the fiber can be reached, and at these pressures the calculated 

absorbed pulse energies are seen to coincide fairly well with the apparent onset of saturation 

indicated by a plateau in laser pulse energy. 

 

Table 6.2 Summary of the calculated absorbed pump pulse energies required to saturate 

the C2H2 gas at various gas pressures. 

C2H2 Gas Pressure (torr) Pump Pulse Energy Absorbed 

at Saturation (μJ) 

0.6 0.3 

2.0 1.0 

5.0 2.6 

10.0 5.1 

20.0 10.3 

29.9 15.4 

45.5 23.7 

70.0 36.0 

 

The observed peak-to-peak delay between the generated mid-IR laser pulse and the 

absorption-free transmitted pump pulse as a function of the absorbed pump pulse energy is 

shown in Fig. 6.7 for various acetylene pressures.  The delays are seen to range from near zero to 

beyond 30 ns, more than 5 times the maximum delays observed from the higher-loss fiber.  

Generally, for high absorbed pulse energies the delay seems to be quite small, indicating that the 

laser pulse power continues to grow until just after the peak of the pump pulse.  For lower 

absorbed pump pulse energies, the laser power peak arrives later relative to the absorption-free 
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pump pulse, likely indicating that for low energy pump pulses more time is needed for the 

molecules to absorb enough energy to produce the maximum population inversion and thus the 

maximum laser power.  Striation in the delays for the lowest pressure data arises from the fact 

that multiple peaks can be seen in the temporal profile of the laser pulse, and the relative height 

of these peaks changes from pulse to pulse. 

 

 
Figure 6.7 The observed peak-to-peak delay between the generated mid-IR laser pulse and 

the absorption-free transmitted pump pulse as a function of the absorbed pump pulse 

energy at various acetylene pressures.  The striation in the delays at low absorbed pump 

energies and low pressure is due to multiple peak in the laser pulse.  Plots of each pressure 

individually are shown in Appendix C.  Figure adapted from Ref [34]. 
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were installed in the vacuum chambers.  The total mid-IR loss from the shortened piece is 

~ 2.3 dB. 

The short fiber was filled with acetylene gas to an optimum pressure of 30 torr which was 

determined by maximizing the laser pulse energy observed from the fiber while using the 

maximum pump pulse energy available from the OPA.  The laser was pumped using the same 

P(13) transition between the vibrational ground state and the ν1 + ν3 overtone state used with the 

1.46-m long fiber.  The spectrum of the laser, taken using the same computer-controlled grating 

monochrometer used to observe the output from the 1.46-m long fiber, is shown in Fig. 6.8.  Just 

like the spectrum shown in Fig. 6.5a from the 1.46-m long acetylene-filled fiber, the spectrum 

from the 45-cm long fiber shows two spectral peaks corresponding to the expected R(11) and 

P(13) transitions between the J = 12, ν1 + ν3 excited state and the J = 11 and J = 13, ν1 terminal 

laser state, at wavelengths of 3114.6 and 3172.4 nm respectively. 

One striking difference between this spectrum and all the spectra taken using the longer 

kagome fiber is that here the longer wavelength P-branch transition is now favored over the 

shorter wavelength R-branch transition by about the same factor that the R-branch is favored  

 

 
Figure 6.8 Measured spectrum of the acetylene-filled 45-cm long kagome-structured HC-

PCF laser output taken at a pressure of 30 torr.  Two spectral peaks are observed, 

corresponding to the R(11) and P(13) transitions between the ν1 + ν3 excited state and the ν1 

terminal laser state, at wavelengths of 3114.6 and 3172.4 nm respectively.  Unlike the 

spectra taken from the 1.46-m long acetylene-filled fiber, the longer wavelength P-branch 

transition is seen to be favored here over the shorter wavelength R-branch transition. 
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over the P-branch in the 1.46-m long fiber.  The P-branch is typically favored in conventional 

gas lasers, and results from the J-dependence of the number of available states, proportional to 

ܬ2  1, which dictates that rotational levels with higher J values have more states available.  

However, we have not ruled out that the change in the relative spectral contributions is an artifact 

of the spectrometer. 

 The laser pulse energy was measured and characterized as a function of the absorbed 

pump pulse energy and is shown in Fig. 6.9.  The absorbed pump pulse energy required to reach 

the lasing threshold and the maximum optical-to-optical efficiency are determined from the plot 

and are tabulated in Table 6.3.  Compared to the 30 torr data taken in the 1.46-m long fiber, the 

laser threshold is slightly higher while the observed maximum efficiency from the 45-cm fiber is 

nearly identical.  Even the shapes of the plotted data look nearly identical.  This leads one to 

reason that the total fiber loss likely plays no role in the laser behavior in the pump energy, fiber  

 

 
Figure 6.9 Laser pulse energy as a function of absorbed pump pulse energy for the 45-cm 

long, 18.75-μm pitch kagome-structured HC-PCF filled with 30 torr of C2H2 gas.  The 

shape of the data is seen to very closely mimic that observed under the same conditions in 

the 1.46-m long fiber of the same pitch. 
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Table 6.3 Summary of laser threshold and efficiency values for 45-cm long, C2H2-filled HC-

PCF laser. 

C2H2 Gas Pressure (torr) Absorbed Pump Pulse Energy 

at Laser Threshold (μJ) 

Maximum Optical-to-Optical 

Laser Efficiency (%) 

30 2.0 9.8 

 

length, and pressure regimes explored, and the primary factor responsible for the laser 

performance is the fiber’s loss per unit length. 

 The relative time delay between when the peak of the pump pulse would arrive at the 

HgCdTe photodetector in the absence of any absorption by the gas, and when the peak of the 

laser pulse does arrive at the HgCdTe photodetector was observed and is shown in Fig. 6.10.  

The data shows the same general trend as is observed in Fig. 6.7 from the 1.46-m long fiber.  The 

delay is nearly zero for relatively high absorbed pump pulse energies and increases as the 

absorbed pump pulse decreases toward the laser threshold energy.  Comparing the data sets taken 

 

 
Figure 6.10 Relative timing between the expected pump pulse peak and the observed peak 

of the laser pulse measured on the HgCdTe photodetector. 
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at 30 torr, the data from both fiber lengths again very nearly coincides, further indicating that the 

fiber length, and total fiber loss is not a critical parameter limiting performance under the present 

operating conditions of our acetylene-filled fiber laser systems. 

 

 6.4 Experimental Results: HCN 
HCN gas inside of a 45-cm long piece of the lower-loss, 18.75-μm pitch kagome fiber is pumped 

at a wavelength of 1541.3 nm corresponding to the P(10) overtone transition between the 

vibrational ground state and the 2ν3 vibration state, just was done in Chapter 5 using the 23-μm 

pitch kagome fiber.  The pump pulse excites population from the J = 10 ground state to the J = 9 

excited state, creating a population inversion between the pumped state and both the dipole 

allowed J = 8 and J = 10, ν3 states.  The measured spectrum of the mid-IR laser output from the 

HCN laser is shown in Fig. 6.11a, while an energy level diagram with the relevant transitions is 

shown in Fig. 6.8b.  Similar to the acetylene laser demonstrated in the 45-cm long fiber, the 

HCN laser spectrum indicates that the longer wavelength P-branch transition is favored over the 

shorter wavelength R-branch transition. 

 

 
Figure 6.11 (a) Spectrum of the mid-IR laser pulses created in a 45-cm long kagome-

structured HC-PCF filled with 11.6 torr of HCN gas.  The horizontal dashed red line 

indicates the limitation imposed by the instrument’s sensitivity.  (b) An energy level 

diagram showing the relevant ro-vibrational transitions.  Adapted from Ref [34]. 
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Figure 6.12 shows the maximum observed laser pulse energy as a function of absorbed 

pump pulse energy for various pressures of HCN gas contained within the 45-cm long hollow-

core fiber.  It is preferable to measure the laser pulse energy at multiple absorbed pump pulse 

energies between the laser threshold value and the maximum achievable absorbed pump pulse 

energy.  However, due to seemingly random fluctuations in the OPA output pulse energy at the 

time data was taken, only laser pulse energy data corresponding to the maximum amount of 

incident (and thus absorbed) pump pulse energy was recorded. 

 

 
Figure 6.12 Maximum laser pulse energy as a function of absorbed pump pulse energy for 

various pressures of HCN gas contained within a 45-cm long kagome-structured HC-PCF.  

Reproduced from Ref [34]. 

 

The maximum laser pulse energy observed is ~ 77 nJ and occurs at an HCN pressure of 

8.0 torr.  This is about a factor 10 higher than the maximum laser pulse energy observed from the 

HCN-filled higher-loss 23-μm pitch kagome fiber, and only about a factor of 10 lower than the 

maximum laser pulse energy produced by the acetylene laser in the same fiber.  The maximum 

observed laser efficiency is ~ 3% at a pressure of 6 torr.  Since only the maximum laser pulse 
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energies were recorded and the laser pulse energies from the acetylene filled fibers have been 

seen to saturate at relatively high absorbed pump pulse energies, it should not be assumed that 

the laser efficiency corresponding to the maximum observed laser pulse energy is the maximum 

optical-to-optical laser efficiency at any particular pressure.  However, computing the laser 

efficiency using the absorbed pump pulse energy corresponding to the maximum laser pulse 

energies measured will provide a lower limit to the actual maximum laser efficiency at each 

pressure.  Table 6.4 summarizes the measured maximum laser pulse energies and the 

corresponding optical-to-optical efficiencies. 

 

Table 6.4 Summary of the maximum laser pulse energies and the corresponding laser 

efficiencies for 45-cm long, HCN-filled HC-PCF laser. 

C2H2 Gas Pressure (torr) Maximum Observed Laser 

Pulse Energy (nJ) 

Optical-to-Optical Laser 

Efficiency (%) 

2.0 6.9 0.5 

4.0 47 2.2 

6.0 69 3.1 

8.0 77 2.4 

10.0 62 1.7 

11.4 49 1.3 

 

 By looking at the changes in performance of the OPA-pumped acetylene and HCN-filled 

fiber lasers when using fibers with different mid-IR loss characteristics and different lengths and 

core diameters, several conclusions can be drawn.   

 First, the efficiency of both the acetylene and the HCN lasers are seen to increase in 

switching from the higher-loss 23-μm pitch fiber, to the lower-loss 18.75-μm pitch fiber.  This is 

expected as lower fiber loss essentially allows increased interaction lengths between mid-IR 

photons and the inverted molecules that provide them gain. 

While the loss per unit length is reduced by a factor of ~ 30 in switching to the 18.75- 

pitch fiber, the core diameter is increased by a factor of 2.  This reduces the fluence of the light 

propagating in the fiber by a factor of ~ 4.  The reduced fluence is most likely responsible for the 
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increase in the threshold energies.  For example, the threshold energy at 30 torr is seen to 

increase from ~ 0.35 μJ in the higher-loss fiber to ~ 1.5 – 2.0 μJ in the in the lower-loss fiber. 

Changing the length of the low loss fiber is not seen to have much impact on the laser 

performance.  While the energy distribution in the spectrum shifted from favoring the shorter 

wavelength R-branch transition to favoring the longer wavelength P-branch transition, neither 

the laser threshold energy nor the maximum optical-to-optical efficiency of the acetylene laser 

were seen to change appreciably when the length of the lower-loss, 18.75-μm pitch fiber was 

decreased from 1.46 m to 45 cm. 

 

 6.5 Numerical Simulations of OPA-Pumped Laser 
Simulations of the expected laser output from the acetylene-filled hollow-core fiber laser were 

carried out using simple rate equations to describe the coupled molecular populations and pump 

and laser intensities along the length of the fiber.  To begin, we assume a simple four-level 

system.  State |1ۄ represents the J = 13, vibrational ground state.  State |2ۄ represents the J = 12, 

ν1 + ν3 excited state.  States |3ۄ and |4ۄ represent the J = 11 and J = 13, ν1 terminal laser states.  

The laser states are assumed to only couple to the excited state, forbidding population to transfer 

directly to the ground state.  This condition seems appropriate, as above threshold the laser 

process happens almost instantaneously with the pump, not allowing much time for the 

populations to rotationally or vibrationaly relax.  The energy level diagram is shown in Fig. 6.13. 

 

 
Figure 6.13 Four-level energy level diagram used to model gas-filled hollow-core fiber 

laser.  State |ۄ is the ground state.  State |ۄ is the pumped excited state.  States |ۄ and 

|ۄ represent the two terminal laser states, which do not couple directly to the ground state. 

|2>

|3>

|1>

|4>
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The fiber total fiber length is divided up into small sections of length ݀1 ~ ,ݖ-cm long or 

less.  Similarly, the pump pulse is assumed to have a Gaussian temporal profile and is divided 

into time segments, ݀ݐ ൌ  where ܿ is the speed of light.  This situation is illustrated in ,ܿ/ݖ݀

Fig. x, where the pump pulse is shown in green and the generated laser pulse is shown in red.  

The pump pulse is then propagated through the fiber through successive fiber segments in time 

intervals equal to ݀ݐ. 

 

 
Figure 6.14 Geometry used to model four-level gas-filled hollow-core fiber laser system.  

The fiber is divided into small segments, each of length ࢠࢊ, equal to ~ 1 cm or less.  The 

Gaussian pump pulse is divided into time incremenets of ࢚ࢊ ൌ  is the speed of ࢉ where ,ࢉ/ࢠࢊ

light.  The pump pulse is then stepped through the individual fiber segments in time 

increments steps of ࢚ࢊ. 

 

The time rate of change in the number density of molecules in the lower state ݊ଵ (in units of 

molecules·m-3) is given by [65], 

 

 ݀݊ଵ

ݐ݀ ൌ ଶଵݓ
௦௧  ଶଵݓ

௦௧ െ ଵଶݓ
௦௧ 6.5 

 

dz
I12(t) I12(t) + dI12(t)/dz

ntot = n1 + n2 + n3 + n4

0 tt 0

I24(t) 
I23(t) I23(t) + dI23(t)/dz

I24(t) + dI24(t)/dz
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where the quantities ݓ represent the rates of spontaneous and stimulated transitions from the 

state ݅ to the state ݆ (in units of molecules·m-3s-1).  The transition rates are given by [23], 

 

ଶଵݓ 
௦௧ሺݐሻ ൌ  ሻ 6.6ݐଶଵ݊ଶሺܣ

 

ଶଵݓ 
௦௧ሺݐሻ ൌ

ଶଵߪ

ଵଶߥ݄
݊ଶܫଵଶሺݐሻ 6.7 

 

ଵଶݓ 
௦௧ሺݐሻ ൌ

ଵଶߪ

ଵଶߥ݄
݊ଵܫଵଶሺݐሻ 6.8 

 

where ܣଶଵ is the Einstein coefficient representing the spontaneous transition rate, ݄ is Planck’s 

constant, ߪଵଶ and ߪଶଵ are the stimulated transition cross sections for the pump light (in units of 

m2), and ߥଵଶ and ܫଵଶ are the frequency and intensity of the stimulating light, respectively.  The 

frequency dependent cross sections for stimulated transitions are related to the Einstein ܣଶଵ 

coefficients by [66], 

 

ሻߥଵଶሺߪ  ൌ
ଶଵܣଶߣ

ߨ8
݃ଶ

ଵ݃
ܵሺߥሻ 6.9 

ሻߥଶଵሺߪ  ൌ
ଶଵܣଶߣ

ߨ8 ܵሺߥሻ 6.10 

 

where ଵ݃ and ݃ଶ are the degeneracy factors of the for population in the states 1 and 2 and ܵሺߥሻ is 

the line shape function for the transition, defined such that, 

 

 න ܵሺߥሻ
ஶ


ߥ݀ ൌ 1 6.11 

 

The spectral overlap of the lineshape of the molecular transition with the bandwidth of pump 

light can be used to determine how much energy should be absorbed by the molecules when 

optically pumping.  This allows us to predict how the absorbed pump energy should change in 

the presence of transition broadening effects such as pressure broadening.  If the degeneracy 
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factors are similar (as they are for the case of ro-vibrational levels for all but the lowest J values), 

the same cross section can be used to describe both absorption and emission, i.e. ߪଵଶሺߥሻ ~ 

 ,ሻ.  Combining Eqs. 2.12 – 2.15 gives the expressionߥଶଵሺߪ

 

 
݀݊ଵ

ݐ݀ ൌ ሻݐଶଵ݊ଶሺܣ 
ଵଶߪ

ଵଶߥ݄
൫݊ଶሺݐሻ െ ݊ଵሺݐሻ൯ܫଵଶሺݐሻ 6.12 

 

In a similar manner the rate equations for states |3ۄ and |4ۄ can be written as, 

 

 
݀݊ଷ

ݐ݀ ൌ ሻݐଶଷ݊ଶሺܣ 
ଶଷߪ

ଶଷߥ݄
൫݊ଶሺݐሻ െ ݊ଷሺݐሻ൯ܫଶଷሺݐሻ 6.13 

 

 
݀݊ସ

ݐ݀ ൌ ሻݐଶସ݊ଶሺܣ 
ଶସߪ

ଶସߥ݄
൫݊ଶሺݐሻ െ ݊ସሺݐሻ൯ܫଶସሺݐሻ 6.14 

 

where the cross sections ߪଶଷ and ߪଶସ are taken to be equal to each other.  As neither cross 

sections nor the Einstein A coefficients measured for transitions from the ν1 + ν3 excited state to 

the ν1 laser states excited could be found, the Einstein A coefficient from the ν3 state to the 

vibrational ground state is used, as this rate should be similar for these similar transitions.  As the 

total molecular number density in the system is constant, the rate equation for state |2ۄ can be 

calculated from the other rates using, 

 

 ݀݊ଶ

ݐ݀ ൌ െ
݀݊ଵ

ݐ݀ െ
݀݊ଷ

ݐ݀ െ
݀݊ସ

ݐ݀  6.15 

 

Similarly, the change in intensities as the light traverses a fiber segment ݀ݖ depends on 

the population densities in the upper and lower states according to [23], 

 

ଵଶܫ݀ 

ݖ݀ ൌ ଶଵߥ݄ߗሻݐଶଵ݊ଶሺܣ  ሻݐଵଶ൫݊ଶሺߪ െ ݊ଵሺݐሻ൯ܫଵଶ 6.16 
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ଶଷܫ݀ 

ݖ݀ ൌ ଶଷߥ݄ߗሻݐଶଷ݊ଶሺܣ  ሻݐଵଶ൫݊ଶሺߪ െ ݊ଷሺݐሻ൯ܫଶଷ 6.17 

 

ଶସܫ݀ 

ݖ݀ ൌ ଶସߥ݄ߗሻݐଶସ݊ଶሺܣ  ሻݐଵଶ൫݊ଶሺߪ െ ݊ସሺݐሻ൯ܫଶସ 6.18 

 

where ߗ is a factor used to account for the fact that only a fraction of the spontaneously emitted 

light will be in the direction of the incident light, and only this fraction will then contribute to the 

propagating intensities.  For calculations involving the gas-filled hollow-core fiber laser, the 

factor ߗ will be set equal to the fractional solid angle subtended by the guided mode of the fiber, 

giving 0.0001 ~ ߗ. 

Equations 6.12 – 6.18 above represent coupled equations between the populations of the 

various energy levels and the pump and laser intensities.  Given the initial energy level 

population densities and the temporal character of the pump intensity are known, these equations 

can be numerically integrated in time along the fiber to calculate the expected laser intensity at 

the end of the fiber. 

These equations are numerically integrated using the MATLAB code shown in 

Appendix D, assuming a 1-ns duration pump pulse tuned to resonance with the pump transition 

at 1533 nm.  The fiber length is taken to be 1.46 m, and the fiber loss is equal to 0.1 dB/m at the 

pump wavelength and 5 dB/m at the laser wavelengths.  The guided modes of the pump and laser 

light in the fiber are assumed to have flat-top profiles with diameters of 50 μm. 

Fig. 6.15 shows the calculated laser pulse energy versus the absorbed pump pulse energy 

for acetylene pressures of 2, 5, and 30 torr.  The model predicts most of the same overall trends 

that are seen in the experimental data shown in Fig. 6.6.  For example, the slope efficiency of the 

laser in both cases is seen to decrease with increasing pressure.  Similarly, the threshold absorbed 

pump pulse energy is generally seen to increase with increasing pressure for both the calculated 

and measured data.  Even the maximum observed laser pulse energies agree to within a factor of 

two. 

However, one striking difference can be seen.  The overall shapes of the calculated 

curves always curve upwards, while the experimental data usually turn over.  Furthermore, at the 

lowest pressures, the experimental data shows what looks like saturation, with the laser pulse 

energy remaining relatively unchanged as the gas continues to absorb energy.  The calculated 
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data never show anything of the sort.  This saturation effect may indicate that additional, more 

complex physics exists in the real system than what this simple model is accounting for, such as 

the excited state pump absorption mentioned earlier.  Collaborators at the University of New 

Mexico have looked at the effect of excited state pump absorption in this acetylene system and 

have seen that it can produce the saturation-like behavior observed experimentally. 

 

 
Figure 6.15 Calculated laser pulse energy as a function of absorbed pump pulse energy for 

a 1.46-m long fiber filled with various pressures of acetylene gas.  The linear fiber loss is 

equal to 0.1 dB/m at the pump wavelength and 5 dB/m at the mid-IR laser wavelengths. 
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Chapter 7 - Continuous Wave Small Quantum Defect Lasers 

 7.1 Introduction 
While Chapters 5 and 6 have focused on generating mid-IR light from population inversions in 

molecular gas-filled hollow-core fibers, the same laser architecture has the potential to create 

lasers that operate with a small quantum defect, whose pump and laser wavelengths differ by 

only ~ 1%.  Such a laser system has the potential to be up to ~ 99% efficient, where the only 

power lost is a result of the small photon energy difference between the pump and laser light (the 

quantum defect).  Lasers like this offer a means to generate coherence, where multiple, mutually 

incoherent pump sources are used to pump the laser and produce a single, strong coherent output.  

A devise like this would be extraordinary for applications requiring high powers and good beam 

quality, long sought-after characteristics that are currently being pursued using techniques like 

coherent beam combining [67]. 

 The idea of coherence generation is illustrated by the energy level diagram shown in 

Fig. 7.1.  The pump sources, indicated by the upward-pointing blue arrows, are used to excite 

populations between slightly different rotational states within the same vibrational states.  If the 

excited vibrational state lifetime is long compared to the rotational mixing time, the rotational 

state populations thermalize through intermolecular collisions, creating rotational state 

populations that follow the Boltzmann distribution given by Eq. 2.10, with similar total numbers 

of molecules in both the ground and excited vibrational states.  If enough molecules are pumped 

to the excited state, population inversions on one or more ro-vibrational transitions can be 

achieved [68].  These inversions permit lasing, indicated by the downward-pointing green 

arrows, at wavelengths longer than those corresponding to the pumps.  If single frequency output 

is desired, it may be necessary to tune the spectrum of the laser gain using wavelength-dependent 

feedback, perhaps by employing dichroic optics or a dispersive element like a grating or prism. 
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Figure 7.1 Energy level diagram illustrating the process of coherence generation with a 

small quantum defect laser.  Pump transitions are indicated by the blue arrows pointing 

upwards while the laser transitions are indicated by the green arrows pointing downward 

and only occur between dipole-allowed transitions where population inversions exist.  The 

rotational state population in each vibrational state follows a Boltzmann distribution 

(indicated by the gray dashed lines) owing to fast thermalization from collisions between 

molecules in the various rotational levels. 

 

Calculations performed by collaborators at the University of New Mexico have shown 

that a CW, small quantum defect laser should be possible using small core diameter (~ 10 μm), 

low loss (~ 0.02 dB/m) gas-filled HC-PCFs.  Furthermore, the fiber will likely need to be placed 

within a resonator having moderate finesse (round trip loss ~ 10% or less) at the laser 

wavelength to reduce the pump powers required to reach the laser threshold to on the order of 

several watts.  Generating several watts of tunable narrow linewidth power in the 1.5-μm 

wavelength region is nontrivial, but can be done with specially designed high-power double clad 

fiber amplifiers. 
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 7.2 High Power 1.5-μm Wavelength Continuous Wave Pump Source 
Nearly single mode, multi-watt level powers in the 1.5-μm wavelength region can be achieved 

using erbium/ytterbium co-doped, double clad fiber amplifiers.  A schematic illustrating the 

architecture of the high-power double clad amplifying fiber is shown in Fig. 7.2.  A high index 

single mode core is surrounded by a lower index cladding region, which in turn is surrounded by 

a lower index polymer buffer that acts as a second, outer cladding.  While this looks similar to a 

typical step index fiber with one cladding layer surrounded by a buffer, double clad fibers are 

called such because multimode pump light is purposely injected into both the inner core and 

cladding regions and is confined to propagate in modes contained within the inner cladding.  

Furthermore, unlike typical step index fibers the inner cladding cross section is typically not 

round, often having a polygonal cross section which keeps the pump light from propagating in 

modes that have poor overlap with the doped core region. 

 

 
Figure 7.2 Diagram illustrating the use of a doped double clad fiber in a cladding pumped 

high-power laser architecture.  A high-power, low brightness pump is coupled into the un-

doped inner cladding of the fiber.  This pump light overlaps the doped single mode core 

region, allowing amplification of light propagating in the guided mode.  Bragg reflectors 

are not present in the fibers used for amplification only.  Image reproduced from Ref [69]. 

 

The low-power signal light that is to be amplified is coupled into the doped single mode 

core at one end of the fiber.  Pump light is coupled into the inner cladding through one or both 

ends of the fiber to excite electronic transitions in the dopant ions within the fiber’s single mode 

core and provide gain at the signal wavelengths.  Typically, high-power low-brightness 

multimode pump diodes are used, where brightness (or more precisely, radiance) is defined as 
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the power emitted per unit area per unit solid angle (units of W·m-2·sr-1).  Low-brightness diodes 

are preferred as the diodes’ cost scales with brightness.  However, high-power low-brightness 

diodes tend to emit into large solid angles.  It is precisely this situation that double clad gain 

fibers where developed for.  The cladding of typical Er/Yb co-doped double clad fibers has a 

high numerical aperture (> 0.45) which allows the pump light to be coupled into the fiber with 

high efficiency.  Only a small portion of the pump mode spatially overlaps the doped single 

mode core of the fiber, allowing efficient pumping of the core region without causing the 

extremely high intensities associated with damaging thermal and nonlinear effects [35] that 

would occur if the fiber were core pumped. 

The amplified signal light is confined to propagate through the fiber in the single mode 

core region, which can be doped with a variety of transition metals, such as erbium (Er), 

ytterbium (Yb), or Thulium (Tm).  Of course the spectral regions corresponding to the pump and 

amplified signal wavelengths are completely dependent on the particular dopant used in the fiber.  

The fiber used in the amplifier for the small quantum defect laser trials is doped with a 

combination of Er and Yb.  A simplified energy level diagram illustrating the pump and 

amplification scheme for the Er/Yb co-doped double clad fiber is shown in Fig. 7.3.  Both Er3+ 

and Yb3+ have absorption peaks near 980 nm.  However, the absorption cross section for Yb3+ is 

much larger at 980 nm and covers a broad range from ~ 800 – 1100 nm [70].  Therefore, the 

fiber is primarily pumped via the 2F7/2 → 2F5/2 transition in the trivalent Yb ion.  Excited Yb ions 

located near Er ions in the glass fiber can then relax back to the electronic ground state while 

resonantly exciting electrons in Er3+ via the 4I15/2 → 4I11/2 transition [70], allowing the Er ions to 

be efficiently pumped and effectively increasing their absorption cross sections.  Population in 

the 4I11/2 electronic state then quickly relaxes to the 4I13/2, where it can then make stimulated 

transitions back to the 4I15/2 ground state while amplifying signal light in the 1.5-μm wavelength 

region. 
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Figure 7.3 Electronic energy level diagram for the coupled Er3+ and Yb3+ ions used in the 

co-doped double clad fiber.  The amplifier system is pumped via the 2F7/2 → 2F5/2 transition 

in Yb3+ at wavelengths of 800 – 1100 nm.  Population relaxation between these same two 

states causes a resonant excitation from the 4I15/2 state to the 4I11/2 state in nearby Er3+ ions.  

Population then quickly relaxes from the 4I11/2 state to the 4I13/2 state, where stimulated 

transitions back to the 4I15/2 ground state amplify the signal wavelength in the 1.5-μm 

region.  This image is reproduced from Ref [70]. 

 

A block diagram of the Er/Yb co-doped double clad fiber amplifier constructed by 

Precision Photonics Corporation and used in the initial small quantum defect laser trials is shown 

in Fig. 7.4.  The amplifier consists of two stages, a low-power preamplifier stage and a high-

power power amplifier stage.  The preamplifier stage uses standard single clad Er-doped fiber to 

boost the signal power from the seed laser from the milliwatt level up to hundreds of miliwatts.  

This is done so that the power amplifier stage is properly seeded.  The input power to the high-

power stage must be sufficiently high during high-power operation so that the signal light is 

preferentially amplified instead of the amplified spontaneous emission (ASE) produced in the 

high-power stage itself.  If the ASE power is allowed to overwhelm the seed power, the high-

power stage may self-lase.  Self-lasing can produce large spikes in power which can lead to 
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damaging nonlinear effects including fiber-fuse effects in which the core region along the entire 

length of fiber can become pitted and ruined. 

 

 
Figure 7.4 Block diagram of the Er/Yb co-doped double clad fiber amplifier built by 

Precision Photonics Corporation for use pumping a small quantum defect laser in the 1.5-

μm wavelength region.  The amplifier has a low-power preamplifier stage and a high-

power power amplifier stage capable of producing a maximum output power of 2 W. 

 

After passing through an optical isolator and a fiber coupler with a few-percent tap for 

preamplifier diagnostics, the preamplifier output enters the power amplifier stage.  This stage 

consists of a section of near single-mode Er/Yb co-doped double clad fiber.  The fiber is pumped 

using ~ 900-nm wavelength multimode pump diodes capable of delivering a total power of many 

tens of watts.  Due to the high powers involved, many of the components have to have some heat 

sinking for thermal management. 

 

 7.3 Gas-Filled Fiber Laser Resonator Designs for Small Quantum Defect 

Lasing 

 7.3.1 Introduction  

In addition to a high-power CW pump source, a successful demonstration of small quantum 

defect lasing from a gas-filled HC-PCF will likely require the fiber be placed inside a resonator 

at the laser wavelengths, as more feedback will be needed than can be provided by the guided 
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mode of the fiber alone.  Several different resonator designs have been investigated, including 

designs based on polarization optics and dichroic optics. 

Polarization optics can be used to allow pump light having a well defined polarization to 

be coupled through cavity optics that are then highly reflective for the orthogonal polarization.  

This scheme is particularly convenient as the pump and laser light will only differ by ~ 10 nm 

near 1530 nm.  While dichroic optics could be used to reflect the laser wavelengths while 

transmitting the pump wavelengths, optics that transition from near fully transmissive to near 

fully reflective over just a 1% change in wavelength are not typical and are difficult and 

expensive to custom manufacture.  On the other hand, using polarization to separate pump and 

lasing wavelengths which differ by 1% is no problem. 

Several different cavities utilizing polarization optics were examined, while only one 

cavity was developed which utilizes dichroic optics.  In all cases the gas is contained in a 

commercial photonic band gap fiber (PBGF) from Crystal Fibre.  The fiber has a hollow-core 

diameter of 10 μm, a mode field diameter of 9 μm (1/e2) at 1550 nm, and a numerical aperture of 

~ 0.20 [71].  Figure 7.5 shows the fiber’s cross section together with the fiber’s attenuation 

(shown in black) and D-parameter (shown in red) in the 1.5-μm wavelength region.  This fiber 

was chosen for its small core diameter and very low attenuation (< 20 dB/km near 1550 nm), to 

help maximize the pump and laser intensities in the gas, reducing the power required to reach the 

lasing threshold. 

 

  
Figure 7.5 An SEM image of the cross section (left image) and a plot (right image) of the 

attenuation (black curve) and D-parameter (red curve) for the 10-μm core diameter PBGF 

from Crystal Fibre.  Figures reproduced from Ref [71]. 
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 7.3.2 Gas-Filled Fiber Laser Resonators Based on Polarization Optics 

The first cavity design investigated is shown in Fig. 7.6 and is by far the simplest to construct 

and to align.  One end of PBGF is spliced to an SMF patch cord, allowing pump and laser light 

to easily be coupled in and out of the fiber.  The patch cord is then connected to the combined 

output port of fiber-based polarizing beam combiner.  One of the polarized inputs to the 

combiner is connected to a gold-coated fiber mirror, while the orthogonally polarized input is 

connected to the output from a commercial, 300 mW (maximum output) erbium doped fiber 

amplifier (EDFA), which is used as the pump source since the Er/Yb co-doped double clad fiber 

amplifier was not available at the time.  The other end of the PBGF is held in a vacuum chamber 

 

 
Figure 7.6 Initial setup for C2H2-filled PBGF small quantum defect laser using a polarized 

cavity.  Acetylene gas is contained in the 10-μm diameter hollow core of a ~ 1.5-m long 

PBGF.  The laser cavity is formed by the gold-coated fiber mirror connected to the 

polarizing beam combiner and the 99% reflective, plano dielectric mirror which functions 

as the laser output coupler.  Pump light is polarized orthogonal to the polarization that the 

cavity supports and is coupled into the cavity through the polarizing beam combiner.  The 

losses through various components are labeled in the figure. 
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similar to those used in the pulsed mid-IR laser experiments, which permits gas to diffuse in and 

fill the fiber’s hollow core region.  The fiber’s end is held near an AR-coated BK7 window to 

allow the pump and any laser light to be coupled in and out of the PBGF.  Light is collimated 

from the PBGF using an AR-coated achromatic doublet lens.  The collimated beam is incident on 

a dielectric mirror, which retroreflects 99% of the incident light back toward the collimating lens 

and the PBGF, and transmits the remaining 1%.  The transmitted light is then coupled into SMF 

and sent to an optical spectrum analyzer (OSA) to look for spectral components not belonging to 

the pump, indicating lasing. 

The EDFA used to pump the laser is seeded using a ~ 20 mW, narrow linewidth fiber 

laser tuned to resonance with the P(13) transition  between the vibrational ground state and the 

ν1 + ν3 vibrational state, at a wavelength of 1533 nm.  Estimates from collaborators at the 

University of New Mexico showed that pumping on an R-branch transition and lasing on a P-

branch transition would likely have lower pump power thresholds than pumping and lasing on P-

branch transitions alone.  However, the gain from EDFAs in general is seen to decrease rapidly 

at wavelengths below about 1532 nm.  Therefore, to avoid running the EDFA with a signal 

wavelength that could not be amplified (a situation where self-lasing can occur), it was deemed 

best to pump at a wavelength longer than 1532 nm somewhere within the P-branch. 

The PBGF was filled with a variety of C2H2 gas pressures ranging from a few tens of 

millitorr to a few torr.  However, no additional spectral components where ever seen using this 

setup, indicating that we were not able to reach the lasing threshold in the gas-filled fiber.  This 

likely results from some combination of too little pump power being present in the gas and there 

being too little feedback at the laser wavelength.  This second point seems quite likely from the 

loss values through the various optical components labeled on the diagram in Fig. 7.6.  From 

these values the total round trip loss is more than 10 dB, or greater than 90%.  The largest losses 

in the system are from the PBGF-to-SMF splice and from the free space-to-fiber recoupling.  The 

splice loss results from a mismatch in the mode field diameters between the two fibers, and it is 

nonreciprocal because of the multimode nature of the PBGF [72].  The high loss incurred during 

recoupling of the retroreflected light was quite perplexing and inspired a reexamination of how 

light might be more efficiently coupled in and out of the PBGF. 
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 Up to this point, light had been coupled in and out of all of the HC-PCFs using either 

spherical or achromatic doublet lenses.  While these types of lenses are used quite successfully in 

other PBGF setups within our lab, they were not seen to function with the high coupling 

efficiencies required for intracavity use when used in the retroreflection configuration required 

for a laser cavity.  A quantitative study was done of the recoupling efficiency for the 

retroreflection configuration using a combination of SMF and PBGF fibers and a spherical lens 

in conjunction with a plano dielectric retroreflector as well as a concave dielectric retroreflector 

alone.  Both mirrors are 99% reflective at wavelengths near 1550 nm. 

The setup used to measure the recoupling loss is shown for the lens-plano mirror system 

in Fig. 7.7a and for the concave mirror system in Fig. 7.7b.  Light at 1533 nm is injected into 

port 1 of a fiber circulator, where it is transmitted to port 2.  The fiber from port 2 is connected to 

either a single SMF patch cord or to a SMF patch cord which is spliced to a ~ 1-m long section 

of PBGF.  Light propagates out of port 2, through the fiber and is emitted into free space at the 

end of the SMF patch cord or the PBGF.   From the end of the fibers, the light is either 

collimated with a 25-mm focal length spherical lens and retroreflected with a plano/plano mirror 

(Fig. 7.7a) or simply retroreflected without collimation from a 25-mm radius of curvature 

plano/concave mirror (Fig. 7.7b).  Following retroreflection, the light is recoupled into the fiber 

and transmitted back into port 2 of the fiber circulator where it is transmitted to port 3 which is 

connected to a large area germanium photodetector for measurement. 
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Figure 7.7 Setup for fiber-to-free space recoupling loss measurements using SMF and 

PBGF fibers in conjunction with (a) a 25-mm focal length spherical lens and plano mirror 

or (b) a 25-mm radius of curvature concave mirror alone.  Light at 1533 nm is injected into 

SMF or PBGF via ports 1 and 2 of the circulator shown.  Retroreflected light is recoupled 

and sent back to port 2 of the circulator where it is transmitted to port 3 and detected using 

a large area Ge photodetector. 

 

Table 7.1 summarizes the results of the observed recoupling losses after optimizing the 

free space optics in all cases.  The highest recoupling losses when using either the lens and plano 

mirror or the concave mirror alone were achieved using PBGF.  This is not terribly surprising as 

the PBGF is known to guide multiple modes that may exhibit different divergence angles.  What 

is somewhat surprising is that when the plano/concave mirror alone was used, the recoupling loss 

was very low for both fibers, at somewhere in the range of 0 – 4%.  The vast improvement over 

the lens-mirror configuration likely has to do with the fact that lens produces aberrations that 

prevent the beam from being perfectly collimated, thus reducing the recoupling efficiency after 

retroreflection.  This effect seems to be made even worse if one is trying to couple multiple 

transverse modes as is likely the case with the PBGF.  Armed with the knowledge gained from 

these measurements, new cavity designs were sought to reduce the free space-to-fiber recoupling 

losses by using curved mirrors whenever possible. 
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Table 7.1 Summary of results from fiber-to-free space recoupling loss measurements using 

SMF and PBGF fibers in conjunction with a 25-mm focal length spherical lens and 

plano/plano mirror or a 25-mm radius of curvature plano/concave mirror alone. 

Fiber Type Minimum Recoupling Loss 

from Lens-Plano/Plano Mirror 

Minimum Recoupling loss 

from Plano/Concave Mirror 

SMF ~ 15% 0 – 4% 

PBGF ~ 70% 0 – 4% 

 

 The second cavity design for a gas-filled PBGF small quantum defect laser based on 

polarization is shown in Fig. 7.8.  In contrast to the initial setup shown in Fig. 7.6, no high loss 

splice between SMF and PBGF exists here.  The cavity is formed by two dielectric mirrors that 

are 99% reflective at wavelengths near 1550 nm.  The mirror on the right is plano/concave with a 

25-mm radius of curvature and is used to retroreflect both the pump and any generated laser light 

in the 1550-nm wavelength region with efficiencies up to > 96% (from Table 7.1).  The mirror 

on the left is plano/plano and is used as the output coupler, where light transmitted through this 

mirror can be sent to an OSA for spectral measurements as was done in the initial setup.  Pump 

light is coupled into the cavity using the polarizing beam splitter.  This beam splitter is optimized 

to transmit s-polarized light and reflect p-polarized light.  The pump and any generated laser 

light are coupled in and out of the left side of the fiber using an AR-coated achromatic doublet 

lens. 

 Just as in the initial trial, the laser is pumped using 1533-nm wavelength light from a 

narrow linewidth fiber laser, tuned to resonance with the P(13) transition between the vibrational 

ground state and the ν1 + ν3 vibrational state.  This light is amplified to ~ 2 W using the Er/Yb 

co-doped double clad fiber amplifier discussed in section 7.2. 
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Figure 7.8 Setup for C2H2-filled PBGF small quantum defect laser based on a polarized 

cavity employing a free space plate polarizing beam splitter and a curved mirror.  The 

vacuum chambers and fiber holders are shown in cross section.  The orange circles indicate 

the cross sections of the O-rings used to form a gas-tight seal against various components.  

The rib structure on the right vacuum chamber indicates a bellows which allows the curved 

mirror to be tilted and translated during alignment to the hollow fiber’s end. 

 

Lasing with this system was only briefly attempted, and did not show any indications of 

success.  Even with the near perfect coupling achieved from the curved mirror, the round trip 

cavity loss for this laser configuration is ~ 85%.  Again, the largest loss in the cavity comes from 

the lens-to-fiber coupling, and this loss seems to only be exacerbated by the polarizing plate 

placed between the lens and the output coupler.  One potential solution is to use curved mirrors 

at both ends of the fiber, and place the polarizing plate between one of the curved mirrors and the 

fiber’s end.  This configuration would be challenging to construct and align as the polarizing 

plate would be completely contained inside one of the vacuum chambers, requiring the chamber 

to be fit with mechanical feedthroughs for alignment control and an additional window in order 

to couple the pump light into the PBGF from the beam splitter.  Furthermore, the polarizing 
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beam splitter requires a collimated beam to function properly, so the splitter must be positioned 

after any collimating optics.  An off-axis parabolic mirror may have offered a reasonable 

alternative to a collimating lens, but was overlooked at the time.  Seemingly at the limit of what 

can be accomplished using resonators based on polarization multiplexing, a move was made 

toward cavities based on dichroic optics. 

 

 7.3.3 Gas-Filled Fiber Laser Resonators Based on Dichroic Optics 

Instead of using polarization to distinguish different wavelengths of light, we can employ 

dichroic optics, which reflect and transmit differently at different wavelengths, to make the 

wavelength distinction directly.  Dichroic optics typically rely on multilayer, multi-thickness 

thin-film dielectric coatings of materials with alternating high and low indices of refraction.  

These optics are usually designed using sophisticated computer software which can analyze the 

wavelength-dependent interference created by alternating dielectric layers with complex 

thickness variations and wavelength-dependent indices of refraction and material absorption.  

One very nice feature of dichroic optics is that they can be made to work reliably on curved 

surfaces (although extremely short radii of curvature still pose a significant challenge).  A low 

loss cavity can therefore be constructed using a curved dichroic mirror at one end of the PBGF 

together with a standard curved dielectric mirror at the opposite end of the fiber. 

 The sharp dichroic mirrors required for pumping and lasing between the ground 

vibrational state and the ν1 + ν3 vibrational state in C2H2 or the ground vibrational state and the 

2ν3 vibrational state in HCN require transitioning from 99% transmissive to 99% reflective over 

just a 10-nm change in wavelength at ~ 1535 nm.  A variety of mirrors have been constructed by 

Precision Photonics Corporation which meet this specification, with center wavelengths ranging 

from about 1532 – 1540 nm.  These mirrors were only completed in the past few months, and as 

such have not yet been tried in any laser setup. 

Prior to the very recent production success of these plano/plano sharp dichroics, no 

appropriate dichroic optics existed for use in the gas-filled PBGF small quantum defect lasers we 

are interested in investigating in the 1.5-μm wavelength region.  However, there is some 

evidence that acetylene might be pumped from the ground to the ν1 + ν3 vibrational state and 

made to lase between the ν1 + ν3 and the ν4 vibrational states.  As indicated in Fig. 2.2, the ν4 
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vibrational state corresponds to the symmetric C–H bending mode.  The relative energy of this 

bending mode compared to the symmetric and anti-symmetric C–H stretching modes is seen 

from Table 2.1 to be only 608 cm-1 compared to 3397 cm-1 and 3317 cm-1, respectively.  This 

puts the emission wavelengths corresponding to transitions between the ν1 + ν3 and the ν4 

vibrational states near 1650 nm, which is still a relatively small quantum defect allowing CW 

efficiencies of > 90%.  Curved dichroic mirrors that exhibit high transmission at wavelengths 

near 1533 nm and high reflection at wavelengths from 1600 – 1700 nm are relatively easy to 

produce, so these mirrors were fabricated for use in an acetylene-filled PBGF laser setup 

employing curved cavity mirrors at both ends of the fiber.  The spectral transmission of the 

mirrors was measured using a supercontinuum source and an OSA.  The transmission measured 

through one of the plano dichroic mirrors is shown in Fig. 7.9. 
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Figure 7.9 Measured transmission spectrum of 1650-nm plano dichroic mirror for use in 

C2H2-filled PBGF small quantum defect laser cavity.  The transmission was measured 

using a supercontinuum source and OSA, by comparing the spectrum of the source 

recorded with and without the dichroic mirror present. 

 

One potential problem with this lasing scheme is that the vibrational relaxation rate from 

the ν4 state back to the ground state is thought to be relatively slow, causing a potential bottle 

neck for the lasing populations.  One way to circumvent this bottle neck is to use a pulsed pump, 



126 

 

allowing sufficient time for the population in the ν4 vibrational state empty between successive 

excitations of population to the excited state. 

The OPA was not yet constructed at the time this laser system was being investigated, but 

it would be interesting to insert the 10-μm core diameter PBGF into the single-pass laser setup 

used in the mid-IR laser investigations presented in Chapters 5 and 6, as the PBGF likely has 

much higher loss at the mid-IR wavelengths where lasing was seen previously.  This high mid-IR 

loss would likely prevent the mid-IR lasing seen before and may preferentially allow lasing at 

wavelengths near 1650-nm where the fiber loss is likely many orders of magnitude lower. 

A straightforward solution to generating 1533-nm wavelength pump pulses of adjustable 

duration is to pulse the 1533-nm wavelength signal input to the Er/Yb co-doped double clad 

amplifier.  The setup for this is shown in Fig. 7.11. The 1533-nm wavelength signal light is 

effectively switched on and off using a fiber-coupled acousto-optic modulator (AOM).  This 

modulator essentially consists of a tellurium dioxide (TeO2) crystal and a piezoelectric 

transducer.  The transducer applies an oscillatory force (at a frequency of 200 MHz) to one side 

of the crystal in a direction transverse to the propagation direction of light through the crystal.  

This in turn creates a pressure wave inside of the crystal which causes a periodic modulation in 

the index of refraction.  The modulated index of refraction of the crystal acts like a diffraction 

grating, effectively redirecting the light from its incident path at a specific angle from the crystal.  

Only the redirected light is coupled into the output fiber, and thus the AOM acts like a switch, 

only transmitting light when the transducer is vibrating.  The speed at which the light can be 

switched on or off is determined by the size of the optical beam and the propagation speed of the 

acoustical wave in the crystal.  The particular AOM used has a rise time of ~ 10 ns.  Switching is 

performed by providing a TTL voltage pulse to the AOM.  The time duration of the voltage pulse 

is equal to the time duration of the optical pulse produced by the AOM. 

The high-power optical amplifier always produces the same average output power, but by 

switching the signal laser on and off we can effectively control whether the majority of the 

output power is generated at the signal wavelength or at other wavelengths.  To avoid running 

the amplifier without any input (a scenario that can produce self lasing and catastrophic damage 

in the amplifier as discussed in section 7.2) the amplifier is always seeded with some amount of 

protection light, which is spectrally well separated from the 1533-nm wavelength pump light.  

The protection light used had a wavelength of 1545 nm.  The optical power level of the 
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protection light was set so that its spectral power density measured on the OSA was 

~ 10 dBm/nm higher than the highest spectral power density observed in the amplifier’s ASE 

spectrum. 

 

 
Figure 7.10 Optical setup used to pulse the Er/Yb co-doped double clad fiber amplifier’s 

1533-nm wavelength output.  The CW pump light at 1533 nm is sent through a fiber 

coupled AOM used to form the pulse.  The pump light is combined together with low 

power 1545-nm wavelength protection light and sent to the amplifier’s input.  High power 

1533-nm pulses are generated at the amplifier’s output as shown in Fig. 7.12. 

 

A majority of the pump light (99%) is combined together with 1% of the protection light 

using a 99/1 fiber coupler.  The combined output is connected to the input of the Er/Yb co-doped 

double clad fiber amplifier.  When the amplifier is run in this way without pulsing the input 

pump light, ~ 90% of the amplifier’s output power lies at the 1533-nm pump wavelength.  The 

remaining 10% of the output power is spread between the protection light at 1545 nm and the 

ASE.  Interestingly, if the pump light input is pulsed, the peak power of the amplified pump light 

output is seen to increase above the CW level by almost a factor of 10 as shown in Fig. 7.12.  

While this gain spiking phenomenon is undesirable for applications like signal amplification for 
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optical communications, it is a welcome side effect here as it provides a slight increase in the 

pump power that can be delivered to the gas-filled fiber laser system. 

 

 
Figure 7.11 Temporal profiles of the high-power pump light after the amplifier’s output for 

various pulse durations input to the amplifier.  The power is normalized to that measured 

from the amplifier using CW pump light at the input (the maximum CW power from the 

amplifier is ~ 1.8 W at 1533 nm).  The pulse repetition rate is 1 kHz and the pump pulse 

durations range from 30 ns to 100 μs.  The peak power is seen to spike to almost 10 times 

the CW power.  The exponential tail from this spiking leads to FWHM pulse widths of ~ 

200 ns. 

 

The dual-curved mirror cavity configuration to be used with this pulsed pump source is 

shown in Fig. 7.13.  The collimated free space pump pulses from the high-power amplifier are 

sent through half and quarter wave plates to optimize transmission through a high-power isolator.  

This isolator protects the amplifier from any reflections of the pump light from the laser setup, 

which could otherwise provide unwanted feedback to the amplifier.  From the isolator the high-
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power pump pulses are coupled into the curved mirror-PBGF resonator through the 25-mm 

radius of curvature dichroic mirror using a ~ 40-mm focal length achromatic doublet lens.  

Approximately 1% of the pump light and any circulating laser light are transmitted through the 

25-mm radius of curvature dielectric mirror at the opposite end of the PBGF and collimated 

using another achromatic doublet lens.  Following collimation, a plano/plano dichroic mirror is 

used to filter any laser light from the pump light.  The pump light is transmitted through the 

dichroic mirror, coupled into SMF, and sent to a Ge (for high sensitivity) or InGaAs 

photodetector for observation.  Any light at wavelengths longer than ~ 1600 nm is reflected from 

the flat dichroic mirror and coupled into SMF using two additional flat dichroic mirrors to 

further attenuate light at the pump wavelengths.  This SMF fiber is then connected to another Ge 

photodetector for detection of laser light. 

This laser cavity should be very low loss, since the primary loss comes from the curved 

mirror-to-PBGF recoupling which can be as low as 0 – 4%.  This low-loss cavity configuration 

comes at a steep price, as alignment of the cavity for lasing at 1650 nm is quite a challenge.  

Three separate laser sources having wavelengths near 1300, 1533, and 1600 nm are used during 

various phases of the alignment procedure.  The main difficulty comes in ensuring that both the 

dichroic mirror (high reflector) and the 99% reflective dielectric mirror (output coupler) are 

simultaneously aligned to retroreflect the lasing light back into the fiber.  1300-nm wavelength 

light is used to initially align the high reflector to the end of the PBGF because it passes through 

the output coupler with only ~ 20% reflection loss.  Similarly, 1600-nm wavelength light is used 

to align the output coupler because it passes through the high reflector with only ~ 50% 

reflection loss. 

The alignment procedure begins with aligning the high reflector to the end of the PBGF.  

Rough alignment is performed using a 1300-nm wavelength fiber-coupled laser diode.  This 

diode is connected to the SMF patch cord normally connected to the Ge or InGaAs photodetector 

used to observe pump light.  The collimated 1300-nm wavelength light is then sent through the 

dichroic mirror used to filter the laser light from the pump and coupled through the output 

coupler into the PBGF.  The dichroic mirrors reflect ~ 85% of the light at 1300 nm, so once the 

curved dichroic mirror is aligned to the end of the PBGF, the light is transmitted back through 

the fiber and the output coupler and is mostly reflected from the plano dichroic mirror used to 
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separate the pump and laser light.  The light is then detected after this reflection using a large 

area Ge photodetector. 

With the curved dichroic cavity mirror aligned, the next step is to align the curved output 

coupler to the other end of the PBGF.  This is done using the 1533-nm wavelength pump light.  

Pump light from the amplifier is coupled into the PBGF by adjusting the achromatic doublet lens 

position and the pump beam steering, while being careful not to disturb the dichroic mirror-to- 

 

 
Figure 7.12 Low loss setup for C2H2-filled PBGF small quantum defect laser based on 

dichroic optics.  The cavity consists of two curved mirrors with radii of curvature equal to 

25 mm.  One of the curved cavity mirrors is dichroic, allowing 1.5-μm wavelength pump 

light to be transmitted while reflecting light at wavelengths longer than ~ 1600 nm.  A flat 

dichroic mirror (which is otherwise identical to the curved cavity mirror) is used to 

separate the pump and lasing wavelengths.  Two additional flat dichroic mirrors are used 

to further filter the lasing light before coupling it into SMF for detection. 
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PBGF alignment.  With the pump light coupled into the PBGF, the output coupler position is 

optimized until the maximum reflection is observed.  The reflected light is transmitted back to 

the free-space isolator where it is dumped out the rejection port (preventing it from reentering the 

amplifier) and detected using a large area Ge photodetector. 

Finally, the laser light detection path is aligned using 1600-nm wavelength light.  The 

light is coupled along the path of the pump light using the dichroic mirror placed just after the 

free-space isolator.  The 1600-nm wavelength light is then coupled into the PBGF through the 

dichroic mirror with a ~ 50% reflection loss.  Approximately 1% of the light is then coupled 

through the output coupler and collimated.  The light is then ~ 50% reflected off the flat dichroic 

mirror used to filter the laser from the pump light.  The beam steering into the SMF along with 

the position of the lens just before the SMF are optimized to give the maximum voltage from the 

laser light detector.  If the cavity is well aligned, the signal on this detector shows interference 

when the positions of any of the cavity optics or the fiber ends are perturbed.  Tweaking the 

cavity mirror alignment to maximize this interference signal provides the fine control needed to 

reach optimal cavity alignment. 

The cavity alignment is very sensitive to the position of the fiber relative to the cavity 

mirrors.  If the ends of the PBGF extend too far from the vacuum seal on the fiber holder, the 

cavity alignment will drift as the pump power incident on the fiber increases, because the hollow 

fiber heats and deflects with time.  Therefore, short (~1 mm) bare fiber lengths protrude from the 

fiber holder in order to mitigate these thermal effects, and those caused by mechanical vibrations.  

Filling the vacuum chambers with gas also causes some misalignment of the cavity, and so the 

cavity alignment must be reoptimized using the 1600-nm wavelength light whenever the gas 

pressure in the vacuum chambers is changed. 

While lasing in this system was attempted using acetylene gas pressures of up to 

~ 100 torr, no lasing was ever demonstrated with this system.  Because of the alignment 

challenges, issues with the double-clad amplifier, and the desire to attempt mid-IR lasing in a 

single-pass configuration (which was known to have a much higher chance for success), the 

experimental trials to demonstrate small quantum defect lasing from gas-filled HC-PCFs were 

put on hold. 
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Chapter 8 - Summary and Outlook 

Realization of the first gas fiber laser based on population inversion holds great promise for 

coherence generation applications as well as for engineering high power, portable and robust, all 

fiber mid-IR sources in the future.  Using this architecture, one may effectively engineer gas-

filled fiber laser sources at numerous wavelengths difficult to obtain with other technologies by 

both carefully selecting the gas and designing the optical fiber.  The gas must absorb at 

wavelengths where inexpensive, high-power pump sources exist, and lase at the wavelength or 

wavelengths of interest.  The fiber should be highly transmissive at both the pump and laser 

frequencies while suppressing lasing on unwanted transitions.  Sealing the fiber permits an all-

fiber device, facilitating easy integration into optical systems. 

While the performance of solid core fiber lasers at high powers can be limited by the 

onset of nonlinear processes such as Brillouin and Raman scattering [35], gas-filled HC-PCF 

lasers can be expected to surpass these limits and have higher thresholds for damage, because no 

glass or other host material is present in the high intensity region (within the gas-filled fiber core) 

of the propagating modes.  Phase-locking multiple gas-filled fiber lasers together might then be 

used directly to achieve higher ultimate powers than can be realized from a similar solid-core 

system. 

These higher damage thresholds may be capitalized on by employing a small quantum 

defect lasing scheme [73], in which the pump and laser wavelengths differ by as little as 1%, to 

generate coherence between multiple incoherent pump sources.  This may be accomplished using 

a molecular gas which can be optically pumped simultaneously via different ro-vibrational 

transitions and forced to lase on a single transition.  Small quantum defect lasing will require fast 

rotational mixing and repopulation of the ground state, which may favor asymmetric molecules 

or require buffer gases for tailored energy transfer.  Owing to the needed thermalization between 

rotational states, small quantum defect lasing should allow CW laser operation which is 

paramount for use in many potential applications. 

Many interesting effects, including long (~ 30 ns) laser-to-pump pulse delays and 

pressure dependent spectral contributions to the mid-IR laser pulses have been observed from 

these gas filled fiber lasers, which require further study to more fully characterize and 

understand.  Mid-IR laser efficiencies as high as ~ 20% have now been observed from acetylene-
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filled kagome-structured HC-PCF.  Since gas-filled HC-PCF lasers have such great potential as 

mid-IR sources for a multitude of applications, further experiments aimed at understanding the 

behavior and dependencies of these lasers is paramount to further improving laser performance. 

 While overall this project has been quite successful with the initial demonstrations and 

basic characterizations of mid-IR emissions from gas-filled hollow-core fiber lasers, much work 

remains to refine the precision of current measurements as well as to examine measure other 

fundamental quantities related to performance of this new laser architecture.  Work is ongoing 

with collaborators at the University of Bath to continue to develop better HC-PCFs, with the 

specific goals of improving the current mid-IR fiber loss, and pushing this low loss region to 

longer wavelengths within the mid-IR and beyond, opening the door to exploring additional 

gases like CO and CO2. 

 Large (10 – 50%) pulse-to-pulse fluctuations in the mid-IR laser pulse energy generated 

by the laser can be seen, while the source remains a mystery.  The laser setup was changed to 

minimize the effect that fluctuations in the mid-IR laser polarization would have on the measured 

pulse energies, but this seemed to have no effect on the laser pulse energy scatter.  A more exotic 

explanation relies on the fact that the large core fiber is likely multimode.  If this is the case, 

perhaps more than one guided mid-IR fiber mode exists with sufficiently high gain to support 

lasing.  The observed fluctuations in the shot-to-shot laser pulse energy then could be related to 

the fluctuations in the constituent guided mid-IR modes, which may produce different net gains 

depending on how the pulse energy couples between the various modes as the light propagates.  

While verification of such a hypothesis nearly impossible in the current large core fiber, the 

nearly single-mode mode profile from one of the 42-μm pitch hypocycloidal fiber received 

recently from collaborators at the University of Bath may offer a means to help rule out the idea 

that multiple competing mid-IR modes are responsible for fluctuations in the laser pulse energy.  

This fiber is currently being installed in the laser setup where testing will soon begin. 

 In addition to improving the measurements already being done, there are several more 

measurements that should be considered.  From the initial findings our University of New 

Mexico collaborators, it seems that the polarization of the pump and mid-IR laser light are 

correlated.  Determination of the exact relative pump and laser polarizations is complicated by 

the wavelength-dependent polarization rotation generally induced by non-polarization 

maintaining optical fiber.  However, a measurement to determine if a polarization correlation 
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exists would be reasonably simple to duplicate in our lab with the appropriate polarizers.  One 

reason a polarization correlation might exist may have to do with the absorbing and emitting 

vibrational transitions both having dipole moments that oscillate along the internuclear axis, and 

too little time for the molecule to change orientations before the onset of lasing. 

 Another interesting measurement would be to examine the temporal coherence of the 

generated mid-IR pulses.  The temporal coherence can be measured using a Michelson 

interferometer where the path length between the two arms is varied.  The difficulty with this is 

the ~ 1-ns duration of the pulses which corresponds to a length of ~ 30 cm in air.  This 

measurement could be done at various pump pulse energies to see if the temporal coherence 

changes near threshold where the pump field is weaker and it takes more time to build sufficient 

population inversion to reach the onset of lasing. 

While considerable effort was put into demonstrating a CW small quantum defect laser 

with no success, this remains one of the most interesting and promising areas to continue 

investigating.  We now have in our possession the sharp dichroic mirrors described in Chapter 7 

which should allow a low loss cavity to be constructed which is ~ 99% reflective at wavelengths 

near 1547 nm while exhibiting high transmission at wavelengths near 1536 nm.  These 

wavelengths correspond to ro-vibrational transitions in H13CN which was produced for us by 

Dr. Chris Levy in the Chemistry Department at Kansas State University.  The only piece of 

infrastructure missing is a 40-W Er/Yb co-doped double clad fiber amplifier, which should arrive 

in the coming months.  Using the new low loss cavity together with the high power pump, we 

should be able to exceed the necessary pump power thresholds estimated by collaborators at the 

University of New Mexico by more than a factor of two. 
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Appendix A – Mathematica Code to Calculate Temperature-

Dependent Quasi-Phase-Matched Signal and Idler Wavelengths in 

MgO:PPLN 

 

• const ants 

a1 = 5. 319125; 

a2 = 0. 09141285; 

a3 = 0. 3165008: 

a4 = 100. 2028; 

a.S = 11. 31639; 

a6 = 0. 01491046: 

b1 = 4.153469 w1o-'; 

b2 = 3. 310965 w10-8; 

b3 = 2. 160513 • 10.s; 

0: =1.53w10-S; (w units of K..l •) 

/) =5.3.10_.: (• units of I<_, •) 

• Adjust able p ar ameters 

AO = 31. 5 • 10-6; ( • Polinu- pel'iod in m •) 

.U = 1063.81w10-9; (• PID!f) •·1ave1ength in m. l·!easw:ed to be 1063.81 •- 0.05 nm using OSll. •) 

• Define function s 

f [ teJTt>C] := ( teJTt>C - 24.5) • ( teJTt>C + 510.82): 

A[teJTt>C] : = AO • ( 1 +a w ( teJTt>C - 19) + /) w ( teJTt>C - 19)2); 

For .A1 =1834w10 1 A.1 ~2121.6w10 1 A.1 +=0.2w10 1 [ ... ... ... 
1 

l.2 =.!._.!.: 

teJTt> = 

HSolve( 

1/ A[ teJTt>C] == - a1 + b1 w f [ teJTt>C] + + - a6 • (.l.3 • 10 ) -{ 
1 ~ [ a2 • b2 • f [ teJTt>C] a4 • b3 • f [ teJTt>C] 6 2] 

.l.3 (.l.3 w10")2 - a32 ( .l.3 w10")2 - a52 

- al + bl w f [ teJTt)C] + + - a6 • A.2 wlO -1 ~ ( a2 • 1>2 • tt teJTt>(;J a4 • "~ • t L teJTt>(;J ( • )2 ] 
.l.2 ( .l.2 w10")2 - a32 ( .l.2 w10")2 - a52 

- a1 + b1 wf [ teJTt>C] + + - a6 w(.l.1w10) '( teJTt>C} ; 1 ~ [ a2 . b2 . f [ teJTt>C] a4 • b3 • f [ teJTt>C] • 2] J ] 

.l.1 ( .l.1 w10")2 - a32 ( .l.1 w10")2 - a52 

If[teJTt>[[4, 1, 2]] > 20&& teJTt>[[4, 1, 2]]. 200, 

Print(teJTt)[[4, 1, 2]], '' , '', A.l w109 //H, " , " 1 J.2 w109 //H) 

( wPl'int [teJTt> [ [4, 1, 2]]//11]; •) 

( wPrint [ .l.1w106//ll]; •) 

( wPrint [ .l.2w106//ll]; •) 

1; 
]: 
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Appendix B – Optical Parametric Amplifier Simulation Code 
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llrray[a1, Round[1 1 Az + 1], 0]; a1[0] = 

llrray[a2 , Round[1 1 Az + 1], 0]; a2[0] = 

Array[a3 , Round[l l Az + 1], 0]; 

a3[0] = 
p30 l beamArea 

21r nJ 1r e0 1r C 

plmax = p2max = p3max = zmax = 0; 

For[z = Az , z ::s: l , Z += Az , 

{ 
zCrystal [Round [ z I Az ]] = z ; 

p 10 I beamArea 

21rnl 1r eO 1r C 

p 2 0 I bearnArea 

21r n2 1r e0 1r C 

2 :ia.1r o:.l 1r dO 1r Sign[Sin[2 n 1r ( ( z - Az) I A )]] 
a1[Round[z I Az]] = a1[Round[z I Az - 1]] + • a3[Round[z I Az -1]] .conjugate[a2[Round[z I Az - 1]]] • 

n1 1r C 

2n• 0>2 • dO •Sign[Sin[2 "* ((z - Az) I A )]] 
a2[Round[z I Az]] = a2 [Round[z I Az - 1]] + 1r a3[Round[z I Az -1]] "Conjugate [al[Round[z I Az - 1]]] 1r 

n2 1r C 
Az 1r ~:li.*(k3-kl-k2)*(~-t.z); 

a3[Round[z I Az]] = a3 [Round[z I Az - 1]] + 2 D. 1r o:.J 1r dO 1r Sign[Sin[2 n 1r ((z - Az) 1 A )]] 1r al[Round[z I Az -1]] " a2 [Round[z I Az - 1]] * Az 1r ~-Ji.*(k3-k1-k2)*(~-t.z); 
nl 1r c 

p1[Round[z I Az]] = 2 • n t. eO • c • (llbs[a1[Round[z I Az]]] ) 2 
• beamJIJ:ea; 

p2[Round[z I Az]] = 2 • n2 .eO • c • (llbs[a2 [Round[z I Az]] ])2 
• beamllrea; 

p3[Round[z 1 Az]] = 2 " n3 1r eO 1r c 1r (lUls[a3 [Round[z 1 Az]]) ) 2 " beamArea; 

If[p1[Round[z 1 Az]] > plmax, 

plmax = p1[Round[z I Az]] II H; 

p2max = p2 [Round[z I Az]] II H; 

p3max = p3[Round[z I Az]] II H; 

zmax = z II N; 

) 

]; 

}; 

Print[11 Ps~,:rr.=: = 11
, plmax1rl0

3
, 11 ml·r11

]; 

Print[11 Es~,m=: = 11 
, plmax * l:30 * 106, 11 1Ja}11

); 

Print[11 Ei.dJ.e:~: ,m:.x = 11
, p2max 1r l:l0 1r106, 11 llal11

]; 

Print[11 Epurrp,m:.x"' 11
, p3max 1r t30 1r10

6
," 1Jal11

]; 

Print[11 zm:.x = 11
, zmax 1r103 , 11 :nm11

]; 

Print[11 1Js~ = 11
, plmax l p30 1rlOO, 11 %11

); 

Eidhr,M.o.:w: = 0. 130135 ~J 

Zm.o.:w: : 49 .999 lll.Itl. 

1'1si9 = 0 . 0967792% 

<• 
Show[ListPlot [Array[p1,Round[l1Az+1]) ,Plot.Range-+( -. O!hp30, 1. O!hp30} ,Fr~->True ,FrameLabel->( 11 z~~tai. (tml) 11 

, 
11 Peak power (W) 11 

}] , 

ListPlot [Array[p2 ,Round[ll Az+l]]] ,ListPlot [Array[p3 ,Round[ll Az+l]]]] 

•) 

(• 

Show[ListLogPlot[Array[p1,Round[ll Az+1]] ,PlotRange-+( 0. 0001,1. 21rpJO} ,Fr~->True ,FrameLabel->{ 11 z~~ta:. (tml) 11 
, 

11 Peak power (W) 11 
}] , 

ListLoqP1ot [llrray[p 2 , Round [11 Az + 1111 , ListLoqP1ot [llrray [p3 , Round [11 Az + 11111 

•) 

<• 
tab1el=Tab1e[ {zCrystal [i] ,p1[i] ,p2 [i] ,p3[i]), {i, 0 ,Round[11 Az]}]; 

Exvort [ 11 C: \ \DocUJTEnts and Settings\ \Admin\ \Des:ktop\ \OPll Ca1culations\ \EJqJorted Data Files\ \Datal. csv11
, table1] 

•) 
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Appendix C – Single-Pressure Data Plots 

Figure 5.17 data sets are shown separately in the plots below.
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Figure 5.18 data sets are shown separately in the plots below. 
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Figure 6.6 data sets are shown separately in the plots below. 
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Figure 6.7 data sets are shown separately in the plots below. 
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Appendix D – Pulsed Gas-Filled Hollow-Core Fiber Laser 

Simulation Code 

%{ 
    This program models the C2H2 gas fiber laser behavior and calculates 
and plots the teporal profile of (1) the incident and (2) transmitted pump 
pulse energy and (3) the emitted ~ 3 micron laser pulse energy relative to 
the input pump pulse where t = 0 is defined to occur at the peak of the 
incident pump pulse intensity. 
%} 
%-------------------------------------------------------------------------- 
%   Universal constants 
 
h = 6.626068*10^-34;    % J*s, Planck's constant 
c = 2.99792458*10^8;    % m/s, speed of light 
kb = 1.3806503*10^-23;  % J/K, Boltzmann constant 
R = 8.314472;           % J/(K*mol), universal gas constant 
 
%-------------------------------------------------------------------------- 
%   Fiber properties 
 
fiberradius = 25*10^-6;    % m, fiber radius 
el = 1.46;               % m, length of fiber 
lsP = 0.0230259;             % 1/m, exponential loss coefficient for pump 
                        %   corresponding to 0.1 dB/m loss (0.023 = 
                        %   -Ln[10^-(0.75/10)]) 
lsL = 1.151;              % 1/m, exponential loss coefficient for laser 
                        %   corresponding to 5 dB/m loss (1.151 = 
                        %   -Ln[10^-(5/10)]) 
NA = 0.05;              % unitless, numerical aperture of fiber 
omega = 0.0001; %1/2*(1-cos(asin(NA)));  % unitless, fraction of solid angle 
                                %   subtended by the guided fiber mode 
 
%-------------------------------------------------------------------------- 
%   temperature and pressure of gas inside fiber 
 
T = 300;                % K, gas temperature 
P = 30;                  % torr, gas pressure 
 
%-------------------------------------------------------------------------- 
%   C-12 C2H2 gas properties 
 
MC2H2 = 26.015*10^-3;   % kg/mol, molar mass of C2H2 
krPerP = 2.898*10^7;    % 1/(s*torr), rotational relaxation rate 
kr = P*krPerP;          % 1/s, rotational relaxation rate 
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tr = 1/kr;              % s, rotational relaxation time 
vcPerP = 6*10^6;        % Hz/torr, HWHM collisional broadening 
deltavc = vcPerP*P;     % Hz, HWHM collisional broadening 
Nt = P*133.322/(kb*T);  % molecules/m^3, total molecular number density 
 
Np = 0.08*Nt;            % molecules/m^3, approx. number density in J = 7 of 
                        %   vibrational ground state 
    % REPLACE THIS EXPRESSION WITH ACTUAL J-DEPENDENT EQUATION FOR 
GROUND 
    % STATE VIBRATIONAL POPULATION IN THERMAL EQUILIBRIUM 
 
%-------------------------------------------------------------------------- 
%   PUMP LIGHT AND TRANSITION CHARACTERISTICS 
     
lambdap = 1.533*10^-6;   % m, pump wavelength 
Vpump = 1*10^9;         % Hz, pump spectral width 
pumpenergy = 20*10^-6;   % J, pump energy 
tp = 1*10^-9;           % s, pump pulse duration 
Ap = 5;                 % 1/s, A-coefficient: pump 
 
nup = c/lambdap;        % Hz, pump frequency 
 
deltavdp = 2/lambdap*sqrt(2*log(2)*R*T/MC2H2); 
    % Hz, FWHM pump Doppler broadening from eq. 7.72b, "Atoms, Molecules, 
    %   and Photons", Demtroder. 
 
Vpwidth = 0.5346*2*deltavc+sqrt((0.2166*(2*deltavc)^2)+deltavdp^2); 
    % Hz, FWHM Voigt pump linewidth 
 
if (Vpwidth - Vpump < 0) 
    spectralfactor = 1; 
else 
    spectralfactor = 1; 
end; 
    % Compares spectral overlap between pump laser and Doppler + collision 
    %   braodened pump transition to determine fraction of pump laser 
    %   energy absorbed 
 
pumpenergy = pumpenergy*spectralfactor; 
    % J, pump energy scaled by linewidth overlap (Vpwidth >= Vpump, overlap 
    %   = 1) 
     
IP0 = pumpenergy/(pi*fiberradius^2)*1/tp*sqrt(4*log(2)/pi); 
    % W/cm^2, peak initial pump intensity 
 
bp = sqrt(4*log(2))*deltavc/deltavdp; 
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    % b coefficient for pump light from eq 3.12.5, "Laser Physics", Milonni 
    %   & Eberly 
     
Sp = sqrt(4*log(2)/pi)*1/deltavdp*exp(bp^2)*erfc(bp); 
    % s, Voigt pump profile 
                                                         
sigmap = lambdap^2*Ap/(8*pi)*Sp; 
    % m^2, pump stimulated emission cross section 
     
S12 = sigmap*2/(h*nup); % WHY THE FACTOR OF 2? 
    % m^2/J, pump stimulated emission cross section per energy? 
 
%-------------------------------------------------------------------------- 
%   Laser light and transition characteristics (same calculations as for 
%   pump) 
 
lambdaL = 3.16*10^-6;   % m, laser wavelength 
laserenergy0 = 0*10^-25;  % initial laser energy (from quantum noise) 
Al = 13;                % 1/s, A-coefficient: laser 
 
nuL = c/lambdaL;        % Hz, laser frequency 
IL0 = laserenergy0/(pi*fiberradius^2)*1/tp*sqrt(4*log(2)/pi); 
    % W/cm^2, peak initial laser intensity (from quantum noise? - why not 
    %   one photon per mode?) 
 
deltavdL = 2/lambdaL*sqrt(2*log(2)*R*T/MC2H2); 
    % Hz, FWHM laser Doppler broadening 
     
VLwidth = 0.5346*2*deltavc+sqrt((0.2166*(2*deltavc)^2)+deltavdL^2); 
    % Hz, Voigt laser linewidth (FWHM) 
 
bL = sqrt(4*log(2))*deltavc/deltavdL; 
    % b coefficient for laser light from eq 3.12.5, Laser, Milonni & Eberly 
     
SL = sqrt(4*log(2)/pi)*1/deltavdL*exp(bL^2)*erfc(bL); 
    % s, Voigt laser profile 
                                                         
sigmaL = lambdaL^2*Al/(8*pi)*SL; 
    % m^2, laser stimulated emission cross section 
 
S23 = sigmaL*2/(h*nuL); 
    % m^2/J, laser stimulated emission cross section per energy? 
 
%-------------------------------------------------------------------------- 
%   Create temporal profiles of incident pump pulse and inital laser pulse 
%   (intial laser pulse represents quantum noise?) 
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T0 = -1.5*tp;           % s, start of time window 
TE = 3.5*tp;            % s, end of time window 
NT = 5001;              % NT-1 is the number of time slices 
Dt = (TE-T0)/(NT-1);    % s, Incremental time step 
 
for i = 1:NT 
    % Create 1-D array of time values 
    t(i) = T0+(i-1)*Dt; 
         
    % Create 1-D array of incident pump intesity at each time value 
    IP(i) = IP0*exp(-4*log(2)*(t(i)/tp)^2); 
    IPin(i) = IP(i); 
     
    % Create 1-D array of incident laser intesity at each time value 
    IL(i) = IL0*exp(-4*log(2)*(t(i)/tp)^2);   % SET "IL0" = 0 
    IL2(i) = IL0; 
end; 
 
M = 5000;       % number of fiber slices 
dz = el/M;      % m, length of each fiber slice 
lossP = dz*lsP; % loss per slice at pump wavelength 
lossL = dz*lsL; % loss per slice at laser wavelengths 
 
%-------------------------------------------------------------------------- 
%   Propagate initial pump pulse through fiber in space and time 
 
% THIS LOOP STEPS THROUGH EACH "dz" SEGMENT OF FIBER 
for i = 1:M 
    n1(i) = Np; 
    n2(i) = 0; 
    n3(i) = 0; 
    n4(i) = 0; 
    IP = IP*exp(-lossP); 
        % Attenuates all time elements of pump intesity array by the loss 
        %   associated with propogating a distance "dz" in the fiber 
    IL = IL*exp(-lossL); 
    IL2 = IL2*exp(-lossL); 
        % Attenuates all time elements of laser intesity array by the loss 
        %   associated with propogating a distance "dz" in the fiber 
         
    % THIS LOOP STEPS THROUGH EACH "Dt" TIME STEP AT A GIVEN FIBER 
POSITION 
    for j = 1:NT 
        deltaIP(j) = sigmap*(n2(i)-n1(i))*IP(j)*dz + Ap*n2(i)*h*nup*omega*dz; 
        deltaIL(j) = sigmaL*(n2(i)-n3(i))*IL(j)*dz + Al*n2(i)*h*nuL*omega*dz; 



154 

 

        deltaIL2(j) = sigmaL*(n2(i)-n4(i))*IL2(j)*dz + Al*n2(i)*h*nuL*omega*dz; 
                       
        deltan1 = Ap*n2(i)*Dt + sigmap/(h*nup)*(n2(i)-n1(i))*IP(j)*Dt; 
        deltan3 = Al*n2(i)*Dt + sigmaL/(h*nuL)*(n2(i)-n3(i))*IL(j)*Dt; 
        deltan4 = Al*n2(i)*Dt + sigmaL/(h*nuL)*(n2(i)-n4(i))*IL2(j)*Dt; 
        deltan2 = -deltan1 - deltan3 - deltan4; 
         
        IP(j) = IP(j) + deltaIP(j); 
        IL(j) = IL(j) + deltaIL(j); 
        IL2(j) = IL2(j) + deltaIL2(j); 
         
        n1(i) = n1(i) + deltan1; 
        n2(i) = n2(i) + deltan2; 
        n3(i) = n3(i) + deltan3; 
        n4(i) = n4(i) + deltan4; 
    end; 
end; 
 
PowerPin = IPin*pi*fiberradius^2; 
PowerP = IP*pi*fiberradius^2; 
PowerL = IL*pi*fiberradius^2 + IL2*pi*fiberradius^2; 
 
EnergyPin = Dt*pi*fiberradius^2*sum(IPin(1:NT)) % J, input pump energy 
EnergyP = Dt*pi*fiberradius^2*sum(IP(1:NT))     % J, output pump energy 
EnergyPabs = EnergyPin*exp(-lsP*el)-EnergyP    % J, absorbed pump energy 
EnergyL = Dt*pi*fiberradius^2*sum(IL(1:NT)) + Dt*pi*fiberradius^2*sum(IL2(1:NT))     % J, 
laser energy 
 
plot(t(1:NT),PowerPin(1:NT)/max(PowerPin(1:NT)),'g',t(1:NT),PowerP(1:NT)/max(PowerPin(1
:NT)),'b',t(1:NT),PowerL(1:NT)/max(PowerPin(1:NT)),'r'); 
%plot(t(1:NT),PowerPin(1:NT),'r',t(1:NT),PowerP(1:NT),'g',t(1:NT),PowerL(1:NT),'b');
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Appendix E – MATLAB Program to Process Oscilloscope Data 

%-------------------------------------------------------------------------- 

% INPUT FILE AND FILE ANALYSIS PARAMETERS 

 

gasName = 'C2H2';            % Used in file name as saved by scope 

gasPressure = '30.0 torr';  % Used in file name as saved by scope 

 

% File path where data file is located and where results file is created 

filePath = 'D:\Measurements and Data\_Gas-Filled Fiber Laser Data\C2H2\2011-11-21 18.75um 

pitch kagome - 45-cm length\'; 

resultsFileName = ['Results\',gasName,'_',gasPressure,'_Energy and Timing Corrected 

Results.xls']; 

 

numOfEs = 3;                % Number of pump pulse energy settings where data were taken 

numOfFilesPerE = 50;        % Number of files taken at each energy setting 

DelayLPinOffset = -27.52000040888; % Delay in nanoseconds on scope between peak of 1.5 

micron pulse detected at fast HgCdTe detector and peak of incident pump pulse detected at 25 

GHz, 1.5 micron detector 

DelayPoutPinOffset = 8.31800011112; % Delay in nanoseconds on scope between peak of 1.5 

micron pulse detected at fast HgCdTe detector and peak of pump pulse transmitted through fiber 

and detected at 25 GHz, 1.5 micron detector 

 

i1a = 2601; % Ch1 'pump in' analysis starting point 

i1b = 3600; % Ch1 'pump in' analysis ending point 

 

i1c = 3601; % Ch1 'pump out' analysis starting point 

i1d = 4600; % Ch1 'pump out' analysis ending point 

 

j1a = 1;    % Ch1 background analysis starting point 

j1b = 2600; % Ch1 background analysis ending point 
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i2a = 1;  % Ch2 'laser' analysis starting point 

i2b = 3500; % Ch2 'laser' analysis ending point 

 

j2a = 3501; % Ch2 background analysis starting point 

j2b = 5000; % Ch2 background analysis ending point 

 

%-------------------------------------------------------------------------- 

% CREATE TABLE OF CALIBRATION, CONVERSION, AND COMPONENT 

TRANSMISSION 

% VALUES AT BOTTON OF MIDDLE COLUMN OF Excel SPREADSHEET 

 

% Fractional transmission through optics between where pump pulse energy is measured before 

fiber and the start of the fiber 

ToptPumpIn = '0.99';   % Transmission from ThorLabs Ag mirror at 45 deg and through 2 AR-

coated BK7 optics (from literature on website) 

 

% Fractional transmission through optics between where pump pulse energy is measured after 

fiber and the end of the fiber 

ToptPumpOut = '0.8821';    % Transmission through 1 CaF2 window and 1 CaF2 lens 

(calculated) 

 

% Fractional transmission through optics between HgCdTe laser pulse detector and the start of 

the fiber 

ToptLasOut = '=0.7700*0.9481*0.1333';  % Transmission through AR-coated GE filter 

(measured @ 3.5 microns) and 4 CaF2 optics, one at 45 deg (calculated), and one ND=1.0 filter 

 

% Fractional transmission through fiber at pump wavelength 

TfiberPump = '=10^(-0.1*1.460/10)';  % Loss of 7 cell, 3 ring, 18.75 micron pitch kagome at 

1.53 microns is <= 0.1 dB/m (from plot of fiber loss sent with fiber). 
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% HgCdTe detector calibration used to convert V*ps to nJ 

ElasLaser = '0.04136'; % Calibration performed using OPA at wavelength of 3.5 microns 

 

% Factor used to convert from V*ps to microJ 

EinONPumpInOn = 

['=LINEST(K3:K',num2str(2+numOfEs),',C',num2str(6+numOfEs*numOfFilesPerE),':C',num2st

r(5+numOfEs*(1+numOfFilesPerE)),',0,0)']; 

 

% Factor used to convert from V*ps to microJ 

EoutONPumpOutOn = 

['=LINEST(L3:L',num2str(2+numOfEs),',D',num2str(6+numOfEs*numOfFilesPerE),':D',num2st

r(5+numOfEs*(1+numOfFilesPerE)),',0,0)']; 

 

% Factor used to convert from V*ps to microJ 

EoutOFFPumpOutOFF = 

['=LINEST(N3:N',num2str(2+numOfEs),',G',num2str(6+numOfEs*numOfFilesPerE),':G',num2s

tr(5+numOfEs*(1+numOfFilesPerE)),',0,0)']; 

 

% Write column labels and parameter values to results file below table structure for measured 

energy values 

dataOut = 

{'ToptPumpIn',ToptPumpIn;'ToptPumpOut',ToptPumpOut;'ToptLasOut',ToptLasOut;'TfiberPum

p',TfiberPump;'Elas/Laser (nJ/(V*ps))',ElasLaser;'EinON/PumpInON 

(microJ/(V*ps))',EinONPumpInOn;'EoutON/PumpOutON 

(microJ/(V*ps))',EoutONPumpOutOn;'EoutOFF/PumpOutOFF 

(microJ/(V*ps))',EoutOFFPumpOutOFF}; 

xlswrite([filePath,resultsFileName],dataOut,1,['J',num2str(5+2*numOfEs)]); 

 

%-------------------------------------------------------------------------- 

% COMPUTE INTEGRATED PUMP AND LASER PULSE DATA (UNITS OF V*ps) FROM 

FILES 
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% WRITEN BY SCOPE AND COLLECTED VIA LabVIEW 

 

% Write column labels to results file 

dataOut = {'','','ON RES','ON RES','ON RES','OFF RES','OFF RES','OFF RES';'E','File','PumpIn 

(V*ps)','PumpOut (V*ps)','Laser (V*ps)','PumpIn (V*ps)','PumpOut (V*ps)','Laser (V*ps)'}; 

xlswrite([filePath,resultsFileName],dataOut,1,'A1'); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

    for fi = 1:1:numOfFilesPerE % Loop through all files 

 

        %------------------------------------------------------------------ 

        % ON RESONANCE DATA 

                 

        % Read in ch1 data files 

        fid = fopen([filePath,'Data\',gasName,'_',gasPressure,'_on res_E 

',num2str(sprintf('%04d',ei)),'_',num2str(sprintf('%04d',fi)),'_CH1.csv'],'r'); 

        ch1DataOn = textscan(fid,'%q %f %q %f %f','delimiter',',');   % Import data 

        fclose(fid);    % Close file 

 

        % Read in ch2 data files 

        fid = fopen([filePath,'Data\',gasName,'_',gasPressure,'_on res_E 

',num2str(sprintf('%04d',ei)),'_',num2str(sprintf('%04d',fi)),'_CH2.csv'],'r'); 

        ch2DataOn = textscan(fid,'%q %f %q %f %f','delimiter',',');   % Import data 

        fclose(fid);    % Close file 

 

        % Create variable and arrays 

        ch1TimeStepOn = ch1DataOn{2}(2,1)*10^12;    % Units of ps   %disp(timeStep); 

        ch1TimeOn = ch1DataOn{4};                                   %disp(time(:)); 

        ch1VoltOn = ch1DataOn{5};                                   %disp(volt(:)); 

        ch2TimeStepOn = ch2DataOn{2}(2,1)*10^12;    % Units of ps   %disp(timeStep); 

        ch2TimeOn = ch2DataOn{4};                                   %disp(time(:)); 
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        ch2VoltOn = ch2DataOn{5};                                   %disp(volt(:)); 

 

        % Analyze data 

        v1BackgroundOn = 0;   % Initialize integrated voltage to 0 V*ps 

        for j = j1a:1:j1b 

            v1BackgroundOn = v1BackgroundOn + ch1VoltOn(j);   % Sum Ch1 voltage between j1a 

and j1b 

        end 

        vPeakPumpInOn(ei,fi) = v1BackgroundOn/(j1b-j1a+1); % Calculate average voltage to 

determine peak voltage timing 

        vPeakPumpOutOn(ei,fi) = vPeakPumpInOn(ei,fi); 

        v1BackgroundOn = v1BackgroundOn*ch1TimeStepOn/(j1b-j1a+1);  % Units of V*ps/pt 

        tPeakPumpInOn(ei,fi) = 0; 

        tPeakPumpOutOn(ei,fi) = 0; 

        tPeakLaser(ei,fi) = 0; 

 

        v1abOn = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i1a:1:i1b 

            v1abOn = v1abOn + ch1VoltOn(i);   % Sum Ch1 voltage between i1a and i1b 

            if ch1VoltOn(i) > vPeakPumpInOn(ei,fi) 

                vPeakPumpInOn(ei,fi) = ch1VoltOn(i);   % Record peak voltage value 

                tPeakPumpInOn(ei,fi) = ch1TimeOn(i);   % Records time corresponding to first (b/c of 

">" sign) maximum in "Pump In" voltage 

            end 

        end 

        vIntPumpInOn = v1abOn*ch1TimeStepOn-v1BackgroundOn*(i1b-i1a+1);  % Units of 

V*ps 

                 

        v1cdOn = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i1c:1:i1d 

            v1cdOn = v1cdOn + ch1VoltOn(i);   % Sum Ch1 voltage between i1c and i1d 
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            if ch1VoltOn(i) > vPeakPumpOutOn(ei,fi) 

                vPeakPumpOutOn(ei,fi) = ch1VoltOn(i);  % Record peak voltage value 

                tPeakPumpOutOn(ei,fi) = ch1TimeOn(i);  % Records time corresponding to first (b/c 

of ">" sign) maximum in "Pump In" voltage 

            end 

        end 

        vIntPumpOutOn = v1cdOn*ch1TimeStepOn-v1BackgroundOn*(i1d-i1c+1); % Units of 

V*ps 

         

        v2BackgroundOn = 0;   % Initialize integrated voltage to 0 V*ps 

        for j = j2a:1:j2b 

            v2BackgroundOn = v2BackgroundOn + ch2VoltOn(j);   % Sum Ch1 voltage between j1a 

and j1b 

        end 

        vPeakLaser(ei,fi) = v2BackgroundOn/(j2b-j2a+1);    % Calculate average voltage to 

determine peak voltage timing 

        v2BackgroundOn = v2BackgroundOn*ch2TimeStepOn/(j2b-j2a+1);  % Units of V*ps/pt 

         

        v2abOn = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i2a:1:i2b 

            v2abOn = v2abOn + ch2VoltOn(i);   % Sum Ch2 voltage between i2a and i2b 

            if ch2VoltOn(i) > vPeakLaser(ei,fi) 

                vPeakLaser(ei,fi) = ch2VoltOn(i);  % Record peak voltage value 

                tPeakLaser(ei,fi) = ch2TimeOn(i);  % Records time corresponding to first (b/c of ">" 

sign) maximum in "Pump In" voltage 

            end 

        end 

        vIntLaserOn = v2abOn*ch2TimeStepOn-v2BackgroundOn*(i2b-i2a+1);   % Units of V*ps 

         

        %------------------------------------------------------------------ 

        % OFF RESONANCE DATA 
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        % Read in ch1 data files 

        fid = fopen([filePath,'Data\',gasName,'_',gasPressure,'_off res_E 

',num2str(sprintf('%04d',ei)),'_',num2str(sprintf('%04d',fi)),'_CH1.csv'],'r'); 

        ch1DataOff = textscan(fid,'%q %f %q %f %f','delimiter',',');   % Import data 

        fclose(fid);    % Close file 

 

        % Read in ch2 data files 

        fid = fopen([filePath,'Data\',gasName,'_',gasPressure,'_off res_E 

',num2str(sprintf('%04d',ei)),'_',num2str(sprintf('%04d',fi)),'_CH2.csv'],'r'); 

        ch2DataOff = textscan(fid,'%q %f %q %f %f','delimiter',',');   % Import data 

        fclose(fid);    % Close file 

 

        % Create variable and arrays 

        ch1TimeStepOff = ch1DataOff{2}(2,1)*10^12;  % Units of ps   %disp(timeStep); 

        ch1TimeOff = ch1DataOff{4};                                 %disp(time(:)); 

        ch1VoltOff = ch1DataOff{5};                                 %disp(volt(:)); 

        ch2TimeStepOff = ch2DataOff{2}(2,1)*10^12;  % Units of ps   %disp(timeStep); 

        ch2TimeOff = ch2DataOff{4};                                 %disp(time(:)); 

        ch2VoltOff = ch2DataOff{5};                                 %disp(volt(:)); 

         

        % Calculate integrated pulse data (Units of V*ps) 

        v1BackgroundOff = 0;   % Initialize integrated voltage to 0 V*ps 

        for j = j1a:1:j1b 

            v1BackgroundOff = v1BackgroundOff + ch1VoltOff(j);   % Sum Ch1 voltage between 

j1a and j1b 

        end 

        v1BackgroundOff = v1BackgroundOff*ch1TimeStepOff/(j1b-j1a+1);  % Units of V*ps/pt 

 

        v1abOff = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i1a:1:i1b 
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            v1abOff = v1abOff + ch1VoltOff(i);   % Sum Ch1 voltage between i1a and i1b 

        end 

        vIntPumpInOff = v1abOff*ch1TimeStepOff-v1BackgroundOff*(i1b-i1a+1);  % Units of 

V*ps 

 

        v1cdOff = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i1c:1:i1d 

            v1cdOff = v1cdOff + ch1VoltOff(i);   % Sum Ch1 voltage between i1c and i1d 

        end 

        vIntPumpOutOff = v1cdOff*ch1TimeStepOff-v1BackgroundOff*(i1d-i1c+1); % Units of 

V*ps 

 

        v2BackgroundOff = 0;   % Initialize integrated voltage to 0 V*ps 

        for j = j2a:1:j2b 

            v2BackgroundOff = v2BackgroundOff + ch2VoltOff(j);   % Sum Ch1 voltage between 

j1a and j1b 

        end 

        v2BackgroundOff = v2BackgroundOff*ch2TimeStepOff/(j2b-j2a+1);  % Units of V*ps/pt 

 

        v2abOff = 0;   % Initialize integrated voltage to 0 V*ps 

        for i = i2a:1:i2b 

            v2abOff = v2abOff + ch2VoltOff(i);   % Sum Ch2 voltage between i2a and i2b 

        end 

        vIntLaserOff = v2abOff*ch2TimeStepOff-v2BackgroundOff*(i2b-i2a+1);   % Units of 

V*ps 

                     

        % Write integrated pulse data to Excel file 

        curRowNum = num2str(2+fi+(ei-1)*numOfFilesPerE);    % current row number being 

written to in output file 
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        dataOut = 

{ei,fi,vIntPumpInOn,vIntPumpOutOn,vIntLaserOn,vIntPumpInOff,vIntPumpOutOff,vIntLaserO

ff}; % Store values to be written 

        xlswrite([filePath,resultsFileName],dataOut,1,['A',curRowNum]); 

        %------------------------------------------------------------------ 

    end 

end 

 

%-------------------------------------------------------------------------- 

% CREATE TABLE OF AVERAGED VALUES BELOW LEFT COLUMN OF DATA IN 

Excel 

% SPREADSHEET 

 

% Write column labels to results file 

dataOut = {'','','ON RES','ON RES','ON RES','OFF RES','OFF RES','OFF RES';'E','','Avg 

PumpIn (V*ps)','Avg PumpOut (V*ps)','Avg Laser (V*ps)','Avg PumpIn (V*ps)','Avg PumpOut 

(V*ps)','Avg Laser (V*ps)'}; 

xlswrite([filePath,resultsFileName],dataOut,1,['A',num2str(4+numOfEs*numOfFilesPerE)]); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

     

    % Write formulas for averaging to variables 

    avgPumpInON = ['=AVERAGE(C',num2str(3+(ei-

1)*numOfFilesPerE),':C',num2str(2+ei*numOfFilesPerE)]; 

    avgPumpOutON = ['=AVERAGE(D',num2str(3+(ei-

1)*numOfFilesPerE),':D',num2str(2+ei*numOfFilesPerE)]; 

    avgLaserON = ['=AVERAGE(E',num2str(3+(ei-

1)*numOfFilesPerE),':E',num2str(2+ei*numOfFilesPerE)]; 

    avgPumpInOFF = ['=AVERAGE(F',num2str(3+(ei-

1)*numOfFilesPerE),':F',num2str(2+ei*numOfFilesPerE)]; 
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    avgPumpOutOFF = ['=AVERAGE(G',num2str(3+(ei-

1)*numOfFilesPerE),':G',num2str(2+ei*numOfFilesPerE)]; 

    avgLaserOFF = ['=AVERAGE(H',num2str(3+(ei-

1)*numOfFilesPerE),':H',num2str(2+ei*numOfFilesPerE)]; 

     

    % Write label (1,2,3,...) and average value (averaged over all files for that "E" 

    curRowNum = num2str(5+numOfEs*numOfFilesPerE+ei);  % current row number being 

written to in output file 

    dataOut = 

{num2str(ei),'',avgPumpInON,avgPumpOutON,avgLaserON,avgPumpInOFF,avgPumpOutOFF,

avgLaserOFF}; 

    xlswrite([filePath,resultsFileName],dataOut,1,['A',curRowNum]); 

end 

 

dataOut = {'','','Std Dev (V*ps)','Std Dev (V*ps)','Std Dev (V*ps)','Std Dev (V*ps)','Std Dev 

(V*ps)','Std Dev (V*ps)'}; 

xlswrite([filePath,resultsFileName],dataOut,1,['A',num2str(6+numOfEs*(1+numOfFilesPerE))]); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

     

    % Write formulas for averaging to variables 

    stDevPumpInON = ['=STDEV(C',num2str(3+(ei-

1)*numOfFilesPerE),':C',num2str(2+ei*numOfFilesPerE)]; 

    stDevPumpOutON = ['=STDEV(D',num2str(3+(ei-

1)*numOfFilesPerE),':D',num2str(2+ei*numOfFilesPerE)]; 

    stDevLaserON = ['=STDEV(E',num2str(3+(ei-

1)*numOfFilesPerE),':E',num2str(2+ei*numOfFilesPerE)]; 

    stDevPumpInOFF = ['=STDEV(F',num2str(3+(ei-

1)*numOfFilesPerE),':F',num2str(2+ei*numOfFilesPerE)]; 

    stDevPumpOutOFF = ['=STDEV(G',num2str(3+(ei-

1)*numOfFilesPerE),':G',num2str(2+ei*numOfFilesPerE)]; 
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    stDevLaserOFF = ['=STDEV(H',num2str(3+(ei-

1)*numOfFilesPerE),':H',num2str(2+ei*numOfFilesPerE)]; 

     

    % Write label (1,2,3,...) and average value (averaged over all files for that "E" 

    curRowNum = num2str(6+numOfEs*(1+numOfFilesPerE)+ei);  % current row number being 

written to in output file 

    dataOut = 

{num2str(ei),'',stDevPumpInON,stDevPumpOutON,stDevLaserON,stDevPumpInOFF,stDevPu

mpOutOFF,stDevLaserOFF}; 

    xlswrite([filePath,resultsFileName],dataOut,1,['A',curRowNum]); 

end 

 

%-------------------------------------------------------------------------- 

% CREATE TABLE STRUCTURE AT TOP MIDDLE OF Excel SPREADSHEET WHERE 

VALUES 

% FOR MEASURED INCIDENT AND TRANSMITTED PUMP PULSE ENERGIES CAN BE 

ENTERED. 

% THE Excel FILE MUST BE OPENNED AFTER RUNNING THIS PROGRAM TO INPUT 

VALUES 

% FOR THE MEASURED PULSE ENERGIES BEFORE AND AFTER THE FIBER, ON AND 

OFF 

% RESONANCE 

 

% Write column labels to results file 

dataOut = {'','ON RES','ON RES','OFF RES','OFF RES';'E','Avg Ein (microJ)','Avg Eout 

(microJ)','Avg Ein (microJ)','Avg Eout (microJ)'}; 

xlswrite([filePath,resultsFileName],dataOut,1,'J1'); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

     

    % Write label (1,2,3,...) for energy measurement 
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    curRowNum = num2str(2+ei);  % current row number being written to in output file 

    xlswrite([filePath,resultsFileName],num2str(ei),1,['J',curRowNum]); 

end 

 

dataOut = {'','Std Dev (microJ)','Std Dev (microJ)','Std Dev (microJ)','Std Dev (microJ)'}; 

xlswrite([filePath,resultsFileName],dataOut,1,['J',num2str(3+numOfEs)]); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

     

    % Write label (1,2,3,...) for energy measurement 

    curRowNum = num2str(3+numOfEs+ei);  % current row number being written to in output 

file 

    xlswrite([filePath,resultsFileName],num2str(ei),1,['J',curRowNum]); 

end 

 

%-------------------------------------------------------------------------- 

% WRITE FORMULAS TO Excel FILE THAT ARE USED TO ANALYZE AND 

TRANSFORM THE 

% INTEGRATED VOLTAGE DATA INTO CALIBRATED ENERGY DATA 

 

% Write column labels to results file 

dataOut = {'','w/o Absorption','w/ Absorption','','','','','';'Ein (microJ)','Eout (microJ)','Eout 

(microJ)','Eabs (microJ)','Elaunched (microJ)','Elaser (nJ)','Peak-to-Peak Delay (ns), Laser-

Pin','Peak-to-Peak Delay (ns), Laser-Pout'}; 

xlswrite([filePath,resultsFileName],dataOut,1,'P1'); 

 

for ei = 1:1:numOfEs    % Loop through all energies 

    for fi = 1:1:numOfFilesPerE % Loop through all files 

         

        curRowNum = num2str(2+fi+(ei-1)*numOfFilesPerE);    % current row number being 

written to in output file 
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        % Write formulas used to calculate calibrated energy data to variables 

        Ein = ['=C',curRowNum,'*$K$',num2str(5+2*numOfEs),'*$K$',num2str(10+2*numOfEs)]; 

        EoutWOAbs = 

['=G',curRowNum,'*C',curRowNum,'/F',curRowNum,'*$K$',num2str(12+2*numOfEs),'*(1/$K$'

,num2str(6+2*numOfEs),')']; 

        EoutWAbs = 

['=D',curRowNum,'*$K$',num2str(11+2*numOfEs),'*(1/$K$',num2str(6+2*numOfEs),')']; 

        Eabs = ['=Q',curRowNum,'-R',curRowNum]; 

        Elaunched = ['=Q',curRowNum,'*(1/$K$',num2str(8+2*numOfEs),')']; 

        Elaser = 

['=E',curRowNum,'*$K$',num2str(9+2*numOfEs),'*(1/$K$',num2str(7+2*numOfEs),')']; 

        DelayLPin = (tPeakLaser(ei,fi) - tPeakPumpInOn(ei,fi))*10^9 - DelayLPinOffset; 

        DelayLPout = (tPeakPumpOutOn(ei,fi) - tPeakPumpInOn(ei,fi))*10^9 - 

DelayPoutPinOffset; 

         

        % Write formulas to create calibrated energy data to file 

        dataOut = {Ein,EoutWOAbs,EoutWAbs,Eabs,Elaunched,Elaser,DelayLPin,DelayLPout}; 

        xlswrite([filePath,resultsFileName],dataOut,1,['P',curRowNum]); 

    end 

end 

 


