Fatigue Damage Analysis of an Elastomeric Tank Track Component

W. V. Mars, Endurica LLC, www.endurica.com
D. Ostberg, U.S. Army TARDEC

Simulia Community Conference
15-17 May 2012
Providence, RI

UNCLASSIFIED: Distribution Statement A. Approved for public release.

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.
Fatigue Damage Analysis of an Elastomeric Tank Track Component

Abstract

-Demonstrate simulation-based design qualification capability for fatigue of elastomers -Application to the elastomeric backerpad operating as a part of the M1 Abrams track system -Estimate failure location and crack nucleation life

Security Classification

- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified

Distribution Availability Statement

Approved for public release; distribution unlimited

For the Simulia Community Conference 2012
M1 Abrams Tank

Track System
Purpose

• Demonstrate simulation-based design qualification capability for fatigue of elastomers

• Application to an elastomeric backerpad operating as a part of the M1 Abrams track system

• Estimate failure location and crack nucleation life
 – Elastomeric material behavior
 – Realistic duty cycle
Plan

- Characterize materials
- Hyperelastic law
- Strain history for each element
- Finite Element Analysis
- Fatigue law
- Flaw size
- Fatigue Analysis

Powered by Endurica
Fatigue Analysis Strategy

\[T = g(\varepsilon_{ij}, \theta, \phi)a \]

ERR of a small probe crack scales linearly with crack size, and depends on strain state and crack orientation

\[\frac{da}{dN} = f(T_{\text{max}}, R) \]

Crack growth rate for an individual event-pair

\[r = \sum_{i=1}^{M} f_i(T_{\text{max}}, R) \]

Crack growth rate per application of given duty cycle

\[N_{\theta,\phi} = \int_{a_0}^{a_f} \frac{1}{r(T(a,t))} da \]

Number of repeats of duty cycle required to develop a crack

\[N_f = \min_{\theta,\phi}(N_{\theta,\phi}) \]

Life minimization to identify critical plane
Stress-Strain Behavior

\[W = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i^2} \left(\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 \right) \]

\[W = \eta \tilde{W}(I_1, I_2) + \phi(\eta) \]

MU1=2.275319 \hspace{1cm} \text{MPa}
MU2=0.054452 \hspace{1cm} \text{MPa}
ALPHA1=-1.00837
ALPHA2=7.863497
MULLINSR=6.641545796
MULLINSM=0.558478587 \hspace{1cm} \text{MPa}
MULLINSBETA=0.029639767
BULK_MODULUS=140.7 \hspace{1cm} \text{MPa}
Fatigue Crack Growth Law

\[r = r_c \left(\frac{T}{T_c} \right)^{F_0} \]

- TCRITICAL = 10e3 J/m^2
- THRESHOLD = 50 J/m^2
- TRANSITION = 150 J/m^2
- RC = 3.42E-5 m/cyc
- F0 = 2

Courtesy Axel Products
Material Microstructural Feature Size

\[N_{\theta,\phi} = \int_{a_0}^{a_f} \frac{1}{r(T(a,t))} da \]
Computed Fatigue “Design Envelopes”

Haigh Diagram

Cadwell Diagram
Backerpad Geometry
Operating Scenario
Boundary Conditions - Detail
Typical rollover event highlights

Contours of max prin strain
Strain history at typical location

![Strain history graph]

- NE:NE11 PI: BACKER-1 E: 381 Centroid
- NE:NE22 PI: BACKER-1 E: 381 Centroid
- NE:NE12 PI: BACKER-1 E: 301 Centroid
Critical Plane Analysis

For every material point

For every plane

Loading History on plane

Identification of Events via Rainflow count

Integration of damage law

Identification of material point and plane with minimum life
Results

$3.6 < \log_{10} N < 5.3$

47.36 degree from horizontal plane
Typical damage development

\[
\log_{10} \left(90 \frac{revs}{mile} \times 500 \text{mile} \times 7 \frac{cycles}{rev} \times \frac{1 \text{ mm}}{3 \text{ mm}} \right) = 5.02
\]
Conclusion

• Introduced a simulation-based approach for estimating elastomer fatigue crack nucleation life under complex dynamic loads

• Demonstrated
 – characterizing rubber’s fatigue behavior via fracture mechanics procedures
 – computing damage accumulation under complex service conditions using a critical plane analysis strategy
 – encouraging comparison to reality
Outlook

• Army funded SBIR Phase II project to expand features, validation, and application of the code.

• Partnership with Axel Products now offers Fatigue Design Envelope characterization service.

• Partnership with Safe Technology offers post-processing solution Fe-safe/Rubber (coming soon).
Acknowledgement

• This work was completed with financial support from the U. S. Army under Phase I SBIR contract W56HZV-10-C-0201 and with technical support from the U.S. Army TARDEC Elastomer Improvement Program. The authors would like to acknowledge helpful input from Bill Bradford and Matt Castanier.
Abstract

Abstract: The backerpad on the Abrams tank track system is an elastomeric cushion that protects the track and has direct contact with the tank’s wheels. The backerpad’s service life is limited by harsh operating conditions, and system designers are challenged to extend that limit. Accordingly, an analysis is demonstrated here of an experimental backerpad’s fatigue performance under the action of a tank roadwheel repeatedly rolling over the pad. First, the elastomer is characterized via tests that define its fatigue behavior. Next, the multiaxial, variable amplitude duty cycle of the pad through a representative rollover event is computed in ABAQUS/Explicit. Finally, the material characterization and duty cycle are analyzed via the fe-safe/Rubber fatigue life solver to estimate damage accumulation in each finite element of the model. The calculation identifies the location and number of duty cycle repeats associated with the first appearance of 1 mm cracks for the selected duty cycle, providing an example of how fatigue analysis may be applied to understand damage development in elastomeric components.

Keywords: Damage, Fatigue, Elastomer, Material Characterization, Postprocessing