
UNCLASSIFIED

Debugging and Logging Services for Defence

Service Oriented Architectures

Michael Pilling

Command, Control, Communications and Intelligence Division

Defence Science and Technology Organisation

DSTO–TR–2664

ABSTRACT

While often thought of as a “Dark Art”, debugging is nevertheless a neces-
sary part of fielding quality computing systems which can and should be done
systematically. Service Oriented Architectures (SOAs) show great promise but
also represent one of the most challenging environments in which to debug
system services. In addition to all the issues of distributed and paralled de-
bugging, SOAs introduce the complexity of significant parts of one’s programs
being provided by others. This paper examines the features of SOAs that
complicate debugging and shows how integrated logging is an essential part of
finding the cause of service failures. We draw on Agan’s work in developing
systematic strategies for debugging to generate system features that are neces-
sary or helpful for debugging in an SOA environment. These are in turn used
to specify requirements for a debugging system integrated into the fabric of
the SOA. We argue that deep integration is necessary to produce significant
debugging efficiency improvement in an SOA environment and provide some
recommendations for Defence in this area.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO–TR–2664 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: (08) 7389 5555
Facsimile: (08) 7389 6567

c© Commonwealth of Australia 2012
AR No. AR-015-224
February 2012

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

Debugging and Logging Services for Defence Service
Oriented Architectures

Executive Summary

This document proposes an integrated distributed debugging and logging service for De-
fence’s Service Oriented Architecture. It argues for them on the basis that:

• Debugging SOA specific issues requires integrated debugging hooks within SOA com-
ponents.

• Message and event logging with vector timestamps will allow programmers fixing
bugs to avoid many spurious symptoms and get a clearer picture of the problem at
hand.

• Logging of application and component success or failure is essential to build up a
statistical picture on which to quantify the reliability of SOA-based subsystems as a
basis for fielding such subsystems for deployment.

The report also provides a software specification for such an SOA debugger. The re-
quirements for this debugger and associated logging system are derived specifically from
debugging strategies that are known to work and the information requirements that sup-
port them.

It makes several recommendations chief among them being that whatever SOA in-
frastructure Defence chooses, it must be flexible enough to allow Defence to modify key
components in order to add functions supporting debugging and adequate logging.

UNCLASSIFIED iii

DSTO–TR–2664 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

Author

Michael Pilling
C3ID

Michael Pilling completed a Bachelor of Science degree with
honours in 1987 and a Ph.D. in Computer Science in 1996 at
the University of Queensland, Australia. Michael’s specialities
are distributed and real-time systems, job scheduling, formal
specification and program correctness, criticality management,
and the calculus of time. His current interests include Software
Reliability Engineering, Failure as a fundamental construct in
usable and effective systems, Virtual Synchrony and its appli-
cation to synchronous group communication, performance en-
gineering of computer systems, and graceful degradation of sys-
tems in the face of failure and overload.

UNCLASSIFIED v

DSTO–TR–2664 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

vi UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

Contents

Glossary ix

1 Introduction 1

2 What’s different about an SOA? 1

3 Purposes of integrated debugging and logging support 2

3.1 Debugging Strategies . 5

4 A specification for an integrated SOA debugging and health system 7

4.1 Category Partitioning Specification . 7

4.2 Overall Specification . 8

4.3 Implementation . 12

5 Existing “SOA” Debuggers 12

6 SOAs in Defence 13

6.1 Issues . 13

6.2 Recommendations . 13

7 Conclusions 14

References 15

UNCLASSIFIED vii

DSTO–TR–2664 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

viii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

Glossary

Business Process An activity which provides some business value that may be embodied
in services and jobs. While services and jobs are programs and are executable by
a machine, a business process also encompasses any human activity involved in
achieving the business result.

Causal Order A partial order of events in which a ⇒ b, read event a is causally before
event b, means that the result at b may be a consequence of the results or behaviours
at event a. a ⇒ b if a occurs before b in the same process; or if a occurs in a process
that sends a message to a second process, and b occurs in the second process after
it has received the message from the first; or transitively i.e. if a ⇒ b and b ⇒ c
then a ⇒ c also. If there is no causal relationship between a and b in either order,
then they are said to have executed in parallel. While they may or may not have
been executed simultaneously, their execution order is definitely unimportant to the
results of the overall calculation and so could safely be executed simultaneously on
different processors.

Choreography The composition of services into a job in a dynamic and distributed
manner where no party has the script but each may have some rules about how to
interact. In many ways choreography is data-driven rather than control-driven. It
can be argued that each execution of choreography generates its own script as it runs
and so each run effectively results in a script that can be derived from a subset of
its trace. The logging system must distinguish between the different actual event
orderings evident in each run of a Choreography. By using a causal order analysis
of each such trace, the system can distinguish between different event orderings that
occur due to chance timing and those that occur due to fundamental causal orderings
dictating the order of execution. This allows the traces to be grouped together by
their fundamental differences, not by their apparent (chance) ones. Contrast with
orchestration.

Enterprise Service Bus (ESB) A distributed component of most SOA systems through
which all service calls are routed. The ESB may, depending on the system, pro-
vide services such as service name resolution, routing, monitoring, external logging,
timestamping, maintenance of correlation IDs, mapping and translating data, se-
curity, reliability enhancement (e.g. failover, voting), etc. As a focal point on each
node, it is a natural place to include extra functionality that enhances debugging
and/or implements logging capability.

Job A complete unit of work that starts, runs and terminates. It may consist of a single
call to a service, or the execution of a single program; however, in an SOA, it will
most often consist of a script that composes the behaviour of multiple services to
produce an overall operation. This composition is referred to as orchestration or
choreography. Scripts may be hand-written or automatically generated, however
in our definition we insist that each textually different1 script constitutes a different
job even when two different scripts achieve the same outcome. This is essential for

1apart from comments

UNCLASSIFIED ix

DSTO–TR–2664 UNCLASSIFIED

characterising the behaviour and the reliability of particular scripts which may differ
although they do the same thing.

Lamport Clock A sequence vector whose local element is incremented whenever an “op-
eration” is performed locally. It is attached to messages as a timestamp when sent.
On receiving such a message, a process or node sets its own Lamport Clock to the
component-wise maximum of its local Lamport Clock and the timestamp received in
the message. Lamport Clocks are used to provide vector timestamps which in turn
allow a causal order to be established over events that are tagged with the local
timestamp when they occur. In order to ensure that the same vector timestamps
always correspond to the same execution order, either the message transport mech-
anism including the ESB must prevent message overtaking even in the transitive
sense, or the system must augment vector time stamps with local clock times to pro-
duce different traces for each overtaking case[Fid98]. Note that an SOA is an ideal
environment in which to use vector timestamps because the service nature of data
interactions minimises the opportunities for causal dependencies to go unnoticed, for
example via untracked back channels such as updates to shared disks. In SOA, each
service “guards” its own data so causal relationships are made explicit.

Logging The facility to record information about the execution of a process, or the process
of recording same. In the armed forces, this includes the records made by humans
to record the changes in their environment and their decisions made. In the case
of logging of computer processes, self logging refers to records submitted by the
program itself (at the programmer’s discretion) to record particular events, changes
in state or variable attributes that indicate the progress or failure of the program. It
is often used to externalise and record unusual or important internal program states
and the program’s reaction to them. Sentinel logging refers to records made about
a process’s behaviour by an external observer, often the system. Sentinel logging is
used to record information about the entire process or its behaviour, such as whether
it completed normally or failed, its overall resource usage, run-time etc and is often
performed after the process itself terminates. Both types of logging usually includes
a severity level to allow the system or human readers to filter the level of detail they
wish to observe or record.

Orchestration The composition of services using a controller and a script that is deter-
mined before execution. Many controllers can orchestrate different jobs simultane-
ously. The orchestrated composition itself can form a service or a job. Contrast
with choreography.

Quality of Service (QoS) “In the field of computer networking and other packet-switched
telecommunication networks, the traffic engineering term quality of service (QoS)
refers to resource reservation control mechanisms rather than the achieved service
quality. Quality of service is the ability to provide different priority to different ap-
plications, users, or data flows, or to guarantee a certain level of performance to a
data flow. For example, a required bit rate, delay, jitter, packet dropping probability
and/or bit error rate may be guaranteed. Quality of service guarantees are important
if the network capacity is insufficient, especially for real-time streaming multimedia
applications such as voice over IP, online games and IP-TV, since these often require

x UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

fixed bit rate and are delay sensitive, and in networks where the capacity is a limited
resource, for example in cellular data communication.” [Qos]

Implementation of quality of service requires all components in the “value chain”
to respect QoS and may require resources given to some activities to be throttled
(limited) so that other activities can meet their performance requirements.

Run A single execution of a particular job.

Service A software component and callable end point that provides a logically related set
of operations, each of which perform a logical step in a business process. A service
normally stays alive waiting to be called and performs some work on behalf of a job
or higher level service when called to do so.

Service Level Agreement (SLA) A “contract” between a service provider and its user
guaranteeing certain levels of performance, including measures such as response time,
availability and reliability. An SLA may apply at the level of a particular service, or
a composition of services, or indeed the entire system itself.

Trace A trace of a run is the complete sequence of log records pertaining to that par-
ticular execution sorted into causal order. It may be filtered to a particular logging
level.

Vector Timestamp see Lamport Clock.

UNCLASSIFIED xi

DSTO–TR–2664 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

xii UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

1 Introduction

CIOG group have indicated their intention to move to a Service Oriented Architecture
(SOA) based whole of Defence platform[CIO10] referred to as the Single Information Ar-
chitecture. The concept envisages multiple Defence applications being built from common
components across divergent networks integrating new and legacy systems.

This document looks at what can be done to facilitate the creation and maintenance of
the most bug-free, reliable and stable information technology environment possible based
on SOA using a broadened view of traditional debugging and logging. This requires that
our view of correctness is correspondingly wider and includes concepts of performance,
security and utility beyond pure algorithmic correctness. While this paper will talk about
uses of logging and debugging in quantifying the reliability of a set of SOA components or
applications, detailed discussion of such reliability engineering is left to a following paper.

2 What’s different about an SOA?

There are many definitions of what constitutes a Service Oriented Architecture (SOA) and
the one chosen by CIOG is:

Service Oriented Architecture (SOA) represents an architectural style that aims
to enhance the agility and cost-effectiveness of delivering IT capability within
an enterprise while simultaneously reducing the overall risk and maximising
the organisational investment in its IT capability. It accomplishes this by
encapsulating technical capability as one or more business services that are
used and re-used throughout the enterprise. SOA supports service-orientation
through the realisation of the strategic goals represented by service-oriented
computing. For example, some key SOA goals include risk reduction, agility,
and leveraging existing technology investments.[CoA11]

However the following one:

SOA is an architectural paradigm for dealing with business processes dis-
tributed over a large landscape of existing and new heterogeneous systems
that are under the control of different owners.[Jos07],

is also highly relevant to the Australian Defence context because of Defence’s need to
integrate many legacy systems, to interoperate with other forces and increasingly to inter-
operate with other Australian Government Departments, both State and Federal, as well
as with businesses and NGOs for counter-terrorism operations and civil emergencies.

Other relevant definitions emphasise platform independence and loosely coupled inter-
operability[SOA06]; visibility, interactions and their effects[Oas06] and implementation
diversity and whole of life-cycle management[NL05].

Web Services, in and of themselves, are neither necessary nor sufficient to create an
SOA. Other distributed technologies such as message queues can be used to build an SOA

UNCLASSIFIED 1

DSTO–TR–2664 UNCLASSIFIED

and it is the organisation of interfaces around self-contained business process steps that
most strongly distinguish SOAs from other distributed architectures which are usually
implementation centric. It is these relatively course-grained independent business process
steps that lend themselves to composition into many different business applications. SOAs
are focused on creating end user business value.

Nor do distributed objects such as those commonly provided by CORBA constitute
an SOA[Jos07]. Experience shows that such remotely accessed objects are code-centric
rather than business process-centric and generally result in complicated, highly coupled
applications with lots of dependencies that will not scale.

The focus on business processes and value affects the applications and structure of
SOAs at every level. In particular, SOAs that have any long term existence almost inher-
ently end up being heterogeneous implementations as more of the organisations existing
infrastructure is linked into the SOA. While the organisation may seek to constrain this
heterogeneity, and this is a useful goal, eventually a merger or partnership interaction will
force the SOA to accommodate foreign technologies. Likewise any SOA that is deployed
in real world operation will eventually end up with multiple versions of the same service
co-existing as upgrades occur.

To meet the challenge of providing a usable and reliable yet diverse operating plat-
form for Defence, system specialists will have to integrate components, including legacy
components, into working applications that can provide semantic, operational and timing
guarantees to their users or other higher order components.

This paper explores the use of logging and advanced debugging which we believe are
essential technologies if the goal of achieving a working Defence platform is to be achieved.

3 Purposes of integrated debugging and logging

support

All of the Australian Armed Services have a requirement that their officers record logs
of their activities, orders and of events for the purposes of process improvement, historic
and judicial reasons[Arm07]. The needs of this type of logging diverge from the needs of
logging for SOA system maintenance. However, in the spirit of SOA some components of
the two systems could be shared, most likely quick paths to persistent storage, replication,
non-repudiation, archiving/expiry and remote access. That noted, we shall concentrate
on the latter purpose and type of logging in this paper.

Debugging is usually considered purely as a programming issue or as something that
is used only during development, program maintenance and upgrade. Similarly, a logging
system is often considered in isolation. However, a fully developed and integrated debug,
test and logging environment can act synergistically to provide useful services throughout
the life of the system, including the full life cycle of individual applications. These services
include:

Detection Built in code and sanity checks can provide early detection of errors in the
code that produce incorrect results. This contributes to data hygiene preventing the

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

propagation of errors that would pollute data sets and lead to downstream errors.
Such early detection can also simplify the debugging task of localising the error as
the chain of problems is shorter when errors are caught quickly.

Debugging By this we mean the localisation, identification, characterisation, manage-
ment and preferably correction of faults or defects in the program. In practice, this
can mean manipulating the program through a breakpoint style debugger and step-
ping through the program in slow-time. It’s important to note that in some cases
when the fault is identified to lie in uneditable code such as program libraries, or
outsourced software services debugging is limited to characterisation of the fault,
reporting it to the software or service provider and development of work-arounds
and management strategies. This will often be the case for Service Oriented Ar-
chitectures, where even if the service is provided by the same organisation it may
be another section that maintains the code. Even in such instances, localising, di-
agnosing and documenting the problem as occurring in code supplied by others is
essential for being able to strongly demand correction of that code and establishing
appropriate work arounds.

Documentation Given the demarcation disputes that can arise with externally sourced
code and services, an increasingly important function of an integrated debugging and
logging system is to document faults in order to provide proof to external parties
that rectification is needed. Well built debuggers can provide a significant amount
of this documentation.

Test and Qualification Well organised debugging systems supporting software engi-
neering methods such as Cleanroom Software Engineering[MDL87] and Extreme
Programming[Bec99] create test suites that are used for preemptive debugging.
These test suites can be migrated into production systems to provide ongoing health
checks and early fault detection[DH04]1. These will usually be hardware faults, but
also software faults exposed by new uses embodied in new applications composed
from existing software components and by component or client software upgrades[DH04].
Results of automatic testing can be used to certify software component reliability
levels and thus qualify them for particular deployments and uses[PMM93]. With
proper test and development process management, reliability levels can be expected
to increase exponentially as a function of the number of tests run[PMM93] shorten-
ing the time to qualification and hence deployment. Another form of Qualification
is to test the results of new software against the results of existing software to prove
that the new work is substitutable for the old. The most familiar instance of this
is regression testing to prove that upgraded or debugged software does not reintro-
duce old bugs that have previously been removed. In an SOA, it may be possible
to run the new software in a parallel shadow configuration and compare each of its
outputs with the existing software to demonstrate that its responses constitute a
proper superset of the existing software’s responses. This can be applied to software
that comes from an entirely new source, as well as upgraded software.

Sequencing, Trace and Audit One of the major complicating factors of distributed
systems is the potential for inter-process communication messages to be reordered

1As such these test suites need to be part of the deliverables provided by contractors.

UNCLASSIFIED 3

DSTO–TR–2664 UNCLASSIFIED

as they pass through the network. Left unchecked, this combined with the potential
parallel execution of asynchronous calls, leads to a combinatorial explosion of po-
tential computation states. There are many ways this state space can be collapsed
into a far more tractable one. However, since not all applications or systems go to
any effort to constrain this state, it is essential that an integrated debugging envi-
ronment record the sequence and to a lesser extent the timing of message departures
and arrivals.2 This allows the true sequence of events that led to the manifestation
of the bug to be seen.

Once SOAs reach the point of using composite applications, which is a major goal
of CIOG[CIO10], it becomes important to be able to trace the dynamic calling tree
of an invocation across the many services, machines, and governance and security
domains that constitute the business process for reasons such as cost accounting,
resource provisioning, security auditing and fault characterisation. In addition, it
allows the human debugger to see the full call and data trace to be able to isolate the
bug. This involves recording the particular instance of each service that is invoked
because the fault that arises in that service may be an artefact of the entire history of
a particular instance. Thus it is important to correlate one service’s call to another
service’s invocation.

Replay and Simulation Being able to replay all or part of a high level system invocation
assists the programmer in comprehending and isolating a fault. Equally this type
of facility can assist people in distributed algorithm development where runtime
behaviour may differ from that expected, even when it is not incorrect. For instance,
such a facility also allows people in various roles to be trained in aspects of the system.
Another important use of replay is to allow automatic testing of debugged modules
by effectively providing test harnesses and test data for them.

Monitoring Given the high level of diversity and extent of SOAs, a significant part
of managing an SOA is to constantly monitor its health, both for new interaction
bugs arising through activation of a previously untraversed execution sequence, and
to detect transient overloads, service failures, bottlenecks and long term capacity
constraint issues. Where SLAs are entered into, data must be collected to prove
compliance and to feed into adaptive management systems that control the overall
system to ensure compliance. Notably, it is statistically possible for an SLA to be
met on average, but not for particular users or service instances so it is important to
ensure SLA promises are delivered to all clients. Thus the debugging and monitoring
infrastructure can also be important in managing failover and recovery at a macro
level. A primary function of monitoring is to visualise the dynamic behaviour of
the SOA in a timely and exception/fault focused manner. Another useful output
of general monitoring of the SOA is to calculate call−1, that is the “who calls me”
function: which can be important given that service providers are otherwise generally
unaware of who calls them. SOAs are intended to invite unexpected uses, and service
upgrades are improved if users are asked what they might want.

System, subsystem and component reliability can also be monitored to provide mea-
sures rather than estimates of software properties for service qualification.

2Sequence can be calculated accurately, but timing may be flawed due to clock skew, etc.

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

Providing a realistic sandbox A good debugging and bug prevention system will pro-
vide a realistic, effectively isolated environment as a “sandbox” to allow the develop-
ment and thorough testing of new code and services without risking the stability of
the business environment. This can be provided by separate hardware and software
or by strictly partitioning3 existing infrastructure e.g. by allocating 10% of disk
space to test and development in a separate disk partition, or by allocating 20% of
CPU time or communication channel bandwidth to the sandbox activities. Strict
partitioning is a more difficult but more general and representative challenge. In
either case the governance4 system needs to be able to provide a gradual path out
of the sandbox into production.

3.1 Debugging Strategies

Debugging is usually regarded as a somewhat dark art, but experienced software and
hardware engineers such as David Agans insist that quick and thorough debugging is a
matter of systematically applying specific strategies. Agans[Aga02] lists many strategies
under nine overarching idioms to apply to isolate, characterise and ultimately fix any
fixable bug.

Here we list several of the detailed strategies and indicate how an integrated SOA
debugger and quality assistant might aid in each strategy:

Know the fundamentals By recording and providing a history, normal system and
component behaviour is available as a baseline to compare to a specific failed in-
stance. Divergences can therefore be noticed early and the likely area of the fault
localised before the programmer is dealing with secondary (consequential) symp-
toms.

Look up the details Original documentation should be available to guide programmers
and debuggers as to the intended use of the software, its components and their oper-
ational characteristics. By providing this online, it will be available to programmers
no matter where they happen to be.

Do it again Allow scripts to be written for the repeatable running of the same code in
the same environment. This allows the cause to be narrowed down and to eventually
tell if the bug has been eliminated.

Start at the beginning A full history of the running instance and its interactions will
make many unexpected or otherwise unconsidered program inputs visible.

As far as possible, the system should provide an isolated testing environment starting
the application instance off with a purely clean slate. Some iterators may be able
to be “parallelised” to start each iteration off in a clean state, or services being
called can be booted from scratch before the test run. Once any bugs arising in this
clean environment are fixed, gradually more and more of the real-world (production)

3Preferably with hardware support.
4Governance is the set of operational procedures implemented by the combination of humans and

systems which controls the changes made to the SOA system to ensure its stability and fitness for purpose.

UNCLASSIFIED 5

DSTO–TR–2664 UNCLASSIFIED

environment should then be added to the test runs -e.g. interacting with long running
services to mimic production runs.

Record everything and find the signature of intermittent bugs Having records of
correct running instances, and also of failed ones allows the programmer to discover
what is always correlated with the bug’s manifestation and what isn’t.

Never throw away a debugging tool Storing related debugging tools, such as pro-
grammer written test scripts, with the software gives debuggers the same tools as
the original programmers.

See the failure Being able to visualise the operation of the [sub-]system, its components
and messages can assist the programmer in finding the bug and thus linking it to a
real cause.

See the details Being able to see the actual interaction details of the many components
in each instance can help localise the problem.

Build instrumentation in Having a multi-level, run-time filtered logging facility can
allow the right amount of detail to be logged and later examined.

Watch out for Heisenberg Heinsenberg showed that any instrumentation will distort
the behaviour of a system it measures.5 The weight of the debugging and logging
infrastructure should not overwhelm the system nor distort its behaviour to the
point where results are misleading or substantially different from what would have
occurred without the monitoring. This means the infrastructure should be as light
weight as possible and turning the debugging or logging system on should not change
the order in which messages are delivered compared to its off state.

Use easy-to-spot test patterns The debugger should generate, or provide from a li-
brary, test patterns that produce easily visible behaviours. Many of these test pat-
terns may be provided by the original developers.

Fix the bugs you know about The system should allow the programmer and others
to maintain a prioritised list of bugs filterable by sub-system. The bug reporting
and ticketing system should be integrated with the debugging aid. Previous tests
and their expected results should be recorded so that automatic regression testing
can be performed once a bug fix is installed.

Change one thing at a time The debugger should be integrated with a change control
system.

Determine what has changed since the last time it worked Timestamps on traces
and successful and unsuccessful completions should be cross referencable with code,
thus integrated version control would be helpful.

Start with the bad The system should implement multiple validation checkpoints through-
out the operation of a run-time instance. The system should encourage run time
testing of assertions and invariants and facilitate these being evaluated against the

5Increasingly people are questioning whether Heisenberg did, in fact, claim this but we are following
Agans’ nomenclenture, and the weight of instrumentation argument is still valid.

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

SOA state, e.g. message ordering properties, system load etc. The system should
draw the programmer’s attention to the earliest divergent part of the run-time trace.

Compare it with a good one The system should assist the user in categorising trace
instances as good or bad and finding correlations between the categories and data
inputs and input orderings. It should also suggest further subcategories based on
trace correlations.

Correlate events The system should record as far as possible the sequence of events
that did occur, and assist in determining which events did occur by chance ordering
and which are ordered in a particular way by inherent properties of the algorithms.

Understand that audit trails are also good for testing Use configuration control tools
and failure logs to detect which revision introduced the bug.

Write it down! When a program fails, the system should get the end user or tester to
record the circumstances in which the failure occurred and any salient comments.

Check if it is really fixed The system should provide extensive monitoring of recently
fixed (or developed) code, and run regression tests intensively. Stable components
should still have the occasional regression test run and be monitored in general.

Fix the cause The system should facilitate the retirement of old code, both for economic
efficiency, and to prevent deprecated code causing problems for components which
call it.

4 A specification for an integrated SOA

debugging and health system

For clarity, we first introduce a concept for sorting trace evidence that is used in the wider
specification.

4.1 Category Partitioning Specification

A category partition is a partitioning of traces into several distinct sets so that each trace
is a member of exactly one set of that category partition. For example you could partition
over the sequence of inputs (their order and value). If there was only one input, a natural
number, the sets of traces could be labelled by that number. Equally a different category
partition of the same traces might distinguish on the basis of giving a correct or incorrect
output, and another on the basis of clean program termination or abnormal termination
(e.g. array out of bounds) or hanging.

An important category partition in distributed debugging will be the order of events
based on the causal order generated by the Lamport Clock timestamps. In other words the
partitions will be based on the order of events except that the order of mutually parallel
events are viewed as irrelevant; that is any order among them is seen as identical. In this
way, only substantially different category partitions for traces are produced.

UNCLASSIFIED 7

DSTO–TR–2664 UNCLASSIFIED

The system should automatically generate several category partitions such as input
values, output values and event (causal) order and give them and their sets default names.
The system must allow programmers to create and name their own category partition, as
well as rename system produced ones.

Once partitions are established, the intersection of sets from distinct category partitions
can be used to create sets of traces corresponding to particular run time properties, most
obviously “working” and “buggy” but also more specific subcategories of these.

4.2 Overall Specification

A system to minimise the work required to debug SOA services, be they self-contained or
composite, and which assists in quantifying and raising the reliability of these services6

would have as many of the following integrated properties as possible. It is through the
combination of these well integrated properties that the maximum benefit is obtained.

Bug reporting and tracking system This is important, not only to record the symp-
toms and circumstances of all bugs, but also to eliminate as many bugs as possible,
leaving only the symptoms of the hardest uncorrected bugs. This reduces noise al-
lowing the true error signals to become visible leading to clearer characterisation of
the error. End users should be queried when any run fails so they can describe what
happened and also asked to point out anything novel about the run or data. The
bug tracking system must link bugs to particular versions of each service and orches-
tration or choreography scripts if applicable, moreover it should link bug reports to
particular runs and the logs from those runs if they exist.

Distributed Debugger An SOA specific distributed debugger should not only allow
remote invocation and control of software artefacts as is common for such software
but also:

• be able to see the specific details of each message/component interaction by
accessing either log files or interacting with the ESB(s), including which of
perhaps many suitable services was actually invoked.

• insert or alter messages going through ESB(s).

• specify messages, including by using wildcards, as breakpoints when they reach
an ESB.

• provide a debugging flag in the message format and be debugging flag aware so
that when a message arrives from a run being debugged, it causes the receiv-
ing service to invoke its debugger interface and set the debugging flag for all
messages that reply to that message/run.

• allow the programmer to work with category partitions to isolate traces cor-
responding to particular symptoms and compare them to the traces that are
correct.

6We leave the detail of how to improve SOA reliablilty to later paper(s), however where it is obvious
that some particular data is necessary to do that we include it in this specification.

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

• insertion of automatically generated code to log variable values and programmer
messages so that these will appear in future traces7.

• As a second order requirement, to be able to visualise the infrastructure that
the job/task/etc is using, and the interactions of the various components during
the run.

• Allow the programmer to get a whole of system view of the runtime environment
and the software components used (even if they can only appear as black boxes).

ESB that integrates vector timestamping, correlation IDs, and QoS In an SOA
the ESB or other middleware is the logical place to intercept interprocess communi-
cations and to augment them. This permits vector timestamps to be used even with
“black box” software that is vector timestamp unaware, although it means treating
the “black box” processing in between message interactions with such processes as
a single event.

The ESB and ESB interface code in services must also maintain correlation IDs so
that all the threads of a particular run of a job can be correlated together. Without
such correlation, it is very difficult to associate failing service executions with their
callers and the data that was passed to them.

The ESB should have a debugging interface so that authorised programmers can get
the ESB to hold a received message so that they can use the debugger to examine
and optionally modify it before it is forwarded to its destination(s).

The ESB, like other components, must honour QoS if the SOA is to deliver per-
formance guarantees in its SLAs. A well implemented QoS system will allow the
system to quarantine testing and development and so run it on production hardware
without risking the reliability or performance guarantees of production jobs.

Job Scheduler At the instantiation of a new job run, the job scheduler needs to assign
the run a system-wide unique ID that can be passed through all calls to other services
to link them together as a single logical entity. It should create a sentinel log record
of the run’s commencement time and operating environment, as well as security and
accounting information as it invokes the new run. Likewise performance attributes
and resource usages of the run on job termination, and at appropriate intermediate
waypoints, should be logged by some sentinel process. It should also be able to flag
a run as a debugging run to ensure that the local part of the debugger is remotely
invoked on a service whenever any code being debugged that calls that service is
executed.

Logging Service The logging service must be capable of:

• logging the full history of runs, including those of choreographies (where possible
— see next point) and orchestrations, in a distributed manner and then coalesce
these fragments into a single log.

• logging the version of a service when invoking a service across a domain bound-
ary. That is, even though the other domain may not provide shared logging in a
choreographed interaction, it must at least maintain correlation IDs or behave

7Note that we see tracing to be a function of logging more than the debugger in this type of system.

UNCLASSIFIED 9

DSTO–TR–2664 UNCLASSIFIED

so as to allow their deduction and also identify which version of its software has
responded in the interaction. This is essential to allow category partitioning
and to allow a service user to identify whether a newly apparent bug is likely
to have arisen from changes in their own code or data, or is most likely caused
by changes in invoked foreign services.

• tagging each entry with a number of tags to allow later filtering, such as severity,
production or test, etc., and the extant software and hardware configuration,
etc. Severity of the message should not be the sole criteria on which the level
of logging and filtering is determined.

• logging the termination status of each run (normal or abnormal) and also tag-
ging runs that receive user-generated behaviour deviation reports.

• logging both the system and software configuration at the time of the run and
the actual hardware and software that the run was executed on, which may
only be a subset and can change as the job progresses.

Correlation Engine The correlation engine is used to not only link log entries with cor-
relation IDs into complete traces, but also to automatically sort traces into various
category partitions. Each new failure should reference the most recent available suc-
cessful run if one exists, and list the changes both in terms of code and configuration
that have since occurred.

Source Code / Version Control System Including a documentation repository and
references to associated tests. Automatically generated orchestration and choreog-
raphy scripts must also be recorded here so they are reused. Reuse is not only for
the efficiency of avoiding regeneration, but also to build up sufficient experience with
a script to be able to assess its reliability. The compiler should provide source code
alteration so that test code, such as assertions, can be included or omitted (with com-
piler analysis to ensure there is no change to the substantive code because the test
code is side effect free.). Old code that has been superseded should be encouraged
to be fully retired by raising alerts over too many active versions. The source code
control should monitor code overlap and unintended code and service redundancy.

Unit Test and Regression Test repository While unit and regression tests are now
standard software engineering practice some SOA specific issues are worth noting.
Unit tests should encourage assertions in production code so that choreographies are
halted as soon as they become incorrect: There are two purposes for this:

1. Isolating the bug, drawing the programmer’s attention to the problem as close
as possible to its cause; and

2. Ensuring other services that would otherwise be called later are neither con-
taminated with unnoticed bad data, nor caused to fail thereby reducing their
own reliability ratings.

The repository should automatically rerun regression tests on code that is in use in
an exponential back off manner8 so that production code is always retested but at
reducing intervals. This is to detect unforeseen incompatibilities with other code it

8I.e. newer code is tested exponentially more frequently than established code.

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

does not formally interact with (e.g. code may slow down due to other loads on the
system).

Configuration Management System A strong configuration control system and asso-
ciated governance is needed to control the set of hardware and software allocated for
tasks. This not only helps in providing a reliable environment but simplifies fault
attribution. An important aspect of a configuration system for SOA would be to
provide representative but isolated test areas in which to run code that has not yet
reached production, or is being regression tested, i.e. the ability to either duplicate
environments or provide strong execution isolation within a production environment
is required.

Log Database Not only does this database need to be able to record the log and trace
data for each individual run, indexing it by versions and category partitions, etc.,
it must also be hierarchical in the sense that many SOA runs will consist of the
composed runs of subcomponents. As such a single trace of a service run must be
accessible as the run of itself in isolation, as part of the run of the service that called
it, and as part of the run of the service that called that service and so on.

Replay system The replay system must be able to utilise the configuration system to
reconstruct an equivalent configuration to that of a specified run. The job can then
be rerun in debug mode to observe its behaviour and debug it. The replay system
should be able to simulate the responses from other services from their recorded
message logs so that the service in question can be rerun in identical conditions
in order to be able to debug it. Obviously selection of what to replay is a critical
programmer choice in ensuring that such replays do not hide faults in other services.

Debugging tool repository This is really a subsection of the version control system
where code is stored for test harnesses, etc., to be used with particular services. One
such debugging tool is a separate plug-in to decode messages from each service into
a human readable format which the debugger can use in presenting messages to the
programmer. As much as possible, these plug-ins should provide at least one output
format which is text based and therefore comparable with diff or similar tools. The
version control system must maintain the relationships between the test harnesses,
plug-ins and services. This repository may also need to be able to store executables,
in case the service provider will not provide source code.

System Monitor This component should log aspects of the system for later analysis, and
use in system optimisation and intervention. Many system faults occur at boundary
conditions, e.g. when the disks become too full performance usually falls exponen-
tially. Similarly it is useful to record the number of invocations of each service
because some faults such as memory leaks emerge only after a certain number of
usages between restarts of the service. Not only can this data be used to pro-
vide information to the programmer for debugging, it can also be used to automate
some work-arounds such a restarting a service before it becomes unserviceable due
to accumulated corruption, or to do a disk clean up. Each service should provide
an interface for the system monitor to request its unique vital statistics e.g. for a
database: number of queries, number of disk space allocations. There should be a
standard for this data, and a core set of this type of data for all services e.g number

UNCLASSIFIED 11

DSTO–TR–2664 UNCLASSIFIED

of invocations, average time to commence and to complete service. There should
also be system interfaces provided by each service to perform a self diagnostic, to
acquiesce9, and to shutdown. This allows the System Monitor to cleanly restart
services.

4.3 Implementation

As would be clear by reading the above, the implementation of such a system is significant
but not infeasible. For example, many of the components such as the source code / version
control system could be built using existing open source software. It will be the degree
and clarity of their integration which most influences the utility of the overall system
as these functions necessarily interact. However, as much as possible, the integration
should be achieved through loose coupling. The implementation will also have to guard
against excessive resource consumption, both by being locally efficient, and by imposing
minimum costs when not being used. Furthermore, the dynamic and extensible nature
of SOAs suggest that any debugger must itself be as extensible as possible, and that any
debugger implementation or design should attempt to maximise this extensibility.

5 Existing “SOA” Debuggers

While several companies and systems offer what they call SOA debuggers, the current
market shows scant evidence of so-called SOA debuggers providing features specific to SOA
rather than just being distributed debuggers. A typical example of this is Microsoft’s C#
cluster debugger[Cor09, Cor10] which requires the service to be debugged to be linked to
specific libraries and appears to provide little more than remote distribution, breakpointing
and debugging of the service and client components.

There are many distributed debuggers and many of their features are directly useful in
producing a debugger for an SOA environment. In particular, Allinia Software’s parallel
code debugger[O’C09] allows the programmer to form category groups based on particular
trace characteristics. However, few, if any, debuggers are built primarily for debugging
SOA environments.

IBM’s Websphere offering, does however provide SOA specific debugging funtionality
with its “Websphere Business Monitor Debugger”[IBM10] in which choreographed inter-
actions can be debugged by examining the message queues and editing their content.

It is the author’s conjecture that just as a system qualifies as an SOA due to the
combination of a critical mass of different features that appear in other distributed systems
and are strongly integrated to form an SOA, no single debugging feature including ESB
control integration will make a debugger an SOA debugger; rather it will be the gestalt
of well integrated features that lend themselves to an SOA environment that will make a
debugger truly Service Oriented.

9To complete all extant transactions but refuse all new requests, returning an acquiesced indication
once idle. This is non-trivial because they should not refuse new work from other’s extant transactions.

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

6 SOAs in Defence

6.1 Issues

While the vast majority of issues covered in this paper are common across all business en-
terprises including Defence there are some issues and risks worth specifically highlighting:

• Defence uses some extremely complex legacy systems, some written in languages no
longer in common use. Wrapping these in a messaging interface may be difficult.

• A significant proportion of Defence software is “not written here” or is embedded,
or both.

• Some Defence software has extreme performance requirements.

• Some Defence software has mission critical correctness and reliablity requirements
that can ultimately mean life or death.

• Some Defence environments provide only impoverished, highly constrained network
bandwidth.

• Computing resources may be deployed to remote locations and theatres of war.

6.2 Recommendations

The following practices should assist Defence to maximise its value from SOA:

• Choose an SOA infrastructure that allows Defence to alter and most specifically
extend the information conveyed to the ESB or middleware, and which in partic-
ular can be altered to add vector timestamps. Other areas where extensibility is
important for debugging and logging is in program invocation to be able to start
debuggers and perform sentinel functions prior to invocation and after termination.
Overall many functions in the specification given earlier rely on being able to alter
significant parts of the system software infrastructure. All of this points to selecting
as much open source based infrastucture as possible, or at least proprietary software
that provides sufficient hooks to allow plugins to be built and used to customise
component behaviour and provide the extra functionality required.

• Defence needs to define a spectrum of “SOAness” from full SOA through SOA com-
patable to SOA incompatable in order not only to have clear dialogs about existing
and future software systems, but also to be certain that systems with extreme per-
formance requirements are not crippled by SOA overhead yet are still designed or
wrapped to fit into the SOA infrastructure to the maximum extent possible. In
designing and implementing the debugging system described above, particular at-
tention should be paid to how to instrument systems with high throughput and
response time requirements without overly weighing them down. Establishing stan-
dard design patterns for interconnection between the various types of subsystems
would help greatly in overall reliability, maintainability and debugging.

UNCLASSIFIED 13

DSTO–TR–2664 UNCLASSIFIED

• The ability to automatically generate substantial parts of a bug report to forward to
software providers is a significant capability for increasing and maintaining service
reliability. Provided people do not fall into the trap of thinking that such data
is sufficient for a bug report in and of itself, such a facility can greatly increase
maintenance productivity.

• Measuring the actual usage of software services will not only assist in determin-
ing services’ true customers but will also help in determining the true demand for
particular services so that resources can be allocated to areas of highest demand.

• Because orchestration is less variable than choreography, stronger reliability assess-
ments can be made about components in the former and debugging orchestrations
is easier so Defence should prefer the former solution whenever a choice is possible.

• The possibility of deployment to impoverished network environments means that the
debugging and logging system must have a mode in which, rather than returning
logs to a central point for correlation as would usually be the case, log fragments are
stored locally and only retrieved and correlated when there is a specific need to do
so for a particular run or when there is spare bandwidth available. Otherwise, for
network constrained environments such logs should be retrieved and correlated post
deployment.

• Defence should take particular care to build a representative test infrastructure so
that new services and higher level applications can be thoroughly tested and de-
bugged before they progress to deployment. This also requires a working governance
regime that assesses reliability, availability, and fitness for purpose and provides a
defined process for progressing from design to implementation, testing and deploy-
ment.

• Given the need for remote deployment, training for end users should be provided to
encourage the lodging of sensible bug reports from the field.

• To maximise field reliability, Defence’s SOA architecture policy should include the
use of standard Defence designed node templates that allow new “clean” comput-
ing and storage nodes to be installed on standard hardware in the field and allow
non-deployed programmers to migrate services and applications to those nodes while
ensuring that key data is synchronised back into the Defence core SOA infrastruc-
ture on a regular basis. This includes logs to facilitate remote debugging from safe
locations.

7 Conclusions

Many distributed debuggers exist but few, if any, debuggers designed specifically for full
scope SOA debugging currently exist. There are several reasons for this including:

• SOA debuggers cannot be written as stand alone pieces of software since they must
integrate strongly with the SOA in which they operate.

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

• Much of the debugging functionality cannot reside in the debugger itself but must
be incorporated into various components of the SOA including the ESB, logger,
monitor, etc.

• SOA is still a relatively new concept and little experience with SOAs has been shared.

As such, the contribution of this paper is to point out some prior knowledge which
would transfer well to the SOA context such as Mattern[Mat89] and Fidge’s[Fid96] inde-
pendent proposals to use Lamport Clocks to distinguish between different possible paral-
lel executions of distributed code. We give an explicit and more general specification of
Category Partitions first used in Allinia software’s parallel debugger. We also provide a
specification for an SOA debugger that integrates many potential features that assist with
debugging distributed and particularly SOA which we believe will provide much greater
value when used in combination. For instance the use of vector timestamps to recognise
trace instances which are essentially the same and the facility to classify traces accord-
ing to category partition (a nomenclature which we have introduced). This specification
does not mandate particular implementations, but does give some guidance towards how
implementation could be achieved.

Notably, it seems that working SOA debuggers require significant integration into the
SOA and this indicates that open source SOA architectures may well be the most amenable
to hosting truly Service Oriented debuggers. This integration requirement suggests that
SOA debugers should be written to be as modularly extensible as possible, perhaps via
the use of plug-ins.

While the effort to build an integrated SOA debugging and logging system is significant,
so are its benefits. With judicious selection of the order of feature implementation large
benefits could be gained early in the development with the final features magnifying earlier
return on investment.

Acknowledgements

The author would like to thank Damian O’Dea and Derek Henderson for their helpful
review comments.

References

Aga02. David J. Agans. Debugging: the 9 indispensable rules for finding even the most
elusive software and hardware problems. AMACOM, a division of American Man-
agement Association, 1601 Broadway, New York, NY 10019, 2002.

Arm07. LWD 5-1-1, Staff Officer’s Guide 2007, chapter 8. Commonwealth of Australia,
Department of Defence, 2007.

Bec99. Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley
Professional, 1999. ISBN-10: 0-201-61641-6.

UNCLASSIFIED 15

DSTO–TR–2664 UNCLASSIFIED

CIO10. CIOG. Single Information Environment (SIE): Architectural Intent 2010. Tech-
nical Report DPS: DEC013-09, Commonwealth of Australia, Department of De-
fence, May 2010.

CoA11. Department of Defence Commonwealth of Australia. Chief information officer
group instruction no. 1/2011. Departmental dissemination., May 2011.

Cor09. Microsoft Corporation. Using the C# Cluster-SOA debugger for Windows
HPC 2008 R2 (Visual Studio 2010), 2009. http://msdn.microsoft.com/en-
us/library/gg604920.aspx Viewed 2011-06-06.

Cor10. Microsoft Corporation. Using the HPC cluster de-
buggers for SOA and MPI applications, August 2010.
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23213
Viewed 2011-08-17.

DH04. Schahram Dustdar and Stephan Haslinger. Testing of service-oriented architec-
tures - a practical approach. In Net.ObjectDays, pages 97–109, 2004.

Fid96. C. J. Fidge. Fundamentals of distributed system observation. IEEE Software,
13(6):77–83, November 1996.

Fid98. C. J. Fidge. A limitation of vector timestamps for reconstructing distributed
computations. Information Processing Letters, 68(2):87–91, 1998.

IBM10. IBM. IBM Education Assistant IBM WebSphere
Business Monitor Version: V7.0 Debugger, 2010.
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?
topic=/com.ibm.iea.wbmonitor v7/wbmonitor/7.0/Debugger.html Viewed
2011-08-17.

Jos07. Nicolai M. Josuttis. SOA in Practice. /Theory/In/Practice. O’Reilly, 1005
Gravenstein Highway North, Sebastopol, CA 95472, 2007. ISBN-13: 978-0-596-
52955-0.

Mat89. Friedemann Mattern. Virtual time and global states of distributed systems. In
Parallel and Distributed Algorithms, pages 215–226. North-Holland, 1989.

MDL87. H.D. Mills, M Dyer, and R.C. Linger. Cleanroom software engineering. IEEE
Software, 4(5):19–25, September 1987. ISSN: 0740-7459.

NL05. Eric Newcomer and Greg Lomow. Understanding SOA with Web Services.
Addison-Wesley, Boston, MA, 2005.

Oas06. Reference model for service oriented architecture, October 2006.
http://docs.oasis-open.org/soa-rm/v1.0/.

O’C09. Mark O’Connor. Parallel debugging is easy. White Paper, Allinea Software Ltd,
The Innovation Centre, Warwick Technology Park, Gallows Hill, Warwick, CV34
6UW, UK, 2009. http://www.allinea.com/index.php?page=84 Viewed 2011-06-
06.

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TR–2664

PMM93. J.H. Poore, Harlan D. Mills, and David Mutchler. Planning and certifying soft-
ware system reliability. IEEE Software, 10(1):88–99, January 1993.

Qos. Wikipedia entry for Quality of Service. http://en.wikipedia.org/wiki/Quality of service
Viewed 27 June 2011.

SOA06. Wikipedia entry for Service-Oriented Architecture, 2006.
http://en.wikipedia.org/wiki/Service-oriented architecture Viewed 2011-05-
17.

UNCLASSIFIED 17

DSTO–TR–2664 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

18 UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Debugging and Logging Services for Defence Ser-
vice Oriented Architectures

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHOR

Michael Pilling

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO–TR–2664
6b. AR NUMBER

AR-015-224
6c. TYPE OF REPORT

Technical Report
7. DOCUMENT DATE

February 2012

8. FILE NUMBER

2011/1195600/1
9. TASK NUMBER

CDG 07/355
10. TASK SPONSOR

DG Integrated
Capability Devel-
opment

11. No. OF PAGES

17
12. No. OF REFS

20

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Command, Control, Communications and
Intelligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Debugging Service Oriented Architecture
Distributed Computing Software Tools
Software Maintenance Software Architecture

19. ABSTRACT

While often thought of as a “Dark Art”, debugging is nevertheless a necessary part of fielding quality
computing systems which can and should be done systematically. Service Oriented Architectures
(SOAs) show great promise but also represent one of the most challenging environments in which
to debug system services. In addition to all the issues of distributed and paralled debugging, SOAs
introduce the complexity of significant parts of one’s programs being provided by others. This paper
examines the features of SOAs that complicate debugging and shows how integrated logging is an
essential part of finding the cause of service failures. We draw on Agan’s work in developing systematic
strategies for debugging to generate system features that are necessary or helpful for debugging in an
SOA environment. These are in turn used to specify requirements for a debugging system integrated
into the fabric of the SOA. We argue that deep integration is necessary to produce significant debugging
efficiency improvement in an SOA environment and provide some recommendations for Defence in this
area.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Glossary
	1 Introduction
	2 What's diff
erent about an SOA?
	3 Purposes of integrated debugging and logging
support
	3.1 Debugging Strategies

	4 A specifi
cation for an integrated SOAdebugging and health system
	4.1 Category Partitioning Specifi
cation
	4.2 Overall Specifi
cation
	4.3 Implementation

	5 Existing " SOA" Debuggers

	6 SOAs in Defence
	6.1 Issues
	6.2 Recommendations

	7 Conclusions
	Acknowledgements
	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

