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Abstract 

A biosensor for the detection of organophosphates (OPs) in water was created by 

encapsulating acetylcholinesterase (AChE) enzyme in peptide nanotubes (PNTs) and 

attaching the encapsulated enzyme on a carbon screen printed electrode using Nafion®.  

Sensor operation is based on the fact that acetylthiocholine (ASCh) substrate, in the 

presence of AChE, will be transformed to thiocholine, which can be oxidized by the 

electrode, producing a measurable signal.  This signal will be inhibited in the presence of 

OPs, with the extent of inhibition proportional to the OP concentration.   

In this study, three versions of the sensor were used to detect the OP malathion.  

In one version, AChE was placed directly on the electrode.  In the second version, AChE 

was encapsulated in a PNT, and placed on the electrode.  And in the third version, PNT 

encapsulated AChE was attached to the electrode using Nafion.  The stability of the 

sensors was measured over 50 days of storage at 4°C in a phosphate buffer solution.  

Cyclic voltammograms were taken in an ASCh and phosphate buffer solution, and the 

peak oxidation was used to measure the performance of the sensor.  Amperometric 

studies were also conducted at 310 mV vs Ag/AgCl to measure the response of the 

sensors to malathion, when ASCh was present. 

This research demonstrates that the use of PNTs and Nafion® allows the sensor to 

remain stable for a much longer period than similar biosensors which rely on adsorption 

alone.  In fact, the sensors that were constructed without PNTs or Nafion did not remain 

stable under the storage conditions.  The biosensors constructed with PNTs, and with 

PNTs and Nafion, lost 17.3% and 14.2% of their activity, respectively, after 50 days.  
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Detection limits as low as 48 nM of malathion were obtained using PNTs, and 102 nM 

using PNTs and Nafion®. 
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STABILIZING ACETYLCHOLINESTERASE ON CARBON ELECTRODES USING 
PEPTIDE NANOTUBES TO PRODUCE EFFECTIVE BIOSENSORS 

 

I. Introduction 

Background 

 Organophosphates (OPs) are acetylcholinesterase (AChE) inhibitors with a broad 

range of potency and toxicity.  While the term organophosphate strictly applies to esters 

of phosphoric acid, it is also usually used for similar compounds, such as esters of 

phosphorous and phosphinic acid, and xanthate esters.  OPs have been widely used in 

agriculture as pesticides and are also used as deadly nerve agents in chemical weapons.   

Water may become contaminated with OPs via several routes.  Agricultural runoff 

can easily be contaminated by the overuse of pesticide.  Plans for the cleanup of nerve 

gas attacks involve hosing affected areas down with bleach and water, which may also 

lead to water contamination.  A technology to measure OPs in water is needed in order to 

prevent contamination from reaching drinking water supplies, as well as to protect the 

health of decontamination workers and the public.   

Chromatography and spectrometry are the classical analytical chemistry methods 

used to measure OPs.  These methods require large, sensitive equipment, which in turn 

require personnel trained in their use and a laboratory environment, making the process 

time consuming and expensive.  The US Air Force has portable gas chromatograph 

HAPSITE systems, which can be used to detect OPs in the field, in both air and water.  

However, these systems are heavy, expensive, require specially trained personnel, and 

can take up to 30 minutes per measurement.   



2 
 

Such long measurement times can directly impact a unit’s ability to maintain 

mission readiness when responding to a chemical agent attack.  The Air Force standard 

for mission capability restoration is to resume the primary mission within 2 hours after 

the end of a chemical attack (AFM 10-2503, 2011).  This does not allow much time for 

many measurements to be taken.  Additionally, very low concentrations of the most 

potent nerve agents, such as VX, that are below the limit of detection of the HAPSITE, 

may still be dangerous.  Such undetectable concentrations can cause negative health 

effects and even death, depending on exposure time.   

In the absence of definitive measurements to show that it is safe for personnel to 

remove protective equipment, unit commanders are forced to be conservative and leave 

protective measures in place.  Such measures can be detrimental to a unit’s effectiveness, 

especially if needed for long periods.  Faster, more accurate measurements would allow 

commanders to remove unnecessary protective equipment sooner.   

A new, inexpensive technology is needed that can be used in situ to provide data 

in real time.  Biosensors using AChE bound to screen printed electrodes (SPE) to detect 

OPs may be able to fill this need.  However, the process by which the AChE is bound to 

the electrode, as well as the binding agents used, can affect the sensor’s performance.  

Peptide nanotubes (PNTs) have been used to protect enzymes and bind them to electrodes 

with minimal enzyme deactivation (Park et al, 2010).  Nafion, a stable, biocompatible, 

Teflon based polymer has been used in the production of glucose biosensors to increase 

enzyme stability and shelf life (Norouzi et al, 2010; Ren et al, 2012).  Figure 1 shows, 

conceptually, a biosensor with these components.  
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Fig. 1:  A schematic diagram of a biosensor using peptide nanotubes to  
bind AChE to a screen printed electrode with Nafion as a binding agent 

 

Carbon SPEs are a stable, inexpensive, disposable transducer to serve as a 

platform for developing a biosensor.  PNTs provide a biocompatible, electrically 

conductive surface that serves to protect the AChE.  Nafion ® is cast over the top as a 

sort of net to bind everything together.  Sensor operation is based on the fact that 

acetylthiocholine (ASCh) substrate, in the presence of AChE, will be transformed to 

thiocholine, which can be oxidized by the electrode, producing a measurable signal.  This 

signal will be inhibited in the presence of OPs, with the extent of inhibition proportional 

to the OP concentration. 

Research Objectives                                  

The objective of this research is to measure the performance of biosensors which 

utilize AChE bound to screen printed electrodes.  The performance parameters to 

evaluate such a biosensor will be determined, as well as a means to measure and 

characterize these parameters.  A sub-objective is to determine whether the use of peptide 

nanotubes and Nafion in the biosensor production increases the stability of the enzyme 

and the sensor shelf life. 
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Scope and Approach 

 A literature review was conducted to find the current practices used to produce 

biosensors and determine the relative efficacies of using various methods and compounds 

to bind biosensing enzymes to electrodes.  In particular, the review focused on the use of 

peptide nanotube and Nafion binders to produce biosensors with improved performance 

characteristics.  Additionally, the literature review determined how the biosensor will 

most likely be applied, and what performance parameters should be optimized for this 

application.  Finally, the review determined what potentiometric and amperometric 

measurements can be taken to quantify these parameters and compare the results of 

different production methods. 

 Biosensors using three different designs were constructed using AChE bound to SPEs 

to measure concentrations of malathion in water.  The first design simply adsorbed AChE 

to the SPE.  The second used PNTs deposited on the SPE to encapsulate AChE.  The 

third used PNT encapsulated AChE deposited on the SPE as well as Nafion to bind the 

PNTs together.   

 The performance of the biosensors was tested using potentiometric measurements 

including cyclic voltammetry before and after a storage period.  Potentiometric and 

amperometric measurements were taken in the presence of various concentrations of the 

target OPs.  
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II. Literature Review 

Biosensors 

 Biosensors can potentially be used to detect OPs in water.  Biosensors are 

analytical devices incorporating a biological material attached to a physical transducer to 

sense a target substrate or substrates.  

 Biosensors are being increasingly used for detection of specific targets in 

solutions (Andreescu and Marty, 2006).  Biosensors are used to measure glucose levels in 

blood for diabetes patients (Tudorache, 2007).  The food industry uses various types of 

biosensors to detect pathogens in food during processing (Amine et al, 2006).  AChE-

based biosensors are emerging as an extremely sensitive means of toxicity monitoring in 

environmental, food processing, and military applications (Andreescu and Marty, 2006; 

Tudorache et al, 2007). 

 

Cholinesterase biosensors 

 Cholinesterases (ChE) are enzymes that hydrolyze the neurotransmitter 

acetylcholine, which transmits nerve impulses across cholinergic synapses.  Both 

acetylcholinesterase and butyrylcholinesterase (BuChE) have been used in biosensors. 

While they have similar structures, BuChE preferentially hydrolyzes butyryl choline.  

AChE preferentially hydrolyzes acetylcholine and esters of thiocholine.  Many of these 

esters, especially acetylthiocholine (ASCh), have been used as substrates for various 

AChE biosensors.  ASCh is particularly useful because, once broken down by the 

enzyme, thiocholine can be oxidized by an electrode, generating a measurable signal.  

This oxidation of thiocholine occurs nominally at 410 mV vs. Ag/AgCl (Andreescu, 
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2001).  If a graphite paste is used as the working electrode, TCNQ (7,7,8,8-

tetracyanoquinonedimethane) can be used as a mediator.  This allows the oxidation of 

thiocholine to occur at110mV vs. Ag/AgCl (Bonnet, 2003, p210) 

 AChE biosensors detect OPs indirectly, by inhibition.  An electrochemical 

measurement is taken with the biosensor in a solution of substrate before it is exposed to 

the OP.  Once an OP is introduced into the system, it will inhibit the AChE.  This reduces 

the rate at which the substrate is broken down, and thus the rate at which the signal is 

generated by the products of the substrate hydrolysis. 

 

Enzyme Immobilization 

The electrode type and material and enzyme immobilization technique used 

during production of a biosensor are key to how it will function and perform.  Many 

methods have been developed for attaching AChE to electrodes of various types.   

Adsorption is the easiest and simplest means of immobilizing an enzyme on an 

electrode.  It is the least immediately denaturing, as it relies on weak bonds such as Van 

der Waals or electrostatic forces, and does not require functionalization of the enzyme or 

covalent bonding between the enzyme and electrode.  It does not create any diffusion 

barriers that other entrapment techniques may.  However, because there is no covalent 

bonding, the orientation of the enzyme as it adsorbs to the electrode is not controlled, 

leaving some of the enzyme oriented in a way that the active site is inaccessible to a 

substrate in solution.  Also, because the adsorptive forces are weak, leaching is generally 

observed in a stirred environment (Bonnet et al, 2002).  Desorption of enzyme can also 

occur due to changes in temperature, pH, or ionic strength (Sassolas et al, 2012).   
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In one study, Bonnet et al. (2003) found that rinsing the electrodes for 30 min in 

1M NaCl, then 5 min in a solution of 0.1 M phosphate buffer, 0.2 M NaCl, 2 × 10−3 M 

MgSO4, and 0.1% Tween, minimized leaching during measurements, leading to good 

operational stability.  The electrodes also had good storage stability, losing only 1.6% 

activity over 50 days when stored under vacuum at 4°C.  The study found that when used 

to detect chlorpyrifos ethyl oxon (CP-o), the sensor showed an I20 (the concentration of 

target inducing 20% inhibition) of 5 ng/l (Bonnet et al., 2003). 

 Another study found that adsorption and stabilization of AChE to a planar gold 

electrode was greatly enhanced by coating the surface with gold nanoparticles.  The I10 

(the concentration of target inducing 10% inhibition) detection limit for carbofuran was 

estimated to be 33 nM.  The sensors were stored at 4°C, but storage stability was only 

measured over a 1-week period (Shulga, 2007). 

 Covalent binding is the most often used method to immobilize ChEs to electrodes 

(Andreescu and Marty, 2006).  It involves modifying the electrode with a cross-linker 

that will bind to the enzyme on one end, and the electrode surface on the other.  Binding 

provides greater operational stability to the electrode, and the enzyme will not leach off 

the surface during use.  However, ,because this method causes significant enzyme 

denaturing, a significantly greater amount of enzyme must be used to create a comparable 

signal to other immobilization methods (Nunes et al, 2004; Adreescu and Marty, 2006).  

A study by Lin, et al (2003) has also shown that carbon nanotubes (CNTs) may be used 

as a cross-linker.  The study used a carbon electrode coated with CNTs, which were then 

oxidized to form carboxyl groups.  AChE was bound to these groups, and the electrodes 

were found to generate higher signals with less enzyme that other cross-linking methods.  
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This is most likely due to the conductive properties of the CNTs.  A detection limit of 

0.05 µM methyl parathion was achieved using this method (Lin et al., 2003). 

 A self-assembled monolayer (SAM) may be used to link enzymes to noble metal 

electrode surfaces (Andreescu and Marty, 2006).  This process uses hydrocarbon chains 

with a hydrophilic function group, usually a carboxyl group, at one end.  The molecules 

are deposited on the electrode surface and form a packed monolayer, held together by 

Van der Waals forces between the hydrocarbon chains.  Enzymes can then be bound to 

the functional groups.  SAMs made from longer chain molecules are generally more 

stable, but present a barrier to electron transmission to the electrode surface.  Shorter 

chains present less of a barrier, but are generally less ordered and less stable (Sassolas et 

al, 2012).   

 Physical entrapment methods have also been used in biosensor construction.  

Enzymes, along with any mediators and additives, may be entrapped in sol-gel matrices 

or a photopolymer in a simple, one step fabrication process.  Entrapment has been used to 

immobilize enzymes on screen printed and solid electrodes.  While entrapment provides 

increased storage and operational stability, it also creates a diffusion barrier for substrates 

to reach the enzyme, which limits the sensor performance (Andreescu, 2006). 

 Encapsulation is similar to entrapment, but rather than immobilizing the enzyme 

in a random matrix, it uses ordered structures such as PNTs or liposomes.  Encapsulation 

also has the advantage of protecting the enzyme, leading to increased stability.  PNTs 

have better electric conduction properties than sol-gel or polymer matrices, leading to 

higher signal generation.  However, encapsulation can also create diffusion barriers, 

slowing the electrode’s response time (Park, 2010).  These types of electrodes using 
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PNTs show great potential for stable and biocompatible encapsulation, which may 

maintain the enzyme activity for a longer time (Park et al, 2010). 

 

Performance  

 Stability, both storage and operational, is the most desirable characteristic a 

sensor can have.  Storage stability refers to a sensor’s ability to retain its activity after a 

storage period.  It is typically measured by determining the activity before and after a 50-

day period, and expressed as the percent of the initial activity the sensor retained after the 

50 days.  Operational stability refers to how stable the sensor is in the environment in 

which it is intended to operate.  Biosensors may only be able to operate stably over a 

small range of pH values, or in either aqueous or non-aqueous solutions.  Operational 

stability is generally measured simply by taking consecutive measurements and observing 

whether the signal degrades with each measurement. 

The ability to detect the target chemical or chemicals of interest is the primary 

requirement of any biosensor.  For AChE biosensors, which detect indirectly, this ability 

is measured in inhibition.  Cyclic voltammetry measurements are taken on a sensor in 

identical solutions before and after exposure to the target compound.  The peak currents 

before, io, and after, ii, are used to calculate the inhibition percent using I% = (1 – ii/io) x 

100%. 

In most articles, I20 (concentration of target inducing 20% inhibition) is used as a 

reference value for inhibition tests (Bonnet, 2003; Amine, 2005).  The limit of detection 

for a sensor is sometimes estimated as the I10 value (Park, 2010).  The inhibition of 

sensors is also qualitatively shown in many studies by using chronovoltaic amperometry.  
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While this test can show a drop in current when an OP is introduced, quantitative data 

and models of how the current changes with respect to concentration of OP and time have 

not been done. 

 

Storage and Operating Conditions 

 Operating conditions for the sensor will vary as widely as the environments in 

which military operations are conducted.  Water temperature, pH, and salt content cannot 

be anticipated for every location at which a measurement needs to be taken.  An ideal 

sensor would work in a wide range of these parameters.  The general nature of military 

operations gives preference to an inexpensive, disposable electrode over an expensive, 

permanent but fragile electrode.  Thus, carbon screen printed electrodes were chosen for 

this research. 

 Storage conditions will also vary depending on the environment.  While 

installations in the U.S. may have vacuum storage capability, it is doubtful that forward 

bases would.  Therefore, a sensor with unprotected enzymes that must be stored at 4°C 

under vacuum is not a practical choice.  Most bases are likely to have electrical and 

refrigeration capabilities.  If sensors using encapsulationcan be kept in solution at 4°C 

they would be preferred, and sensors that could be kept in solution at ambient 

temperature would be ideal.  For this reason, encapsulation in PNTs was the 

immobilization method chosen to be studied for stability in this research.      
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Stabilizing acetylcholinesterase on carbon electrodes using peptide nanotubes 

 
Todd Stevens a, Mark Goltz a, Dong-Shik Kim b 

a Department of Systems & Engineering Management, Air Force Institute of Technology, WPAFB, OH 
45433, USA 

b Department of Chemical & Environmental Engineering, University of Toledo, Toledo, OH 43606, USA 
 

Abstract 

A biosensor for the detection of organophosphates (OPs) in water was created by 

encapsulating acetylcholinesterase (AChE) enzyme in peptide nanotubes (PNTs) and 

attaching the encapsulated enzyme on a carbon screen printed electrode using Nafion®.  

Sensor operation is based on the fact that acetylthiocholine (ASCh) substrate, in the 

presence of AChE, will be transformed to thiocholine, which can be oxidized by the 

electrode, producing a measurable signal.  This signal will be inhibited in the presence of 

OPs, with the extent of inhibition proportional to the OP concentration.   

In this study, three versions of the sensor were used to detect the OP malathion.  

In one version, AChE was placed directly on the electrode.  In the second version, AChE 

was encapsulated in a PNT, and placed on the electrode.  And in the third version, PNT 

encapsulated AChE was attached to the electrode using Nafion.  The stability of the 

sensors was measured over 50 days of storage at 4°C in a phosphate buffer solution.  

Cyclic voltammograms were taken in an ASCh and phosphate buffer solution, and the 

peak oxidation was used to measure the performance of the sensor.  Amperometric 

studies were also conducted at 310 mV vs Ag/AgCl to measure the response of the 

sensors to malathion, when ASCh was present. 
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This research demonstrates that the use of PNTs and Nafion® allows the sensor to 

remain stable for a much longer period than similar biosensors which rely on adsorption 

alone.  In fact, the sensors that were constructed without PNTs or Nafion did not remain 

stable under the storage conditions.  The biosensors constructed with PNTs, and with 

PNTs and Nafion, lost 17.3% and 14.2% of their activity, respectively, after 50 days.  

Detection limits as low as 48 nM of malathion were obtained using PNTs, and 102 nM 

using PNTs and Nafion®. 

Key words: Acetylcholinesterase, biosensor, peptide nanotubes, disposable, inhibition 

 

1. Introduction 

 Organophosphates (OPs) are acetyl cholinesterase (AChE) inhibitors with a broad 

range of potency and toxicity.  They have been widely used in agriculture as pesticides 

and are also used as deadly nerve agents in chemical weapons. 

Chromatography and spectrometry are the classical analytical chemistry methods 

used to measure OPs.  Unfortunately, these methods require large, sensitive equipment, 

which in turn require personnel trained in their use and a laboratory environment, making 

the processing time consuming and expensive. 

Biosensors offer new opportunities to develop a system that may be used to detect 

OPs in water.  They are becoming increasingly popular for detection of specific target 

compounds in solutions [1].  Biosensors are used to measure glucose levels in blood for 

diabetes patients[2].  The food industry uses various types of biosensors to detect 

pathogens in food during processing [3].  AChE-based biosensors are emerging as an 



13 
 

extremely sensitive means of toxicity monitoring in environmental, food processing, and 

military applications [1,2]. 

Cholinesterases (ChE) are enzymes that hydrolyze the neurotransmitter 

acetylcholine (Ach), which transmits nerve impulses across cholinergic synapses.  Both 

acetyl cholinesterase and butyryl cholinesterase (BuChE) have been used in biosensors. 

While they have similar structures, BuChE preferentially hydrolyzes butyryl choline.  

AchE preferentially hydrolyzes acetyl choline and esters of thiocholine.  Many of these 

esters, especially acetyl thiocholine (ASCh), have been used as substrates for various 

AchE biosensors.  ASCh is particularly useful because, once broken down by the enzyme, 

thiocholine can be oxidized by an electrode, generating a measurable signal.  This 

oxidation of thiocholine normally occurs at 410 mV vs Ag/AgCl [1]. 

The electrode type and material and enzyme immobilization technique used 

during production of a biosensor are key to how it will function and perform [1,4].  

Peptide nanotubes (PNTs) have recently become a useful tool in constructing nanoscale 

devices [4,5].  PNTs are biocompatible, very stable, and electrically conductive.  The 

goal of this work was to demonstrate the use of PNTs and Nafion® to immobilize AchE 

on carbon screen printed electrodes for use as OP sensors, and determine how these 

materials affect the stability of the sensors. 

 

2. Materials and Methods 

2.1. Materials 

 AChE (Type V-S, from electric eel, 500 U/mg) and acetylthiocholine chloride 

were obtained from Sigma-Aldrich (St. Louis, MO) and stored at -10°C.  The dipeptide 
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H-Phe-Phe-OH and Albumin from bovine serum (BSA) were also obtained from Sigma-

Aldrich (St. Louis, MO) and stored at 4°C.  1,1,1,3,3,3-hexafluoro-2-propanol (HFP), 

(99.8% purity) was obtained from Sigma-Aldrich (Milwaukee, WI).  Nafion® 117 

solution (~5% in a mixture of lower aliphatic alcohols and water) was obtained from 

Sigma-Aldrich (Allentown, PA) and used as received.  All other chemicals were of 

analytical grade and used as received.  Deionized water was prepared through reverse 

osmosis. 

 Carbon screen printed electrodes with a 2 mm diameter carbon working electrode, 

a carbon counter electrode, and a Ag/AgCl reference electrode were purchased from Pine 

Research Instrumentation (Durham, NC).   

2.2. Apparatus 

 All electrochemical experiments were conducted using a PARSTAT 2273 

potentiostat connected to a notebook computer.  Experiments were conducted in a Pine 

Research Instrumentation compact voltammetry cell.   

2.3. Methods  

 PNTs were created by dissolving the dipeptide in the HFP at a concentration of 

100mg/mL, then diluting 20µL of this solution in 1 mL of water.  PNTs self-assembled 

under these conditions. 

 Three electrode types were tested.  For the simplest, adsorbed type, 2 µL of 

1000U/mL AChE solution were deposited on the working electrode surface and allowed 

to dry for 1 hour before use.  For the second type, PNT modified electrodes, 2 µL of the 

prepared PNT solution were first deposited on the working electrode and allowed to dry 

for 2 hours, followed by 2 µL of 1000U/mL AChE solution.  For the final type, Nafion® 
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modified electrodes, 2 µL of the PNT solution, the AchE solution, 1% w/v BSA, and 

Nafion solution, were deposited and allowed to dry for 2 hours each.   

To measure stability, cyclic voltammetry measurements were taken in a testing 

solution of 0.1M KCl, 0.1M phosphate buffer solution at pH 7 containing 1mmol ASCh.  

This solution was purged with N2 for 20 minutes before use.  Peak currents 

corresponding to the oxidation of thiocholine were measured for each sensor.  The 

sensors were then stored in a pH 7, 0.1M phosphate buffer solution at 4°C for 50 days, 

and cyclic voltammetry measurements were taken every 10 days.  The peak currents 

measured initially, io, and after storage, ii, were used to calculate the enzyme activity 

degradation.     

The detection ability of the sensor was measured using cyclic voltammetry and 

amperometry.  These studies were conducted immediately after creation of the adsorbtion 

based sensors, and after 12 hours of storage for encapsulated sensors.  Cyclic 

voltammetry measurements were taken in a 0.1M KCl, 0.1M phosphate buffer solution at 

pH 7 with 1mmol ASCh and the peak oxidation currents of thiocholine were measured 

for each sensor.  The sensors were rinsed for 1 minute with a 0.1M phosphate buffer 

solution. The sensors were then exposed to various concentrations of malathion for 10 

minutes, and rinsed with phosphate buffer again.  Cyclic voltammetry measurements 

were taken again in the same manner as before exposure.  The peak currents before, io, 

and after, ii, are used to calculate the inhibition percent using I% = (1 – ii/io) x 100%.  The 

limit of detection is estimated as the concentration which causes 20% inhibition. 
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3. Results and Discussion 

 Figure 1 shows cyclic voltammograms (CVs) performed with bare electrodes and 

PNT encapsulated AChE electrodes in 0.1M KCl, 0.1M phosphate buffer solution in the 

presence of 1 mmol ASCh.  A clear oxidation peak can be seen at ~-0.3V with the AChE 

electrode while the response of the bare electrode is minimal.    The CV is measuring the 

oxidation of thiocholine, which is a hydrolysis product of the enzymatic reaction of 

ASCh with AChE.  Thus, since the bare electrode does not have AChE, there is no 

oxidation peak.  

 

Fig. 1. Cyclic voltammogram of 1mM ASCh in 0.1M KCl, 0.1M phosphate buffer, pH 7 
of bare carbon SPE and SPE modified with PNT and AChE.  Scan rate: 50 mV/s.  Initial 
scan direction: positive 

 

Consecutive cycles of the adsorbed type electrode in the testing solution show that 

current peaks degrade for each cycle.  This indicates that AChE leaches from the surface, 
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and the sensors are not operationally stable.  After 10 days in storage at 4°C in a 0.1M 

phosphate buffer solution, pH 7, the adsorbed type electrode gives no response, showing 

that electrodes with unprotected AChE cannot be stored in this manner.   

Figure 2 shows the degradation over 50 days of PNT-modified electrodes and 

PNT plus Nafion® modified electrodes.  10 electrodes of each type were used in this 

study.  The PNT modified electrodes lost a mean of 17.3% of enzyme activity, with a 

standard deviation of 5.3% after 50 days.  The PNT plus Nafion® modified electrodes 

lost a mean of 14.2%, with a standard deviation of 5.5%.  While the PNT plus Nafion 

electrodes appear to degrade less, the results are not statistically significant.   

 

Fig. 2. Enzyme activity loss of PNT and PNT plus Nafion® sensors over time in storage.  
Experiments conducted in 1mM ASCh in 0.1M KCl, 0.1M phosphate buffer, pH 7. 
 

Inhibition curves for AChE immobilized by PNT and PNT plus Nafion® by 

malathion are shown in Figure 3.  Each of the reported values is the mean of responses of 
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3 electrodes.  The detection limit at 20% inhibition is estimated to be 48 nM and 102 nM 

for PNT and PNT plus Nafion® electrodes, respectively.   

 

Fig 3. Inhibition curves for AChE immobilized by PNTs and PNTs plus Nafion® by 
malathion. Experiments conducted in 1mM ASCh in 0.1M KCl, 0.1M phosphate buffer, 
pH 7. 
 

4. Conclusions 

 The use of peptide nanotubes to encapsulate AChE deposited on carbon screen 

printed electrodes greatly enhanced the stability of the enzyme both operationally and 

over a storage period.  After immobilization with this technique, the enzyme maintained 

its function and showed a rapid response to ASCh.  This response allowed for real-time 

monitoring for enzyme inhibitors at low concentrations.  This work shows that the use of 

PNTs to encapsulate AChE creates a practically usable sensor that can be stored at 4°C 

without being under vacuum.  
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IV. Conclusion 

Additional Results and Discussion 

 Cyclic voltammograms were also performed with electrodes which were then 

stored at ambient temperature in a 0.1M phosphate buffer solution, pH 7, to study the 

stability of sensors stored in this way.  However, no sensors produced a signal after 10 

days of storage.   

Amperometric detection of malathion was conducted by first injecting 100 µL of 

121 mM ASCh into the electrochemical cell, which contained 12 mL of 0.1 M phosphate 

buffer, pH 7.  After the current from thiocholine oxidation stabilized, malathion was 

injected into the cell, resulting in a decrease in the oxidation current. Inhibition 

percentages were calculated using the currents before, io, and after ii, malathion injection 

using I% = (1 – ii/io) x 100%, but no clear correlation between concentration and 

inhibition calculated in this manner could be found.   

Significance of Research 

 As the US military finds itself in more asymmetric warfare situations, the need for 

the ability to detect nerve agents becomes more pressing.  While several types of 

biosensors have shown the ability to do so accurately and quickly in a lab setting, they 

can be very fragile and unstable.  These qualities limit their utility and practicality in 

military field operations.   

 This research has shown a technique to make AChE biosensors more robust and 

stable.  It has demonstrated a sensor that can be stored in a simple refrigerator and retains 

adequate enzyme activity to perform detection functions.  While it is not a fully 

functional detector that can be used in the field, it is a step toward that goal. 
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Future Research 

 While this research studied the stability of biosensors over time in storage, there 

are several other factors that could influence stability that were not studied.  The pH, salt 

content, and temperature of the sample could all potentially affect the sensors’ 

performance, and offer opportunities for future research 

 Amperometric studies were also conducted which showed, qualitatively, the 

response of the biosensors to substrate and inhibitor injections.  Further research into 

quantifying and modeling these responses would offer insight into the potential for these 

types of biosensors to distinguish between types of inhibitors and concentrations. 

 Applying this technology to produce a stable biosensor to detect OPs in the gas 

phase is another area for future research.  Such a sensor would provide a significant 

benefit to the military. 
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