
A Methodology for Developing an
Agent Systems Reference Architecture

Duc N. Nguyen1, Kyle Usbeck1, William M. Mongan1, Christopher T. Cannon1,
Robert N. Lass1, Jeff Salvage1, William C. Regli1, Israel Mayk2 and Todd Urness2

1 Applied Communications and Information Networking Institute, Drexel University
{dn53, kfu22, wmm24, ctc82, urlass, jks29, regli}@drexel.edu

2 Communications-Electronics Research, Development and Engineering Center, US Army

Abstract. The slow adoption of agent-oriented methodologies as a paradigm for
developing industry systems is due in part to their lack of integration and general-
purpose use. There exists a need to define common patterns, relationships be-
tween components, and structural qualities that a reference architecture for agent-
based systems would solve. However, there is little, if any, consensus on how to
create a reference architecture for agent-based systems. This paper presents a
methodology for developing a reference architecture that documents agent-based
systems from different system viewpoints. Rather than the traditional approach
of studying existing systems, the documentation methodology relies on forensic
software analysis of agent frameworks (i.e., APIs and libraries for constructing
agent systems). We demonstrate the methodology by describing the process used
to create the Agent System Reference Architecture.

1 Introduction

Using agent-based approaches for constructing large complex distributed systems can
provide advantages over traditional methods [5]. Unfortunately, industry has been slow
to adopt this agent-oriented paradigm. One reason for this slow adoption is the lack of
integration and general-purpose technologies [13]. Standards bodies such as the Foun-
dation for Intelligent Physical Agents (FIPA)3 are leading efforts to standardize pro-
tocols and formats of an agent-based system. However, there is a need to construct
a reference architecture that defines the relationships between standardized terms and
concepts of an agent-based system. Furthermore, such an architecture would give a set
of architectural blueprints and best practices to aid in developing new agent frameworks
and systems. To this end, a reference architecture for agent-based systems would speed
other standardization efforts and adoption as a viable systems engineering perspective.

This paper describes a documentation methodology for creating the Agent Systems
Reference Architecture (ASRA) for agent frameworks. Rather than studying agent sys-
tems across unrelated application domains, this work studies the agent frameworks used
to construct software systems composed of agents. The ASRA builds upon the Agent
Systems Reference Model (ASRM) [11] by identifying and documenting the interac-
tions between ASRM functional concepts typically found in an agent system.

3 http://www.fipa.org

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
A Methodology For Developing An Agent Systems Reference
Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army ,Development and Engineering
Center,Communications-Electronics Research,Aberdeen Proving
Ground,MD,81657

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 11th International Workshop on Agent Oriented Software Engineering, Toronto, Ontario,
CA, May 10-11, 2010

14. ABSTRACT
The slow adoption of agent-oriented methodologies as a paradigm for developing industry systems is due in
part to their lack of integration and generalpurpose use. There exists a need to define common patterns,
relationships between components, and structural qualities that a reference architecture for agentbased
systems would solve. However, there is little, if any, consensus on how to create a reference architecture for
agent-based systems. This paper presents a methodology for developing a reference architecture that
documents agent-based systems from different system viewpoints. Rather than the traditional approach of
studying existing systems, the documentation methodology relies on forensic software analysis of agent
frameworks (i.e., APIs and libraries for constructing agent systems). We demonstrate the methodology by
describing the process used to create the Agent System Reference Architecture.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Our approach to creating the ASRA for agent frameworks combines static and
dynamic software analysis tools with a regimented documenting process 4+1 View
Model [6] to existing agent framework implementations creating five architectural views.
The process for creating the ASRA is as follows:

1. For every ASRM functional concept, the ASRM definiton of each functional con-
cept comprises the Scenario view of the 4+1 Model.

2. For each agent framework implementation under analysis, implement a basic ap-
plication that exercises the functional concept. Execute this application within an
application profiler to generate runtime data to build the Process view.

3. Perform static analysis on the source code of the agent system functional concept
to build the Implementation view.

4. Finally, abstract the package decompositions into the Logical view.

The main contribution of this paper is a novel methodology for creating reference
architectures for a class of systems based on a domain reference model. Previous ap-
proaches rely on studying classes of existing systems and constructing reference archi-
tecture documents. Moreover, we believe this methodology is general enough to apply
to other software system domains.

The rest of this paper is organized as follows: Section 2 defines the terms archi-
tecture, reference architecture in the context of agent systems and agent frameworks.
Section 2.2 describes the Agent Systems Reference Model and its basis for creating the
ASRA. Section 3 provides a description of the 4+1 Model and how it will be applied
to agent frameworks followed by an application of the process to create a portion of
the ASRA in Section 4. Section 5 provides a summary of related efforts in reference
architectures for agent-based systems. Finally, we conclude with related efforts and a
roadmap of this continuing work for developing a reference architecture for agent sys-
tems.

2 Background

This section defines a reference model and a reference architecture. We use these defi-
nitions to further define a reference architecture for agent systems.

2.1 What is a Reference Model and Architecture?

A reference model describes the abstract functional elements of a system. A refer-
ence model does not impose specific design decisions. APIs, protocols, encodings, and
other standards are not included within a reference model, but can be use concurrently.
A reference model does not explicitly define an architecture, but rather can drive the
implementation of multiple architectures. The novelty of a reference model is that it
provides a common ontology, innovative and practical system engineering techniques,
and software development guidance [11].

A software architecture is an abstract representation of a software system. It is com-
posed of structures and components of the system, their properties, and the relation-
ships between them [2]. A reference architecture has many definitions, but the most

commonly used in the software engineering literature is that a reference architecture
consists of standardized diagrams (e.g., UML, ADL, etc.) that describe the architecture
from different viewpoints to cover the concerns of the stakeholders of a system. These
standardized diagrams are used to abstract the implementation details of a system and
illustrate the relationships between the components of a system [14].

2.2 A Reference Model for Agent Systems

The basis for the ASRA is the Agent Systems Reference Model (ASRM) [11]. The
ASRM provides a model for software systems composed of agents. It establishes terms,
concepts, and definitions required to compare agent systems.

Effector
Interface

Sensor
Interface

Agent
Reasoner

Agent Framework(s)

Platform(s)

Host(s)

Environment

In
fra

st
ru

ct
ur

e

n-to-1

Agent
System

n-to-1

n-to-1

Agent

n-to-1

Fig. 1. Anatomy of an agent and its role in an
agent system.

The ASRM defines an intelligent
agent—or simply agent—as situated
computational processes that embody
one or more of the following quali-
ties: autonomy, proactivity, interactiv-
ity, continuous, sociality, and/or mobil-
ity. The ASRM also formalizes con-
cepts and layers of organization in an
agent-based system. The layers (shown
in Figure 1) are: agents, frameworks,
platforms, hosts, and environments. An
agent-based system is the set of frame-
works, the agents that execute in them,
the platform (other software) that sup-
ports them and the hosts (hardware) upon
which they execute.

The ASRM describes an agent sys-
tem as a set of abstract functional con-
cepts that support overall system execu-
tion. The functional concepts represent
the complex interactions between soft-

ware and hardware located at different layers of the agent system. The functional con-
cepts are as follows:

– Agent Administration facilitates and enables command and control of agents and
allocates resources to those agents as needed.

– Security and Survivability prevents execution of undesirable actions within an
agent system while allowing execution of desirable actions.

– Mobility facilitates and enables the migration of agents among framework in-
stances (typically, but not necessarily, on different hosts)

– Conflict Management facilitates and enables the management of interdependen-
cies between agents activities and decisions.

– Messaging facilitates and enables information and data transfer among agents in
the system.

– Logging facilitates and enables information about events to be recorded occurring
during system execution for subsequent inspection.

– Directory Services facilitates and enables the locating and accessing of shared
resources.

The functional concepts are necessary in developing the ASRA as they are the start-
ing point for the analysis process.

2.3 The Agent Systems Reference Architecture

The Agent Systems Reference Architecture (ASRA) is an elaboration of the ASRM. It
establishes relationships between the ASRM functional concepts in agent frameworks
and defines patterns for these concepts. The ASRA does not address implementation
specifics but rather describes possible interactions between functional concepts. A ref-
erence architecture for agent systems can be defined from the standpoint of the indi-
vidual agent functionality, the agent framework, the group and agent societies, or the
system-to-system interaction viewpoints. In this work, we focus on the agent frame-
works because the functional concepts defined in the ASRM are largely implemented
in these frameworks.

3 Serial Approach to Constructing the ASRA

We construct the ASRA by applying reverse engineering methods on sample applica-
tions built using existing open source agent frameworks. We systematically build mul-
tiple view models by analyzing popular agent framework implementations: JADE4,
Cougaar5 and AGLOBE6. These agent frameworks were chosen for analysis because
of their popularity in the agent system community and the availability of their source
code and documentation.

Agent systems have a broad definition and have many applicable domains, study-
ing a particular fielded system or class of systems may not cover all the architectural
variations of a reference architecture. Therefore, we study agent frameworks rather than
fielded systems or specific domains. This approach avoids the endless debate of the ex-
act definition of an agent and intelligence and simply addresses the systems composed
of agents.

Adapting the Rational/4+1 View Model: The Rational/4+1 View Model [6, 7] creates
different architectural descriptions, or views, of software systems for different interested
parties (e.g. system developers, business-persons, customers). Each view identifies and
describes the relationships between components and concepts. Interested parties will
view these relationships with different weights and significance. The views in the 4+1
Model are as follows:

4 http://jade.tilab.com
5 http://www.cougaar.org
6 http://agents.felk.cvut.cz/aglobe

– The Logical View describes the static structural layout of the software system from
the perspective of a software developer.

– The Process View describes the runtime behavior of the system, including concur-
rency relationships and ordered tasks carried out by components of the system from
the perspective of a workflow designer or manager.

– The Implementation View describes the package layout of the system from the
perspective of the system architect.

– Deployment View describes the hardware-software configurations at a platform-
level as viewed by system administrators or deployment teams.

– Scenario View is the “+1” view that spans the other four views. This crosscutting
view is composed of narrative use cases to provide an executive level view of the
architecture.

The ASRA is documented using the Scenario, Process, Logical, and Implementa-
tion Views. Each ASRM functional concept is documented with these four views to
cover the needs of agent system architects, developers, agent framework designers, and
system users. The ASRA does not present the Deployment view because this view ad-
dresses the needs for system administrators and deployment teams.

The Serial Approach: The goal of the serial approach is to produce overlapping series
of documents and diagrams detailing many views of a system from different perspec-
tives. We document the most abstract views first and augment each with software anal-
ysis data and domain knowledge to create the next view. We mine for software archi-
tecture data by performing static and dynamic analysis of multi-agent frameworks [10].

For each functional concept defined in the ASRM apply the following process:

1. Construct the Scenario View for a functional concept. The scenario view consists
of functional concept definitions from the ASRM including possible interactions
with other functional concepts. The scenario view for each functional concept con-
sists of UML use-case diagrams and/or descriptions depicting the use, role, and
functionality of the concept.

2. Construct the Process View from the Scenario View. We implement a snippet of
code exercising the functional concept for each agent framework. Execute this snip-
pet of code and use the dynamic runtime analysis framework, Enterprise Java Pro-
filer (EJP)7, to generate trace data. With this trace data, construct a UML process
diagram to illustrate a concrete architecture for the functional concept for a partic-
ular agent framework. After constructing process diagrams for each agent frame-
work, create a new process diagram from the common features across the agent
framework implementations while documenting differences as points of variation.
This abstract architecture for the functional concept and the points for variation
comprise the Process View.

3. Construct the Implementation View using the static analysis tools, BAT [4] to iden-
tify data flow and package/class dependencies of each functional concept. We use

7 http://ejp.sourceforge.net

these software tools on the agent frameworks and code snippets from Step 2. Fo-
cusing on the code snippets allows us to bypass extraneous information such as
dead code and common library dependencies. We construct a UML component di-
agram for each agent framework. Components represent the modules and packages
and connectors represent interdependencies. Next we construct an abstract architec-
tural package representation by identifying similar packages and modules from the
concrete architectures. Different packages are documented as points of variabilion.

4. Construct the Logical View using the Bunch clustering system [9] and the static
analysis data from the previous step. The Logical View consists of UML pack-
age diagrams of a functional concept. This abstract architectural representation of
a functional concept is created from the concrete architectural views of the agent
frameworks. The clustered data, represented as a graph, illustrates interdependen-
cies between components (edges) and modules (nodes) within the agent framework
implementation. Highly connected modules indicate components and subsystems
within an agent framework implementation. UML package diagrams depict the the
concrete logical architecture of each agent framework implementation where pack-
ages are the modules and the connectors are interdependencies. Packages within
other packages represent interdependencies that do not travel outside the enclosing
package. From the concrete logical architectures of the agent framworks, we create
an abstraction noting similarities and differences. The differences are documented
as points of variation.

The result yields the agent systems reference architecture consisting of four docu-
ments for each ASRM functional concept.

4 Application of the Serial Approach

To demonstrate the serial approach, we step through the documentation process for
the mobility functional concept by analyzing agent framework implementations: Jade,
AGLOBE, and Cougaar.

4.1 The Scenario View for Agent Mobility

The Scenario View of the ASRA, based on the 4+1 View Model, contains scenarios and
use cases of a system’s architecturally significant behavior.

Mobility Definition: Mobility is the process by which an agent migrates from one
executing platform instance to another. The functional concept use cases (ellipses) are
depicted in a UML use-case diagram (Fig. 2). The move agent (moving an agent from
one container to another) and the clone agent (making a copy of an agent in another
container) use cases are invoked by the container (represented by an actor). Note, this
figure also illustrates interactions between the Agent Administration and Directory Ser-
vices functional concepts. For example, the clone agent use case uses the create agent,
modify agent state use case.

Key

Functional Concept

Use Case

«use»

One Use Case "using"
another Use Case

Actor

Fig. 2. The Mobility functional concept use case diagram and the interactions with the Agent
Administration and Directory Services functional concept.

4.2 The Process View for Agent Mobility

The Process view documents the runtime behavior of a functional concept based on a
code snippets for each agent framework. Executing EJP on code snippets yield runtime
traces. The runtime trace illustrates the percentage of time spent in methods during ex-
ecution. The runtime trace (Fig. 3(a)) shows a temporal view of the mobility functional
concept and illustrates the invocation points of the agent mobility functional concept.
From the runtime trace, we create a UML activity diagram (Fig. 3(b)).

Mobility Process View Patterns: We repeat this process for AGLOBE and Cougaar
to construct similar Process diagrams. Comparing the diagrams, two patterns for agent
mobility emerge. Jade and AGLOBE exhibit Serialization mobility (Fig. 3(c)) in which
an agent’s execution is paused, converted into a transferable form, transmitted to a target
platform, converted into an executable form, and resuming agent’s execution. Cougaar
exhibits shared-object mobility in which agents are shared between platform containers
and the agent’s state is synchronized across platforms during execution. Agent mobility
is achieved by changing the shared state to the new platform location.

4.3 The Implementation View for Agent Mobility

The Implementation view is the static view of the agent system derived through static
code analysis tools and temporal data from the process view. UML component diagrams
depict the high-level components of a functional concept and their interactions with
other components and functional concepts.

Mobility Implementation View Patterns: The two patterns for Mobility from the
Implementation view (Fig. 4): serialization mobility and ticketing mobility.

(a) Runtime Trace for Jade Mobility.

(b) Activity Diagram for Jade Mobility.

Key

Activity

start

The progression
of activities

(c) Mobility Process View: Serialization Pattern.

Fig. 3. Jade Mobility runtime trace and resulting concrete architecture Process view diagram.
Comparing architecture diagrams for each agent framework leads to an abstract architecture for
the mobility functional concept.

Jade and AGLOBE mobility follow a serialization mobility pattern (Fig. 4(a)). The
Platform Discovery component uses Directory Services to find the destination platform.
The Agent Encapsulation component creates a representation of the mobile agent for
transport. The Messaging component delivers the mobile agent to the destination plat-
form. Finally, the Agent Extraction component receives the mobile agent, loads it in the
platform, and resumes its execution.

Cougaar mobility follows a ticketing system pattern (Fig. 4(b)). The Platform Dis-
covery component uses the Directory Services component to find the destination plat-
form. A Mobility Factory component generates a ticket ID to identify the destination
platform of the mobile agent. Finally, the Mobile Agent component uses messaging
functional concept to publish the ticket to the other hosts.

4.4 The Logical View for Agent Mobility

The Logical Views express the high level packages and interacting components existing
in an agent system. The Logical View is constructed by observing the clustered runtime
data generated from EJP and BAT and organizing the major objects into packages. This
organization is represented with UML package diagrams.

Mobility Logical View Patterns: The Logical view for Mobility depicts two patterns:
Serialization Mobility and Shared Object Mobility.

Jade and AGLOBE follow the serialization pattern in which the agent is converted
to a transferable form before migrating the agent to its destination. The Mobility func-
tionality (Fig. 5(a)) depends on the agent administration to pause and start the agent and
messaging components to transmit the agent.

Cougaar follows the shared object mobility pattern in which the agent representa-
tion is shared among platforms. Agent mobility involves synchronizing the state of the
agent then halting the agent on the source platform and initializing and executing the
agent on the target instance. Shared object mobility (Fig. 5(b)) depends on the agent
administration component for halting and initializing the agents, the messaging compo-
nent for synchronizing the state, and directory services for finding the target platform.

5 Related Work

In developing the methodology for creating the ASRA, we studied two related areas
of research: approaches and methodologies for creating a reference architecture, and
reference architecture related to agent-based systems.

The multiple view presentation for the ASRA is adopted from the ISO/IEEE1471 [1]
recommendation for architecture documentation. Another example of presenting a ref-
erence architecture in multiple views is the Reference Architecture Foundation for Ser-
vice Oriented Architectures (RAF-SOA) [8] from the OASIS foundation. The RAF-
SOA presents a reference architecture for SOA systems. Moreover, similar to the ASRA,
the RAF-SOA is based on the definitions, layered OASIS reference model for service
oriented architectures.

(a) UML Component di-
agram for serialization
mobility

Key

Directional
Interaction

(b) UML Component diagram for ticketing mobility

Fig. 4. Implementation View: Two Patterns for Mobility.

(a) Serialization paradigm: The migra-
tion component depends on the agent
execution manager and serialization
components of the agent controller
component and the messaging compo-
nent.

(b) Shared Object paradigm: The mi-
gration component depends on the di-
rectory services component, the agent
controller component, and the messag-
ing component.

Fig. 5. The Logical View: two paradigms for Mobility.

The process for creating a reference architecture for systems in a regimented manner
is often addressed through analyzing existing and deployed systems. The Product Line
Software Engineering, Domain-Specific Software Architecture (PuLSE-DSSA) [3] is
a process for creating reference architectures in an iterative fashion. PuLSE-DSSA
still depends on instantiated architectures. Architecture Structure Description Language
(ASDL) also depends on existing systems to find commonalities to abstract a reference
architecture. This process is does not directly aid in constructing new agent frameworks.

Reference architectures for agent-based systems has been studied to a limited extent.
The FIPA Abstract Architecture Specification8 discusses agent system architecture in an
effort to promote interoperability and reusability. FIPA provides a generic view on agent
systems and describes how specific functionality should interact. FIPA provides low-
level details such as mechanisms for how agents perform service look-ups. The ASRA
also focuses on identifying architectural paradigms and patterns in agent frameworks
but focuses on the higher level, implementation-agnostic interactions.

Weyns and Holvoet [12] developed a Reference Architecture for Situated Multia-
gent Systems. This reference architecture focuses on the agent operating in an appli-
cation environment. This architecture was developed through an interative process of
analysis and validation studying different agent-based systems. In their reference archi-
tecture, the authors constructed multiple documents from different views: the module
decomposition, the shared data, and the communicating processes views. This refer-
ence architecture approach focuses on the agent in the environment whereas the ASRA
address the infrastructure of the environment.

6 Conclusion and Future Work

The Agent Systems Reference Architecture (ASRA) is an ongoing effort to create a
reference architecture for agent-based systems. The primary contribution of this work is
the serial process for creating a reference architecture for an agent systems. This process
begins with functional concepts defined by the ASRM and serially applies dynamic and
static software analysis of agent framework implementations. The resulting architecture
is a set of architectural views depicting relationships and structural qualities among
instantiated functional components.

In future work, we will apply this process on the rest of the ASRM functional con-
cepts to present a full architecture for agent frameworks. Moreover, we intend to extend
this process to include a Deployment view of agent systems. The Deployment view
presents the architecture of an agent system as it would be situated in the physical en-
vironment. Addressing how conceptual components of an agent system is beneficial to
agent system architects, developers, and system integrators in identifying real-world is-
sues in system engineering. Furthermore, we intend to address the paradigms of how
agent systems interoperate with external systems (e.g. agents integrated with web ser-
vices).

8 http://www.fipa.org/specs/fipa00001

References

1. ANSI/IEEE. Recommended practice for architectural description of software-intensive sys-
tems, 2009. http://www.iso-architecture.org/ieee-1471.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley
Professional, 2003.

3. Jean-Marc DeBaud, Oliver Flege, and Peter Knauber. PuLSE-DSSA – a method for the
development of software reference architectures. In ISAW ’98: Proceedings of the third
international workshop on Software architecture, pages 25–28, New York, NY, USA, 1998.
ACM Press.

4. M. Eichberg. BAT2XML: XML-based java bytecode representation. Electronic Notes in
Theoretical Computer Science, 141(1):93–107, December 2005. Proceedings of the First
Workshop on Bytecode Semantics, Verification, Analysis and Transformation (Bytecode
2005).

5. N. R. Jennings. An agent-based approach for building complex software systems. Commun.
ACM, 44(4):35–41, 2001.

6. P. Kruchten. Architectural blueprints—The “4+1” view model of software architecture. IEEE
Software, 12(6):42–50, November 1995.

7. P. Kruchten. The rational unified process: an introduction. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 3rd edition, 2003.

8. Ken Laskey, Jeff A. Estefan, Francis G. McCabe, and Danny Thornton. Reference ar-
chitecture foundation for service oriented architecture. Technical report, OASIS, 2009.
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html.

9. S. Mancoridis, B.S.Mitchell, Y.Chen, and E.R.Gansner. Bunch: A clustering tool for the
recovery and maintenance of software system structures. August 1999.

10. W. M. Mongan, C. J. Dugan, R. N. Lass, A. K. Hight, J. Salvage, W. C. Regli, and P. J. Modi.
Dynamic analysis of agent frameworks in support of a multiagent systems reference model.
IADIS International Conference Intelligent Systems and Agents, 2007.

11. W. C. Regli, I. Mayk, C. J. Dugan, J. B. Kopena, R. N. Lass, P. J. Modi, W. M. Mongan, J. K.
Salvage, and E. A. Sultanik. Development and specification of a reference model for agent-
based systems. IEEE Trans. On Systems, Man, and Cybernetics, Part C, 39(5):572–596, Sep.
2009.

12. D. Weyns and T. Holvoet. A reference architecture for situated multiagent systems. Lecture
Notes in Computer Science, 4389:1, 2007.

13. D. Weyns, H. V. D. Parunak, and O. Shehory. The future of software engineering and multi-
agent systems. Special issue on Future of Software Engineering and Multi-Agent Systems,
International Journal of Agent-Oriented Software Engineering (IJAOSE), 2008.

14. Yonghua Zhou, Yuliu Chen, and Huapu Lu. UML-based systems integration modeling tech-
nique for the design and development of intelligent transportation management system. In
Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics,
The Hague, The Netherlands, 2004. IEEE, IEEE.

