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Diffuse Prior Monotonic Likelihood Ratio Test for
Evaluation of Fused Image Quality Measures

Chuanming Wei, Lance M. Kaplan, Senior Member, IEEE, Stephen D. Burks, and Rick S. Blum, Fellow, IEEE

Abstract—This paper introduces a novel method to score how
well proposed fused image quality measures (FIQMs) indicate the
effectiveness of humans to detect targets in fused imagery. The
human detection performance is measured via human perception
experiments. A good FIQM should relate to perception results in
a monotonic fashion. The method computes a new diffuse prior
monotonic likelihood ratio (DPMLR) to facilitate the comparison
of the �� hypothesis that the intrinsic human detection perfor-
mance is related to the FIQM via a monotonic function against
the null hypothesis that the detection and image quality relation-
ship is random. The paper discusses many interesting properties
of the DPMLR and demonstrates the effectiveness of the DPMLR
test via Monte Carlo simulations. Finally, the DPMLR is used to
score FIQMs with test cases considering over 35 scenes and var-
ious image fusion algorithms.

Index Terms—Fused image quality measures (FIQM), hypoth-
esis test, image fusion, monotonic correlation (MC).

I. INTRODUCTION

I N RECENT years, image fusion has been attracting a large
amount of attention in a wide variety of applications such

as concealed weapon detection [1], remote sensing [2], intel-
ligent robots [3], medical diagnosis [4], and military surveil-
lance [5]. Image fusion refers to generating a combined image
in which each pixel is determined from a set of pixels in each
of the source images. The fused image should provide an easier
view for a human to interpret the scene than any of the source
images, thus, improving the performance of the human in ac-
complishing his/her task. The interested reader is referred to [6,
Ch. 1] for a survey of various image fusion algorithms devel-
oped in past years.
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Measuring the performance of image fusion algorithms is
an extremely important task, which has received past study
[7]–[22]. The performance of image fusion algorithms is
primarily assessed by perceptual evaluation in the form of
subjective human tests [13]. Typically in these tests, human ob-
servers are asked to view a series of fused images and rate them.
Because images are fused for better human interpretation, it is
more important to judge fusion methods by how well humans
are able to perform interpretation tasks. Examples of human
interpretation studies for image fusion evaluations appear in
[17], [22]. No matter the goal of the human perception test,
these tests are inconvenient, expensive and time consuming.

It is clearly highly desirable to identify an objective perfor-
mance measure that can accurately predict human perception by
determining the quality of the fused image. The objective mea-
sure should be a feature that is obtained via an automatic com-
putation employing the fused image and can serve as a surrogate
for human perception results. We refer to such a feature as the
fused image quality measure (FIQM). If a good FIQM can be
devised, then one can compare image fusion algorithms without
expensive perception experiments. Furthermore, the measure
can be used as a design criteria for an “optimal” image fusion
algorithm.

In the literature, three broad classes of FIQMs have been pro-
posed. The first class represents full-reference measures. They
require a reference fused image (or the ground truth image) that
represents the “ideal” image of the scene. Once the ground truth
image is given, one can use existing quality metrics such as the
mean square error, the peak signal to noise ratio, or more sophis-
ticated measures such as structure similarity [23] to compare the
fused images with the reference. In the image compression ap-
plication, the uncompressed image represents the ideal, and it
has been demonstrated that the structure similarity is a mean-
ingful full-reference measure [23]. For the image fusion appli-
cation, it is only possible to generate a reference image for some
special cases (for instance, the multifocus image fusion [8]). In
most cases, one has to resort to other classes of FIQMs that do
not require a reference image. The second class of FIQMs rep-
resents source comparative measures that utilize partial infor-
mation about the scene, e.g., the source images that were col-
lected and utilized as input to the image fusion process. This
class of FIQMs has recently received a great deal of attention
[9]–[12]. These measures quantify the amount of information
transferred from the source images to the fused image by con-
sidering the sum of correlations between each source image and
the fused image. An analysis of this class of FIQMs is provided
in [14]. The third class of FIQMs represents no-source compara-
tive measures. These measures attempt to extract the salient fea-

1057-7149/$26.00 © 2011 IEEE



328 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

tures, such as the structure, texture, contrast and edge informa-
tion, directly from the fused image without regard to the source
images [17]–[21].

Quantitatively evaluating the image fusion performance is
a complicated issue because of the lack of a complete under-
standing of the human visual system (HVS), and because of the
variety of image fusion applications [15]. We expect that the
FIQM should be task specific, and the best measure changes
from task to task. Given an image fusion application and many
kinds of proposed FIQMs, we are interested in which quality
measure better describes the performance of the human inter-
preting the fused imagery.

Ideally, the FIQM for a given image would reveal how well a
human can interpret the image for a given task, i.e., it can pre-
dict human performance. One can achieve this aim by inventing
a measure that linearly fits the human perception performance.
In [24], the authors have shown an evidence of the approxi-
mately linear fitness between image quality (IQ) measures and
the subjective rating of image distortions. However, an image is
a projection of a particular scene, and the context in the scene,
i.e., the relationship of the objects in the scene, can affect the
ability of human to perform a particular task (target detection
for example). Since the linearity is a stricter requirement than
monotonicity for a FIQM and is harder to achieve under various
context, we believe that it will be more difficult to guarantee
linearity when the IQ is used to predict the ability of a human
to interpret the image for a given task. Thus, we focus on the
monotonicity criterion in this paper.

By monotonicity we mean that a realistic FIQM can deter-
mine the relative ranking of human performance over a series
of fused images derived from the same exact source images,
which we now refer to as a scene. For a given scene, as FIQM in-
creases over a series of fused images, human performance over
these images should also increase. If the human performance is
consistently decreasing, the measure is still good as it can be
trivially transformed into a proper FIQM via a reciprocal oper-
ation. Thus, a potential FIQM should be judged by how well a
monotonic function (ascending or descending) explains the re-
lation between the FIQM and human performance over a variety
of fused imagery representing the same scene. In addition, the
nature of the monotonic relationship (ascending or descending)
should be consistent from scene to scene. Overall, a statistic that
quantifies how well different FIQMs are consistent with actual
human performance is necessary.

This paper focuses on scoring FIQMs for the case of the de-
tection task. Performance is measured by the probability that a
human observer can correctly detect certain objects in the fused
image. The human perception experiments measure the number
of observers that are able to correctly detect ground truthed tar-
gets as the human performance. This performance metric can be
reasonably modeled by a binomial distribution. This paper intro-
duces a new monotonic statistic for the object detection task that
is applicable when the underlying perception results are derived
from a small number of human observers. To handle a small
number of observers, this statistic does not make Gaussian as-
sumptions about the performance measurements.

Previous work does exist to objectively score the effective-
ness of FIQMs. In [16], Pearson (or linear) correlation and root

mean squared error (RMSE) are used to score potential FIQMs.
The Pearson correlation quantifies how well a straight line fits
the mapping between the input and output sequences. Unfortu-
nately, when the relationship between the quality measure and
the human performance is nonlinear, the value of Pearson cor-
relation can be small despite the fact that the sequences are still
monotonically related. In essence, a proper statistic needs to de-
termine if the ordering of a quality measure preserves the or-
dering of the corresponding human performance measures.

The Spearman and Kendall correlations [25], [26] are
common statistics to quantify how well the output sequence
is ordered. In fact, the Spearman correlation has been used
to evaluate the quality measures for video streams [27]. Both
quantities are invariant to monotonic transformations of both
the input and output sequences because monotonic transforma-
tions preserve the rank order of the sequences. For evaluation
of the utility of FIQMs, a miss-ordering of human performance
values that are nearly identical should not lower the correlation
value too much. Because only ranks and not actual values
are considered, the reduction in correlation score due to these
miss-orderings can be identical or even greater than that of
miss-orderings of widely varying human performance values.
Clearly, measurement noise can greatly impact the correlation
scores. Therefore, these rank-order correlations are not appro-
priate for seeking out good FIQMs.

In [23], [27], a nonlinear regression fit to a logistic function
followed by linear correlation is used to compare various FIQMs
in order to accommodate the nonlinear, but monotonic, relation-
ships. Recently, the monotonic correlation (MC), which uses
isotonic regression followed by linear correlation has been pro-
posed in [17]. As demonstrated in [17], the MC is more flexible
than linear correlation or the logistic analysis in [23], [27]. Like
linear and logistic correlation, the MC assumes that the percep-
tion error is Gaussian, which is inappropriate for the detection
task when the number of observers is small.

To our knowledge, this paper represents the first attempt to
score the effectiveness of FIQMs for the detection task in light
of practical measurements from human perception experiments.
To this end, the paper develops a novel statistic to test whether or
not a monotonic relationship exists between the proposed FIQM
and the human performance. The monotonic statistic is general
and can be applied to other applications when one may need to
test for a monotonic relationship. A preliminary version of this
work has appeared in [28].

The paper is organized as follows. Section II presents the
perception model and introduces the new monotonic statistic.
Section III demonstrates the effectiveness of the new statistic
via Monte Carlo simulations. The statistic is used to score po-
tential FIQMs against actual perception results for fused im-
ages in Section IV. Finally, Section V provides some concluding
remarks.

II. STATISTICAL MONOTONIC ANALYSIS

The paper focuses on the detection task and measures the per-
formance of image fusion algorithms by the probability that a
human observer can correctly detect certain objects in the fused
image. This section develops the test statistic that compares the
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hypothesis that the relationship between human detection per-
formance and FIQM values are monotonic to the hypothesis that
the relationship is random. The statistic is based upon the model
that each image exhibits a ground truth quality score, which
is the probability that any human can detect the object in it.
Section II-A derives the likelihoods for each hypothesis condi-
tioned on these ground truth quality scores. Then, Section II-B
uses an uninformative prior for the ground truth quality scores to
define the likelihood ratio so that it is computationally feasible
as demonstrated in Section II-C. Finally, Section II-D presents
properties of the test statistic.

A. Data Models

A scene is a realization of source images, and we con-
sider different fusion algorithms. The existence (or lack) of a
monotonic relationship between measured human performance
and computed FIQMs can be inferred over scenes. To this
end, this subsection provides the data models that enable this
inference.

For a given scene, let the vector
denote the actual performance for all fusion methods, where
is the object detection probability, i.e., the ground truth quality
score, associated with the image obtained from the th fusion al-
gorithm. Let a given FIQM evaluated over fusion algorithms
be denoted as a vector . The com-
puted value is a deterministic function of the image obtained
from the th fusion algorithm and the source images. The pro-
posed monotonic hypothesis test evaluates how well a FIQM
monotonically relates to human object detection performance.
Under the monotonic hypothesis, there is a monotonic function
that maps the measure value associated with the th fusion
algorithm to the detection probability , i.e.,

(1)

where is a monotonic increasing or decreasing function
of . Let and denote a reordering of and such that
the measure values are in ascending order. i.e.,

. Note that and where is
one of a possible permutation matrices. This paper uses the
convention that is the identity matrix and reverses the
original ordering, i.e., the anti-diagonal matrix of ones. Now,
we consider two alternative hypotheses: for ascending

’s and for descending ’s. On the other hand, the null
hypothesis is that over the ensemble of possible fused imagery,
the ’s are i.i.d. samples. Thus, the ’s are in random order
where the probability of any permutation of the order is equal.
In other words, is the permutation matrix that orders the ’s
for the hypotheses, and is randomly chosen via a uniform
distribution over the possible permutation matrices under the
null hypothesis. Namely, the conditional probability mass
functions (pmfs) of the permutations conditioned on and the
hypotheses for are

if
otherwise

if
otherwise

(2)

where

(3)

For this discusion, it is also convenient to define as the set of
all possibe ’s, i.e.,

(4)

If is observed, then the likelihoods of the hy-
potheses, i.e., for
demonstrate that if is not in ascending (or descending) order,
then the ascending (or descending) likelihood (and likelihood
ratio) is zero, and the (or ) hypothesis must be incorrect.
Also, if happens to be in ascending (or descending) order,
then either the (or ) hypothesis is true or the ordering of

is due to random luck under the null hypothesis, which occurs
with a probability of . Thus, for (or ), the
likelihood ratio is not infinite, i.e., a sure monotonic relation-
ship. Rather, it is due to the fact that the random can order

by chance.
Unfortunately, the value of (or ) is unobservable. It can

only be inferred via perception experiments that measure
where is the number of observers that cor-

rectly detect the targets in the image obtained from the th fusion
algorithm.1 We use to represent the number of observers that
participate in the detection experiment for the image formed by
the th fusion image. Under the assumption that all human are
equally capable, it is reasonable to model as a random vector
whose elements are statistically independent where is drawn
from a binomial distribution with parameters and so that
the pmf of conditioned on and is

(5)

Here we represent the ’s in an vector for notational
convenience. Since , one can define

.
The joint pmf of the observations and the permutations

can be written as

(6)

Because conditioned on and is independent of
for all ’s. Further-

more, because does not
depend upon . Thus, is obtained by the
multiplication of (2) and (5) so that

if
otherwise

if
otherwise

(7)

1For variables that do not use the tilde, the indices for the images are such
that � ’s are in ascending order.
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Then, a hypothesis test to distinguish or from
using the observed values can be derived from the likelihoods

. Because
is not observed, the hypothesis test is a composite test. It is
unclear whether a uniformly most powerful (UMP) test exists.
A common test to apply is the generalized likelihood ratio test
(GLRT). This requires one to compute the maximum likelihood
(ML) estimates for the , and hypotheses,
respectively. For the two hypotheses, the ML estimates can
be obtained by the pool adjacent violators algorithm
[17], [29], [30]. For the null hypothesis, . The
GLRT has the property that for any ascending (or descending)

, the ascending (or descending) generalized likelihood ratio
(GLR) is . However, if the ’s are close in values, the
ordering is more likely to be due to luck than when the ’s
are well spread. However, the GLRT is unable to make this
distinction between different ordered ’s. A different approach
that accounts for the relative spread of the observations values
is needed.

B. Diffuse Prior Monotonic Likelihood Ratio Test

A given scene is a realization from the ensemble of possible
source images. Therefore, it is reasonable to model the detection
probabilities as being drawn from a random distribution, i.e.,

. The diffuse prior monotonic likelihood ratio test
(DPMLRT) assumes that for a given scene, is a realization of
an uninformative (or diffuse) prior distribution, i.e., the elements

are i.i.d. uniform so that . The uniform distri-
bution models the fact that the imagery are collected in various
conditions where the ability to detect the objects can be easy,
hard, or somewhere in between. The independence between fu-
sion methods is a simplifying assumption that leads to a com-
putationally feasible test. Because the prior on is independent
of the hypothesis and , we have .
Then, is marginalized so that the expected likelihood for the
th hypothesis is

(8)

Now the expected likelihoods do not depend upon any unob-
servable parameters. The integral in (8) can be simplified by
noting that the integrand is given by (7) and using the change
of variable . Then, it is easy to see that

(9)

Now, the tests to distinguish the hypotheses from the null
hypothesis are simple hypothesis tests, and the likelihood ratio
test (LRT) is the most powerful test. Namely, given that for each

scene is drawn from the uninformative prior, then the fol-
lowing LRTs are optimal in the Neyman-Pearson sense [31] for
distinguishing the monotonically ascending or descending hy-
pothesis from the null hypothesis2

(10)

We refer to and as the ascending and descending diffuse
prior monotonic likelihood ratio (DPMLR), respectively.

For multiple scenes, the nature of the monotonicity (as-
cending or descending) should be consistent from scene to
scene. Therefore, one must consider the cumulative likelihoods
for the ascending, descending, and null hypotheses. Since we
assume that the ’s and ’s are statistically independent from
scene to scene, the likelihoods for each hypothesis accumulate
via the product operation. The cumulative likelihood ratios are
then proportional to the geometric mean of the likelihood ratios
for each scene. The geometric mean provides a convenient
way to normalize the score against the number of scenes. The
overall likelihood ratio for the monotonic relationship over
scenes is formally defined as

(11)

where and are the number of correct detections and ob-
servers for the th scene, respectively. Note that is agnostic
to the nature of the monotonicity. Unless it is required, the scene
index is implicit for the sake of notational brevity. We refer to

as the composite DPMLR. When the evidence in
support of the monotonic hypothesis is greater than that of the
null hypothesis where the FIQM behaves as noise with respect to
human performance. As increases, so does the evidence that
the FIQM under test is actually a good measure. The DPMLRT
is simply accepting the monotonic hypothesis if the DPMLR ex-
ceeds a given threshold value. Usually, the threshold is greater
than one.

C. Recursive Computation

To our knowledge, a closed form expression for (10) does not
exist, and numerical integration quickly becomes infeasible as

increases. Fortunately, it is possible to calculate the diffuse
likelihood ratios numerically. However, due to the multivariable
integration involved in the expression, the calculation requires
large computational cost, especially when and the ’s are
large. This subsection provides a recursion to calculate these
diffuse likelihood ratios.

The diffuse likelihood for can be simply expressed as

(12)

2For notational convenience, the dependency of � to the ordering � is left
implicit since � is actually invariant to � except in how it orders �.



WEI et al.: DIFFUSE PRIOR MONOTONIC LIKELIHOOD RATIO TEST FOR EVALUATION OF FIQMs 331

where

(13)

is the Beta function.
Substituting equations (5), (8) and (12) into (10), the as-

cending diffuse likelihood ratio can be expressed as

(14)

where

(15)

By considering the power series expansion of the regularized
incomplete Beta function, the calculation of can be
simplified in a recursive way. Specifically, the regularized in-
complete Beta function is defined as

(16)

and the power series expansion for is

(17)

Then, (14) can be written as (18), shown at the bottom of the
page. Now substituting (17) into (18), we obtain (19), shown at
the bottom of the page.

Also from (3), one can see that and are the same when
. Therefore, by definition, we have

(20)

and the ascending diffuse likelihood ratio can be computed nu-
merically via the recursion defined in (19) and (20). A similar
recursion can compute the descending diffuse likelihood ratio.
Alternatively, one can use the symmetry property (see Property
2 in the next subsection) to derive from the computation of

.

D. Properties

The diffuse likelihood ratios demonstrate a number of inter-
esting properties than can easily be proven. Some of these prop-
erties are for the general case where the number of observers can
vary over the different fused images. Other properties are for
the case that the number of observers is constant, i.e., .
This more specific case that is common for percep-
tion experiments where one would expect the evaluation of the
fused imagery over the same number of observers. In addition
to these provable properties, we have discovered other inter-
esting attributes for the DPMLR by exhaustively computing the
DPMLRs for all values of for manageable, i.e., small,
values of and . These attributes make sense based upon the
intuition of how the DPMLRT should behave; we speculate that
these attributes are preserved for larger values of and ; and
we are willing to go out on a limb by disseminating them as con-
jectures in this subsection. We hope that proofs will be discov-
ered in the future so that the conjectures can become properties.

This section first presents the properties that are valid for gen-
eral values of .

Property 1: .
The proof of this property can be found in Appendix A. The

property bounds the possible values of the diffuse likelihood

(18)

(19)
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ratios. As the number of objects to consider increases, the
upper bound for the likelihood ratios grows fast. For a given
value of and , the bounds of zero and are loose since the
set of all possible values of is finite. However, as demonstrated
later in this subsection, as the number of observers increases,
one can find a that corresponds to a likelihood ratio value that
is arbitrarily close to either bound. In other words, as the number
of observers increases and the ’s have sufficient spread, the
likelihood ratio becomes as if is observable (see Section II-A).

Property 2: .
Proof: The first equality is the result of a simple change

of variables in (14). Likewise, the second equality
is the result of the change of variables for

in (14) followed by a reversal of the order of
integration.

This property demonstrates a symmetry between and
. The symmetry provides a convenient way to derive the de-

scending likelihood ratio via the computation of the ascending
likelihood ratio and vice versa.

The first two properties are valid for a variable amount of ob-
servers per a fused image. The final set of properties are specific
for the case that a constant number of observers are utilized
for the fused images, i.e., .

Property 3: If , then
.

The proof of this property is given in Appendix B. The
property states that when all observations are equal, one
cannot distinguish between the ascending, descending, and
null hypotheses because all orderings of the observations are
indistinguishable. Clearly, when all observations are the same,
it is an ill-posed problem to determine whether or not the
FIQMs are ordering the fused imagery in any special manner.

Property 4: If the ’s are in ascending order and they are not
constant then
for . Likewise, if the ’s are in descending
order and they are not constant then

for .
Property 5: If the ’s are in ascending order and they are

not constant, then and . Likewise,
if the ’s are in descending order and they are not constant, then

and .
The proof of these two properties is provided in Appendix C.

Property 4 states that if the observations demonstrate a perfect
monotonic ascending relationship with the FIQM, then the as-
cending likelihood ratio is larger than that for any other ordering
of the observations. Furthermore, the descending order of obser-
vations demonstrates the lowest ascending likelihood ratio of all
possible orderings. Since it can be shown that the average like-
lihood ratio over all possible orderings of the observations is
one, Property 5 is a corollary of Property 4. The property states
that as long as the human performance is increasing in con-
cert with , the diffuse likelihood ratio will always favor the
ascending and disfavor the descending hypotheses over
the null hypothesis . Similarly, as long as the human perfor-
mance is decreasing in concert with , the diffuse likelihood
ratio will always favor the descending and disfavor the as-
cending hypotheses over the null hypothesis . Clearly,
these two properties are both intuitively appealing.

Conjecture 1: The product where
equality occurs if and only if .

As stated earlier, this conjecture is the result of searching
through an exhaustive list of monotonic likelihood ratio
values for manageable values of and . This conjecture states
that the ascending and descending hypotheses can never both be
favored over the null hypothesis. In other words, im-
plies , and implies . However, the con-
verse is not true. It is possible that for a given both and
can be less than one. As a simple example, consider
for . Because of the symmetry property, . At
best, a symmetric can have a monotonic likelihood ratio of
one when all the ’s are constant. Otherwise, the symmetric
is neither ascending or descending and should not provide evi-
dence to support or over . For this case, the ascending,
descending, and composite DPMLRs are all 0.2286.

Conjecture 2: (or ) if and
only if the ’s are constant.

This conjecture states that the only way for the ascending (or
descending) hypothesis to be indistinguishable from the null
hypothesis is for all the observations to be the same. Fur-
thermore, if the ascending hypothesis cannot be distinguished
from the null hypothesis then the same is true for the descending
hypothesis.

Conjecture 3: For a given , the bounds in Property 1 are
tight in the sense that one can identify a value of and corre-
sponding whose monotonic likelihood ratio is arbitrarily close
to either the lower bound of zero or the upper bound of .

Inspection of the exhaustive list of monotonic likelihood ra-
tios of possible ’s for small values of and has revealed that

and (21)

achieve close to the maximum and minimum values of , re-
spectively, for a given value of and . A different rounding
function in (21) may lead to a higher . Intuitively, as the
values of the ’s spread apart, the discriminability between the
hypotheses improves. If the observations use the entire dynamic
range of and they increase linearly with respect to the rank
order, then it makes sense that is as large as possible. Since
maximizing also maximizes due to (11) and the sym-
metry property, also achieves close to the maximum of .
For a small , the ’s should be decreasing and has the
maximum drop possible. While leads to a small , its cor-
responding value is greater than one because it is monoton-
ically descending [see (11)]. The observation sequence

(22)

achieves close to the minimum value of for a given value of
and . It is neither increasing nor decreasing and utilizes the

dynamic range of . Table I demonstrates how these sequence
are converging to the lower and upper bounds for and
as increases for a given . The symmetry properties can be
used to show similar results for .

In summary, the evidence to accept the hypothesis
or the null hypothesis in-

creases as the number of observers increases because the spread
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Fig. 1. ROC curves for DPMLR, MC, Pearson correlation, and logistic correlation tests. (a) � � �. (b) � � �. (c) � � �.

TABLE I
VALUES OF ��� �, AND �� SHOW THAT � AND � CAN APPROACH THEIR

BOUNDS OF ZERO AND � � AS THE NUMBER OF OBSERVERS � INCREASES

of possible DPMLRs increases. Furthermore, if happens
to exhibit a perfect monotonic ordering, then the evidence to
support also increases as the spread of the ’s increases. In
other words, the chances of measurement errors leading to er-
rors in inferring the wrong hypothesis decreases as the number
of observers increases. The performance of the DPMLRT in
terms of hypothesis errors is evaluated by Monte Carlo simula-
tions in the next section.

III. DPMLRT PERFORMANCE ANALYSIS

In this section, we justify the performance of the proposed
DPMLRT. To this end, we generate Monte Carlo realizations of

, and . Specifically, the ’s are generated uniformly over
. For the monotonic hypothesis, . For the null

hypothesis, the ’s are i.i.d. from a uniform distribution. For
either hypothesis, the ’s are random realizations of the bino-
mial distribution (see (5)). For a given hypothesis and values of

, and , we generated realizations of , and ,
and we computed the associated DPMLR given one scene, i.e.,

. Then, we use the histograms of the DPMLR to generate
ROC curves by varying the acceptance threshold and tabulating
the number of acceptances under the monotonic hypothesis, i.e.,
probability of detection , and under the null hypothesis, i.e.,
probability of false alarms . As a means of comparison, we

Fig. 2. ROC curves for DPMLR, MC, Spearman correlation, Kendall correla-
tion and logistic correlation tests. (a) � � �	. (b) � � 
	.

Fig. 3. ROC curves for DPMLRT for various values of � and �. (a) � � �	,
and � � �� �	��	� or 30. (b) � � � and � � �� �	���� or 20.

also compute ROC curves associated with some other correla-
tion tests in a similar fashion over the same simulations.

Fig. 1 includes ROC curves of the DPMLR, the MC [17],
the Pearson correlation and the logistic correlation [23], [27]
tests for various values of when and . Inter-
ested readers are referred to [17] for a detailed description of the
monotonic and logistic correlations. In Fig. 1(a), where ,
the Pearson correlation performs better than the others. This is
explained by the fact that the relationship between and is ac-
tually linear, and Pearson correlation exploits the actual values
of and not just the ordering. In essence, the test for linearity
is better in this case than the more general test of monotonicity
because it exploits more information. As the function be-
comes more nonlinear (i.e., increases), the performance of the
Pearson correlation degrades significantly. Clearly, the logistic
correlation is more robust to the nonlinearity than the Pearson
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Fig. 4. ROC curves for correlated �� ’s. (a) � � ���. (b) � � ���. (c) � � ���.

correlation, but since not all monotonic relations follow a lo-
gistic function, the logistic correlation performs worse than the
MC. Note that does not change the ordering of ’s. There-
fore, the performance of the DPMLRT and the MC is invariant
to the nonlinearity. The DPMLRT always outperforms the MC
because for the case of the uniform prior on , the DPMLRT is
the most powerful test of monotonicity.

We also consider some common rank-order correlations—the
Spearman correlation and the Kendall correlation when

and . The ROC curves for different tests are shown
in Fig. 2. Fig. 2(a) corresponds to a case where and
Fig. 2(b) corresponds to a case where . The DPMLRT
always outperforms the others as expected given that the ’s
are generated by the assumed prior distribution. As the number
of observers increases, the gap between the ROC curves of the
DPMLRT and the rank-order correlation tests becomes larger.
When , the performance of the MC is a little poorer
than that of the rank-order correlations. For larger ,
the MC outperforms the rank-order correlations because it takes
advantage of the values of ’s while the rank-order correlations
only use their rank information. The logistic correlation exhibits
the worst performance because of the limitation of the logistic
regression fitting.

Fig. 3 provides the ROC curves of the DPMLRT for different
’s and ’s. The circle on each curve denotes the operating

point when the threshold is set to one. As shown in [31], the
slope of the ROC curve for a LRT is equal to the corresponding
threshold value. Thus, when the threshold is one, the slope is
one corresponding to the “knee” of the ROC curve as demon-
strated in Fig. 3, which uses a linear scale for the -axis. As
one increases the number of observers, the knee of the ROC
curve shifts to the top left corner, which means higher and
lower can be achieved for a threshold of one. As expected,
as the number of fused images or the number of observers
increases, the efficacy of the DMPLR improves.

The next set of simulations consider how the DPMLR per-
forms when the model assumptions do not match the data. For
these simulations, , and . The first case
considers uniform random variables ’s with a prespecified cor-
relation matrix , whose th element denotes the correla-
tion coefficient of and . The method
for generating such ’s is from [32]. In this case we denote the
nondiagonal elements of by (the diagonal elements equal 1).
The ’s are completely correlated or independent for or

Fig. 5. ROC curves under generalized binomial distribution. (a) � � ���.
(b) � � �.

, respectively. Fig. 4 compares the ROC curves of DPMLR
with the other correlations for different ’s. Fig. 4(a)–(c) cor-
respond to and , respectively. By comparing
these ROC curves to Fig. 2, we can see that the gap between the
DPMLRT and the others decreases as increases. But clearly
the DPMLRT exhibits the best performance among these corre-
lations. In the limit, as goes to 1, the monotonic evaluation is
moot as all values of the ’s are equal.

The next case considers the effect when the model of human
performance does not match the binomial distribution. We con-
sider the generalized binomial distribution [33] to incorporate
diversity in the capabilities of humans. Specifically, the nom-
inal human performance and associated FIQM
are generated as usual. Then, the realized mean performance
for the observers is drawn from the uniform distribution over

and is drawn from a bi-
nomial distribution with parameters and .3 Here is
referred to as the spread parameter, which denotes the deviation
of ’s distribution from the binomial distribution. Note that for

still follows the binomial distribution with parame-
ters and . Fig. 5 shows the ROC curves of the DPMLRT, the
monotonic, the rank-order and the logistic correlation tests for
different spread parameters . This figure demonstrates that the
DPMLRT is robust to and still outperforms the others even
when is as large as one.

The final case demonstrates that the DPMLR is not the UMP
for any arbitrary prior distribution. Consider a pathological case

3As discussed in [33], any pmf of � over ��� �� can be generated by choosing
a specific pdf to generate 	� .
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Fig. 6. Example of the case in which �� ’s are at the edge of � under � .

in which for odd and is drawn from a uni-
form distribution over . In practice, this case is unlikely
because it means that two different fusion methods provide im-
ages with equivalent performance over multiple scenes. Nev-
ertheless, Fig. 6 compares the DPMLRT with the other corre-
lations. The figure shows that the DPMLRT outperforms the
others when the is high. But the other correlations all achieve
higher detection probability than the DPMLRT when is less
than 0.01.

IV. FIQM EVALUATION VIA THE DPMLRT

This section demonstrates the application of the DPMLRT to
score potential FIQMs. The DPMLRT and some other correla-
tions are used to evaluate the monotonic relationships between
17 different FIQMs proposed in the literature and the human de-
tection results in a specific target detection experiment. Details
of the experiment and the discussion about the evaluation results
are provided in the following subsections.

A. Experimental Setup

Long-wave infrared (LWIR) and image intensified (II) im-
agery were collected in a simulated military operation in an
urban terrain (MOUT) environment. The imagery includes
six interior and exterior locations, where four scenarios were
collected for each location. The four scenarios represent cases
where zero, one, two, and three people are within the field
of regard of the camera. Individuals who were in the field of
regard were typically obscured by objects in the scene, such
as doorways, windows, furniture, and tables. For each of the
scenarios, a horizontal pan of 150 images was then used to
create a larger mosaic of imagery in both the LWIR and II
bands.

The perceptual goal for the human observers is to detect the
target in the scenes by interrogating the fused imagery. To gen-
erate the imagery, the LWIR and II images were registered,
bore-sighted and fused via six different algorithms: 1) contrast
pyramid A (CONA), 2) contrast pyramid B (CONB) [34], 3) dis-
crete wavelet transform (DWTT) [1], [35], [36] 4) color discrete
wavelet transform (CDWT), 5) color averaging (CLAV), and
6) color multiscale transform (CLMT) [37]. The first three al-
gorithms generate grayscale fused images, and the final three
methods generate color fused images. It is worth mentioning
that the distinction between CONA and CONB is which image
(LWIR or II) populates the coarsest coefficients in the pyramid.
Also, the color methods generate a grayscale fusion method for
the luminance component, map the differences in the image co-
efficients in the saturation component, and encode the source

of the largest coefficient (LWIR versus II) in the hue compo-
nent. The CDWT uses this coloring scheme for the DWT coef-
ficients, the CLAV uses simple averaging for the luminance and
the raw pixels for the color components, and the CLMT uses
the coloring scheme for the multiscale fusion method defined
in [37]. Finally, it is instructive to compare the fused imagery
against the source imagery. Therefore, we consider eight fused
image displays: 1) II, 2) LWIR, 3) CONA, 4) CONB, 5) DWTT,
6) CDWT, 7) CLAV, and 8) CLMT.

Fig. 7 shows an example of the resulting eight fused image
displays for a typical scenario in our experiment.4 In this sce-
nario, there are two target persons which are highlighted by the
boxes in each image. As seen in Fig. 7(b), the human targets
stand out in the LWIR imagery because they are usually hotter
than the background. For the most part, detection performance
is best on the LWIR only band because the search task can often
be reduced to simply finding the white hot object on a grey back-
ground. However, the II band has the potential to add context to
the LWIR band as the objects like tables and chairs are easier
to distinguish in the II band [see Fig. 7(a) and (b)]. Therefore,
there can be value in fusing the two bands.

A perception test was set up whereby observers were asked to
try to find the human targets in a “field of regard” search. An ob-
server’s display was calibrated to look as though it were seeing
a single field of regard of a given scene, and the observer had to
navigate across the scene and detect human targets. Observers
could mark as many as three places on the display as detections
for human targets (as they were told that the images could con-
tain between zero and three humans hiding in the scene). At any
point an observer could push a button to indicate that they either
did not detect any targets in the scene or that there were no other
targets in the scene. In the end, the detection performance of the
humans was recorded over the eight image displays.

Overall, observers evaluated 18 scenarios that con-
tained 35 human targets. We treat each target and its surrounding
area as a scene for every scenario. For example, the inside of
each box in Fig. 7 represents a scene, as shown in Fig. 8(a)–(h).
Then, is the number of observers that correctly detected the
target located in the th scene for .

B. Evaluated FIQMs

We test 17 potential FIQMs over each scene. These FIQMs
are listed in Table II with corresponding citations. Most mea-
sures listed in Table II were also evaluated in [17] for a recog-
nition task. All the measures except the first are computed auto-
matically. The first ten measures are simply complexity features
that do not consider the source images (the no-source compara-
tive class according to the classification in Section I). They rep-
resent the structure, texture, contrast and/or edge intensities in
the image in order to characterize the complexity of the image.
Such measures have already been used to evaluate the quality
of image fusion algorithms [17], [18], [38]. Most of these mea-
sures have been inspired by work to develop clutter complexity
measures [19], [39]. These works search for features that char-
acterize the degree to which the background appears target-like
[39]. Ideally, the clutter complexity determines how hard it is to
detect or classify a target in the scene due to the complexity of
the background. The last seven measures compare how well the

4The color versions of the CDWT, CLAV, and CLMT displays in Figs. 7–8
are available in the online version of this paper.
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Fig. 7. Eight fused image displays for one of the 18 scenarios: (a) II, (b) LWIR, (c) CONA, (d) CONB, (e) DWTT, (f) CDWT, (g) CLAV, and (h) CLMT.

Fig. 8. Example of the eight fused image displays and corresponding silhouette for a single scene, i.e., a target instance, in Fig. 7: (a) II, (b) LWIR, (c) CONA,
(d) CONB, (e) DWTT, (f) CDWT, (g) CLAV, (h) CLMT, and (i) silhouette.

salient features in the two source imagery are transferred into
the fused image (the source comparative class). For the most
part, the distinction between these comparative measures is in
the definition of saliency.

Ideally, the FIQM should be computed automatically from the
fused and source images. The contrast measure is considered be-
cause it is one of the measures that is averaged in an objective

National Imagery Interpretability Ratings Scale (NIIRS) rating
[41]. Furthermore, it is intuitive that the contrast between the
target and the background facilitates ease of detection. The con-
trast is computed by manually segmenting human silhouettes
for each scene. Fig. 8(i) shows an example of the silhouette that
separates the target from the background. The white part in the
silhouette denotes target pixels, and the black part denotes back-
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TABLE II
LIST OF THE EVALUATED FIQMS

ground pixels. The measure is equivalent to the percent contrast
used in [42]. For grayscale imagery, it is defined as

contrast (23)

where and are the mean target and background intensi-
ties, respectively, and denotes the dynamic range, i.e., the in-
tensity difference between the brightest and darkest pixels in a
scene. For color imagery, the RGB coordinates are converted to
the CIE color space [43] and the single band contrast
is calculated independently over the , and bands via
(23). Then the root sum square of the three single band con-
trasts is reported as the overall contrast. Since the information
about the color is given in the and bands, these bands ex-
hibit zero contrast for grayscale imagery, and the color version
of contrast is a consistent generalization of the grayscale defini-
tion, i.e., it provides the same answer if the RGB image contains
no color. Intuitively, the color version of contrast integrates the
contrast that exists in all ways the eye can distinguish the fore-
ground from the background, i.e., lightness and color. It might

be possible to generate an automated contrast measure by in-
corporating automated image segmentation techniques. This is
a matter of future investigation.

While the generalization of contrast for color imagery is
straightforward, it is not clear how to best extend the definition
of the other automatic FIQMs to accommodate color imagery.
To this end, we follow the convention in [39] where for the
color images, one generates four color measures for a given
grayscale measure. Namely, the grayscale measure is computed
over each RGB band and summarized by the 1) maximum,
2) minimum, and 3) median values over all bands. The fourth
measure is computed by converting the RGB image into a
grayscale image before calculating the measure.

C. Evaluation Results and Discussion

First, we evaluated the consistency of the FIQMs with human
detection performance over the five grayscale fused image dis-
plays: 1) II, 2) LWIR, 3) CONA, 4) CONB, and 5) DWTT. Then,
we considered scoring the FIQMs generalized for color using all
eight fused image displays.



338 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

TABLE III
LIST OF DPMLR SCORES, ASSOCIATED �-VALUES, AND AVERAGE VALUES OF SOME OTHER

CORRELATIONS FOR 17 GRAYSCALE FIQMS TESTED OVER FIVE IMAGE DISPLAYS

Table III provides the composite DPMLR score over the five
grayscale displays of the 35 scenes for each of the 17 grayscale
measures as well as the corresponding -values. Note that for
each FIQM, the -value is evaluated by calculating the prob-
ability of obtaining a result with the DPMLR larger than the
composite DPMLR score listed in Table III when the hy-
potheses is true. Furthermore, the table also includes the average
values and average absolute values of the monotonic, logistic,
Spearman, and Kendall correlations.

The second column of Table III shows that the composite
DPMLR scores for all but the grayscale contrast measure are
significantly less than one. This means that the evidence points
to the fact that these potential FIQMs are viewed as noise with
respect to ordering the detection probabilities of the imagery.
The poor performance of the source comparative measures may
be explained by structure in the fused and source images that
leads to good interimage correlation but that has no (or even
negative) effect on human performance. Examples of the pit-
falls of source comparative measures when the ideal image is
unknown are provided in [14].

For the grayscale contrast measure, the composite DPMLR
score is still modest at 1.3291 and the -value is not very low.
In fact, the perfect FIQM that consistently ordered the number
of detections over all 35 scenes would provide a composite
DPMLR of 9.632. This means that while there is evidence to
reject the null hypothesis, the evidence to support the monotonic
hypothesis is not compelling. However, the composite DPMLR
score for the grayscale contrast measure is much greater than
the scores for the others. Thus, the contrast measure may be a
key aspect to a proper FIQM.

From Table III, one can see that the orderings of the FIQMs
via the DPMLR and the other correlations differ. Also note that
for each FIQM, the differences between the average correla-
tions and the average absolute correlations indicate a consis-
tency issue for the nature of monotonicity over the 35 scenes.
The contrast measure exhibits by far the largest DPMLR. How-
ever, its average absolute values of the MC and the logistic cor-
relation (mean and mean in Table III) are less than
those of the fBm, respectively. Furthermore, the other average

correlations of the contrast measure are only slightly larger than
those of the fBm. To better compare these two measures, and
to show how differently the DPMLR and the other four correla-
tions evaluate a FIQM based upon the human perception results,
we present the human detection results and the scores of the
DPMLRT, monotonic, logistic, Spearman, and Kendall correla-
tion tests for each scene for the contrast and the fBm measures.

Fig. 9 graphically depicts the relationship between the afore-
mentioned two measures and the human performance over all 35
scenes. The lines marked by the asterisk correspond to the con-
trast measure and the lines marked by the circle correspond to
the fBm. Since only the five gray fused image displays are con-
sidered here, for each scene and each FIQM, we have five detec-
tion numbers and five FIQM values .
In each plot of Fig. 9, the vertical axis denotes the number of hu-
mans that detected the target, while the horizontal axis stands for
the rank of the ’s sorted in ascending order. The shade of the
background of each plot indicates the significance of the mono-
tonic ordering for each scene. The significance value is obtained
by calculating the DPMLR of the given ’s for an imaginary
FIQM whose values perfectly match the ’s in the monotoni-
cally increasing order.

Tables IV and V provide the ascending and descending
DPMLRs as well as the other four correlations (monotonic,
logistic, Spearman, and Kendall) over each scene for the
contrast measure and the fBm measure, respectively. Note
that in Scenes 34 and 35, the same number of detections are
obtained for five different displays. Because of the fact that the
target is so obvious in Scene 34, all eight observers detected
it successfully. Similarly, no one detected the target in Scene
35 because it is so unclear. Both cases are naturally ignored as
they don’t provide any information on the monotonicity.

One very important property of the DPMLR is that it can cap-
ture the significance of a scene based upon the human detection
results, and accordingly adjust its score to provide a more pre-
cise evaluation. The significance, as defined, is determined by
the number of unique human detection values and the spread
of these values over the dynamic range from 0 to 8 detections.
Essentially, the significance describes how easy (or difficult) it
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Fig. 9. Scatter plots of the number of detections versus the quality rank order over 35 scenes (“�” represents the contrast measure, and “�” represents the fBm
measure).

TABLE IV
STATISTICS FOR THE CONTRAST MEASURE WHERE MC, LC, SC, AND KC ARE THE MONOTONIC, LOGISTIC,

SPEARMAN, AND KENDALL CORRELATIONS, RESPECTIVELY

is for random noise to affect the order of the human detection
results. The more unique values that the human detection re-
sults take in a scene, the less likely that random noise will order
the human detection results. The monotonic and logistic corre-
lations give a value of one whenever a scene’s scatter plot is

perfectly monotonic, as observed from Scenes 3, 6, 8, 9, 14, 16,
17, 18, 24, 26, 29, and 32 in Fig. 9 and the corresponding sta-
tistics in Table IV. The Spearman and the Kendall correlations
give a value of one whenever a scene’s scatter plot is strictly
monotonic, as observed from the scatter plot of Scene 5 and the
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TABLE V
STATISTICS FOR THE FBM WHERE MC, LC, SC AND KC ARE THE MONOTONIC, LOGISTIC, SPEARMAN, AND KENDALL CORRELATIONS, RESPECTIVELY

corresponding statistics in Table V. However, the DPMLR gives
a score much greater than one in the significant scenes. Specif-
ically, in Scenes 3, 6, 8, 9, and 14, the likelihoods for noise to
order the data are much slimmer than those in Scenes 24, 26, 29,
and 32. As a result, the DPMLR provides significantly higher
scores in the former than in the later as seen in Table IV.

One can also observe that the miss-ordering for the more
significant scenes causes lower DPMLR scores than those
of the less significant scenes. For instance, we compare the
scatter plots of Scenes 25 and 31 in Fig. 9 as well as the
corresponding descending DPMLR values in Table IV. The
descending DPMLR for Scene 25 is much smaller than that
of Scene 31 because the DPMLR treats the miss-ordering
in Scene 31 as due to the measurement noise. On the other
hand, the other four correlations are equally unforgiving of the
miss-ordering regardless of the significance of the scene. This
is because that the correlations are invariant to linear scaling
of the human detection results, whereas the DPMLR uses the
binomial measurement model to determine whether or not the
scale of the miss-ordering is significant.

Once we realize the DPMLR’s ability to incorporate the sig-
nificance of each scene into the statistical test, it is easy to see
why the DPMLR provides the significantly high score for the
contrast measure. Comparing the scatter plots of these two mea-
sures in the first 20 scenes, we can see that seven of them, i.e.,
Scenes 3, 6, 8, 9, 14, 16, and 17, exhibit the perfect monotonicity
for the contrast measure and some miss-orderings for the fBm

measure. In fact, the nature of the monotonic relationship for
the fBm feature flips for Scene 14, i.e., it is perfectly decreasing.
Both of these factors lead to the significantly higher DPMLR for
the contrast measure. Because the contrast measure is still not
nearly monotonically related to the perception results of many
of the significant scenes, the composite DPMLR score is only
slightly greater than one.

Next, we used all fused image displays and ran an-
other DPMLRT for color-based FIQMs when the human detec-
tion results were collected over observers. The com-
posite DPMLR scores of the 64 color-based FIQMs derived
from the 16 automated grayscale FIQMs are low and not in-
cluded here for the sake of brevity. On the other hand, the color-
based contrast measure achieved a composite DPMLR score of
1.4000, which is slightly greater than that of the contrast com-
puted only over the five grayscale fused image displays. Be-
cause the number of fused images has increased, the signifi-
cance of this “greater than one” score increases and the -value
is 0.041972, which gives stronger support for the monotonic hy-
pothesis. Certainly, the color-based contrast is able to incorpo-
rate the contrast from both the luminance and color components
in an RGB image and serves as a potential FIQM that is able
to explain some of the human performance. Again, the perfect
FIQM would provide a composite DPMLR of 54.5150, and con-
trast is only one aspect of a good FIQM, which has yet to be
identified.



WEI et al.: DIFFUSE PRIOR MONOTONIC LIKELIHOOD RATIO TEST FOR EVALUATION OF FIQMs 341

V. CONCLUSION

This paper proposes the composite DPMLR to quantify
how consistent the values of a FIQM are with measured
human performance represented by the probability of detec-
tion. Specifically, the DPMLR can be used to test whether
or not a monotonic relationship exists between the FIQM
and the underlying human detection performance that is
measured via a perception experiment. The resulting test is
designed to be applicable even when the number of observers
is small so that the measurement errors from the perceptual
experiment are not necessarily Gaussian. The paper discusses
some interesting properties of the DPMLR, and simulation
results demonstrate the advantages of the DPMLR over other
monotonic statistics. Unlike the MC in [17], the DPMLR
seamlessly accounts for the spread of the human observations
and the number of fused images. It indicates to what degree
the ordering of the human observations by the FIQM is not
by random chance. The DPMLRT is a general test of mono-
tonicity that can be used to evaluate monotonic relationships
beyond the image fusion application. Finally, the DPMLR
was used to score a number of potential FIQMs using real
image data with a corresponding perception study.

The DPMLR scores reveal that a proper FIQM for the de-
tection task is not yet available. The comparative measures
may have scored poorly because the salient features exploited
by these measures may not have captured the context in II
imagery that humans exploit for detection. Of note, the con-
trast measure does demonstrate some utility based upon its
DPMLR score, and is clearly one aspect that drives human de-
tection performance. Future work is needed to identify a more
meaningful FIQM. Such a measure may incorporate aspects of
the contrast as well as other quality features of both the lumi-
nance and color components of the image. However, we ex-
pect that a measure needs to understand what context is avail-
able in the image, which makes the search for a good FIQM
very challenging.

The paper revealed many interesting properties of the
DPMLR and conjectured many more properties. Future work is
necessary to prove (or disprove) these conjectured properties.
Furthermore, one can further study over what values of the
DPMLRT is the most powerful test.

The DPMLRT does incorporate some simplifying assump-
tions that could be relaxed for a more robust test. For in-
stance, not all human observers are created equal and the bi-
nomial distribution may not be the best model for the percep-
tion results. Furthermore, the values of are not independent
since all fusion algorithms attempt to provide a good image
for human perception. The paper does demonstrate that the
DPMLRT is robust as these model assumptions are relaxed.
In addition, the DPMLRT assumes that the observers’ proba-
bility of false alarms are calibrated, and it ignores the impact
of contextual information, which may be known a priori or
obtained in the image, on human detection performance. Fu-
ture research can also focus on statistical scoring mechanisms
that account for increasingly realistic data models.

APPENDIX

A. Proof of Property 1

Proof: and can be expressed as

(24)

(25)

Note that the integrands in the numerator and denominator are
the same. This integrand is strictly positive for all except for
a finite set of points of measure zero, namely .
Any integral of the integrand over , and

must be strictly positive. Thus, the integrals in the nu-
merator of (24) are strictly less than the integrals in the denom-
inator. Furthermore, all the integrals are strictly positive. Thus

(26)

and

(27)

Multiplication by leads to and
. Because the ascending and descending

DPMLRs are bounded by zero and for each scene, it is clear
by (11) that the composite DPMLR is also bounded by 0 and

.

B. Proof of Property 3

Proof: Let be a
permutation mapping such that when .
There are such mappings, and let each mapping be identified
with a unique index where . As a matter of
convention, is the identity mapping, i.e., , and

is the reverse sort, i.e., . Each
permutation function allows one to define an ordering of the
coordinates, i.e.,

(28)

such that the collection of all orderings defines any possible
sequence of coordinate values, i.e.,

(29)
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Furthermore, and . As a result

(30)

Using the change of variable , the right hand side of
(30) can be rewritten as

(31)

If , then we have
for . It follows that:

(32)

According to (24), we have

C. Proof of Properties 4 and 5

Proof: First we want to show that if the ’s are in as-
cending order and not constant, then

(33)

when .
To this end, we transform the permutation back to the

identity. Let’s define the permutation function .
For the first step, the value of is switched with the value

where to form . The process repeats itself
for steps such that for the th step, the value of
is switched with where to form . For-
mally, at the th step we have ,
and , where and .

Note that and because for
. After steps, . After the th

step, the ratio of the likelihoods associated with permutations
and , i.e.,

(34)

is greater than or equal to unity because and
over . By taking the product of (34) for

, we have

(35)

The equality occurs only if for ,
which means ’s are equal. Because and is the
identity map and the ’s are not constant, (33) is proven.

Now, integrating both sides of (33) over leads to

(36)

when . Similarly, one can show that

(37)

when . The division of (36) and (37) by
leads to the first statement in Property 4. Similar

arguments prove the second statement in Property 4.
Summing (36) for leads to

(38)

Then . Similarly, (37) can be reexpressed as

(39)

so that . This completes the proof of the first
statement in Property 5. The proof of the second statement can
be proven by similar arguments.
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