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Heat illnesses are best viewed as existing along a continuum, 
transitioning from the mild conditions of heat cramps and heat 
exhaustion to the life-threatening condition of heatstroke. Envi-
ronmental heat exposure is one of the most deadly natural 
hazards in the United States, with approximately 200 heatstroke 
deaths per year. Although the majority of heatstroke deaths are 
observed in vulnerable populations during annual heat waves, 
young fit individuals may also succumb to heatstroke while 
engaging in strenuous activities such as athletic competitions, 
military operations, or occupational tasks. Multiorgan system 
failure is the ultimate cause of heatstroke death, and there is 
complex interplay among the physiologic and environmental 
factors that compromise an individuals’ ability to adequately 
respond to heat stress. The pathophysiology of heatstroke is 
thought to be caused by a systemic inflammatory response that 
occurs in response to endotoxin leakage from the gut, but there 
remains limited understanding of the mechanisms that mediate 
morbidity and mortality. This chapter provides an overview of 
the pathophysiologic responses that are observed in patients and 
experimental animal models at the time of heatstroke collapse 
and during long-term recovery. A brief discussion is provided on 
current clinical heatstroke treatments and promising avenues of 
research that may aid in the development of more effective 
interventions and/or treatments to prevent this debilitating illness.

Heat Stress and Thermoregulation
Four AvenueS oF HeAT excHAnge
Mammals and other homeotherms are capable of maintaining 
body temperature within a fairly narrow range (approximately 
35°-41° C [95°-105.8° F]) despite large fluctuations in environ-
mental temperature. Environmental variables that have the largest 
impact on heat exchange are temperature; humidity; radiation 

from the air, water, or land; and air or water motion.88 To 
maintain stable body temperature, organisms rely on four  
avenues of heat exchange: conduction, convection, radiation, 
and evaporation.

Dry heat exchange is achieved by conduction, convection, 
and radiation. The effectiveness of these mechanisms depends 
on differences between the skin and environmental temperatures. 
That is, dry heat loss occurs when skin temperature exceeds that 
of the environment, and dry heat gain occurs when environmen-
tal temperature exceeds that of the body. Conduction occurs 
when the body surface is in direct contact with a solid object 
and depends on the thermal conductivity of the object and the 
amount of surface area in contact with the object. Conduction is 
typically an ineffective mechanism of heat exchange caused by 
behavioral adjustments that minimize contact with an object. For 
example, the wearing of shoes is an effective behavioral adjust-
ment that minimizes conduction of heat from a hot surface (e.g., 
desert sand) to the foot. Within the body, conductive heat transfer 
occurs between tissues that are in direct contact with one another, 
but is limited by poor conductivity of the tissues. For example, 
subcutaneous fat has approximately 60% lower conductivity than 
does the dermis and impedes conductive heat loss.332 Convection 
is a mechanism of dry heat transfer that occurs as air or water 
moves over the skin surface. The windchill index is an example 
of the convective cooling effect of wind velocity. The rate of 
convective heat transfer depends on the temperature gradient 
between the body and environment, thermal currents, bodily 
movements, and area of the body surface that is exposed to the 
environment, which can vary dramatically with different clothing 
ensembles. Within the body, convective heat transfer occurs 
between the blood vessels and tissues and is most efficient at 
the capillary beds, which are thin walled and provide a large 
surface area for heat exchange. Radiative heat transfer is electro-
magnetic energy that is exchanged between the body and sur-
rounding environmental objects and is independent of air velocity 
or temperature. It is effective even when air temperature is below 
that of the body. All objects within our environment absorb and 
emit thermal radiation, but clothing can reduce the radiant heat 
that impinges on the skin from various environmental sources.

Evaporation represents a major avenue of heat loss when 
environmental temperatures are equal to or above skin tempera-
ture or when body temperature is increased by vigorous physical 
activity. In humans, evaporative cooling is achieved as sweat is 
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vaginal candidiasis, menstrual problems, and urinary tract 
infections.

The Use of frozen MedicaTions
The medical literature is relatively sparse on this topic.31 One of 
the authors has rewarmed frozen fluorescein stain, oxybupro-
caine hydrochloride 0.4%, ophthalmic local anesthetic, cortico-
steroid creams, antifungal creams, inhaled salbutamol, and IV 
hydrocortisone, all of which worked normally after rewarming. 
All forms of tablet medication warmed from frozen have also 
been fine after rewarming. A study from the BAS found that most 
medications remained stable, even after multiple freeze-thaw 
cycles. The exception was hydrocortisone cream, although the 

investigator also recommended against subjecting eye medica-
tions to temperature extremes.F Medical devices, such as IV can-
nulas, worked normally after rewarming, as did all forms of tape 
and dressings. Frozen IV fluids expanded when frozen, perfo-
rated the bags, and thus leaked when rewarmed.

Acknowledgments. Special thanks to Kenneth H Willer, MLS, 
Manager—Library Services, Samaritan Health Services, Corvallis, Ore, 
kwiller@samhealth.org.
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where M is metabolic rate, W is work, and E, C, K, and R are 
evaporative, convective, conductive, and radiant heat transfer, 
respectively.132 The impact of the four avenues of heat exchange 
on total body storage depends on a variety of organismal (e.g., 
age, sex, adiposity), environmental (e.g., humidity, wind veloc-
ity), and occupational (e.g., protective clothing, work intensity) 
variables. Under conditions in which heat production and/or heat 
gain exceeds heat loss, such as during exercise or heat exposure, 
positive heat storage occurs and body temperature increases. 
When heat loss exceeds heat production and/or heat gain, such 
as during prolonged cold exposure, negative heat storage occurs 
and body temperature decreases.88

Endothermic animals use both autonomic and behavioral  
thermoeffector mechanisms to regulate body temperature.  
Autonomic thermoeffector responses are often referred to as 
“involuntary” and include sweating, vasodilation, vasoconstric-
tion, piloerection (furred mammals), and shivering and nonshiv-
ering thermogenesis (brown fat heat production). Behavioral 
thermoeffector mechanisms are considered “voluntary” and 
include clothing changes, use of heat or air conditioning systems, 
huddling or use of blankets, fan cooling, and seeking of shade 
or shelter. Rather than working independently of one another, 
autonomic and behavioral thermoeffector mechanisms typically 
function in concert to maintain temperature control. For example, 
evaporative cooling in rodents requires autonomic stimulation of 
salivation and behavioral spreading of saliva onto nonfurred 
surfaces.104,294 Many large species in the wild use natural water 
sources to facilitate cooling. Elephants spray water onto their skin 
surface, and hippopotamuses and other species are often 
observed near or in watering holes. Water is a more effective 
medium to facilitate convective heat transfer than is air, because 
of its high heat-transfer coefficient (approximately 25 times 
greater than air),305 even if the water temperature is tepid. 
However, voluntary suppression of behavioral mechanisms of 
cooling in humans can increase the risk for thermal injury. This 
is illustrated by older adults who refuse to use air conditioning 
systems or leave their residences during heat waves, or highly 
motivated athletes and military personnel that voluntarily dehy-
drate and/or sustain a high rate of work in hot weather.

Regulation of body temperature is best conceptualized as a 
negative-feedback system consisting of sensors, integrators, and 
effectors. In vertebrates, neurons in the skin, spinal cord, and 
abdomen sense thermal stimuli and convert those signals to 
action potentials that are transmitted by afferent sensory neurons 
to the preoptic area of the anterior hypothalamus (POAH). The 
POAH is considered the main central nervous system (CNS) site 
for thermoregulatory control because it receives and integrates 
synaptic afferent inputs and evokes corrective autonomic and 
behavioral thermoeffector responses for body temperature regu-
lation.28 A diagrammatic representation of this negative-feedback 
loop is shown in Figure 10-2.

The concept of a temperature set point was developed as a 
theoretical framework to examine regulated and unregulated 
changes in body temperature.19 The temperature set point is 
analogous to a thermostat that controls a mechanical heating 
device; under homeostatic conditions, body temperature is 
approximately equal and oscillates around the temperature set 
point. Environmental perturbations, such as heat and exercise, 
cause body temperature to deviate from the set-point tempera-
ture as heat gain and/or production exceeds heat loss and the 
organism becomes hyperthermic (body temperature is greater 
than the set-point temperature). During prolonged cold expo-
sure, heat loss exceeds heat gain and/or production and the 
organism becomes hypothermic (body temperature is less than 
the set-point temperature) (Figure 10-3).

Regulated increases and decreases in the temperature set 
point are referred to as fever and regulated hypothermia (also 
called anapyrexia), respectively, and are protective immune 
responses to infection, inflammation, or trauma. Fever is defined 
as a regulated increase in the temperature set point and is actively 
established and defended by heat-producing (e.g., shivering and 
nonshivering thermogenesis) and heat-conserving (e.g., periph-
eral vasoconstriction, huddling to reduce exposed body surface 
area) thermoeffectors (see Figure 10-3).132 An individual is con-
sidered normothermic once fever is established and body 

vaporized and removes heat from the skin surface, with approxi-
mately 580 kcal of heat lost per each liter of evaporated sweat.94 
The most important environmental variables affecting evaporative 
cooling are ambient humidity and wind velocity. Sweat is con-
verted to water vapor and readily evaporates from the skin in 
dry air with wind, whereas the conversion of sweat to water 
vapor is limited in still or moist air. If sweat accumulates and 
fails to evaporate, sweat secretion is inhibited and the cooling 
benefit is negated. Small mammals, such as rodents, do not 
possess sweat glands but achieve evaporative cooling by groom-
ing nonfurred and highly vascularized skin surfaces, such as the 
ears, paw pads, and tail with saliva that evaporates in a manner 
similar to that of sweat in humans.104,294

Body TemperATure conTrol
Regulation of a relatively constant internal temperature is critical 
for normal physiologic functioning of tissues and cells because 
membrane fluidity, electrical conductance, and enzyme functions 
are most efficient within a narrow temperature range. By conven-
tion, thermal physiologists describe body temperature control 
with a two-compartment model that consists of an internal core 
(i.e., viscera and brain) and an outer shell (i.e., subcutaneous fat 
and skin) (Figure 10-1).70

The skin is the final barrier between the body and the envi-
ronment and functions as a conductive pathway for heat transfer 
to the environment, while also serving as the primary site to 
sense changes in environmental temperature. Skin temperature 
may fluctuate because of changes in environmental temperature, 
relative humidity, wind velocity, and radiation. Heat-transfer 
mechanisms are evoked in response to changes in body heat 
storage (S), which depends on metabolic rate, work, and the four 
avenues of heat exchange, as follows:

S M (W) (E) (C) (K) (R)= − − − − −

FIGURE 10-1  Distribution of temperatures within the human body into 
core and shell during exposure to cold and warm environments. The 
temperatures of the surface and the thickness of the shell depend on 
the  environmental  temperature:  the  shell  is  thicker  in  the  cold  and 
thinner  in  the heat.  (From Elizondo RS: In Rhoades RA, Pflanger RG, 
editors: Human physiology, ed 3. Philadelphia, 1996, Saunders 
College,. Reprinted with permission of Brooks/Cole, a division of 
Thomson Learning, http://www.thomsonrights.com.)
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from parasitic infection.118,213 Mice inoculated with influenza virus 
also show cold-seeking behavior and develop regulated hypo-
thermia, which is associated with improved infection outcome.153 
Other environmental insults that induce regulated hypothermia 
in small rodents include hypoglycemia,34,98 hypoxia,194,252 hemor-
rhage,119 dehydration,129 infection,153,176,264 and heatstroke.173,174

mechanisms of Heat dissipation  
during Thermal Stress

Cardiovascular mechanisms have evolved to shunt warm blood 
from the body core to the skin surface and increase heat loss 
during thermal stress. Arteriovenous anastomoses (AVAs) are 
collateral connections between adjacent blood vessels that 
increase the volume of blood that is delivered to a particular 
tissue. Mean skin blood flow can vary approximately 10-fold in 
humans depending on the thermal environment. The hands and 
feet are concentrated with AVAs that serve as effective areas for 
dry heat loss. The nonfurred surfaces of small rodents, such as 
the ears, tail, and paw pads, also have an abundance of AVAs 
and a large surface area to facilitate convective heat transfer.92,99 
During exercise heat stress, increased blood flow to the skin 
surface is accompanied by sweat secretion. The density, secretion 
rate, and activation threshold of regional sweat glands determine 
the volume of sweat loss at a body site. In humans, the back 
and chest have the highest sweat rates for a given body tempera-
ture change, whereas only approximately 25% of total sweat is 
produced by the lower limbs.217 Additional factors affecting sweat 

temperature oscillates around the new elevated temperature set 
point (see Figure 10-3). The highly regulated nature of fever was 
first suggested by Liebermeister in the 1800s when it was observed 
that individuals actively reestablished an elevation in body tem-
perature following experimental warming or cooling.180,286 Fever 
is a protective immune response used by invertebrates, fish, 
amphibians, reptiles, and mammals to survive infection or injury.* 
The protective effects of fever are mediated by increased mobility 
and activity of white blood cells,218,313 increased production of 
interferon (IFN; antiviral and antibacterial agent) antibodies64, and 
reduced plasma iron concentrations, the effects of all of which 
inhibit the growth of pathogens.89,156 In mammals, the inhibition 
of fever using antipyretic drugs (e.g., aspirin) increases mortality 
from bacterial and viral infection, which speaks to the importance 
of fever as an immune response.126,315

Many species also develop regulated hypothermia to survive 
severe environmental insults. Regulated hypothermia is elicited 
in response to a decrease in the temperature set point and is 
actively established and defended by behavioral and autonomic 
heat-loss mechanisms.132 The Q10 effect states that each 10° C 
(18° F) change in body temperature is associated with a twofold 
to threefold change in enzymatic reaction rates. Based on this 
relationship, a regulated decrease in body temperature is thought 
to protect against injury and inflammation by reducing produc-
tion of harmful enzymatic end products that compromise tissue 
function under conditions of low oxygen supply. In bumblebees, 
infected worker bees spend significantly more time in cooler 
temperatures outside of the nest than do healthy worker bees; 
this cold-seeking behavior is associated with increased survival 

FIGURE 10-2  Diagrammatic representation of the negative feedback 
pathway regulating core temperature in homeotherms. Climatic heat 
stress and exercise (metabolic work) cause heat gain/heat production 
to  exceed  heat  loss  (ΔS >  0)  and  increase  body  temperature  above 
baseline. The increase in total body heat storage is sensed by thermal 
receptors in the skin, spinal cord, and abdomen, which transmit action 
potentials via sensory afferent nerves to the preoptic area of the ante-
rior hypothalamus (POAH). The POAH receives and integrates synaptic 
afferent inputs and evokes corrective behavioral (e.g., fanning, removal 
of clothing) and autonomic (e.g., vasodilation, sweating) thermoeffec-
tor  responses  to  decrease  total  body  heat  storage  and  return  body 
temperature  to  baseline.  indicates  stimulatory  pathway,  indicates 
inhibitory pathway. 
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↑ Temperature
Heat gain/production > heat loss

∆S>0

Thermal receptors
(skin, spinal cord, abdomen)

Sensory afferent
signals

Motor efferent
signals

Heat loss > heat gain/production

Preoptic Anterior Hypothalamus (POAH)
Thermoregulatory Integration Center

Behavioral and autonomic thermoeffectors

ExerciseHeat stress

↓ Total body heat storage

FIGURE 10-3  The theoretic concept of core temperature (Tc) changes 
mediated by a change in the temperature set point (Tset). Hyperthermia 
represents  an  increase  in  Tc  in  the  absence  of  a  change  in  Tset.  In 
response to climatic heat stress, exercise, or the combination of these 
factors, heat gain  (HG) and/or heat production  (HP) exceed heat  loss 
(HL) and Tc rises above Tset as the organism becomes hyperthermic. In 
response to removal from the heat, cooling, or cessation of exercise, 
HL  exceeds  HG/HP  and  Tc  returns  to  baseline.  Fever  is  defined  as  a 
regulated increase in body temperature that is actively established and 
defended by behavioral and autonomic thermoeffector responses that 
increase heat conservation (HC) and/or HG and decrease HL to increase 
Tc to a new elevated level. The rising phase of fever is associated with 
shivering (increases HP) and the donning of blankets (increases HC). The 
individual feels “cold” until a new elevated level of Tc is attained. Note 
that while  fever  is maintained, Tc oscillates  around Tset  and  the  indi-
vidual is considered normothermic with HP = HL. Once fever breaks, HL 
exceeds HC/HP as the individual sweats, removes clothing, and so forth, 
to return Tc to the baseline level. 
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FIGURE 10-4  Infrared images of various surface regions. The brighter 
the color, the warmer the surface temperature. A, Female runner after 
45 minutes of exercise in a 23° C (73.4° F) environment. Note that the 
palms of the hand and the face are substantially warmer than the rest 
of  the  body  surface.  B,  Two  polar  bears.  Note  that  only  the  snout, 
eyes, ears, and  footpads are noticeably different  from the surround-
ings. C,  Sled dog  relaxing  shortly after  completing  the 17.7-km  (11-
mile) ceremonial starting leg of the 2005 Iditarod Trail Sled Dog Race. 
The course of the Iditarod is greater than 1850.7 km (1150 miles) from 
Anchorage to Nome, Alaska. Ambient conditions were 0° C (32° F)with 
a light overcast and no wind. The infrared shot shows that the dog’s 
entire snout is white, meaning it is the hottest part of the body surface. 
The armpits and ears also are warmer. Maybe that is why dogs love to 
roll around in the snow, face first, on a warm day. (A and B from Grahn 
D, Heller HC: The physiology of mammalian temperature homeostasis. 
TraumaCare 14:52, 2004, with permission. C courtesy D. Grahn; photo 
by Matthew Grahn.)
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rate include clothing characteristics, environmental conditions, 
and rate of metabolic heat production. Panting is an effective 
method of evaporative heat dissipation in large animals, such as 
birds, dogs, sheep, and rabbits, and occurs at a resonant ventila-
tion frequency that requires minimal energy expenditure.107,257,329 
Humans and rodents do not pant per se, but breathing frequency 
and minute volume increase during severe heat exposure to 
facilitate evaporative cooling from the respiratory surfaces. In 
humans, the contribution of respiratory evaporative cooling is 
small compared with skin evaporative cooling (Figure 10-4).

deHydrATion And  
elecTrolyTe imBAlAnce
Water requirements during heat exposure are primarily deter-
mined by a person’s sweat losses. Water depletion dehydration 
develops when the rate of water replacement is not adequate, 
which can be a result of a mismatch between fluid intake and 
sweat loss, lack of water availability, or use of diuretic medica-
tions. Sweat rates may range from 0.3 to approximately 3 L/hr 
during athletic or occupational activities, depending on the envi-
ronmental conditions and type, duration, and intensity of 
work.47,143 If high sweat rates are maintained without adequate 
replenishment of lost water, this can cause electrolyte imbalances 
that impede the efficiency of autonomic mechanisms of thermo-
regulatory control. For example, hyperosmolarity alters heat 
responsiveness of warm-sensitive neurons in the POAH and 
limits the effectiveness of evaporative heat loss.121,219,276 Severe 
hypernatremic dehydration is associated with brain edema, intra-
cranial hemorrhage, hemorrhagic infarcts, and permanent brain 
damage (Figure 10-5, online).214

Severe reductions in electrolytes can have a profound impact 
on heatstroke outcome. Symptomatic hyponatremia (decreased 
serum sodium concentration) is a relatively rare condition, but it 
has been observed in marathon runners and military recruits 
during training exercises as a consequence of overconsumption 
of hypotonic fluids with inadequate replacement of sodium 
losses.210,230 Intracellular swelling is a severe consequence of 
hyponatremia that may cause CNS dysfunction. Hypokalemia 
(decreased serum potassium concentration) may be caused by 
overproduction of aldosterone, excessive sweating, or respiratory 
alkalosis. Any cause of overproduction of urine (polyuria) poten-
tially causes urinary potassium loss.323 Potassium is a potent 
vasodilator of blood vessels to the skeletal and cardiac muscles, 
so excessive loss of this electrolyte can have detrimental effects, 
such as decreased sweat volume, cardiovascular instability, and 
reductions in muscle blood flow that predispose to skeletal 
muscle injury (i.e., rhabdomyolysis).158,279

Heat illnesses
Heat illnesses are best viewed as existing along a continuum that 
transition from the mild conditions of heat cramps and heat 
exhaustion to more serious conditions of heat injury and heat-
stroke (Table 10-1).

Heat cramps are typically brief but can cause agonizing pain 
in the skeletal muscles of the limbs and trunk. Cramps may be 
recurrent but are typically confined to the skeletal muscles that 
are involved in vigorous exercise in the heat. Skeletal muscle 
spasms in the extremities may be sporadic, but they are painful 
and develop most frequently in persons who are not acclimatized 
to physical exertion. However, heat cramps may also occur in fit 
athletes who are salt depleted. Heat cramps do not predispose 
to more serious heat illness and are not associated with compli-
cations beyond muscle soreness. The cause of heat cramps is not 
fully understood, but cramps are thought to occur in response 
to increased intracellular calcium release that stimulates actin–
myosin filaments and muscle contraction. Current treatments 
include rest and replacement of electrolytes with fluids or salted 
food. Salt tablets should be avoided because they can cause 
gastrointestinal irritation and may stimulate excess potassium loss 
in the distal tubules of the kidney.

Heat exhaustion (also referred to as heat prostration or heat 
collapse) is a mild to moderate form of heat illness that is associ-
ated with moderate (>38.5° C [101.3° F]) to high (>40° C [104° 
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Heatstroke epidemiology and  
risk Factors
The ability to perform strenuous work in a hot environment is 
inversely related to the heat stress level, which can be assessed 
using the wet bulb globe temperature (WBGT) index. The WBGT 
for indoor or outdoor environments is determined in the follow-
ing manner:

Indoor WBGT  T  Tw amb= +0 7 0 3. .

Outdoor WBGT 0.7 T  T  Tw bg amb= + +0 2 0 1. .

Data from Bouchama A, Knochel JP: Heat stroke. N Engl J Med 346:1978, 2002; and Winkenwerder W, Sawka MN: Disorders due to heat and cold. In Goldman L, 
Ausiello DA, Arend W, et al, editors: Cecil textbook of medicine, ed 23, Philadelphia, 2007, Saunders, pp 763-767.

TABle 10-1  Heat Illness Symptoms and Management

Condition Symptoms Management

Heat cramps Brief, painful skeletal muscle spasms Rest; replacement of electrolytes; avoid salt tablets
Heat rash 

(miliaria rubra)
Blocked eccrine sweat glands Cool, dry affected skin area; topical corticosteroids, 

aspirin
Heat exhaustion Mild to moderate illness with inability to sustain cardiac output; 

moderate (>38.5° C [101.3° F]) to high (>40° C [104° F]) body 
temperature; often accompanied by dehydration

Move supine individual to cool, shaded environment, and 
elevate legs; loosen or remove clothing, and actively 
cool skin; administer oral fluids

Heatstroke Profound CNS abnormalities (agitation, delirium, stupor, 
coma) with severe hyperthermia (>40° C [104° F])

Ensure an open airway, and move to a cool environment. 
Immediately cool to <39° C (102.2° F) using ice packs, 
water bath, wetting with water and continuous fanning; 
IV fluid administration; reestablish normal CNS function; 
avoid antipyretics or drugs with liver toxicity

CNS, Central nervous system; IV, intravenous.

F]) elevations in core temperature and an inability to sustain 
cardiac output.335 The signs and symptoms of heat exhaustion 
include fatigue, dizziness, headache, nausea, vomiting, malaise, 
hypotension, and tachycardia with potential for collapse. Heat 
exhaustion can occur with or without exercise in hot environ-
ments and may progress to a moderately severe condition without 
associated organ damage. Heat exhaustion is often observed in 
older adults as a result of medications (e.g., diuretics), inadequate 
water intake that leads to dehydration, or preexisting cardiovas-
cular insufficiency that predisposes to collapse. Treatment should 
consist of placing the individual in a recumbent position in a 
cool environment to normalize blood pressure. Oral fluid inges-
tion with electrolytes is often adequate for recovery; intravenous 
(IV) fluid administration may be warranted in severely dehy-
drated individuals.

Heat injury is a moderate to severe condition characterized 
by tissue (e.g., skeletal muscle) or organ (e.g., gut, kidney, 
spleen, liver) damage and hyperthermia (core temperature 
usually, but not always >40° C [104° F]).335 Heat injury may prog-
ress to heatstroke if the patient is not rapidly cooled. Heatstroke 
is life threatening, with the patient presenting with profound CNS 
abnormalities, such as delirium, agitation, stupor, seizures, or 
coma and severe hyperthermia (core temperature typically, but 
not always >40° C [104° F]).335 Reliance on a specific core tem-
perature value for clinical diagnosis of heatstroke is ill advised, 
because there is wide interindividual variability in documented 
cases. One of the main reasons for a lack of clinical treatments 
for heatstroke is the complicated nature of the syndrome, because 
there are different classifications based on etiology and patho-
physiologic mechanisms of injury. Classic (also known as passive) 
heatstroke occurs at rest in vulnerable individuals, such as  
infants and older adults. Several intrinsic factors may predispose 
infants to heatstroke death. These include increased surface 
area–to–body mass ratio (accelerates heat gain), limited effective 
mechanisms of thermoregulation (e.g., suppressed behavioral 
adjustments), increased risk for dehydration (e.g., lack of water 
availability), and preexisting respiratory infections. Many older 
individuals have preexisting conditions, such as mental illness, 
prescription drug use (e.g., diuretics, anticholinergics), or infec-
tions that predispose to passive heatstroke (Table 10-2).6,56,312

Exertional heatstroke (EHS) has a different etiology than does 
classic heatstroke and affects young healthy populations that 
perform strenuous physical activity or work in temperate or hot 
weather. During exercise, approximately 80% of expended 
energy is released as heat that must be dissipated from the body 
to avoid hyperthermia. Military and athletic populations are com-
posed of young, healthy individuals who are highly motivated 
to perform strenuous physical activity in hot weather, which 
increases the risk for EHS. A recent epidemiologic study identi-
fied a variety of factors that predispose to EHS, including gender 
(women greater than men), geographic region of origin (northern 
greater than southern states), preexisting illness, and race or 
ethnicity (white greater than black).40 Unfortunately, exercise 
induces physiologic responses similar to those of heat stress, such 
that teasing apart the influence of these two factors in EHS is 
difficult. Data from references 6, 58, 196, 318, and 340.

TABle 10-2  Predisposing Risk Factors for 
Serious Heat Illness

Environmental Factors
High ambient temperature
High humidity
Lack of air movement
Trees and shrubbery
Access to air condition
Lack of shelter
Heat wave (3 or more days of temperatures >32.2° C (90° F))
Individual Factors
Age (small children, older adults)
Obesity
Poor physical fitness level
Lack of acclimatization
Dehydration
Drug Use
Diuretics
Anticholinergics (e.g., atropine)
β-blockers (e.g., propranolol)
Antihistamines
Amphetamines (e.g., Ecstasy)
Ergogenic aids (e.g., ephedra)
Antidepressants
Alcohol consumption
Compromised Health Status
Viral infection (e.g., pneumonia, mononucleosis)
Inflammation (e.g., fever)
Skin disorders (e.g., miliaria rubra, burns)
Cardiovascular disease
Diabetes mellitus
Malignant hyperthermia
Sickle cell trait
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slowly during the nighttime when air temperature decreases, and 
this increase in urban heat storage magnifies the intensity of heat 
exposure experienced by individuals living in concrete urban 
structures.49,165

Several social factors predispose older adults to heatstroke 
mortality, including living alone, inability or unwillingness to 
leave one’s home, residing on the top floor of buildings (heat 
rises), and annual income of less than $10,000.221 Most heat wave 
early warning systems emphasize the use of air-conditioning 
systems, but availability and use of these units is limited by 
socioeconomic status because these units are expensive to 
operate.56,221 A working air conditioner was the strongest protec-
tive factor against mortality during the 1999 heat wave in Chicago; 
fan cooling did not afford protection.221 High mortality rates were 
recorded in Chicago despite extensive programs to educate high-
risk populations, such as advising older adults to seek cool 
shelters or use air-conditioning systems. Approximately 10,000 
elders died during the France heat wave of 2003 primarily 
because of lack of air-conditioning units in residences and hos-
pitals.63,312 In 2005, Hurricane Katrina ravaged the U.S. Gulf Coast, 
and electrical failures caused high heatstroke mortality of older 
adults confined to residences, retirement homes, and hospitals 
because local temperatures exceeded 43° C (109.4° F). Increases 
in the average human lifespan, global climate change, and use 
of medications that compromise cardiovascular adjustments to 
heat stress will necessitate increased reliance on artificial cooling 
systems and educational programs to prevent heatstroke deaths 
in vulnerable populations, such as older adults.

The high death toll of older adults because of excessive heat 
per se may be small compared with that caused by aggravation 
of a preexisting illness. Heat stress refers to environmental and 
metabolic conditions that increase body temperature; heat strain 
refers to the physiologic consequences of heat stress. Heat strain 
imposes large cardiovascular demands on the body. Blood flow 
is shunted from the viscera to the skin surface to dissipate excess 
heat to the environment, making cardiovascular fitness a more 
important factor than age in determining an individual’s suscep-
tibility to heatstroke. Austin and Berry10 examined 100 cases of 
heatstroke during three summer heat waves in St. Louis and 
found cardiovascular illness in 84% of patients. Levine178 found 
heatstroke deaths to be associated with arteriosclerotic heart 
disease (72%) and hypertension (12%). Cardiac deficiency 
impedes heat loss and compromises the ability to maintain 
cardiac output during prolonged heat exposure, leading to cir-
culatory collapse and death. Older individuals may have impaired 
baroreceptor reflex modulation, lower sweat rates, longer time 
to onset of sweating, and diminished sympathetic nerve dis-
charge, all of which increase the risk for heatstroke morbidity 
and mortality.130,144,291 Minson and colleagues206 demonstrated that 
during heat exposure, older men relied on a higher percentage 
of their cardiac chronotropic reserve compared with young men.

Preexisting infection or inflammation may compromise an 
individual’s ability to appropriately respond to heat stress and 
can be a complicating factor, regardless of age. Fifty-seven 
percent of heatstroke patients more than 65 years old had evi-
dence of infection upon clinical admission during a Chicago heat 
wave in 1995.56,157 In Singapore, a young EHS victim had been 
ill for 3 days before heatstroke collapse.43 It has been proposed 
that acute illness or inflammation can cause transient susceptibil-
ity to heatstroke in young, fit individuals who exercise in the 
heat. For example, idiosyncratic episodes of hyperthermia were 
associated with acute cellulitis and gastroenteritis in soldiers 
exercising in the heat.39,146 Four male Marine recruits presented 
with viral illness (mononucleosis, pneumonia) before collapse 
from exertional heat illness (EHI) during training exercises associ-
ated with “the Crucible” at Parris Island, South Carolina.289 Periph-
eral blood mononuclear cells (PBMCs) from these recruits 
expressed higher levels of IFN-inducible genes than did those 
from controls who participated in the training event but did not 
collapse.289 High plasma levels of IFN-α and IFN–γ mediate flulike 
symptoms during viral infection and are often associated with 
EHI/EHS.24,289 In rats, exposure to lipopolysaccharide (LPS), a cell 
wall component of gram-negative bacteria, exacerbated inflam-
mation, coagulation, and multiorgan system dysfunction from 
heat exposure.182 Taken together, these findings suggest that a 
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where Tw is the natural wet bulb temperature, Tbg is the black 
globe temperature, and Tamb is the dry bulb temperature. Tbg 
determines the radiant heat load with a specialized thermometer 
that is surrounded by a 6-inch–diameter blackened sphere. The 
WBGT is the most widely used index to determine safe limits of 
physical activity and establish strategies to minimize the inci-
dence of heat illness during military, athletic, or occupational 
tasks. The WBGT index does not take into consideration different 
clothing ensembles or exercise intensities, so the most practical 
and safe application of this measurement requires adjustment for 
these factors.

Heat waves are defined as three or more consecutive days 
during which the environmental temperature exceeds 32.2° C 
(90° F)41 In the summer of 2003, Europe experienced 22,000 to 
45,000 heat-related deaths during a 2 week period in which the 
average temperature was 3.5° C (6.3° F)above normal.189,273 The 
European continent has experienced an increase in minimum 
daily temperatures over the last 30 years, and this trend will likely 
increase if average global temperatures continue to rise. A 1.4° 
to 5.8° C (2.5° to 10.4° F) increase in minimum daily temperatures 
in Europe is predicted over the next century.131,337 Most prediction 
models suggest that heat waves in the future will be more severe 
and longer in duration. Predictions based on climate variability 
data from the 1995 Chicago and 2003 Europe heat waves suggest 
that by 2090, heat waves in these cities will be 25% to 31% more 
frequent and last 3 to 4 days longer.203 Another prediction model 
suggests a 253% increase in annual heatstroke deaths in the 
United Kingdom by 2050.61

The impact of climate change is not equally distributed across 
the globe because of regional variability in thermal tolerance that 
influences the incidence of heatstroke mortality. A study of 11 
U.S. cities showed that threshold temperatures for heatstroke 
mortality are higher in warmer southern cities than in cooler 
northern cities.53 A comparison of temperature–mortality relation-
ships in southern Finland, southeastern New England, and North 
Carolina indicated that lower temperature thresholds in cooler 
climates are coupled with steeper temperature–mortality relation-
ships.62 Similarly, the upper safety limit of environmental tem-
perature in the Netherlands, London, and Taiwan is 16.5°, 19°, 
and 29° C (61.7°, 66.2°, 84.2° F), respectively.192 A case study of 
15 Marine recruits who collapsed from heatstroke during training 
exercises in South Carolina showed that 73% previously resided 
in northern states and that 60% of cases occurred during the 
second week of training during the hottest summer months.232 
From 1980 to 2002, the highest EHS incidence in military recruits 
was in nonacclimatized individuals from northern, cold-climate 
states who were enlisted for less than 12 months.40 During July, 
many regions of the world have a WBGT index that is greater 
than 29° C (84.2° F), and military training often occurs in  
environments with a WBGT index that is greater than 35° C  
(95° F). During peacetime exercises, approximately 25% of fatal 
military EHS cases occur during the hottest summer months in 
recruits who have been in training camp less than approximately 
2 weeks.192 Individuals from northern states are expected to be 
less acclimatized to hot, humid summer conditions than are those 
from southern states. Heat acclimatization improves thermotoler-
ance but requires several days to weeks of exposure to similar 
heat stress and exercise conditions to be fully effective. This likely 
accounts for hot days early in the summer showing a greater 
impact on heatstroke morbidity and mortality than those cases 
occurring later in the training process, after the protective effects 
of heat acclimatization have been realized.105

Humanity’s impact on the landscape in conjunction with 
increased production of greenhouse gases may be creating the 
largest climate change. Urban heat islands are created in cities 
when vegetation is removed and blacktop roads and concrete 
buildings are erected. Temperatures may be 30° to 40° C (54° to 
72° F) higher on asphalt roads and roof tops compared with 
those of the surrounding air.85 Since 1978 urban sprawl has 
accounted for an increase in city temperatures in southeastern 
Asia of approximately 0.05° C (0.09° F) per decade.343 Across the 
entire land mass of the United States, the surface temperature 
has increased approximately 0.27° C (0.49° F) per century 
because of changes in the land cover arising from agricultural 
and urban development.139 Concrete and asphalt surfaces cool 
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and experimental research has seen a shift within the past decade 
toward a focus on understanding the pathophysiologic responses 
that mediate long-term injury. It is now believed that the long-
term pathophysiologic responses to heatstroke are caused by a 
systemic inflammatory response syndrome (SIRS) that ensues 
following heat-induced damage to the gut and other organs.24 
Following damage to the epithelial membrane of the gut, endo-
toxin that is normally confined to the lumen of this organ is able 
to leak into the systemic circulation and elicit immune responses 
that cause tissue injury. The thermoregulatory, immune, coagula-
tion, and tissue injury responses that ensue during long-term 
progression of heatstroke closely resemble those observed during 
clinical sepsis and are likely mediated by similar cellular mecha-
nisms. Clinical records have provided an extensive database of 
the immediate consequences of heatstroke, whereas the majority 
of knowledge regarding the pathophysiologic mechanisms of 
heat-induced SIRS has been obtained from experimental animal 
studies. Although there are several gaps in our knowledge of the 
specific factors that predispose to multiorgan system failure, this 
is an exciting area of research that is expected to progress at a 
rapid rate because of continued advancements in experimental 
and genetic technologies. Figure 10-6 provides an overview of 
the current understanding of the pathophysiologic responses that 
are thought to initiate and mediate heat-induced SIRS, which will 
be discussed in detail here.

preexisting inflammatory state compromises an individual’s 
ability to respond to heat stress with appropriate thermoregula-
tory or immune responses to prevent collapse or multiorgan 
system failure and death.

The annual Muslim pilgrimage to Mecca (the hajj) is associated 
with high heatstroke incidence each year and provides many 
lessons regarding etiologic factors that increase susceptibility. The 
hajj takes place in the hot desert environment of Saudi Arabia 
during the extreme weather months of May to September, when 
temperatures range from 38° to 50° C (100.4° to 122° F).148 Hot 
weather combined with physical exertion (first day consists of a 
3.5-km [2.2-mile] jog), heavy clothing that is traditional to the 
region (limits heat dissipation), and an older population (approx-
imately 50 years is an advanced age for this region) predispose 
many individuals to heatstroke. Clothing has a significant impact 
on Muslim women because they are required to wear darker 
clothing that covers a larger surface area of the body than does 
clothing worn by men.112 Medical conditions, such as diabetes, 
cardiovascular abnormalities, or parasitic diseases, are common.148 
Heatstroke is a major concern, but heat exhaustion with water 
or salt depletion is also prevalent. Overcrowding and congestion 
impose large demands on sanitation services, as exemplified in 
the 1980s, when approximately 2 million people participated in 
the hajj. Advances in modern technologies, such as more rapid 
transport to the area, will likely introduce additional factors (e.g., 
lack of acclimatization, increased greenhouse gas production, 
increased congestion) to this already complex situation.

Protective clothing is a significant predisposing factor to EHS 
during athletic (heavy uniforms), military (chemical protective 
clothing), or occupational activities (e.g., pesticide application, 
firefighting, and race car driving). Protective clothing often con-
sists of multiple layers that insulate anatomic sites from heat 
exchange, including the skin and head.251 The wearing of protec-
tive clothing during strenuous work can quickly result in a dan-
gerous elevation in body temperature. Fifty-one cases of EHI 
were observed in military trainees in San Antonio, Texas, during 
participation in a 9.3-km (5.8-mile) march in full battle dress 
uniform and boots.285 Lack of acclimatization to athletic uniforms 
and high environmental temperatures results in the majority of 
EHS occurring on the second or third day of exposure to hot 
weather before these individuals are acclimatized to the uniforms 
and environmental temperatures.97,260

Skin diSorderS
The skin is the largest organ of the body and an important area 
for effective heat exchange with the environment. There are a 
number of skin disorders that can adversely affect temperature 
control and increase susceptibility to heat illness. Miliaria rubra 
(also known as prickly heat, sweat rash, or heat rash) occurs 
when sweat gland ducts become blocked with dead skin cells 
or bacteria (e.g., Staphylococcus epidermidis). The obstruction 
causes eccrine secretions of the sweat glands to accumulate in 
the ducts or leak into the deeper layers of the epidermis, causing 
a local inflammatory reaction associated with redness and blister-
like lesions. Individuals with miliaria rubra are at increased risk 
for heat illness when a large area of the skin is affected. If heat 
illness is expected, the affected area of the skin should be cooled 
and dried to control infection, and topical corticosteroids or 
aspirin may be effective in reducing swelling and irritation. 
Sunburn can impair sweating and cause fever, which increase 
the risk for heat illness. If the sunburn covers more than 5%  
of the body, heat exposure should be avoided until the skin  
has healed. Sunburn is a preventable disorder with the use of 
sun-block lotions, protective clothing, and shelter from sun 
exposure.

pathophysiology of Heatstroke
The pathophysiologic responses to heatstroke range from those 
conditions that are experienced immediately following collapse 
to long-term changes that persist for several weeks, months, or 
years following hospital treatment and release. Currently more is 
known about the immediate heatstroke because clinical records 
document symptoms during hospital treatment. However, clinical 
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FIGURE 10-6  Summary of heatstroke pathophysiologic responses that 
culminate in multiorgan system failure. An increase in heat strain stimu-
lates  a  reflexive  increase  in  cutaneous  blood  flow  and  decrease  in 
splanchnic blood flow to facilitate heat dissipation to the environment. 
Gut ischemia causes increased epithelial membrane permeability and 
leakage of endotoxin into the systemic and portal circulation. Toll-like 
receptors (e.g., TLR4) detect pattern-associated molecular patterns on 
the  cell membrane of  endotoxin  and  stimulate proinflammatory  and 
antiinflammatory cytokine production. Heat is toxic to several organs 
and stimulates the secretion of heat shock proteins (HSPs) that interact 
with cytokines and other proteins to mediate the systemic inflamma-
tory  response  syndrome  (SIRS)  of  the  host.  Peripheral  and  central 
nervous system actions of cytokines and other mediators of SIRS are 
thought  to mediate many of  the adverse consequences of  the heat-
stroke syndrome that lead to multiorgan system failure and death. DIC, 
Disseminated intravascular coagulation. 
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guinea pigs, showed reductions greater than 1.0° C (1.8° F) in 
body temperature that were associated with improved survival 
following passive heatstroke. In mice, hypothermia was associ-
ated with an approximately 35% decrease in metabolic heat 
production and the behavioral selection of microclimates that 
precisely regulated the depth and duration of this response.174 
Exposure of mice to warm ambient temperatures that prevented 
heat-induced hypothermia caused increased intestinal damage 
and mortality.173,333 Hypothermia likely provides protection against 
heat-induced tissue injury in a manner similar to that shown for 
protection against other extreme environmental insults based on 
the temperature coefficient (Q10) effect.

A common heatstroke recovery response observed in patients 
and animal models is recurrent fever during the days and weeks 
of recovery.9,10,173,192,204 In mice, fever was observed within a day 
after passive heatstroke collapse and associated with an approxi-
mately 20% increase in metabolic heat production and increased 
plasma levels of the proinflammatory cytokine interleukin (IL)-
6.154,172,174 IL-6 is an important regulator of fever during infection 
and inflammation and may regulate fever during heatstroke 
recovery.172 In patients, fever is reestablished following clinical 
cooling.192 This is reminiscent of Liebermeister’s experimental 
observations of the recurrence of fever following experimental 
cooling of the POAH of rats.180,192 In experimental animal models, 
the inability to recover from hypothermia and develop fever is 
associated with increased mortality, suggesting that fever may be 
important for the resolution of infection.173 However, in a case 
report of human heatstroke, fever was associated with poor 
outcome. An amateur long-distance runner was hospitalized for 
10 days after collapsing from EHS during a 9.7-km (6-mile) foot-
race.204 Moderate fever (>38° C [100.4° F]) was evident during the 
first 4 days of hospitalization, but on the 10th day the patient 
experienced convulsions and a rapid increase of body tempera-
ture to 41° C (105.8° F). Rapid cooling and aspirin were ineffec-
tive in reducing body temperature, and the patient died.204 The 
inability of aspirin to inhibit the rapid rise in body temperature 
suggests that this was not a true fever response, but rather a 
pathologic response to increased metabolic heat production 
induced by the convulsions. It is important to recognize that there 
is an optimal temperature range above which the protective 
effects of fever are no longer realized because of the toxic effect 
of high body temperature on cell function.155

immune reSponSeS
During heat stress, blood flow to the skin is increased to facilitate 
heat loss to the environment and reduce the rate of total body 

10

Body TemperATure reSponSeS
At the time of heatstroke collapse, the severity of hyperthermia 
varies widely between individuals, with reported core tempera-
ture values ranging from approximately 41° C (105.8° F) to 
approximately 47° C (116.6° F).* During a summer heat wave in 
St. Louis in the 1950s, core temperature of 100 heatstroke patients 
ranged from 38.5° to 44° C (101.3° to 111.2° F), with 10% of 
mortalities occurring below 41.1° C (106° F).10 In some instances, 
individuals may tolerate hyperthermia without adverse side 
effects. During a competitive marathon race in California, a 
26-year-old man maintained a rectal temperature of 41.9° C 
(107.4° F) for approximately 45 minutes without clinical signs of 
heat illness.197 However, there are several reports of athletic, 
military, and occupational workers with core temperatures below 
41.9° C (107.4° F) that were hospitalized, experienced permanent 
CNS impairment, or died from EHS (Table 10-3).

Hypothermia and fever are core temperature responses that 
are often observed in patients and experimental animal models 
during heatstroke recovery. Hypothermia is not a universal heat-
stroke recovery response in humans but has been anecdotally 
observed following aggressive cooling treatment. Hypothermia 
manifests as a rapid undershoot of body temperature below 37° 
C (98.6° F) and is thought to represent a loss of thermoregulatory 
control following heat-induced damage to the POAH. However, 
evidence in support of this hypothesis is lacking because autopsy 
reports and experimental animal studies have failed to detect 
histologic damage to the POAH despite extensive damage in 
other organs.174,192 Because hypothermia is not observed in all 
heatstroke patients, it continues to be regarded as a pathologic 
recovery response. In experimental animals, hypothermia is a 
natural heatstroke recovery response that is associated with 
behavioral and autonomic thermoeffector responses that support 
a decrease in core temperature. Mud puppies are ectothermic 
species that rely on behavioral adjustments, such as the selection 
of different microclimates, to control body temperature. Mud 
puppies heat shocked to approximately 34° C (93.2° F) behavior-
ally selected a cooler microclimate and maintained a significantly 
lower body temperature than did nonheated controls during 
3 days of recovery.128 This study did not determine the impact 
of hypothermia on survival, but the association of decreased 
body temperature with the selection of cool microclimates indi-
cated that this was a regulated response to a decrease in the 
temperature set point. Small rodents, such as mice, rats, and 

9

*References 26, 42, 109, 112, 188, 289.

TABle 10-3  Clinical Characteristics of Exertional Heat Illness Cases

Activity Body Temperature (° C [° F]) Age (Years) Length of Hospitalization Outcome

Military training
Army (aviation) >39.0 (102.2) 18-59 10 min CNS dysfunction207,*
Army (basic) 40-41.1 (104-106) 18-41 24 hr to 12 days Death192

Army (basic) 41.1 (106) 20 5 days Recovery233

Army (Singapore) 40-42 (104-107.6)† 18-29 45 min to 99 hr Death43

Marine Corps <38.9-40.0 (102-104) 17-30 None Recovery106

Marine Corps 39-42.5 (102.2-108.5)†‡ 17-19 >1 day Recovery289

Marine Corps 41.1 (106) NR ≤12 hr Hospitalization106

NBC 41.3 (106.3) 25 12 days Recovery51

Athletic events
6-Mile run 39.2 (102.6)§ 29 10 days Death204

Marathon run 40.7 (105.3)‡ Late 30s 5 days Recovery261

Marathon run 41.9 (107.4) 26 None Recovery197

Hajj rituals <42 (107.6) 32-80 NR Ataxia, infarction, death341

≥42 (107.6) NR NR Death341

43.9 (111) NR NR Recovery341

Migrant farming 42.2 (108) 44 None Death220

Firefighter training 42.6 (108.7) 22 9 days Death219

NR, Not reported; NIOSH, National Institute for Occupational Safety and Health; NBC, nuclear, biological, and chemical protective clothing.
*CNS dysfunction includes agitation, confusion, disorientation, delirium, poor memory, convulsions, and/or coma.
†Indicates patient cohorts with documented prodromal illness before heatstroke collapse.
‡Body temperature measured several minutes after collapse or cooling.
§Patient temperature increased to 41° C (105.8° F) on day 10 of hospitalization before death.
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polymorphisms remains controversial.5,75 C3H/HeJ mice have not 
been tested for their resistance to heatstroke morbidity/mortality 
but are a useful experimental model to determine the role of 
TLR4 and anergy in this syndrome.

Specificity of immune responses is provided by B and T cells 
of the adaptive immune system. These cells respond to antigens 
by secreting cytokines, which are intercellular immune signals 
that elicit proinflammatory (Th1 type) and antiinflammatory (Th2 
type) actions during progression of SIRS. The actions of cytokines 
depend on the nature of the danger signal, the target cells with 
which they interact, and the cytokine “milieu” in which they 
function. Th1 and Th2 cytokines function in a negative feedback 
pathway to regulate each other’s production and maintain a deli-
cate balance of inflammatory reactions. Anergy is thought to be 
a consequence of inadequate Th2 cytokine production late in 
SIRS. For example, increased patient mortality from peritonitis is 
associated with the inability to mount a Th2 cytokine response.117

Alarmins are endogenous PAMPs that are released from 
stressed or injured tissues and initiate restoration of homeostasis 
following an infectious or inflammatory insult.17 High mobility 
group box 1 (HMGB1) is a highly conserved nuclear protein that 
functions as an alarmin following release from necrotic (but not 
apoptotic) cells.272 Necrosis is the premature death of cells in a 
tissue or organ in response to external factors, such as pathogens 
and toxins. Because necrosis is detrimental to the host, it is 

heat storage. Increased skin blood flow is accompanied by a fall 
in splanchnic (i.e., visceral organ) blood flow as a compensatory 
mechanism to sustain blood pressure. Endotoxin is normally 
confined to the gut lumen by tight junctions of the epithelial 
membrane, but these junctions can become “leaky” following 
prolonged reductions in blood flow that cause ischemic stress.108,164 
There are several lines of evidence that support the hypothesis 
that endotoxin leakage from the gut lumen into the systemic 
circulation is the initiating stimulus for heat-induced SIRS. First, 
systemic injection of LPS into experimental animals induces symp-
toms similar to those observed in heatstroke, including hyperther-
mia, hypothermia, fever, hypotension, cytokine production, 
coagulation, and tissue injury.175,268 Second, increased portal or 
systemic endotoxin levels are observed in heatstroke patients and 
animal models. In primates, circulating endotoxin was detected 
at rectal temperatures above 41.5° C (106.7° F) with a precipitous 
increase at approximately 43.0° C (109.4° F).90 Splanchnic blood 
flow shows an initial decrease at 40° C (104° F); the liver, which 
is an important clearance organ for endotoxin, shows damage  
at body temperatures of approximately 42° to 43° C (107.6° to  
109.4° F).* In a young athlete with a body temperature of  
40.6° C (105.1° F) on the second day of football practice, high 
circulating levels of endotoxin were associated with hemorrhagic 
necrosis of the liver.97 In heatstroke patients, endotoxin was 
detected at approximately 42.1° C (107.8° F) and remained ele-
vated despite cooling.26 Third, rats rendered endotoxin tolerant 
following the systemic injection of LPS are protected from heat-
stroke mortality.66,67 The protective effect of endotoxin tolerance 
is related to enhanced stimulation of the liver reticuloendothelial 
system (RES), which is composed of monocytes, macrophages, 
and Kupffer cells that are important for endotoxin clearance.66,67 
In rats, RES stimulation reduced and RES blockade increased 
mortality of heat-stressed rats.67 Fourth, antibiotic therapy protects 
against heatstroke in several species. In dogs, antibiotics reduced 
gut flora levels and improved 18-hour survival rates by more than 
threefold when provided before heat exposure.37 In rabbits with 
heatstroke, hyperthermia and endotoxemia were reduced follow-
ing oral antibiotics.36 Anti-LPS hyperimmune serum reversed heat-
stroke mortality of primates and returned plasma LPS levels to 
baseline, but it was ineffective at the highest body temperature 
of 43.8° C (110.8° F), indicating that hyperthermia can cause 
irreversible organ damage and death.91

Heat-induced SIRS is initiated by the innate and adaptive 
immune systems, which interact to sense the presence of endo-
toxin and orchestrate an immunologic response. The innate 
immune system comprises monocytes, macrophages, and neu-
trophils that use pattern recognition receptors (PRRs) on their 
cell surfaces to recognize pattern-associated molecular patterns 
(PAMPs) on the cell surface of endotoxin and other invading 
pathogens.137 Toll-like receptors (TLRs) are a class of PRRs that 
have been widely studied in the immune response to infec-
tion.208,314 Ten mammalian TLRs have been identified, and the 
specific pathogenic ligands that activate these PRRs are known 
(Table 10-4).

TLR4 is the principal receptor for LPS that stimulates gene 
transcription factors, such as NF-κB to increase the synthesis of 
a variety of immune modulators in response to endotoxin. Endo-
toxin infection (i.e., sepsis) is associated with increased expres-
sion of TLR4 on circulating human PBMCs, as well as on mouse 
liver and spleen macrophages.307,308 In the 1960s, a spontaneous 
mutation in the TLR4 gene was discovered in C3H/HeJ mice, 
which has been an important animal model to determine the role 
of TLR4 in endotoxin responsiveness. C3H/HeJ mice show a 
diminished response to bacterial infection, but increased mortal-
ity from SIRS, because of an inability to respond appropriately 
to endotoxin and induce the full complement of immune 
responses.103 An inability to respond to antigens is known as 
anergy and is a proposed mechanism that predisposes to 
increased risk and mortality from bacterial infection.117 Given that 
TLR4 mutations exist in humans, this may be one (of several) 
genetic factors that predispose to mortality associated with heat-
induced SIRS, although the association of mortality with TLR4 

11

*References 29, 30, 43, 108, 147, 225.

TABle 10-4  Toll-Like Receptors of the Innate 
Immune System

Toll-Like 
Receptor Ligand Cell/Tissue Types

TLR1 Triacyl lipopeptide Monocytes, 
macrophages, DCs, 
polymorphonuclear 
leukocytes, B and T 
cells, NK cells

TLR2 Lipopolysaccharide
Peptidoglycan
Lipoteichoic acid
Measles virus
Human cytomegalovirus
Hepatitis C virus
Zymosan
Necrotic cells

Monocytes, granulocytes
Brain, heart, lung, spleen

TLR3 Viral double-stranded 
RNA

DCs, T cells, NK cells, 
monocytes, 
granulocytes

Placenta, pancreas
TLR4 Lipopolysaccharide

Fibrinogen
Heat shock proteins
High mobility group box 1

B cells, DCs, monocytes, 
macrophages, 
granulocytes, T cells

Spleen
TLR5 Flagellated bacteria Monocytes

Ovary, prostate
TLR6 Diacyl lipopeptide B cells, monocytes

Thymus, spleen, lung
TLR7 Single-stranded RNA Monocytes, B cells, DCs

Lung, placenta, spleen, 
lymph node, tonsil

TLR8 Single-stranded RNA Monocytes
Lung, placenta, spleen, 

lymph node, bone 
marrow, PBLs

TLR9 CpG DNA B cells, DCs
Spleen, lymph node, 

bone marrow, PBLs
TLR10 Unknown B cells

Spleen, lymph node, 
thymus, tonsil

CpG, Deoxycytidylate-phosphate-deoxyguanylate; DC, dendritic cell; NK, 
natural killer; PBL, peripheral blood leukocyte..

Data from Medvedev AE, Sabroe I, Hasday JD, et al: Tolerance to microbial 
TLR ligands: Molecular mechanisms and relevance to disease. J Endotoxin Res 
12:133, 2006; and Tsujimoto H, Ono S, Efron PA, et al: Role of Toll-like receptors 
in the development of sepsis. Shock 29:315, 2008.
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coagulation is characterized by excessive blood loss when plate-
lets and coagulation proteins are consumed faster than they are 
produced.8,12 Hemorrhagic complications in heatstroke victims 
include prolonged bleeding from venipuncture sites or other 
areas (e.g., gums), which can have a fatal outcome.148 The 
primary event that initiates coagulation in heatstroke patients is 
thermal injury to the vascular endothelium.21,24,215 In vitro studies 
have shown the ability of heat (43°-44° C [109.4°-111.2° F]) to 
directly activate platelet aggregation and cause irreversible hyper-
aggregation despite cooling.87,333 Cancer patients treated with 
whole-body hyperthermia (41.8° C [107.2° F]) for 2 hours) 
showed decreased fibrinogen and plasminogen at body tempera-
tures as low as 39° C (102.2° F), alterations in factor VII activity 
at 41.8° C (107.2° F), and decreased platelet concentrations from 
the time of maximum body temperature through 18 hours of 
recovery.295

Several proteins, including HMGB1, IL-1, tumor necrosis factor 
(TNF), and activated protein C (APC), affect the coagulation, 
anticoagulation, and fibrinolytic pathways. In rats, HMGB1 in 
combination with thrombin caused excess fibrin deposition in 
glomeruli, prolonged clotting times, and increased sepsis mortal-
ity compared with thrombin alone.133 The effect of HMGB1 
protein was demonstrated in vitro to be caused by inhibition of 
the APC pathway and stimulation of tissue factor expression on 
monocytes.133 Cytokines stimulate microvascular thrombosis by 
interacting with neutrophils, macrophages, platelets, and the 
endothelium to increase the expression of intracellular adhesion 
molecules. Increased expression of cell adhesion molecules, neu-
trophil adhesion, and release of reactive oxygen species caused 
endothelial activation and injury.201,330 APC is an important com-
ponent of the anticoagulation pathway that inactivates factors Va 
and VIIIa to inhibit fibrin clot formation. In septic patients, 
reduced APC production was associated with increased risk for 
mortality from systemic inflammation and DIC.78,179 In addition to 
its anticoagulation properties, APC possessed antiinflammatory 
and antiapoptotic properties that protected against experimental 
sepsis and heatstroke.44,302

Typical clinical measures of coagulation include prothrombin 
time (PT), activated partial thromboplastin time (aPTT), and 
fibrinogen. PT in combination with aPTT assesses the time for 
plasma clot formation to occur in response to exogenous tissue 
factor and is a sensitive measure of responsiveness of the coagu-
lation pathway. The reference range for PT is approximately 12 
to 15 seconds and may be prolonged severalfold in heatstroke 
patients. The aPTT normally ranges from approximately 30 to 40 
seconds and is used clinically to monitor treatment effects of 
anticoagulants, such as heparin. Fibrinogen is an acute phase 
protein synthesized by the liver that is normally in the range of 
2 to 4 g/L. Low fibrinogen levels indicate liver damage or DIC, 
whereas elevated levels are a clinical sign of systemic inflamma-
tion. DIC can be difficult to diagnose, but low fibrinogen levels 
with prolonged PT or aPTT are strong clinical indicators in criti-
cally ill patients.

TiSSue injury
Multiorgan system failure is the ultimate cause of heatstroke 
mortality and is a consequence of SIRS, which ensues following 
heat-induced damage to the gut and other tissues.24 A variety of 
noninfectious and infectious clinical conditions are associated 
with SIRS, and similar physiologic mechanisms are thought to 
mediate the pathogenesis of these conditions (Table 10-5).

The term sepsis refers to SIRS associated with the presence of 
infection. Much of the understanding of pathophysiologic mecha-
nisms mediating heat-induced SIRS has been obtained from 
sepsis studies. Provided here is an overview of the responses 
that constitute heat-induced SIRS and current understanding of 
the pathophysiologic mechanisms that mediate the adverse 
events of this syndrome.

The severity of heatstroke is primarily related to the extent of 
damage to the brain, liver, and kidneys and is clinically identified 
by elevations in serum biomarkers, such as creatine kinase (CK), 
blood urea nitrogen (BUN), aspartate aminotransferase (AST), 
and alanine aminotransferase (ALT). CK is released from muscle 
and is a marker of skeletal muscle injury (also known as 

associated with an inflammatory response. Apoptosis refers to 
genetically programmed cell death that does not elicit an inflam-
matory response, because apoptosis is beneficial to the host. The 
release of HMGB1 from necrotic cells stimulates Th1 cytokine 
production late in the sepsis syndrome and is a purported media-
tor of lethality; this shift in the balance of cytokines from a Th2 
to Th1 phenotype is a potential mechanism of sepsis lethality. In 
human PBMCs, HMGB1 interacts with TLR2 and TLR4 to enhance 
Th1 cytokine production in synergy with LPS.124 Elevated serum 
HMGB1 levels are observed 8 to32 hours following LPS injection 
in mice. Anti-HMGB1 antibodies did not protect against LPS-
induced mortality unless the antibodies were provided 12 and 
36 hours after LPS exposure.324 The delayed kinetics of HMGB1 
and the association of elevated serum levels of this protein with 
poor outcome in sepsis patients suggest that HMGB1 detection 
late in SIRS may be a sensitive clinical marker of disease 
severity.115,297,324

coAgulATion
Disseminated intravascular coagulation (DIC) is a common clini-
cal symptom of heatstroke and manifests as two different forms 
(Figure 10-7).

Microvascular thrombosis is a form of DIC characterized by 
fibrin deposition and/or platelet aggregation that occludes arte-
rioles and capillaries and predisposes to multiorgan system dys-
function.177 Microvascular thrombosis is commonly observed in 
response to sepsis or trauma. DIC associated with consumptive 

FIGURE 10-7  Pathways  of  disseminated  intravascular  coagulation 
(DIC). The coagulation cascade is stimulated by the extrinsic pathway 
(also known as the tissue factor [TF] pathway) and the intrinsic pathway 
(also known as the contact activation pathway). Both pathways repre-
sent a series of enzymatic reactions that result in formation of a fibrin 
clot.  Fibrinolysis  represents  the  pathway  by  which  the  fibrin  clot  is 
resorbed through the actions of plasmin. The major physiologic anti-
coagulant is protein C, which is activated by protein S and inactivates 
factors  Va  and  VIIIA  to  inhibit  clot  formation.  Lipopolysaccharide, 
interleukin-1, and  tumor necrosis  factor affect DIC by stimulating TF 
formation and inhibiting the inactivation of factors Va and VIIIa, which 
prolongs clot formation. 
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CNS dysfunction is a hallmark of heatstroke that is dominant 

early in the disorder. Patients are often confused, delirious, com-
batant, or comatose at the time of clinical presentation. Hyper-
thermia with exercise is also associated with reduced cerebral 
blood flow, which may account for these CNS abnormalities.228 
Despite rapid treatment, approximately 30% of heatstroke survi-
vors experience permanent decrements in neurologic func-
tion.6,24,56 CNS dysfunction is often associated with cerebral edema 
and microhemorrhages at autopsy in heatstroke patients.* The 
blood–brain barrier (BBB) is a semipermeable membrane that 
allows selective entry of substances (e.g., glucose) into the brain 
while blocking the entry of other substances (e.g., bacteria). 
Hyperthermia increases BBB permeability in experimental animal 
models, which permits leakage of proteins and pathogens from 
the systemic circulation into the brain. Computed tomography 
(CT) scans have been used to examine CNS changes in heatstroke 
patients. In the 1995 Chicago heat wave, atrophy, infarcts of the 
cerebellum, and edema were evident in older adult victims. CT 
scans also revealed severe loss of gray-white matter discrimina-
tion (GWMD), which was associated with headache, coma, the 
absence of normal reflexive responses, and multiorgan dysfunc-
tion.299 The loss of GWMD is a consequence of increased brain 
water content, which is in line with the occurrence of edema in 
heatstroke victims. If GWMD provides an early, sensitive measure 
of brain injury, it will be a powerful prognostic indicator of 
outcome for heatstroke patients.

EHS is often associated with rhabdomyolysis, which is a form 
of skeletal muscle injury caused by the leakage of muscle cell 
contents into the circulation or extracellular fluid. Myoglobin 
released from damaged muscle cells is filtered and metabolized 
by the kidneys. When severe muscle damage occurs, the renal 
threshold for filtration of myoglobin is exceeded, and this protein 
appears in the urine in a reddish brown color.86 Myoglobin is 
toxic to nephrons and causes overproduction of uric acid,  
which precipitates in the kidney tubules to cause acute renal 
failure, coagulopathy, and death if not rapidly detected and 
treated.11,86,185,242,323 Not all cases of rhabdomyolysis are associated 
with myoglobinuria; many patients can be asymptomatic. Clinical 

rhabdomyolysis), myocardial infarction, muscular dystrophy, and 
acute renal failure.1,274,322 BUN is a measure of the amount of 
nitrogen in the blood in the form of urea, which is secreted by 
the liver and removed from the blood by the kidneys. A high 
BUN concentration is typically regarded as an indication of 
impaired renal function, although BUN levels may be altered by 
conditions unrelated to heat illness, including malnutrition, high-
protein diets, burns, fever, and pregnancy.1,267 AST is released by 
the liver and skeletal muscle and may be a clinical sign of con-
gestive heart failure, viral hepatitis, mononucleosis, or muscle 
injury. ALT is released by the liver, red blood cells, cardiac 
muscle, skeletal muscle, kidney, and brain tissue. AST and ALT 
are common clinical markers of liver function in heatstroke 
patients despite multiple tissue sources of these enzymes and 
occasional false-negative results that complicate interpretation. 
Unfortunately, all of these biomarkers are released by a variety 
of tissues and altered by heat-exhaustive exercise, so they do not 
always provide a precise measure of the extent of tissue 
injury.95,102,283 The extent and time course of organ injury vary 
widely between individuals. Tissue injury manifests as primary 
and/or secondary multiorgan dysfunction, depending on whether 
heat toxicity alone or in combination with SIRS causes cellular 
damage.4,192 Gut epithelial barrier disruption is an example of 
primary organ dysfunction that is evident at the time of heat-
stroke collapse. Hyperthermia degrades epithelial membrane 
integrity and causes microhemorrhages, dilation of the central 
lacteals of the microvilli, and blood clots within the stomach and 
small intestine (Figure 10-8).27,108,172

It is often difficult to determine if organ injury is caused by 
primary or secondary factors.* For example, protein clumping in 
kidney tubular epithelial cells may be a consequence of heat toxic-
ity, elevated myoglobin levels, or DIC.† A conscious mouse model 
has shown that kidney damage is present within approximately 2 
hours following heatstroke collapse and remains elevated through 
approximately 24 hours of recovery.172 In heatstroke patients, 
acute renal failure is a nearly universal finding that is accompanied 
by decrements in function within 24 hours of admission to the 
intensive care unit.244 In patients that survive more than 24 hours, 
severe hypotension, dehydration, BUN, and oliguria are associated 
with tubular necrosis or intertubular edema.192 Primary changes in 
the spleen are even less well understood, but cytoplasmic protein 
clumping is thought to be a consequence of this organ being 
“simply cooked and coagulated.”43,172

FIGURE 10-8  Effect of heating on villus structure. Representative light 
micrographs  of  rat  small  intestinal  tissue  over  a  60-minute  course  
at  41.5°  to  42°  C  (106.7°  to  107.6°  F).  Note  the  generally  normal-
appearing villi at 15 minutes (slight subepithelial space at villous tips), 
compared  with  initial  sloughing  of  epithelia  from  villous  tips  at  30 
minutes, massive  lifting of epithelial  lining at top and sides of villi at 
45 minutes, and completely denuded villi at 60 minutes. Bars represent 
100 µm.  (From Lambert GP, Gisolfi CV, Berg DJ, et al: Selected con-
tribution: Hyperthermia-induced intestinal permeability and the role of 
oxidative and nitrosative stress, J Appl Physiol 92:1750, 2002, with 
permission.)

15 min 30 min

45 min 60 min

TABle 10-5  Common Factors in Heat Illness 
and Sepsis

Clinical
Neurologic symptoms (fatigue, weakness, confusion, stupor, coma, 

dizziness, delirium)
Tachycardia
Nausea, vomiting, diarrhea
Headache
Hypotension
Oliguria, multiorgan system failure
Hyperventilation
Shock
Laboratory
Metabolic acidosis
Elevated hematocrit
Elevated blood urea nitrogen (BUN), aspartate aminotransferase 

(AST) and alanine aminotransferase (ALT)
Elevated lactate
Disseminated intravascular coagulation
Elevated cytokines
Circulating endotoxin

†Reference 27, 43, 97, 147, 172, 188, 249, 323.
*References 21, 56, 97, 171, 172, 192.

*References 48, 140, 192, 281, 282, 284, 299.

Auerbach_Chapter 10_main.indd   123 4/8/2011   7:47:12 PM



K

124

PA
RT

 2
 C

O
Ld

 A
N

d
 H

EA
T

cytokines (e.g., IL-1 and TNF) is most effective in mimicking 
heatstroke symptoms and has shed light on cytokine interactions 
in vivo that orchestrate SIRS. Increased circulating levels of IL-1α, 
IL-1β, IL-1 receptor antagonist (IL-1ra, a naturally occurring antag-
onist of IL-1), IL-6, soluble IL-6 receptor (sIL-6R), IL-8, IL-10, 
IL-12, IFN-γ, TNF-α, and soluble TNF receptor (sTNFR) concen-
trations are commonly observed at the time of heatstroke col-
lapse or shortly after cooling.* Sustained high IL-6 levels during 
cooling correlate with heatstroke severity, tissue injury, and 
death, whereas high circulating IL-8 levels are implicated in  
leukocyte activation and coagulation in EHS patients.23,125 The 
reciprocal regulation of IL-12 and IL-10 production suggests 
complex interactions in heat-induced SIRS, but the function of 
these cytokines has not been clearly delineated. As previously 
mentioned, high IFN-inducible gene expression and IFN-γ levels 
are clinical measures of viral or intracellular bacterial infection 
and are evident in EHS patients with preexisting infections.289

The failure of clinical and animal studies to correlate cytokine 
production with specific heatstroke responses is probably caused 
by the short half-life of these proteins, local tissue concentrations 
exceeding those in the circulation, or the presence of soluble 
cytokine receptors that mask detection or alter cytokine action(s).† 
For example, the sTNFR inhibits the actions of TNF and is often 
higher in heatstroke survivors than nonsurvivors, suggesting that 
TNF may mediate lethality.109 On the other hand, the sIL-6R may 
potentiate endogenous IL-6 effects by increasing the concentra-
tion of available IL-6 signaling receptors on cell membranes 
(known as a trans-signaling effect) or reduce IL-6 signaling 
through competitive binding with IL-6 receptors that are already 
present on the cell membrane (Figure 10-9).

Although cytokines are known to interact with one another, 
their soluble receptors, and other endogenous stress hormones 
(e.g., glucocorticoids) during SIRS, it remains unknown how 
these interactions in vivo affect heatstroke outcome. Taken 
together, results from the few antagonism/neutralization studies 
that have been conducted to date indicate that high levels of 
cytokines may be detrimental for heatstroke recovery, but base-
line (permissive) actions of some cytokines (e.g., IL-6, TNF, or 
proteins affected by their actions) appear to be essential for 
survival.170 Clearly, more research is required in this area to 
determine the multitude of cytokine actions in heat-induced SIRS 
and determine the protective versus detrimental effects of the 
proteins on multiorgan system function.

HeAT SHock proTeinS
Heat shock proteins (HSPs) are molecular chaperones that 
prevent misfolding and aggregation of cellular proteins during 
exposure to stressful stimuli.76,111,134,184 HSPs are found in organ-
isms ranging from bacteria to humans. Their chaperonin activities 
protect against environmental (heavy metals, heat stress), physi-
ologic (cell differentiation, protein translation), and pathologic 
(infections, ischemia/reperfusion) stimuli that cause cellular 
damage.134,160,184 HSPs were originally discovered in Drosophila 
melanogaster, when puffs associated with novel protein synthesis 
appeared on the giant chromosomes of the salivary glands in 
response to heat stress.259,303 It was later discovered that heat 
denaturation of mature proteins inside the cell was the cellular 
signal that increased protein synthesis in response to heat stress 
in Drosophila.120

HSPs are grouped into families according to their molecular 
mass, cellular localization, and function (Table 10-6).

HSP 27 (also referred to as sHSP) is a constitutively expressed 
cytosolic and nuclear protein with cytoskeletal stabilization and 
apoptotic functions.7,167,241 HSP 60 exists in the mitochondria and 
cytosol, is released from PBMCs upon LPS stimulation, and func-
tions as a “danger” signal for the innate immune system. HSPs 
interact with PAMPs, such as TLRs, to stimulate monocytes, mac-
rophages, and dendritic cells to produce cytokines.35,226 The HSP 
70 family has been extensively studied for protective function(s) 
against thermal stress,142,340 ischemia/reperfusion,196,248,293 tissue 
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markers of rhabdomyolysis include elevated myoglobin, CK, 
aldolase, lactate dehydrogenase, ALT, and AST, which are influ-
enced by a variety of factors (type, intensity, and duration of 
exercise; gender; temperature; altitude) and released by more 
than one organ or tissue.50,205,263 If a clinical diagnosis of rhabdo-
myolysis is confirmed, immediate medical attention is imperative 
because approximately 50% mortality rates from acute renal 
failure have been documented for this condition.

Liver failure is one of the most common causes of morbidity 
and mortality in patients during the later stages of recovery. The 
time course of liver damage differs from that of the other organs 
and often does not peak until approximately 24 to 48 hours after 
heat exposure. For example, liver damage consisting of centri-
lobular degeneration and necrosis with parenchymal damage was 
only evident in EHS patients that survived more than 30 hours.192 
In addition, enhanced breakdown of fat or an inability of the 
mitochondria to use fat results in heatstroke-associated fatty liver 
changes.43 Disturbances in plasma glucose homeostasis are a sign 
of liver damage that may cause hyperglycemia or hypoglycemia 
as a result of dysfunction of phosphoenolpyruvate carboxyki-
nase, which is a regulatory enzyme of the liver’s gluconeogenic 
pathway.21,171,172 Liver dysfunction may also contribute to increased 
circulating endotoxin levels because of the important bacterial-
clearance function of this organ.30,225 Unfortunately, many heat-
stroke patients require liver transplantation. Use of antipyretic 
drugs, such as acetaminophen (Tylenol), has been associated 
with hepatic failure.93,113,114,269,319

Many patients are released from the hospital following several 
days or weeks of treatment and continue to experience organ 
dysfunction during the ensuing years of recovery. Following the 
2003 heat wave in France, mortality rates increased from 58% at 
day 28 of hospitalization (mean hospital stay was 24 days) to 
71% mortality by the second year of recovery.6 An epidemiologic 
study of military EHS patients showed approximately twofold 
increased risk for death from cardiovascular, kidney, and liver 
disease within 30 years of hospitalization.321 Several of the clinical 
responses (hyperthermia, dehydration, kidney and liver damage) 
occurring during progression or shortly after heatstroke collapse 
are clinically recognized and treated. However, those occurring 
during the months and years following hospitalization are under-
reported. The mechanisms responsible for long-term decrements 
in organ function remain poorly understood.

cyTokineS
Cytokines are a class of intercellular protein messengers released 
from macrophages, T and B cells, endothelial cells, astrocytes, and 
other cell types that mediate inflammatory reactions to disease and 
injury.46,141,195,280,309 Cytokine-inducing stimuli include bacterial and 
viral infection,65,243 psychologic stress,191,234 heat stress,* whole-
body hyperthermia,222 and exercise.38,209,224,298 The defining charac-
teristics of cytokines include a lack of constitutive production, the 
ability to regulate each other’s production, and overlapping actions 
that depend on the target cell type and cytokine milieu in which 
they function. Cytokines act over short distances and time spans 
(half-life is generally less than 60 minutes) and are usually present 
at low concentrations in the circulation. Cytokines bind reversibly 
to high-affinity cell-surface receptors and stimulate intracellular 
signaling pathways (e.g., NF-κB) that alter the transcription of 
genes involved in immune responses.

There are several lines of evidence that link cytokines with 
symptoms of heat-induced SIRS. These include induction of 
heatstroke symptoms by cytokine injection in experimental 
animal models, association of increased circulating cytokine 
levels with heatstroke morbidity/mortality, and effectiveness  
of cytokine neutralization in altering heatstroke mortality in 
animal models. Peripheral injection of IL-1β, IL-2, IL-6, IL-10, 
TNF-α, and platelet-activating factor into experimental animals 
replicates the pathophysiologic responses observed in heatstroke, 
including hyperthermia, hypothermia, fever, increased vascular 
permeability, DIC, and death.† Simultaneous injection of multiple 

12

†References 2, 20, 23, 26, 109, 112, 159, 275.
*References 20, 26, 27, 109, 112, 172.

†References 154, 162, 168, 169, 235, 237, 277, 306.
*References 20, 27, 36, 116, 172, 181.
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stimulated IL-10 (Th2) production in response to LPS.325 The shift 
from Th1 to Th2 cytokine production may be a mechanism by 
which HSP 70 protects against bacterial infection.

Heat strain is a consequence of the time and intensity of heat 
exposure. These factors interact in vivo to influence the magni-
tude and kinetics of HSP expression. In human PBMCs, maximal 
expression of intracellular HSP 70 was observed between 4 and 
6 hours after a brief heat shock (43° C [109.4° F] for 20 minutes).288 
Increased expression of HSP 10, 20, 40, 60, 70, 90, and 110 was 
observed in PBMCs from EHS patients or following exposure to 
hypoxia in vitro.287,289 Anatomic differences in the magnitude and 
kinetics of in vivo expression have also been observed, with HSP 
70 expression occurring within 1 hour in the brain, lung, and 
skin and delayed until 6 hours after heat exposure in the liver 
of rats.18 In mice, liver expression of HSP 70 showed a progres-
sive increase from approximately 6 to 24 hours following collapse 
from passive heatstroke.171 In rats, a high rate of passive heating 
(0.175° C [0.315° F]/min) induced greater HSP 70 expression  
in the liver, small intestine, and kidney than did a lower rate  
of heating (0.05° C [0.09° F]/min), despite attaining the same 
maximum body temperature (42° C [107.6° F]).80 Differences in 
tissue blood flow and metabolic activity likely account for 
regional differences in HSP expression during passive and exer-
tional heat exposure.

Thermotolerance is the term used to describe the noninher-
itable, transient resistance to a lethal heat stress that is acquired 
following previous exposure to a nonlethal level of heat stress. 
Increased HSP 70 expression is a mechanism of thermotolerance 
that protects against heat-induced increases in epithelial perme-
ability. A unique in vitro model system consisting of high-
resistance Madin-Darby canine kidney (MDCK) epithelial cell 
monolayers was developed to examine the relationship between 
HSP 70 expression and changes in epithelial integrity with heat 
exposure. Following heat stress to 38.3° C (100.9° F), MDCK 
monolayers showed an increase in permeability that was revers-
ible with cooling.212 If the monolayers were preexposed to a 
conditioning heat stress of 42° C (107.6° F) for 90 minutes, sub-
sequent exposure to a higher temperature of 39.4° C (102.9° F) 
was required to increase monolayer permeability.21 The associa-
tion of a thermotolerant state with increased HSP 70 expression 
suggests that HSPs shift the temperature threshold upward to 
prevent heat-induced disruptions in epithelial permeability.212 
Follow-on studies showed that HSPs interact with proteins in the 
tight junctions of the epithelium to regulate permeability. Occlu-
din is a plasma-membrane protein located at tight junctions that 
was increased, along with HSP 27, 40, 70, and 90, in intestinal 
epithelial monolayer (Caco-2) cells exposed to 39° or 41° C 
(102.2° or 105.8° F).60 Treatment of Caco-2 cells with quercetin 
(an inhibitor of HSF-1) inhibited HSP and occludin expression 
and reversed the thermotolerant state of these cells.60 These 
studies demonstrate a complex interaction between HSPs and 
tight-junction proteins for modulation of epithelial barrier func-
tion during thermal stress.

injury,33 glucose deprivation,334 and sepsis.166,317 HSP 70s function 
in concert with other molecular chaperones, such as HSP 90 and 
HSP 110, to facilitate LPS and antitumor responses.127

HSP gene expression is mediated primarily at the level of gene 
transcription by a family of heat shock transcription factors 
(HSFs) that interact with the heat shock regulatory element (HSE) 
in the promoter region of genes. HSF-1 is the major stress respon-
sive element in mammalian cells that is activated by febrile-range 
temperatures.318,338 HSF-1 interacts with HSEs on cytokine genes 
to alter transcription and confer protection against endotoxin and 
other infectious/inflammatory stimuli. In gene-transfected human 
PBMCs, inhibition of TNF-α, IL-1β, IL-10, and IL-12 in response 
to LPS was specific to HSP 70 overexpression.59 A lack of effect 
of HSP 70 on IL-6 gene transcription may be an indirect mecha-
nism of protection, because IL-6 functions in a regulatory feed-
back loop to inhibit IL-1 and TNF production, which are Th1 
cytokines with potent proinflammatory activities.59,71,73,325 In 
murine macrophages, HSP 70 inhibited IL-12 (Th1) and 

FIGURE 10-9  IL-6 receptor signaling pathways. Classic 
signaling  involves  binding  of  IL-6  to  the  membrane 
bound IL-6 receptor (IL-6R), which stimulates an inter-
action  between  the  IL-6:IL-6R  complex  and  the 
membrane-bound glycoprotein 130 (gp130) to initiate 
intracellular signaling. Trans-signaling occurs when the 
extracellular domain of  the membrane-bound  IL-6R  is 
proteolytically  cleaved,  leading  to  generation  of  the 
soluble  IL-6R  (sIL-6R)  that  binds  IL-6.  The  IL-6:sIL-6R 
complex  can  stimulate  cells  that  only  express  gp130 
(i.e., do not normally possess the transmembrane IL-6R) 
to  transmit  an  intracellular  signal.  Cells  that  express 
gp130 only would not be able to respond to IL-6 in the 
absence of sIL-6R. 

IL-6

IL-6IL-6

Classic signaling

sIL-6R

IL-6R sIL-6Rgp130 gp130gp130

Signal Signal

Trans-signaling

TABle 10-6  Heat Shock Protein Structure 
and Function

Family Function Attributes

HSP 27 (sHSP) Antiapoptotic, Constitutively 
expressed

Cytoskeletal 
stabilization

Cytosolic and 
nuclear

HSP 60 Protein refolding Mitochondria 
and cytosolPrevents aggregation 

of denatured 
proteins

Immune responses
HSP 70 family
 HSP 72 Thermotolerance Highly inducible
 HSP 73 (HSC 70) Molecular chaperone Constitutively 

expressed
 HSP 75 Molecular chaperone Mitochondrial
 HSP 78 (GRP 79, Bip) Cytoprotection Endoplasmic 

reticulum
HSP 90 family: HSP 90
 GRP 96 Glucocorticoid 

receptor functioning
Cytosolic and 

nuclear
Glucose regulation Endoplasmic 

reticulum
HSP 110/104 Molecular chaperone Cytosolic

Tumor antigen 
presentation

Bip, GRP, HSC, HSP, heat shock protein.40
Data from Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: 

From nascent chain to folded protein. Science 295:1852, 2002; and Kregel KC: 
Heat shock proteins: Modifying factors in physiological stress responses and 
acquired thermotolerance. J Appl Physiol 92:2177, 2002.
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Dantrolene and nonsteroidal antiinflammatory drugs (NSAIDs) 
have been tested for their effects on body cooling, but neither 
class of drugs has shown efficacy for protection against heat-
stroke. Dantrolene is a calcium-lowering agent that protects 
against hyperthermia by lowering intracellular calcium concentra-
tions in skeletal muscle to decrease muscle tone. Dantrolene is 
effective for the treatment of malignant hyperthermia (MH), 
which is a genetic mutation that predisposes to involuntary 
muscle contractions and rigidity following exposure to general 
anesthetics or muscle-depolarizing agents. Dantrolene has been 
considered as a treatment for heatstroke, but animal and human 
heatstroke studies have failed to validate its use for this condition. 
In a study of heatstroke patients, dantrolene decreased the 
required cooling time by approximately 20 minutes but had no 
effect on recovery. Similarly, a randomized, double-blind, 
placebo-controlled trial of Hajj heatstroke patients failed to show 
a cooling advantage of dantrolene over traditional cooling 
methods.22,43 MH is distinct from exertional or passive heatstroke, 
so it is not surprising that this drug does not protect equally 
against these diverse conditions. (MH is discussed in detail later 
in this chapter.)

NSAIDs have been considered as therapeutics based on their 
potent antiinflammatory and antipyretic effects. The action(s) of 
classic NSAIDs, such as, aspirin, ibuprofen, and acetaminophen, 
are attributed primarily to blockade of the cyclooxygenase (COX) 
pathway of eicosanoid metabolism (Figure 10-10).

Prostaglandins are synthesized by the COX pathway in 
response to a variety of stimuli (e.g., bacterial infection, heat 
shock) and regulate a multitude of physiologic responses, includ-
ing fever, inflammation, and cytokine production. During fever, 
prostaglandins are released in response to proinflammatory cyto-
kines (e.g., IL-1, IL-6) and stimulate an increase in the tempera-
ture set point to induce fever.292 Inhibition of prostaglandin 
production by NSAIDs is the primary mechanism for the anti-
pyretic (i.e., fever-reducing) actions of these drugs. However, 
hyperthermia in response to heat exposure is not caused by an 
increase in the temperature set point but by an unregulated 
increase in body temperature that occurs when heat gain exceeds 
heat loss in an absence of a change in the temperature set point 
(see Figure 10-4). Rather than providing a beneficial effect, 
NSAIDs are contraindicated as a treatment for heatstroke because 
of the potential toxic effects of these drugs on liver function and 
a lack of clinical and/or experimental data to support their use. 
For example, pretreatment with sodium salicylate was without 
effect on skin temperature and pulse rate but significantly 
increased the rate of body temperature rise and potentiated 
hyperthermia in men walking in a hot environment.135 As previ-
ously mentioned, the use of antipyretic drugs, such as acetamino-
phen, has been anecdotally associated with the need for liver 
transplantation.93,113,114,269,319 Recurrent hyperthermia is a common 

It is interestingly to speculate that differences in HSP expres-
sion profiles may be a sensitive marker of heat stress susceptibil-
ity among different populations. During the life of an organism, 
there is an accumulation of protein damage caused by continual 
oxidant and free radical activity within cells. The lifespan of 
Drosophila was extended by heat shock treatment or the addition 
of HSP 70 gene copies, suggesting that increased protein chap-
eronin activity may protect against aging.148,301 In rats, aging was 
associated with a significant reduction in liver HSP expression 
following passive heat exposure, which was associated with 
greater liver damage compared with that observed in young 
rats.161,342 Older animals do not appear to have a global inability 
to express HSP, because exertional heat stress can induce expres-
sion profiles similar to that of mature rats.161 Rather, aging is 
associated with a reduction in the threshold for HSP stimula-
tion.161 Similarly, Fargnoli and co-workers72 showed that global 
reduction in protein synthesis was not responsible for decreased 
HSP induction in aged lung fibroblasts. Alzheimer’s disease is 
thought to be a consequence of decreased HSP function that 
results in increased deposition of abnormally folded proteins.211 
It is anticipated that screening for altered HSP titers will help to 
identify individuals with reduced thermotolerance caused by 
aging, infection, or other conditions that may predispose to 
heatstroke.150

Heatstroke Treatments  
(See Chapter ••)
Current heatstroke therapies fall into two categories: supportive 
therapies directed at the immediate clinical symptoms and thera-
pies directed at the causative mechanisms of injury. The primary 
objectives of clinical heatstroke treatments are to reduce body 
temperature as rapidly as possible, reestablish normal CNS func-
tion, and stabilize peripheral multiorgan system function. Sup-
portive therapies consist of rapid cooling and IV fluid 
administration for restoration of normal blood pressure and tissue 
perfusion, whereas advanced therapies are directed at the coagu-
lation and inflammatory disturbances that cause organ failure. 
Despite these efforts, heatstroke morbidity and mortality rates 
remain quite high, and multiorgan system dysfunction continues 
to claim the lives of heatstroke victims during ensuing years of 
recovery.6,321 This section discusses conventional clinical treat-
ments of heatstroke, as well as innovative treatment strategies 
targeted at SIRS to mitigate injury and death.

cooling
Rapid cooling is considered the single most important treatment 
for protection against permanent CNS damage and death from 
heatstroke. To facilitate cooling, the individual should be placed 
into a supine position and as many clothes as possible removed 
to expose a large surface area of the body to facilitate heat transfer. 
If the individual is comatose, he or she should be placed onto his 
or her side to ensure an open airway. Conventional methods of 
cooling include cold or ice water immersion, packing ice around 
the body, sponging with (or without) fanning, or use of a hypo-
thermic blanket. The goal of all cooling methods is to rapidly 
decrease and maintain body temperature below 39° C (102.2° F) 
and to prevent rebound hyperthermia. The use of an ice bath or 
ice packs on the skin surface has met with some resistance because 
it is thought that cooling of the skin will elicit peripheral vasocon-
striction and shivering, which can increase heat production and 
counteract the cooling effect. This was shown in an experimental 
study in which young, fit test subjects were heat stressed to 40° C 
(104° F) and experienced shivering and cold sensations during 
immersion in cold water.339 Because the threshold for activation 
of shivering is increased in heatstroke patients, the risk for cold 
or ice water immersion eliciting such a response and compromis-
ing the benefits of cooling is unlikely. However, to minimize the 
possibility of peripheral vasoconstriction with cooling, the skin 
may be massaged to stimulate increases in cutaneous blood flow. 
Regardless of the treatment strategy, current medical doctrine 
dictates that heatstroke patients are cooled as rapidly as possible 
until normal CNS function is reestablished.

15
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FIGURE 10-10  Eicosanoid  metabolism  is  initiated  when  cell  mem-
brane  phospholipids  are  converted  to  arachidonic  acid  (AA)  by 
the  enzymatic  actions  of  phospholipase  A2  (PLA2).  Cyclooxygenase 
(COX) converts AA to prostaglandins and thromboxane, whereas the 
lipoxygenase  (LOX)  pathway  is  responsible  for  the  production  of 
leukotrienes. Nonsteroidal antiinflammatory drugs (NSAIDs) block the 
action of COX enzymes with potential toxic effects on the liver. IFNγ, 
Interferon-γ; IL-1, interleukin-1; IL-2, interleukin-2. 
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and other antiinflammatory drugs can cause liver damage if con-
sumed in large quantities, as previously mentioned.

Recombinant APC is an effective antiinflammatory drug for 
the treatment of sepsis and may also hold promise as a treatment 
for heatstroke patients. APC efficacy appears to depend on a 
variety of patient conditions, including age (most effective in 
patients over 50 years of age), extent of organ dysfunction 
(benefit not apparent if failure of only one organ), and the pres-
ence of shock at the time of infusion, which improves its effi-
cacy.327 In rat heatstroke models, the efficacy of APC depends on 
the time of treatment. A single dose of recombinant human APC 
provided at the onset of heatstroke inhibited inflammation and 
coagulopathy, prevented organ failure, and improved survival; 
however, if treatment was delayed for 40 minutes following the 
onset of heatstroke, there was no beneficial effect on survival 
time.45 The efficacy of APC was less obvious in a baboon heat-
stroke model. Infusion for 12 hours following heatstroke onset 
attenuated plasma IL-6, thrombomodulin, and procoagulant com-
ponents but had no effect on mortality.25 APC is the first biologic 
agent approved in the United States for the treatment of severe 
sepsis on account of two decades of research in this area,327 but 
there is insufficient evidence to justify the use of this treatment 
in heatstroke patients.

AnTicyTokine THerApieS
As previously described, attenuations in splanchnic blood flow 
during heatstroke contribute to increased gut permeability and a 
rise in circulating endotoxin. This series of events is hypothesized 
to stimulate elevations in plasma cytokine levels that have been 
implicated in the adverse consequences of SIRS. Based on these 
findings, the question arises: Do anticytokine therapies represent 
an efficacious treatment strategy for heatstroke? There have been 
no controlled studies examining the efficacy of anticytokine 
therapies on patient outcome with heatstroke. However, clinical 
trials of sepsis indicate that potential protective effects of anticy-
tokine therapies need to be viewed with cautious optimism. 
Sepsis patients display high circulating IL-1 levels that correlate 
with morbidity and mortality, but IL-1ra treatment has been 
unsuccessful in reducing mortality.236,253 A comparison of 12 ran-
domized, double-blind multicenter trials of more than 6200 sepsis 
patients showed no significant benefit of antiendotoxin antibod-
ies, ibuprofen, plasminogen-activating factor receptor antagonist, 
anti-TNF monoclonal antibody, or IL-1ra on all-cause mortality.57 
There are several explanations for negative results from anticy-
tokine therapies, including the possibility that the mediator has 
no pathophysiologic role in the response, the agent failed to 
neutralize the protein (because of a lack of biologic activity, 
competition by other mediators, inadequate anatomic distribu-
tion), compensatory increase of other mediator(s) with similar 
activities, administration too early or late in the course of disease, 
too-short therapy duration, or the need for combination therapy.198 
Kinetic studies have shown the half-life of IL-1ra to be appro-
ximately 20 minutes, and Phase III clinical trials showed that 
circulating IL-1β levels at the time of clinical treatment were 
undetectable in 95% of the patient population.77,246 Exposure to 
anticytokine therapies before sepsis onset is thought to be desir-
able (but practically infeasible), although this may suppress shifts 
in Th1/Th2 immune responses that are important for the resolu-
tion of infection. On the other hand, anticytokine therapies given 
too late in sepsis progression may shift the Th1/Th2 milieu in an 
unpredictable manner or have no effect because of the over-
whelming nature of the septic event.100 The transient nature of 
cytokine production and/or clearance and lack of correlation 
between serum levels and disease severity further complicate 
treatment scenarios. Given the short half-life of TNF-α (approxi-
mately 6 to 7 minutes)16 and biphasic clearance patterns of IL-1β 
and IL-6 (rapid disappearance in the first 3 minutes followed by 
an attenuated clearance over the next 1 to 4 hours),152 the narrow 
protective window in which anticytokine therapies may be effec-
tive is a difficult obstacle to overcome.

Interleukin-10 is a potent antiinflammatory cytokine that sup-
presses the production of several proinflammatory cytokines, 
including IL-1β, IL-6, and TNF-α and is an important negative 
feedback loop during infection/disease.101,311 Few, if any, studies 

heatstroke recovery response that is thought to be a true fever 
and a prostaglandin-mediated response to endotoxin leakage and 
cytokine stimulation. Whether the effects of NSAIDs on cytokine 
expression or body temperature will protect or exacerbate the 
heatstroke sequelae in vivo is unknown but is an important area 
of investigation, given the high use of NSAIDs as over-the-
counter medications for pain and/or fever relief in our society.

Fluid reSuSciTATion (See Chapter ••)

One of the first lines of defense against permanent tissue damage 
is treatment with resuscitation fluids. The objective of IV fluid 
administration is to restore intravascular volume and rehydrate 
the interstitium to stabilize cardiovascular functioning, improve 
tissue perfusion, and maintain immune function. The resuscita-
tion fluid needs to be safe, efficacious, inexpensive, easy to 
transport for use in military or athletic settings, and have the 
capacity to restore tissue oxygen perfusion and minimize cellular/
tissue injury. Blood provides oxygen-carrying capacity and 
volume, but supply is limited and there is a risk for allergic or 
infectious reactions, difficulties with crossmatching, and potential 
for high hemoglobin levels to increase blood viscosity and reduce 
nutrient flow to the tissues.255,258 Balanced salt solutions, such as 
saline and lactated Ringer’s, have a long shelf life and are inex-
pensive and in unlimited supply with a minimal risk for disease 
transmission. However, they are able to freely cross semiperme-
able capillary membranes, which increases the risk for tissue 
edema and makes frequent transfusions necessary to maintain 
adequate plasma volume.110,145,304 Tissue edema increases the 
distance from blood vessels to tissue mitochondria and limits 
oxygen delivery to the tissues. There is a greater risk for edema 
in heatstroke patients because of increases in capillary permeabil-
ity and lack of muscle movement that limits the flow of lymph 
following collapse.

To minimize the adverse consequences of balanced salt solu-
tions, these fluids may be replaced with colloid solutions. Natural 
colloids, such as albumin, possess antioxidant properties that 
reduce tissue injury during times of oxidant stress but carry a 
risk for infection.84,328 Dextran is an artificial colloid that was in 
use after World War II until adverse hemostatic effects restricted 
its use to specific clinical conditions, such as venous thrombosis 
and pulmonary embolism.15,55 Hydroxyethyl starch (HES) is a 
blood plasma substitute that exerts high colloidal pressure to 
stimulate movement of fluid from the interstitial space into the 
blood vessel lumen for plasma volume expansion.239,336,344 Small-
volume treatment with HES protected against heatstroke mortality 
in rats, but use of HES in other heatstroke animal models and 
humans has not been validated.187 Because of severe dehydration 
and acute renal failure with heatstroke, fluid shifts from the 
interstitial fluid into the vessel lumen may mean HES will not be 
well tolerated in severe heatstroke patients.

AnTicoAgulAnTS
Anticoagulants (e.g., heparin, aspirin) have been examined for 
heatstroke protection, with mixed results. Heparin therapy has 
been associated with positive heatstroke outcome in patients, 
although it is difficult to dissociate the direct effects of this 
therapy from other clinical treatments.245,290 The mechanisms of 
heat-induced DIC may include prostaglandin synthesis, because 
aspirin has shown protection against platelet hyperaggregation 
in vitro and in animal models. In human volunteers, the ingestion 
of aspirin 12 to15 hours before blood sampling or heat exposure 
of cells was effective in inhibiting platelet hyperaggregation.87 
However, aspirin was ineffective if provided after heat exposure, 
even though complete inhibition of the arachidonic acid pathway 
was achieved.87 The ability of aspirin to protect guinea pigs from 
DIC induced by Staphylococcus aureus suggests that similar 
activities function in vivo to control platelet reactivity.227 However, 
there is currently insufficient evidence to support the use of 
aspirin as a preventive measure in heatstroke patients. Given the 
hormonal and metabolic alterations that accompany heatstroke, 
including dehydration, increased catecholamine levels, hypoxia, 
and others, the mechanisms responsible for DIC extend beyond 
those mediated by prostaglandins alone. Furthermore, aspirin 

17
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On the 10th day of acclimation, heart rate was lower by 
approximately 40 beats/min, and rectal and skin temperatures 
were reduced approximately 1° C (1.8° F) and 1.5° C (2.7° F), 
respectively (see Figure 10-11).69 Once heat acclimation is 
achieved, skin vasodilation and sweating are initiated at a lower 
core temperature threshold, and higher sweat rates can be sus-
tained without the sweat glands becoming “fatigued.”52,81 Whereas 
an unacclimated individual will secrete sweat with a sodium 
concentration of approximately 60 mEq/L (or higher), the con-
centration of secreted sodium from the sweat glands of an accli-
mated individual is significantly lower at approximately 
5 mEq/L.262 This effect of heat acclimation on salt conservation 
is thought to be caused by increased aldosterone secretion or 
responsiveness of the sweat glands to this steroid hormone, 
which is released by the adrenal cortex and increases the resorp-
tion of ions and water in the distal tubules and collecting ducts 
of the kidney.82,151 Overall improvements in fluid balance with 
heat acclimation include reduced sweat sodium losses, a better 
matching of thirst to body water needs, and increased total body 
water and blood volume.190,270 Provided that fluids are not 
restricted during physical activities, heat-acclimated individuals 
will be better able to maintain hydration during exercise and 
showed a marked reduction in “voluntary” dehydration.13,69,271 
Although there is controversy regarding the ability of heat accli-
mation to alter the maximum temperature that can be tolerated 
during exercise in the heat,223 individuals that live or train in hot 
environments may experience reduced incidence of syncope 
(Figure 10-12).13,96,247

An essential cellular adaptation of heat acclimation is altered 
expression or reprogramming of genes that encode constitutive 
and stress-inducible proteins.122 Heat acclimation is associated 
with down regulation of genes associated with energy metabo-
lism, food intake, mitochondrial energy metabolism, and cellular 
maintenance processes and upregulation of genes that are linked 
with immune responsiveness.122 The HSPs are the most exten-
sively studied heat-inducible proteins and show faster transcrip-
tional response and elevated cellular reserves (HSP 72 specifically) 
in heat-acclimated versus nonacclimated individuals.122,123,193,200 
That is, whereas nonacclimated individuals require de novo HSP 
72 synthesis for cellular protection, individuals that reside in  
hot climates maintain elevated HSP 72 levels.190 The cellular 

have investigated the efficacy of IL-10 treatment for heatstroke 
recovery, although the cytokine has been commonly used in the 
treatment of multiple autoimmune diseases, including rheuma-
toid arthritis, Crohn’s disease, multiple sclerosis, and sepsis.31,229 
As with other cytokines, the timing of IL-10 administration must 
be carefully considered. IL-10 decreases IFN-γ production by 
natural killer and Th1 cells, which may suppress the clearance 
of infectious organisms (via IFN-γ).254,320 Consistent with anticy-
tokine therapies, the beneficial effects of exogenous IL-10 admin-
istration depend upon multiple factors, including time of 
administration, route, and the site to which the cytokine is tar-
geted.229,265 These considerations, along with the immune sup-
pressive and unpredictable nature of IL-10–based therapies, have 
resulted in diminished enthusiasm for anticytokine therapies for 
sepsis.

Heatstroke prevention
Heatstroke is currently a more preventable than treatable disease. 
The most effective preventive measures include acclimatization 
to the heat, reduction in the duration and extent of physical 
activity, rescheduling of activities to cooler times of the day, 
increased consumption of nonalcoholic fluids, and removing 
vulnerable populations, such as those with preexisting viral or 
bacterial infections, from the heat stress environment. Fan cooling 
has not shown protection against heatstroke and is associated 
with increased thermal discomfort at temperatures above 38° C 
(100.4° F).149

HeAT AcclimATizATion
Climatic heat stress and exercise interact synergistically to 
increase body temperature (core and skin) and cardiovascular 
strain and to decrease performance in the heat. Heat acclimatiza-
tion is the within-lifetime changes in an organism (as opposed 
to evolutionary changes) that protect against these negative 
effects of heat strain. Heat acclimatization occurs following expo-
sure to the natural environment, whereas heat acclimation devel-
ops following exposure to artificial conditions. However, these 
terms are used interchangeably because they induce similar 
physiologic adaptations.331 Heat acclimation occurs following 
repeated bouts of heat exposure that are of sufficient intensity, 
frequency, duration, and number to elevate core and skin tem-
perature and induce profuse sweating. Heat acclimation may be 
achieved following exercise or rest in the heat, although the 
former method is more effective. It is important to note that heat 
acclimatization is specific to the climate and activity level; there-
fore, if individuals will be working in a hot, humid climate, heat 
acclimatization should be conducted under similar conditions 
(Box 10-1).

Although heat acclimation does not require daily exposure to 
heat and exercise, the rapidity with which biological adaptations 
are achieved is slower with less frequent exposures. This was 
shown experimentally in human volunteers in whom heat accli-
mation was achieved following 10 days of daily heat exposure 
but required 27 days when the frequency of exposure was 
reduced to every third day of experimentation (conditions 47° C 
(116.6° F), 17% relative humidity).74 Continual 24-hour exposures 
are also not required, because daily 100-minute periods of expo-
sure were adequate to produce heat acclimation in subjects 
exposed to dry heat.183 However, because of the transient nature 
of the biological adaptations, continued heat exposures are 
required to maintain the acclimated state. Aerobically trained 
athletes retain heat acclimation benefits longer than do unfit 
individuals, because they are exposed to high body temperatures 
during training exercises.240

Improvements in thermal comfort and exercise performance 
are achieved in heat-acclimated individuals through a variety of 
physiologic mechanisms, including a lower threshold and higher 
rate of skin blood flow, reduction in metabolic rate, earlier onset 
and rate of sweating, and improvements in cardiovascular func-
tion and fluid balance.271 Figure 10-11, online illustrates the effect 
of 10 days of heat acclimation on heart rate, core temperature, 
and mean skin temperature responses of subjects walking on a 
treadmill in a desert type of environment.69

18

Box 10-1  Heat Acclimation Strategies

must mimic climate of Athletic event or occupational 
Setting and include Adequate Heat Stress

•  Heat must be sufficient to cause heavy sweating.
•  Use exercise/rest cycles to intensify or diminish the effect of 

the heat stress on bodily functions.
•  Include at least 6 to 14 days of adequate heat stress.
•  Exercise daily for at least 90 minutes.

Start With Acclimation and exercise Training
•  Be flexible in scheduling training.
•  Build confidence.
•  Performance benefits may take longer to achieve than 

physiologic benefits.

methods of Heat Acclimation
Use a climate-controlled room (sauna or heat chamber) or hot 

weather.
Incorporate training by including additional acclimation 

sessions.

days leading to Athletic performance or event
•  Start slowly, and decrease training duration and intensity; 

limit heat exposure.
•  Acclimatize in heat of the day.
•  Train in coolest part of the day.
•  Use appropriate work/rest cycles.
•  Be vigilant of salt and fluid needs, especially during the first 

week of acclimation.
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death from sepsis is significantly increased in patients with a 
genetic polymorphism in the TNF-α or TNF-β gene.83 Even for 
those cytokine polymorphisms located distal to a critical pro-
moter region that do not directly affect gene transcription rates, 
coinheritance of multiple immune-responsive genes by a process 
known as linkage disequilibrium can alter immune function. 
Some TNF-α polymorphisms exist in linkage disequilibrium with 
HLA haplotypes that encode cell-surface antigens. Coinheritance 
of these genes may ultimately be responsible for poor sepsis 
outcome.138,296

mAlignAnT HyperTHermiA
MH is a genetic disorder that causes muscle rigidity, hyperther-
mia, tachycardia, and metabolic acidosis during exposure to 
volatile anesthetics or depolarizing skeletal muscle relaxants. 
Exercise, heat stress, and emotional stress also trigger reactions 
in approximately 5% to 10% of MH patients.58,326 MH reactions 
are a result of a massive release of calcium from the type 1 
ryanodine receptor (RyR1) of the sarcoplasmic reticulum, which 
overwhelms cellular mechanisms of calcium homeostasis and 
activates actin–myosin filaments to cause muscle rigidity and 
hyperthermia.238 RyR1 is the most common mutation in skeletal 
muscle, but additional isoforms have been identified in B and T 
cells, thalamus, hippocampus, and heart.163,202,300 Activation of the 
RyR1 by a variety of pharmacologic compounds, including caf-
feine, halothane, and the muscle relaxant 4-chloro-m-cresol, has 
led to development of an in vitro contracture test of skeletal 
muscle biopsies to identify MH individuals.266,345 Dantrolene is 
used to treat MH reactions by lowering intracellular calcium 
stores, decreasing muscle metabolic activity, and preventing 
hyperthermia. The use of dantrolene, in combination with 
improved monitoring standards and early detection using the in 
vitro contracture test, has helped to reduce mortality rates from 
greater than 70% to less than 5% in MH patients.186

MH has been identified in several animal species, including 
dogs,231 boars,278 cats,14 and horses,3 but the most common 
experimental animal is a porcine MH model that possesses a 
single mutation in the skeletal muscle RyR1 gene. These animals 
develop the MH syndrome in response to inhalational anesthet-
ics, exercise, heat, and other stressors.310 Mild exercise exacer-
bates MH symptoms in response to anesthetics in MH pigs, 
suggesting that inflammatory mediators released by skeletal 
muscle may contribute to the MH syndrome.310 MH patients 
show approximately fivefold higher expression of IL-1β when 
stimulated with caffeine and 4-chloro-m-cresol compared with 
control cells.94 Recent development of a transgenic mouse 
model that overexpresses the RyR1 receptor has proven useful 
to study the MH/EHS link and could shed light on the role 
played in this syndrome by inflammatory cytokine production 
from skeletal muscle or other organs.68 Association of RyR1 
mutations with EHS incidence suggests that screening young, 
healthy individuals (i.e., athletes, military personnel) for the MH 
mutation could be a powerful tool to determine heatstroke 
susceptibility.

RefeRences
Complete references used in this text are available online at 
www.expertconsult.com.
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FIGURE 10-12  Incidence of syncope among 45 subjects who lived in 
and trained at cool ambient temperatures and could complete a physi-
cal  training  regimen without mishap. Then  they were  relocated  to a 
hot  environment  where  they  carried  out  the  same  physical  training 
regimen. (Modified from Bean WB, Eichna LW: Fed Proc 2:144, 1943, 
by Hubbard RW, Armstrong LE: In Pandolf KB, Sawka MN, Gonzalez 
RR, editors: Human performance and environmental medicine at ter-
restrial extremes, Indianapolis, 1988, Benchmark Press, pp 305-359.)
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mechanisms of heat acclimation are not fully understood but are 
thought to involve global and tissue-specific changes in genes 
involved in thermal responsiveness, DNA repair and synthesis, 
free radical scavenging, and apoptosis.122

genetic polymorphisms
Heatstroke susceptibility is influenced by complex interactions 
between environmental and host genetic factors. Emerging 
molecular technologies have improved our understanding of the 
genetic mutations and polymorphisms that may predispose to 
heat illness or inhibit resolution of SIRS. It is anticipated that  
the ability to prescreen individuals for genetic polymorphisms 
that may prevent resolution of SIRS will help in developing  
more effective therapies to alleviate morbidity/mortality in these 
individuals.

Single nucleoTide polymorpHiSmS
Single nucleotide polymorphisms (SNPs) are variations in the 
nucleotide sequence of DNA that can affect physiologic responses 
to environmental stimuli. SNPs have been implicated in a variety 
of diseases, including sepsis, type 1 diabetes, arthritis, inflamma-
tory bowel disease, and rheumatic fever.79,136,250,296 The identifica-
tion of SNPs in the promoter region of genes suggests that disease 
susceptibility may be affected by altered transcription of immune 
determinants of clinical outcome. SNPs have been identified in 
IL-1, IL-2, TNF, IFNγ, IL-10, IL-1ra, TLR-2, and TLR-4. The risk for 19
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FIGURE 10-5  Effect of reduced plasma volume or increased osmolality on sweat rates in six individuals.  (Modified from Sawka MN, Young AJ, 
Francesconi RP, et al: J Appl Physiol 59:1394, 1985.)
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FIGURE 10-11  Effect of 10 days’ acclimation on heart rate and rectal and skin temperatures during a standard exercise (five 10-minute periods 
of treadmill, separated by 2-minute rests)  in dry heat. Large circles, Values before start of the first exercise period each day; small circles, suc-
cessive values; squares, the final values each day. Controls of exercise in cool environment before and after acclimation. (Modified from Eichna 
LW, Park CR, Nelson N, et al: Thermal regulation during acclimatization in a hot, dry (desert type) environment. Am J Physiol 163:585, 1950.)
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38 AU: Pls. check cross alignment for entries in Table 10-3.

39 AU: NIOSH is not mentioned in Table 10-3–is text missing?

40 AU: Pls. supply expansion of Bip, GRP, and HSC (not used in text).

K

Auerbach_Chapter 10_main

Untitled-17   6 4/8/2011   7:47:55 PM



AU1

AUTHOR QUERY FORM

Dear Author

During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters 
and return this form with your proof.

Many thanks for your assistance.

Query 
References

Query Remarks

1 AU: The references in this chapter have been extensively renumbered and the text citations 
renumbered accordingly. Please verify the reference citations in the text to ensure that they 
are correct.

2 AU: Should ref. 181 be cited after Levine instead of 178?
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