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ABSTRACT 

The consensus problem in multi-agent systems often assumes that all agents are equally trustworthy to seek agreement.  
But for multi-agent military applications – particularly those that deal with sensor fusion or multi-robot formation 
control – this assumption may create the potential for compromised network security or poor cooperative performance.  
As such, we present a trust-based solution for the discrete-time multi-agent consensus problem and prove its asymptotic 
convergence in strongly connected digraphs.  The novelty of the paper is a new trust algorithm called RoboTrust, which 
is used to calculate trustworthiness in agents using observations and statistical inferences from various historical 
perspectives.  The performance of RoboTrust is evaluated within the trust-based consensus protocol under different 
conditions of tolerance and confirmation. 
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1. INTRODUCTION 

The next generation of advanced military robotic systems will be required to operate and co-operate in highly dynamic, 
unstructured, and hostile environments, such as urban warzones, natural or man-made disaster areas, and subterranean 
caves and mines1. These systems will also increasingly become more autonomous and more common in military 
operations, creating a need for robust strategic and tactical reasoning AI.  In particular, military robots will need to 
decide to what capacity they will interact with other robots and humans, given the presence of uncertainty and partial 
information2.  Cooperative multi-robot teaming applications will also need to handle general task coupling and 
communication-delay challenges for these interactions.  Currently, there is no working theory that takes into account all 
of these issues3. 

Generally speaking, an artificial agent is supplied with simple rules to govern its behavior in order for the multi-agent 
system to generate complex emergent behaviors during individual agent interactions.  In certain multi-agent systems, the 
interactions also result in the formation of relationships, which can be leveraged for cooperative or collaborative 
activities.  But these relationships often constrain individual-agent actions, since relationships imply that at least one 
contract between the agents must exist.  In open multi-agent systems, where agents can come from anywhere, may be 
buggy or malicious, and run in dynamic, failure-prone environments, the contract is crucial in establishing a cooperative 
relationship.  But the strength and stability of a relationship depends on how each agent satisfies the requirements in 
their mutual contracts.  There is always some uncertainty as to whether or not either agent can or will satisfy some 
contract requirement – especially at the creation of a new contract.  But in order to maintain the existence of a contract, 
each agent must overcome this uncertainty and assume that the other will do the same.  The mechanism that facilitates 
this act of faith is generally regarded as trust. 

Trust can help deal with uncertainty by reducing the complexity of expectations in arbitrary situations involving risk, 
vulnerability, and interdependence4.  It is particularly useful when something cannot be gauged precisely with 
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reasonable time or effort.  The benefits of trustworthy relationships include lower defensive monitoring of others, 
improved cooperation, improved information sharing, and lower levels of conflict5.  But the reliance on trust also 
exposes people to vulnerabilities associated with betrayal, since the motivation for trust – the need to believe that things 
will behave consistently – exposes individuals to potentially undesirable outcomes.  Thus, trust is a concept that must not 
only be managed, but also justified. 

In this paper, we examine trust within the context of the consensus problem.  The literature often assumes that all agents 
in cooperative teams are equally trustworthy to seek agreement to resolve a consensus problem.  But for multi-agent 
military applications – particularly those that deal with sensor fusion or multi-robot formation control – this assumption 
may create the potential for compromised network security or poor cooperative performance.  The literature contains 
extensive work on consensus protocols6,7,8 – but only a handful of researchers have attempted to incorporate trust into 
these consensus protocols9.  Trust is typically factored in as a weight on some edge between agents in a communications 
digraph.  And a consensus protocol utilizing the trust weights causes agents to converge towards values held by the most 
trustworthy agents (i.e. agents with incoming edge weights that are generally high).  The devil in the details, however, is 
the manner on which the protocol assigns trust weights and how those trust weights change over time. 

This paper begins by introducing the consensus problem and providing a distributed, discrete-time, trust-based protocol 
to this problem.  Specifically, we prove that our protocol asymptotically converges to an agreement space in strongly-
connected digraphs.  Afterwards, we present the RoboTrust algorithm, a novel dynamic trust model that can 
meaningfully cultivate trust in multi-agent systems.  Finally, we incorporate RoboTrust into our trust-based consensus 
protocol and analyze its performance in a simple three-agent network. 

2. OVERVIEW OF THE CONSENSUS PROBLEM 

In multi-agent systems, consensus means that each agent reaches an agreement with all other agents in the network about 
a particular quantity of interest.  This is generally done through a consensus protocol, which defines how agents will 
interact with each other in order to update their current state.  It has been seen that the consensus problem has broad 
applications to multi-agent systems in areas such as cooperative control, formation control, flocking, and sensor fusion. 

In this section, we present a high-level overview of the consensus problem.  Then, we provide a distributed, discrete-
time, trust-based consensus protocol and prove its asymptotic convergence to an agreement space. 

2.1 Consensus Problem Statement 

Let 𝑥𝑖 ∈ ℝ𝑛 be the public decision vector for each agent 𝑖 ∈ 𝑁.  Consider a network of decision-making agents with 
dynamics 𝑥�̇� = 𝑢𝑖 interested in reaching a consensus via local communication with their neighbors on a graph 𝐺 =
(𝑁,𝐸), where 𝑁 is the set of all agents and 𝐸 ⊆ 𝑁 × 𝑁 is the set of all directed edges between the agents.  Let 𝑁𝑖 be the 
set of first-neighbors of agent 𝑖.  Consensus, by definition, means that all agents asymptotically converge to a one-
dimensional agreement space that is characterized by: 

 𝑥1 = 𝑥2 = ⋯ = 𝑥|𝑁| (1) 

In other words, the solution can be described as a vector 𝑥 = 𝛼𝟏, where 𝟏 =  (1, 1,⋯ ,1)𝑇 and 𝛼 is a scalar real value 
equal to the final consensus value.  It has been shown in the literature that �̇� = −𝐿𝑥 is a distributed consensus algorithm 
that solves the consensus problem.  Here, 𝐿 is the Graph Laplacian defined as the difference between the diagonal degree 
matrix (𝐷) and the adjacency matrix (𝐴).  The elements of 𝐴, denoted as 𝐴𝑖𝑗, represent the number of directed edges 
from 𝑖 to 𝑗 (i.e. 𝐴𝑖𝑗 ∈ {0, 1}) and the diagonal elements of 𝐷, denoted as 𝐷𝑖𝑖 , are the number of outgoing edges incident 
to 𝑖.  Note that 𝐷𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗. 

2.2 Distributed, Discrete-Time, Trust-Based Consensus Protocol 

In order to develop any trust-based method, we must first define how to manage trust between each agent in a system.  In 
our methods, we use a |𝑁| × |𝑁| matrix 𝑇 that conforms to the following definition: 

 
𝑇 = �𝑡𝑖,𝑗�|𝑁|×|𝑁|

= �
𝑡𝑖,𝑗 = 1,         
𝑡𝑖,𝑗 ∈ [0,1],   

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 
(2) 
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This matrix is populated with values 𝑡𝑖,𝑗 that represent the probability that agent 𝑗 is trustworthy from the perspective of 
agent 𝑖.  The values 𝑡𝑖,𝑗 can also be interpreted as the probabilities that agent 𝑖 will allow agent 𝑗 to interact with him, 
since rational agents would prefer to interact with more trustworthy agents.  Note that the diagonal of the matrix consists 
of fixed 1 values, indicating that each agent fully trust himself. 

We now present the following trust-based consensus protocol for discrete-time agents with dynamics 𝑥𝑖(𝑘 + 1) =
𝑥𝑖(𝑘) + 𝜖𝑢𝑖(𝑘) for a fixed graph topology 

 𝑢𝑖(𝑘) = Δ𝑖−1(𝑘) � 𝑇𝑖𝑗(𝑘)𝐴𝑖𝑗�𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)�
𝑗∈𝑁𝑖

 (3) 

where Δ𝑖(𝑘) = ∑ 𝑇𝑖𝑗(𝑘)𝐴𝑖𝑗𝑗∈𝑁  is the weighted degree of all outgoing edges of 𝑖 and 0 < 𝜖 < 1 is the step-size. 

This protocol can be expressed in matrix form as: 

 𝑢(𝑘)  = −(𝐼 − 𝐷−1𝑊)𝑥(𝑘) (4) 

where 𝑊 = 𝑇 ∘ 𝐴 is the weighted adjacency matrix, such that 𝑇 is the trust matrix with 0 ≤ 𝑇𝑖𝑗 ≤ 1 for all 𝑖, 𝑗 ∈ 𝑁, 𝐴 is 
the adjacency matrix, and the operator ∘ is the Hadamard product; and 𝐷 is the weighted degree matrix of the graph for 
all outgoing edges, such that 𝐷𝑖𝑖 = Δ𝑖 and 𝐷𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗.  The matrix resulting from 𝐼 − 𝐷−1𝑊 is a normalized 
Laplacian matrix 𝐷−1𝐿 = 𝐷−1(𝐷 −𝑊).  Note how equation 4 takes the form of the distributed consensus algorithm 
�̇� = −𝐿𝑥. 

It is well-known that the discrete-time collective dynamics for the consensus problem can also be written as 

 𝑥(𝑘 + 1) = 𝑃𝑥(𝑘) (5) 

where 𝑃 = 𝐼 − 𝜖𝐿 and 𝜖 > 0.  Here, 𝑃 is known as the Perron matrix of graph 𝐺 with parameter 𝜖.  If we substitute the 
normalized Laplacian for 𝐿 in 𝑃, then the collective dynamics of the network under our algorithm are 

 𝑥(𝑘 + 1) = [(1 − 𝜖)𝐼 + 𝜖𝐷−1𝑊]𝑥(𝑘) (6) 

We now present certain results that are well-known in the consensus literature.  These are included mainly for the benefit 
of the reader to understand how we can claim the asymptotic convergence of protocol 3. 

Lemma 1: Let 𝐺 be a digraph with |𝑁| nodes. Then the Perron matrix 𝑃 with parameter 0 < 𝜖 < 1 is a row-stochastic, 
non-negative matrix with a trivial eigenvalue of 1. 

Since 𝑃 = 𝐼 − 𝜖𝐷−1𝐿, we get 𝑃𝟏 = 𝟏 − 𝜖𝐷−1𝐿𝟏 = 𝟏, which means the row sums of 𝑃 are 1.  Thus, 𝑃 is row-stochastic 
and has 1 as a trivial eigenvalue of 𝑃 for all graphs since zero is an eigenvalue of 𝐿 associated with the eigenvector 𝟏.  
Furthermore, we notice that, by definition, the weighted adjacency matrix 𝑊 is a non-negative matrix.  Thus, 𝜖𝐷−1𝑊 is 
also non-negative.  Also, (1 − 𝜖)𝐼 is always non-negative for 0 < 𝜖 < 1.  Since the sum of two non-negative matrices is 
a non-negative matrix, 𝑃 is a non-negative matrix. 

Lemma 2: Let 𝐺 be a digraph with |𝑁| nodes.  If 𝐺 is strongly connected, then 𝑃 is a primitive matrix with parameter 
0 < 𝜖 < 1. 

An irreducible stochastic matrix is primitive when it has only one eigenvalue with maximum modulus.  Since 𝐺 is 
strongly connected, then 𝑃 is irreducible10 and by Lemma 1, 𝑃 is also stochastic. And according to the Perron-Frobenius 
theorem, the fact that 𝑃 has an eigenvalue of 1 with a positive eigenvector 𝟏 implies that this eigenvalue is the Perron 
root �̂� = 1.  Hence, any other modulus of eigenvalues of 𝑃 must be strictly smaller than the Perron root (i.e. |𝜆| < �̂� for 
all eigenvalues 𝜆 of 𝑃, such that 𝜆 ≠ �̂� ).  Thus, 𝑃 is a primitive matrix. 

Theorem (Convergence): Consider a network of agents 𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝜖𝑢𝑖(𝑘) for a fixed, strongly connected 
graph 𝐺 applying the distributed consensus protocol 3.  Then, protocol 3 asymptotically solves a consensus problem. 
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Considering that 𝑥(𝑘) = 𝑃𝑘𝑥(0), consensus is reached in discrete-time if the limit lim𝑘→∞ 𝑃𝑘 exists.  According to the 
Perron-Frobenius theorem, this limit exists for primitive matrices and according to Lemma 2, 𝑃 is a primitive matrix 
under the conditions of protocol 3.  Thus, protocol 3 asymptotically solves the consensus problem. 

3. ROBOTRUST – A DYNAMIC, TRUST MODEL 

In this section, we propose the RoboTrust algorithm – a mechanism to meaningfully cultivate trust towards other agents 
in multi-agent systems.  It has been designed in a way that allows practitioners to easily integrate it into robotic 
applications.  The proposed trust model establishes context through the use of acceptance functions and interprets 
context through confirmation and tolerance parameters.  It also overcomes a particular limitation found in other trust 
models in the literature with respect to the discount factor.  In addition to showing the derivation of the trust model, we 
also provide some practical modifications and extensions to the trust model in order to make it more flexible for real 
world applications. 

3.1 Shortcoming of the Discount Factor 

It is known that trust dynamics are highly context dependent11.  As such, many trust models incorporate a parameter 
known as the discount factor to reflect this dynamism in the weighting of historical evidence12,13,14.  The discount factor 
captures how much an agent would value past observations relative to the present.  With a low discount factor, past 
behavior is forgotten quickly and the estimated trustworthiness reflects more on another agent’s recent behavior.  A high 
discount factor, on the other hand, considers the long term behavior of another agent.  The discount factor parameter is 
often hand-tuned by a practitioner, but some researchers have developed methods to dynamically update the discount 
factor over time15. 

The discount factor however presents a serious issue for certain applications.  Conventional wisdom about trust suggests 
that trust should generally take a long time to cultivate and a short time to destroy.  With the discount factor, however, 
trust cultivation and destruction change at the same rate – even if the discount factor dynamically changes relative to the 
level of trust.  This may be acceptable for applications such as e-commerce, where trust is generally based on the 
average consumer feedback16.  But it may be problematic for cooperative applications within dynamic environments, 
where trust is more volatile due to complex inter-dependencies between agents.  The RoboTrust model we propose in 
this section overcomes this limitation by allowing trust cultivation to change at different rates, which lines up better with 
a natural intuition of trust.  Hence, the discount factor is ultimately not required in the RoboTrust model. 

3.2 Acceptance Functions 

The purpose of an acceptance function is to interpret a set of measurements and decide whether or not an agent should 
collectively deem them as acceptable.  In essence, the acceptance function mathematically describes a particular context 
as some region in a feature space, and then defines which portions of that region the agent should find favorable. 

In our work, we describe an acceptance function 𝑧 with an output that represents either a favorable (1) or unfavorable (0) 
result based on a set of observations 𝑉, given by the information function 𝜌: 𝑘 × 𝐹 → 𝑉, where 𝑘 is time step, 𝐹 is the set 
of feature space attributes (or dimensions), and 𝑉 = {𝑣|𝑘 ∈ ℕ,∀𝑓 ∈ 𝐹: 𝑣 ∈ 𝜌(𝑘, 𝑓)}. 

 𝑧(𝑘):𝑉(𝑘,𝐹) → {0,1} (7) 

Note that the explicit mapping of the feature space to favorable/unfavorable regions is application-specific, and should 
be defined by the practitioner. 

The primary motivation for describing the acceptance function’s output as Boolean is that the meaning of the output is 
readily understood and does not require any interpretation beyond recognizing the Boolean value.  Technically, an 
acceptance function could also be defined on some continuous range between unfavorable and favorable extremes – but 
it would require that the function knows how to interpolate between each extreme, which can be complicated and 
somewhat ambiguous in interpretation. 

3.3 Derivation of the RoboTrust Model 

This subsection presents the mathematical derivation of the RoboTrust model.  Let us assume agent 𝑖 acquires a 
sequence of observations from an acceptance function regarding agent 𝑗 



 

 

 

UNCLASSIFIED 

 𝑧𝑖𝑗 = �𝑧𝑖𝑗(0), 𝑧𝑖𝑗(1),⋯ , 𝑧𝑖𝑗(𝑟)� (8) 

where 𝑧𝑖𝑗(𝑟) is the most recent observation.  Let 𝑍 be a random variable associated with these observations with a 
discrete probability distribution 𝑝 that depends on a parameter 𝜃.  Then, the likelihood function can be defined as: 

 𝓛�𝜃|𝑧𝑖𝑗� = 𝑝𝜃�𝑧𝑖𝑗� = 𝑃𝜃�𝑍 = 𝑧𝑖𝑗� (9) 

Suppose agent 𝑖 considers only the 𝑐 + 1 most recent observations of agent 𝑗.  We refer to 𝑐 ∈ ℕ as the confirmation 
parameter.  Then: 

 𝑧𝑖𝑗𝑐 = �𝑧𝑖𝑗(𝑟 − 𝑐), 𝑧𝑖𝑗(𝑟 − 𝑐 + 1),⋯ , 𝑧𝑖𝑗(𝑟 − 1), 𝑧𝑖𝑗(𝑟)�        0 ≤ 𝑐 ≤ 𝑟 (10) 

Note that 𝑧𝑖𝑗0 = �𝑧𝑖𝑗(𝑟)� and 𝑧𝑖𝑗𝑟 = 𝑧𝑖𝑗 .  If we let the parameter 𝜃 be the probability that agent 𝑗 will be observed 
favorably by agent 𝑖, then the trust attitude that agent 𝑖 has towards agent 𝑗 can be modeled by 

 

𝑇𝑖𝑗 = min

⎝

⎜
⎛

arg max𝓛�𝜃0|𝑧𝑖𝑗0 �
arg max𝓛�𝜃1|𝑧𝑖𝑗1 �

⋮
arg max𝓛�𝜃𝑐|𝑧𝑖𝑗𝑐 �⎠

⎟
⎞

 

(11) 

That is, we assign the trust attitude 𝑇𝑖𝑗  to equal the smallest, most likely probability taken from various historical 
perspectives.  Since we assume that the acceptance function output is Boolean, let us suppose that each observation is a 
random variable that comes from a binomial distribution, where there are 𝜅 = ∑ 𝑧𝑖𝑗(𝑟 − 𝑞)𝑐

𝑞=0  favorable observations 
from a total of 𝜂 = 𝑐 + 1 most recent observations.  Then the likelihood function can be defined as 

 𝓛(𝜃|𝜅, 𝜂) = �𝜂𝜅� 𝜃
𝜅(1 − 𝜃)𝜂−𝜅 (12) 

We wish to find the maximum likelihood estimate for 𝜃 given 𝜅 and 𝜂.  This can be done by setting the derivative of the 
log-likelihood to zero and solving for 𝜃. 

 log𝓛(𝜃|𝜅, 𝜂) = log �𝜂𝜅� + 𝜅 log𝜃 + (𝜂 − 𝜅) log(1 − 𝜃) (13) 

 𝑑
𝑑𝜃

log𝓛(𝜃|𝜅,𝜂) =
𝜅
𝜃
−

(𝜂 − 𝜅)
(1 − 𝜃) = 0 

(14) 

 𝜃� =
𝜅
𝜂

 (15) 

𝜃� denotes the maximum likelihood estimate, which we can now use to calculate a trust attitude 𝑇𝑖𝑗  for agent 𝑖 towards 
agent 𝑗. 

 

𝑇𝑖𝑗 = min

⎝

⎜
⎜
⎜
⎜
⎛

∑𝑧𝑖𝑗0

1
∑𝑧𝑖𝑗1

2
⋮

∑ 𝑧𝑖𝑗𝑐

𝑐 + 1⎠

⎟
⎟
⎟
⎟
⎞

 

(16) 
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With this trust model, a single unfavorable observation will reduce the trust to zero.  However, 𝑐 + 1 consecutive 
favorable observations will increase the trust to one.  Hence, we see that the confirmation parameter 𝑐 describes the 
number of consecutive favorable observations necessary before the next consecutive favorable observation results in 
complete trust (i.e. 𝑇𝑖𝑗 = 1). 

It is readily clear that from a practical perspective, the RoboTrust trust model in 16 is too restrictive to handle the wide 
variety of contexts that agents may be interested in.  A practitioner may want to have more control over how unfavorable 
observations affect the trust attitude.  Hence, we modify the RoboTrust model by adding an additional parameter known 
as the tolerance parameter 𝜏 ∈ ℕ, where 0 ≤ 𝜏 ≤ 𝑐. 

 

𝑇𝑖𝑗 = min

⎝

⎜
⎛

arg max𝓛�𝜃𝜏|𝑧𝑖𝑗𝜏 �
arg max𝓛�𝜃𝜏+1|𝑧𝑖𝑗𝜏+1�

⋮
arg max𝓛�𝜃𝑐|𝑧𝑖𝑗𝑐 � ⎠

⎟
⎞

= min

⎝

⎜
⎜
⎜
⎜
⎛

∑𝑧𝑖𝑗𝜏

𝜏 + 1
∑𝑧𝑖𝑗𝜏+1

𝜏 + 2
⋮

∑ 𝑧𝑖𝑗𝑐

𝑐 + 1 ⎠

⎟
⎟
⎟
⎟
⎞

 

(17) 

The tolerance parameter controls how the trust model tolerates unfavorable observations.  The higher the tolerance 
parameter, the less impact unfavorable observations have on the current trust value.  This is because the tolerance 
parameter forces the model to take into account at least 𝜏 + 1 number of observations.  Hence, we see that the tolerance 
parameter describes the number of consecutive unfavorable observations necessary before the next consecutive 
unfavorable observation results in no trust (i.e. 𝑇𝑖𝑗 = 0). 

Before concluding, it is important to note a small issue that arises when applying RoboTrust in practice: the question on 
how to handle initial trust cultivation when the total number of observations is less than 𝑐 + 1 (i.e. 𝑟 < 𝑐).  While there 
are several approaches that could resolve this issue, we favor a pessimistic approach that initializes the sequence of 
acceptance observations with 𝑐 + 1 unfavorable observations and offsets 𝑟 to equal 𝑐.  This approach allows agents to 
minimize exposure to trust-based vulnerabilities in initial interactions when trust has not yet been properly cultivated. 

3.4 RoboTrust Extension for Indirect Trust Aggregation and Propagation 

This subsection describes a method to give agents the ability to use RoboTrust to gauge trust about other agents who are 
not first-neighbors and cannot be directly observed.  Let us begin by defining the 𝑚th-neighbors of 𝑖 as a recursive set 
function. 

 𝐽𝑖𝑚 = 𝐽𝑖𝑚−1 ∪ 𝑁𝐽𝑖𝑚−1        𝑚 ≥ 1, 𝐽0 = {𝑖} (18) 

Thus, 𝑗 is a 𝑚th-neighbor of 𝑖 if 𝑗 ∈ 𝐽𝑖𝑚\ 𝐽𝑖𝑚−1.  Note, however, that this does not imply that 𝑖 is also a 𝑚th-neighbor of 𝑗 
since the network is modeled as a digraph.  Furthermore, it may not be able possible to indirectly gauge the trust of every 
𝑚th neighbor in system since unidirectional relationships in the graph prevent cooperative interactions between any two 
agents.  Therefore, this extension is limited to agents who are the 𝑚th-neighbors in bidirectional relationships with 𝑖 
(directly or indirectly) along with these 𝑚th-neighbors own first-neighbors. 

As we saw in section 3.3, the RoboTrust algorithm used direct acceptance observations as its input to calculate trust.  For 
this extension, we use indirectly-acquired acceptance observations from neighbors.  These indirect observations can be 
thought of as recommendations.  Thus, there is no need to change an agent’s trust model for a particular context.  Rather, 
an agent relies on the hidden (or private) acceptance functions of its 𝑚th-neighbors to determine the acceptance 
observations.  Since there may be multiple hops and multiple paths between two agents in a network, the indirect trust 
extension is simply a rule for trust information propagation and aggregation.  This rule can be stated with the following 
equation: 

 
𝑧𝑖𝑗(𝑘) = �

2∑ 𝑧𝑞𝑗(𝑘)𝑞∈𝑁𝑖
|𝑁𝑖| + 1

� 
(19) 
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Equation 19 essentially states that if more than half of the indirect acceptance observations at a particular time step are 
favorable, then agent 𝑖 can consider his own acceptance observation of agent 𝑗 to be favorable (i.e. 𝑧𝑖𝑗(𝑘) = 1); 
otherwise, his acceptance observation of agent 𝑗 is unfavorable (i.e. 𝑧𝑖𝑗(𝑘) = 0).  The purpose of the floor function and 
extra constants in the numerator and denominator is to prevent division-by-zero problems and extraneous logic 
statements in implementations of this extension. 

To illustrate this concept, consider a network of 5 agents, as shown in Figure 1.  Agents 1 is connected to agent 5 
through agent 1’s first-neighbors 2, 3, and, 4.  Thus, agent 5 is a second-neighbor of agents 1.  That said, agent 5 is not 
the second-neighbors of agent 1 since agent 5 does not have any directed edges to agents 2, 3, and 4. 

 
Figure 1. A 5-agent network where agent 5 is the second-neighbor of agent 1. 

Suppose agent 1 is interested in indirectly gauging the trust of agent 5.  Thus, agent 1 requests the latest 5 acceptance 
observations about agent 5 from its first-neighbors, namely agents 2, 3, and 4.  Each one returns the following 
observation sequences about agent 5 to agent 1. 

 𝑧2,5
4 = {0 1 1 1 0} 

𝑧3,5
4 = {0 1 0 1 1} 

𝑧4,5
4 = {0 0 1 1 1} 

(20) 

These sequences can be interpreted as recommendations about agent 5 from agents 2, 3, and 4.  Agent 1 can now 
aggregate these observations using the equation in 19.  In doing so, the indirect observation of agent 1 is  

 𝑧1,5
4 = ��2×0

3+1
� �2×2

3+1
� �2×2

3+1
� �2×3

3+1
� �2×2

3+1
��={0 1 1 1 1} (21) 

Agent 1 can now take 𝑧1,5
4  and use it in RoboTrust (with its own tolerance and confirmation parameters) as if it directly 

observed agent 5. 
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Figure 2. A 6-agent network where agent 5 is both the second-neighbor and third-neighbor of agent 6. 

Equation 19 can also support trust propagation.  Suppose agent 6 enters the network, becomes first-neighbors with 
agents 1 and 4 (as in Figure 2), and wants to indirectly gauge the trust of agent 5.  Then, like before, agent 6 requests the 
latest 5 acceptance observations about node 5 from its first-neighbors. 

 𝑧1,5
4 = {0 1 1 1 1} 

𝑧4,5
4 = {0 0 1 1 1} 

(22) 

Aggregating these observations with equation 19 results in 

 𝑧6,5
4 = ��2×0

2+1
� �2×1

2+1
� �2×2

2+1
� �2×2

2+1
� �2×2

2+1
��={0 0 1 1 1} (23) 

Now, agent 6 can use 𝑧6,5
4  in the RoboTrust algorithm to calculate the trust for agent 5.  Thus, we see that trust 

information about agent 5 propagated to agent 6 from as far as its second-neighbors. 

While the examples above illustrate ideal conditions, in practice, additional logic may be necessary to handle situations 
where agents are unresponsive or do not have acceptance observation data available.  Trust values may also be used to 
filter the first-neighbors into a subset of trusted first-neighbors.  These are application-specific conditions and are beyond 
the scope of this paper. 

4. PERFORMANCE ANALYSIS OF THE TRUST-BASED CONSENSUS ALGORITHM 

In this section, we analyze the trust-based consensus algorithm under two overarching conditions: fixed-trust and 
dynamic trust using a simple three-agent network. 

4.1 Trust-Based Consensus with Fixed-Trust 

For our fixed-trust demonstration, we utilize a simple three-agent directed network as depicted in Figure 3.  By 
inspection, it can be readily seen that Figure 3 is strongly connected, which is a necessary condition for the convergence 



 

 

 

UNCLASSIFIED 

of protocol 3.  Each directed edge has been initialized with a trust value 𝑇𝑖𝑗 , designating the level of trust agent 𝑖 has for 
agent 𝑗.  Note that each agent has a directed edge that loops back onto itself with trust value equal to 1 – this signifies 
that each agent completely trusts itself.  

Our intent for this subsection is to establish a convergence result for the trust-based consensus protocol in 3 using the 
graph in Figure 3.  We keep all trust values fixed to their initial values in Figure 3, and set 𝑥(0) = [10,20,30]𝑇 and 
𝜖 = 0.1.  The simulation terminates when ∑ �𝑥𝑖 − 𝑥𝑗�𝑖,𝑗∈𝑁 < 1−5.  The results of this simulation are shown in Figure 4. 

In general, the practitioner of a fixed-trust consensus protocol assumes that the trust values are both known and 
independent of the decision value.  These assumptions may be particularly useful in sensor fusion applications of similar 
sensors, where each sensor is known to lose its calibration at a known rate.  Trust values can be extrapolated from 
calibration degradation curves using an application-specific formula. 

4.2 Trust-Based Consensus with Dynamic Trust 

The use of dynamic-trust signifies that agents are interested in cultivating trust with respect to particular contexts during 
the consensus process.  Thus, unlike in the fixed-trust case, agents do not need to assume any pre-determined trust values 
nor that the trust is independent of the decision value.  For our analysis, we use the RoboTrust algorithm in 17 to 
generate trust updates during the consensus process. 

In order to use RoboTrust, we must first define at least one acceptance function, which describes a particular context by 
mapping out favorable regions in a feature space.  Our choice of an acceptance function is arbitrary.  So, for the purpose 
of this paper, we consider the context of an agent’s willingness to cooperate to reach agreement during consensus.  We 
measure an agent’s willingness to cooperate by evaluating whether a particular action demonstrates a willingness to 
shorten the distance 𝛿 between disagreements.  More specifically, we say that agent 𝑖 observes agent 𝑗 favorably if agent 
𝑗’s current state vector is closer to agent 𝑖’s previous state vector than agent 𝑗’s previous state vector. 

 𝛿𝑖𝑗(𝑘) = �𝑥𝑖𝑘−1 − 𝑥𝑗𝑘−1� − �𝑥𝑖𝑘−1 − 𝑥𝑗𝑘�        𝑖 ≠ 𝑗, 𝑘 > 0 (24) 

 
𝑧𝑖𝑗(𝑘) = �

1 𝛿𝑖𝑗(𝑘) > 0
0 𝛿𝑖𝑗(𝑘) < 0

� 
(25) 

In the event that 𝛿𝑖𝑗(𝑘) = 0 (i.e. 𝑥𝑗𝑘−1 = 𝑥𝑗𝑘), there is some ambiguity since it is not clear whether or not agent 𝑗 intends 
to cooperate with agent 𝑖.  Agent 𝑗 may have chosen to stay put for different reasons, not all of which may indicate 
malicious intent or unwillingness to cooperate.  For example, agent 𝑗 may be unexpectedly isolated because he perceives 
that all of his first-neighbors are uncooperative (i.e. agent 𝑗 has no trust for any of his first-neighbors in this context).  
Note that agent 𝑖 need not necessarily be a first-neighbor of agent 𝑗 since it may be the case that 𝐴𝑗𝑖 = 0 even if 𝑇𝑗𝑖 > 0. 

Handling this ambiguity is somewhat arbitrary and may be dependent on the specific application.  For example, a 
practitioner may choose to resolve the ambiguity by making the result equal to a Boolean random variable taken from 
some probability distribution.  However, since we intend to study the RoboTrust algorithm in a deterministic manner, we 
simply assign the acceptance value as the result of a negation on the previous acceptance value. 

 𝑧𝑖𝑗(𝑘) = {0,1}\𝑧𝑖𝑗(𝑘 − 1) 𝛿𝑖𝑗(𝑘) = 0 (26) 

For our dynamic trust demonstration, we utilize a simple three-agent agent network depicted in Figure 5.  Note that the 
graph in Figure 3 is structurally the same as Figure 5 – but the initial trust values between agents are set to zero.  Hence, 
the trust matrix is equal to the identity matrix (i.e. 𝑇 = 𝐼).  The rationale behind this trust initialization is based on the 
assumption that no agent has cultivated any trust with any other agent before the start of a consensus simulation. 
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Figure 3. A simple, strongly connected three-agent network with initialized trust values. 

 

 

 

 

 
Figure 4.  A consensus agreement is reached at value 18.1928 after 427 time steps.  The initial trust values remained fixed 
throughout the entire simulation. 
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Figure 5. A simple, strongly connected three-agent network initialized with no trust between agents. 

We begin by establishing a convergence result for the trust-based consensus protocol in 3 using the RoboTrust algorithm 
for trust dynamics.  As before, we set 𝑥(0) = [10,20,30]𝑇 and 𝜖 = 0.1, with the simulation termination condition 
∑ �𝑥𝑖 − 𝑥𝑗�𝑖,𝑗∈𝑁 < 1−5.  Each agent uses the acceptance function in 25 and 26 to evaluate favorable or unfavorable 
observations of other agent behavior during the consensus process.  These results are then placed into an appropriate 
acceptance observation sequence and used by the RoboTrust algorithm in 17 to provide a new trust value for the next 
time step.  For this particular simulation, we set 𝜏=3 and 𝑐 = 5 for all agents.  The results of this simulation are shown in 
Figure 6. 

From a visual comparison, the time series profiles look markedly different between Figure 4 and Figure 6.  In particular, 
we see time series sections in Figure 6 where 𝑢𝑖(𝑘) = 0 before the final convergence result was reached.  These sections 
represent portions of the convergence process when a particular agent 𝑖 becomes isolated from his first-neighbors due to 
a total absence of trust in his first-neighbors.  For example, at 𝑘 = 42, the decision values of agent 1 and 3 intersect.  At 
the next time step, agent 1 begins to lose some trust toward agent 3 because agent 3 appears to be increasing the 
disagreement distance.  Eventually by 𝑘 = 46, agent 1 loses all trust for agent 3 (its only first-neighbor) and flatlines till 
𝑘 = 68, which interestingly is an intersection point between agent 2 and agent 3.  Figure 7 shows a detailed 
representation of the Figure 6 to serve as a reference for the above example. 

To conclude our analysis, we seek to understand how the tolerance and confirmation parameters affect the number of 
time steps necessary to reach convergence.  Hence, we executed 5150 simulations of our trust-based consensus protocol 
with RoboTrust using every (𝜏, 𝑐) pair within the ranges of 0 ≤ 𝜏 ≤ 100 and 1 ≤ 𝑐 ≤ 100.  The simulation used the 
graph in Figure 5 with 𝑥(0) = [10,20,30]𝑇, 𝜖 = 0.1, and the simulation termination condition ∑ �𝑥𝑖 − 𝑥𝑗�𝑖,𝑗∈𝑁 < 1−5.  
As before, RoboTrust used the acceptance function in 25 and 26 to evaluate favorable or unfavorable observations of 
other agent behavior during the consensus process.  The graphical results of these simulations are depicted in Figure 8. 

In general, we see that higher tolerance values tend to shorten the length of time necessary to reach convergence.  Also, 
higher confirmation values tend to extend the length of time necessary to reach convergence.  There is however a notable 
exception – when 𝜏 = 0, an increase in 𝑐 does not significantly extend the length of time till convergence.  We suspect 
that this exception may be due to how our acceptance function handles the boundary condition of 𝛿𝑖𝑗(𝑘) = 0.  For this 
case, since our acceptance function is deterministic, it may end up oscillating between 0 and 1 due to the lack of 
tolerance, meaning that trust values will also oscillate between 0 and 0.5 – regardless of how large 𝑐 is.  This case 
highlights the importance of understanding the context of how trust is to be determined. 
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Figure 6. A consensus agreement is reached at value 21.1814after 473 time steps using the RoboTrust algorithm with 
parameters 𝜏=3 and 𝑐 = 5. 

 

 

 

 

 
Figure 7. A closer and more detailed view of Figure 6.  Agents 1 and 3 intersect at 𝑘 = 42.  Agents 2 and 3 intersect at 
𝑘 = 68. 
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Figure 8. Surface plot of the number of time steps 𝑘 needed for convergence on a (𝜏, 𝑐) pair for the digraph in Figure 5.  The 
range represented in the plot is 0 ≤ 𝜏 ≤ 100 and 1 ≤ 𝑐 ≤ 100. 

5. CONCLUSION 

In this paper, we presented a discrete-time, trust-based consensus protocol and proved its asymptotic convergence to an 
agreement space for strongly connected digraphs.  We also proposed a novel dynamic trust model, named RoboTrust, 
which finds the smallest, most likely probability from various historical perspectives of acceptance to gauge trust.  
Simulations were used to evaluate RoboTrust within the trust-based consensus protocol.  In general, we learned that that 
higher tolerance values and lower confirmation values tend to shorten the length of time necessary to converge to 
consensus. 
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