

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

DISTRIBUTED EPISODIC EXPLORATORY PLANNING (DEEP)

APRIL 2012

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-115

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-115 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
ALEX SISTI JULIE BRICHACEK, Chief
Chief, Advanced Planning & Information Systems Division
Autonomous C2 Systems Branch Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

JUL 2006 – SEP 2011
4. TITLE AND SUBTITLE

DISTRIBUTED EPISODIC EXPLORATORY PLANNING
(DEEP)

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Dale Richards, Kurt Lachevet, Gennady Staskevich,
Anthony Ford, Chad DeStefano

5d. PROJECT NUMBER
558S

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
DP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RISC
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site /RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-115

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-1887
Date Cleared: 30 MAR 12

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents an overview of the work performed on the Distributed Episodic Exploratory Planning (DEEP) project. DEEP is
a mixed-initiative decision support system that utilizes past experiences to suggest courses of action for new situations. It has been
designed as a distributed multi-agent system, using agents to maintain and exploit the experiences of individual commanders, as well
as to transform suggested past plans into potential solutions for a new situation or world state. The system is mixed-initiative in the
sense that a commander, through his or her agent, can view and modify the contents of the shared repository as needed. The agents
interact through a common knowledge repository and managed by a blackboard architecture. The blackboard architecture is well
suited for dealing with ill-described, complex situations that are part of modern warfare. Additional aspects of the work include
development of a common plan representation and design of the case repository feature space. Much of the work has been
documented in numerous other papers, reports and presentations, as referenced in the bibliography, and is only summarized in this
report.
15. SUBJECT TERMS

Planning, Case Based Reasoning, Mixed-Initiative, Blackboard Systems, Agent Based Systems, Robust Coherence, Course of
Action, COA
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

60

19a. NAME OF RESPONSIBLE PERSON
Dale W. Richards

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents
List of Figures ... iii

1. Executive Summary ... 1

2. Introduction .. 3

2.1. Problem Statement ... 3

2.2. Initial DEEP Project Objective ... 4

2.3. Revised DEEP Objectives ... 5

3. Methods, Assumptions and Procedures ... 7

3.1. DEEP Research Platform Overview ... 7

3.1.1. Blackboard Architecture ... 9

3.1.2. Core Plan Representation (CPR).. 12

3.1.3. Case-Based Reasoning / Case-Based Planning .. 16

3.1.4. Multi-agent Systems ... 17

3.2. Revised Program Focus ... 17

3.2.1. Case-Base Development ... 17

3.2.2. Information Retrieval .. 24

3.3. Related Explorations ... 28

3.3.1. Robust Coherence ... 28

3.3.2. Model Adaptation Using Software Agents and a Case Base ... 32

3.3.3. Mixed-Initiative COA Critics / Advisors (MICCA) ... 34

3.3.4. Case-Based Tactician ... 38

3.3.5. Simulation of DEEP Generated Plans .. 39

4. Results and Discussion .. 41

4.1. Research Platform ... 41

4.2. Future Work .. 41

4.2.1. MICCA .. 41

4.2.2. EBAR .. 42

4.2.3. Robust Coherence ... 44

4.2.4. StarCraft .. 45

ii

5. Conclusions ... 47

6. Bibliography .. 49

Symbols, Abbreviations and Acronyms... 53

iii

List of Figures

Figure 1: Notional DEEP Architecture .. 7
Figure 2: DEEP Dataflow ... 8
Figure 3: Basic Blackboard System ... 10
Figure 4: ARPI Core Plan Representation (CPR) Design (1998) .. 13
Figure 5: DEEP-CPR Representation Design ... 15
Figure 6: Simplified View of Original CPR Data Structure .. 15
Figure 7: Simplified View of DEEP-CPR Data Structure .. 16
Figure 8: StarCraft Screenshot ... 19
Figure 9: StarCraft Case Base Feature Set .. 22
Figure 10: Sample StarCraft Case with Feature Data ... 23
Figure 11: Inverted Indexing of Case features ... 25
Figure 12: Similarity Score Formula ... 25
Figure 13: Indexing Algorithm Effectiveness .. 26
Figure 14: DEEP Agents Architecture ... 33
Figure 15: Fitness function for the DEEP-StarCraft GA .. 38
Figure 16: Chromosome representation for the DEEP-StarCraft GA ... 39
Figure 17: DEEP / StarCraft Architecture ... 46

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
1

1. Executive Summary

This report describes research done under the Distributed Episodic Exploratory Planning (DEEP)
project. DEEP is a mixed-initiative decision support system that utilizes past experiences to
suggest courses of action for new situations. It has been designed as a distributed multi-agent
system, using agents to maintain and exploit the experiences of individual commanders as well
as to transform suggested past plans into potential solutions for new problems. The system is
mixed-initiative in the sense that a commander, through his or her agent, can view and modify
the contents of the shared repository as needed. The software agents interact through a common
knowledge repository, managed by via a blackboard-based architecture. The blackboard
architecture is well suited for dealing with uncertain, complex situations that are part of modern
warfare. Additional aspects of the work include development of a common plan representation
and design of the case repository feature space. Much of the work is documented in detail in
other papers, reports and presentations, as referenced in the bibliography, and is only
summarized in this report.

DEEP was initiated in 2006 in response to command and control (C2) deficiencies with regards
to development of a course of action (COA) satisfying the stated and implied conditions
embodied in a given commander’s intent. A means for providing mixed-initiative support to a
planning staff -- potentially distributed in time, space and network presence – was needed as part
of the push toward network centric operations (NCO). This project sought to develop, in-house,
a research platform for exploring distributed, mixed-initiative planning using analogical
reasoning over an experience base of past actions.

The resulting initial research platform is comprised of the following components:

• Distributed Blackboard to support multi-agent, non-deterministic, opportunistic
reasoning

• Case-Based Reasoning to capture experiences (successes and/or failures)
• ARPI Core Plan Representation (CPR) for human-to-machine common dialog
• Multi-Agent System for mixed initiative planning

Additional components associated with the comprehensive vision were planned, but not
implemented. These include:

• Episodic Memory for powerful analogical reasoning
• Constructive Simulation for exploration of possible future states

Research areas subsequently investigated using the DEEP platform include:

• Distributed Episodic Analogical Reasoning to increase system robustness (DEAR)
(Mulvehill, et al., 2007)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
2

• Semantic Extensions to the CPR to provide a richer plan representation
• Robust Coherence to mediate and integrate output from multiple agents
• Constraint Satisfaction to align past plans with current needs
• Model Adaptation to autonomously maintain model relevance
• Mixed-Initiative Critic Agents to critique and adapt retrieved plans
• Real-time Strategy Game Replays as extensive case bases

The research initiated under this program is being utilized as a foundation for new research tasks
scheduled to begin in 2012. The primary emphasis of this work will focus on dynamically
managing the case retrieval process by selecting the optimal set of case features on which to base
retrieval of plans and plan fragments from the case base, as well as an assessment of the degree
to which execution of a plan has strayed from an earlier, anticipated path to determine when a
plan should be monitored, adapted or re-planned. The DEEP platform will continue to be used to
support exploration of case-based reasoning for plan retrieval and course-of-action development.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
3

2. Introduction

DEEP is a mixed-initiative decision support system that utilizes past experiences to suggest
courses of action for new situations. It has been designed as a distributed multi-agent system,
using agents to maintain and exploit the experiences of individual commanders as well as to
transform suggested past plans into potential solutions for new problems. The system is mixed-
initiative in the sense that a commander, through his or her agent, can view and modify the
contents of the shared repository as needed. The agents interact through a common knowledge
repository, represented by a blackboard in the initial architecture. The blackboard architecture is
well suited for dealing with uncertain, complex situations that are part of modern warfare.

The fast pace of change and innovation in the software design community suggested that the
DEEP program utilize a flexible and extensible architecture throughout the course of the effort to
enable new ideas to be rapidly prototyped, evaluated, and then either discarded or used to evolve
both the underlying architecture and the more operationally motivated functionality to which it is
applied. This approach proved very effective as not all of the early goals were, in fact, realizable
within the time and resource constraints of this effort. The severable nature of the components
allowed the research team to make minor modifications to the system without resort to wholesale
redesign and to rapidly investigate promising opportunities.

2.1. Problem Statement

The United States and other highly industrialized nations have developed military capabilities
that excel in conventional force-on-force warfare, especially where tactics are well developed
and understood. However, modern adversaries have devised the strategy of not going “head-to-
head” with these capabilities and instead combat modern conventional forces with
unconventional tactics, the aptly named asymmetrical warfare, e.g., the reliance on small arms
and improvised explosive devices seen in the southwest Asian theatres of conflict. (Allen, 2004)

To meet these future challenges, United States forces have gone through a transformation where
they not only support traditional high-tempo, large force-on-force engagements, but also smaller
scale conflicts characterized by insurgency tactics and time-sensitive targets of opportunity. This
transformation in turn has driven a need for a vastly new C2 process that is adaptable to any level
of conflict, provides a full-spectrum joint warfighting capability, and can rapidly handle any
level of complexity and uncertainty.

To support this end, the United States. Air Force (USAF) has championed a move towards a
model of continuous air operations not bounded by the traditional 24-hour Air Tasking Order
(ATO) cycle. Meeting these objectives will require a highly synchronized, distributed planning
and replanning capability. As a potential way ahead, the Air Force Plans Office (AF/A5)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
4

released in May 2006 a revolutionary vision paper titled “C2 Enabling Concepts” (Braun, 2006)
depicting what a potential future C2 environment could be. Four key concepts emerged as being
critical to the success of a future Air Operations Center (AOC):

• Distributed/reachback planning – “Today’s constantly engaged AOCs no longer focus on
shifting from one relatively rare major combat operation to the next. Their challenge is
day-to-day, steady state C2 of these continual lower-end contingencies.”

• Redundant/backup planning – “AOCs can be geographically separated but electronically
plugged into the battlespace so that they function as if their members were co-located.”

• Continuous planning – “The supporting and supported AOCs will maximize use of
distributed network capabilities to ensure information is backed up and the supporting
AOC is prepared to assume operations should the engaged AOC encounter a catastrophic
event that makes operations unsupportable.”

• Flexible, scalable, tailorable C2 – “...rapidly adapt to the level of conflict by connecting
with worldwide capabilities, including joint and coalition forces.”

Experience with recent operations also reveals that the C2 process must transition from a
process of observation and reaction to one of anticipation. To that end, the focus of the research
reported here is on developing a C2 environment that supports the vision of Network Centric
Operations (NCO). (Alberts, 2007) The tenets of NCO are:

• Information sharing
• Shared situational awareness
• Knowledge of commander’s intent

2.2. Initial DEEP Project Objective

In response to the need to support these key NCO tenets, the initial long-term goal of the
Distributed Episodic Exploratory Planning (DEEP) project was to develop, in-house, a prototype
system for distributed, mixed-initiative planning that improves decision making by applying
analogical reasoning over an experience base. The two key functional objectives of DEEP were:

• Provide a mixed-initiative planning environment where human expertise is captured and
developed, then adapted and provided by a machine to augment human intuition and
creativity.

• Support distributed planners in multiple cooperating command centers to conduct
distributed and collaborative planning.

That is, the architecture of DEEP was explicitly expected to support the key tenets of NCO in a
true distributed manner. Because DEEP is not based on any current C2 system, the architecture
was designed to:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
5

• Combine planning and execution as a single integrated process of dynamic replanning
• Examine machine-mediated self-synchronization of distributed planners
• Experiment with the impact of trust in an NCO environment (e.g., “Good ideas are more

important than their source”).

Recommended high priority research topics (Alberts, 2007) to systematically explore included:

• Taxonomy for planning and plans;
• Quality metrics for planning and plans;
• Factors that influence planning quality;
• Factors that influence plan quality;
• Impact of planning and plan quality on operations;
• Methods and tools for planning; and
• Plan visualization

Although the DEEP project was able to deliver a stable and effective research platform by the
middle of the project as planned, the above goals failed to take into account the availability of
domain data (case bases), operational expertise or external interfaces to simulators, analytical
tools, etc. (Distributed Planning in a Mixed-Initiative Environment Collaborative Technologies
for Network centric Operations, 2008) This report describes our approach to achieving this
vision of NCO and presents the progress to date on the development of the DEEP prototype,
especially as it relates to these high-priority research topics. In short, the degree of research
needed had been underestimated and in 2009 the scope of the project was adjusted to better
match the timeframe and available resources.

2.3. Revised DEEP Objectives

The objectives for the second half of this effort were less operationally focused and more
technology driven. The DEEP platform was used to explore inherent technical issues associated
with the general blackboard/agent/case-based reasoning approach as well as develop rudimentary
applications to identify the potential benefits, and hurdles, to transition of the technology to
operational users.

In particular, a need was identified to refine the plan representation scheme, develop appropriate
and relevant cases, merge and deconflict partial plans, and to develop protocols and processes for
adapting, critiquing and modifying plans. Particular attention was directed toward investigating
technical issues associated with:

• Defining methods for identifying past cases relevant to current events
• Adaptation of past plans (cases)
• Merging of plan fragments (cases)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
6

• Adjudication of conflicting plan options
• Methods for critiquing plans.

Additional areas of interest include but are not limited to: knowledge elicitation and
representation for the case-base and episodic memory, analogical reasoning for experience
retrieval, and principled methods of case adaptation for creating skeleton plans.

Research objectives for the latter half of the effort were further distilled down to:

• Creation of representative cases by which to exercise the technology
• Ensuring plan representation adequately supports air, space, cyber and integrated battle

planning needs, including a detailed plan representation schema and evaluation of schema
merits

• Demonstrating coherence-based constraint satisfaction capability
• Demonstrating semantic-based case retrieval capability
• Developing plug-n-play integration capability for ad-hoc critic agents
• Demonstrating an integrated experiential planning capability

Emphasis on the distributed aspect of DEEP (Mission Assurance in a Distributed Environment,
2009) (Collaborating with Multiple Distributed Perspectives and Memories, 2009) (Mixed-
Initiative Planning in a Distribued Case-Based Reasoning System, 2009) was deferred as was
integration with a simulation engine for evaluating resulting plans. This is not to say that such
capability is not supported by the DEEP design and architecture, only that limited resources did
not allow for completion of those components of the larger DEEP vision.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
7

3. Methods, Assumptions and Procedures

This chapter presents an overview of the DEEP research platform or architecture, a description
of the components comprising the DEEP prototype, and a discussion of how these systems
interact.

3.1. DEEP Research Platform Overview

The detailed design and working of the DEEP architecture have been documented in earlier
reports. (Lachevet, et al., 2008) (Carozzoni, et al., 2008) (Synthesizing Disparate Experiences in
Episodic Planning, 2008) As such, discussion will be limited in this report to an overview of that
architecture.

Figure 1 depicts the DEEP system-of-systems architecture, comprised of the following
Sub-systems:

• Distributed Blackboard for multi-agent, non-deterministic, opportunistic reasoning
• Case-Based Reasoning system to capture experiences (successes and/or failures)
• Multi-Agent Critic System for mixed initiative planning
• Constructive Simulation for exploration of possible future states

Figure 1: Notional DEEP Architecture

Integral to this design is the use of the ARPI Core Plan Representation as a common medium for
human-to-machine dialog. As noted earlier, the Simulation Engine sub-system was not
implemented, nor was significant effort applied to exploring and implementing the distributed
blackboard aspect of the DEEP vision.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
8

The DEEP architecture also includes a messaging system, various knowledge objects, a shared
data storage system, along with a number of agents, all described later in this chapter. A typical
dataflow between the pieces of this architecture is shown in Figure 2.

Figure 2: DEEP Dataflow

(1) This is the starting point for entry of data into the system, e.g., a commander or his staff
may use a planning agent to describe a new mission.

(2) The planning agent allows for the commander to input information into the system
which defines a set of current objectives. These objectives, along with other
information, such as resources, locations, and time constraints, are collectively known
as the situation. This situation is then placed on the shared blackboard.

(3) The blackboard would in turn notify all registered systems of the existence of the new
situation. Using the given situation, the other planning agents, with their associated
case bases and cased-based reasoning capabilities, would each search their case base for
relevant past experiences.

(4) These results are then modified to fit the current situation.
(5) The results are posted to the blackboard as candidate plans.
(6) Once the candidate plans are on the blackboard, they are adapted by specialized

adaptation agents to further refine these plans to meet the current situation.
(7) These plans are then critiqued by the critic agents which concurrently scrutinize the

candidate plans and score them based on their individual expertise

1Adaptation Agents
(“Repairers”)

Adjusted
Planning
Agents

Candidate Plans:

Selected:

Objectives

Situation

Objective 1

Objective 2
…

User
Interface

CBR
System

Case
Base

Simulated

+ + + …

Plan Execution

Suggested Judged

Engaged CMDR:
“I have a situation!”

1 2

3 4

5

6

7

8

Critic Agents
(“Evaluators”)

Execution Selection
Critic Agent

9

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
9

(8) Once the plans are scored, the execution selection critic gathers the adapted plans along
with their scores, determines their overall scores, and selects a number of top rated
plans to be executed.

(9) The top rated plans are now executed in a simulated environment.

Once a plan completes execution, the results are combined with the plan and assimilated back
into the original planning agent’s case base.

Although this planning and execution is described in terms of a single flow through the system,
in reality few plans will execute without changes. The DEEP architecture supports the
modification of currently executing plans through feedback of partial results of plan execution
into the blackboard. This allows the plans to be run through the adaptation and critique
processes as many times as needed. One should bear in mind, however, that in this type of
mixed-initiative system, there will rarely be a clean path from the initial planning problem to the
final solution.

3.1.1. Blackboard Architecture

The key, real-time framework around which DEEP is constructed is that of a blackboard system.
(Engelmore, et al., 1988) A blackboard system is an opportunistic artificial intelligence
application based on the blackboard architectural software engineering paradigm. (Corkill, 1991)
The blackboard system functions as a central knowledge store facilitating communication and
interaction between the different software systems, including interface agents, critic agents, and
simulation engines shown in Figure 2. These interactions are made possible by the sharing and
passing of objects, be they requests for data or services, intermediate planning artifacts, plan
fragments or assessments of plan components.

To meet the requirements of the initial DEEP vision for distributed C2, a distributed blackboard
system was required. Current commercial and open source blackboard system implementations
are not distributed, so the paradigm needed to be extended from a monolithic to a distributed
environment. The current DEEP blackboard, shown in Figure 3, was designed and implemented
following this extended view using previously described design patterns. (Hughes, et al., 2003)

A traditional blackboard system consists of three discrete components:

• Central repository of knowledge objects
• Knowledge Sources which are specialist software modules (agents in the case of DEEP)

that provide specific expertise required by the system
• Control component which controls the flow of objects and problem-solving activity in

the system. (Corkill, 1991)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
10

Figure 3: Basic Blackboard System

3.1.1.1. Blackboard Central Repository

The core knowledge structure of the blackboard is the global knowledge store labeled as
“Blackboard” in Figure 3. This knowledge structure holds the objects within the system and is
accessible by all of the system’s knowledge sources. Because there could potentially be an
extremely large number of objects placed on and contained within the blackboard at one time,
blackboard data structures are conventionally divided in more than one way. These divisions are
known as panes and layers, and could potentially contain further dimensions of separation.
(Corkill, 1991)

In the DEEP architecture, the core knowledge structure is defined to provide certain
functionality. The knowledge store component of the blackboard has been abstracted out to
allow for future revisions and extensions to how and where the knowledge is stored. This
interface allows the option for the backend of the blackboard to be replaced with a database or
other high performance data store.

3.1.1.2. Blackboard Knowledge Sources

By connecting to the blackboard, an application has the ability to become a knowledge source of
the blackboard system. Knowledge sources are independent agents that provide specialized
expertise that contributes to the solution of a problem. A key characteristic of knowledge
sources in a blackboard system is that they require no knowledge of the other knowledge sources
that are connected to the blackboard. They bring their specialized expertise to the system and do
not rely on others to provide it. Each knowledge source is responsible for knowing when, what,

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
11

and how it may contribute to the solution to the current problem on the blackboard. (Corkill,
1991) In the DEEP architecture, all systems must implement and conform to an interface
provided by the blackboard in order to connect to it. The connection process includes connecting
to the local blackboard proxy and registering with the blackboard for blackboard update event
notifications.

3.1.1.3. Blackboard Control Structure

There are several control system paradigms that may be employed when designing a blackboard
system. It may be very centralized to the blackboard, distributed among the blackboard and
knowledge sources, or pushed out to the knowledge sources, requiring them to facilitate their
own control of contributions to the problem. (Corkill, 1991) The blackboard system developed
for the DEEP architecture splits the control between the blackboard application and its
knowledge sources. The control component on the actual blackboard application directs
communication among the distributed blackboards, where the knowledge sources are held
responsible for choosing whether or not they should interact with new or updated objects on the
blackboard, or even taking initiative and placing a new object on the blackboard without waiting
for a blackboard event notification.

The control component of the blackboard is also what enables multiple blackboards to remain
synchronized and distributed. Because the control component manages all of the activity
occurring within the blackboard system, it is able to control how information is distributed
among the connected blackboards, as well as maintaining synchronization through the use of
queues and messaging schemes. This is what allows the blackboard system to be viewed as a
single logical blackboard, while physically there are multiple, synchronized replicated
blackboards. When a new object is passed to the blackboard proxy by a knowledge source, it is
passed through the control mechanism, which distributes it to all connected blackboard
applications. After all the connected blackboard systems receive the new object, they are placed
in their local data store waiting to be manipulated or retrieved.

This aspect of the DEEP blackboard approach is only minimally developed. Although a
rudimentary distributed implementation is supported, most recent applications of DEEP have
treated the blackboard as a singular entity, focusing on issues of knowledge source
responsibility, case-base retrieval and plan representation, and mixed-initiative interaction.

3.1.1.4. Additional Blackboard Components

In addition to the above, primary traditional blackboard systems components, the distributed
blackboard designed for DEEP includes additional components that are necessary for a
distributed blackboard and uniform communication between the knowledge sources connected to
the distributed blackboard system.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
12

A special interface, called a proxy, is provided by the blackboard that allows a knowledge source
to connect and interface with it. This proxy connection is established using a network socket.
Originally, a blackboard application was designed to be running on each computer that contains
one or more knowledge sources. However, because each knowledge source connects using a
network socket, it may reside on a separate computer. This proxy allows the interface to perform
actions to the blackboard such as the posting and retrieval of objects. Other actions include the
retrieval of an object by its unique identifier and the registration of new blackboard listeners.
Similarly to the core data structure, the proxy interface could easily be extended to accommodate
integration with other applications (new or existing) as needed.

A well-defined common interaction language is also necessary for a successful blackboard
system. To keep the distributed blackboard as flexible as possible, the blackboard provides a
simple interface to the knowledge sources for objects to be placed on the blackboard. This
interface forces objects placed on the blackboard to contain certain properties and functions so
the blackboard can work with the object. The properties include the partition the object belongs
to, a unique identifier (UID) for each object, and a timestamp. By implementing this interface,
the object also becomes serializable, allowing it to be transmitted over a network socket.

One of the main blackboard utilities is the Packet. A packet in this context is utilized by the
blackboard control system to send messages to other connected blackboards, and is what the
knowledge sources receive when they get an update event from the blackboard. Depending on
the packet type, it contains certain useful information, some containing blackboard objects.

Another blackboard utility is the Blackboard Unique Identifier (BBUID), which is a unique
identifier across a network. This UID is required for all blackboard objects, system, and
knowledge sources. There are also other convenience utilities such as a log writer and properties
file parser.

3.1.2. Core Plan Representation (CPR)

The various DEEP systems all use a common knowledge representation to facilitate their
interactions. The future of military planning is broader in scope than just the Air Force, and will
involve participants from various agencies (both military and civilian), possibly planning at
different levels of abstraction. Thus, DEEP was designed to support plans for joint, coalition,
and civilian operations as well handle plans at different abstraction levels (i.e., strategic, tactical,
or operational). Planning for heterogeneous operations also means that the plan representation
has to be able to consider the semantics of terms used in the plan, ensuring agreement among all
participants. Finally, because DEEP is envisioned as supporting a mixed-initiative environment,
the chosen plan representation must be easily machine-readable as well as intelligible to a human
user.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
13

In the 1990’s the ARPA-Rome Laboratory Planning Initiative (ARPI) conducted research on
several plan representations. CPR was the culmination of that work. Shown in Figure 4, CPR
was selected for DEEP as best meeting the above criteria. CPR is an object-oriented structure
that is agnostic to the planning abstraction level (i.e., strategic, tactical, or operational). (Pease,
1998) Its natural object-oriented structure also lines up very well with the machine reasoning
capability that DEEP requires. The original CPR structure shown in Figure 4 was modified and
extended to meet the needs of DEEP.

Figure 4: ARPI Core Plan Representation (CPR) Design (1998)

In DEEP, CPR is used to represent individual experiences, or cases, which are composed of a
plan, events, and one or more outcomes. The attributes of the plan are used by the cased-based
reasoning system to determine the similarity of past cases with the current situation.

CPR is the foundation for the DEEP architecture and used by all components. Because of this
unanticipated use of CPR, the resulting DEEP-CPR has a number of significant changes from the
original ARPI CPR in order to support a much deeper plan reasoning capability:

• Annotation (including Fact and Assumption), Constraint, Imprecision and
Uncertainty were kept to support the larger need for representing uncertainty and the
representation of relationships between objects, e.g., (Object1 Object2) to allow
more elegant statements in the future

• Uncertainty and Imprecision were deleted as they did not appear in any of the initial
cases considered, and added complexity without any indication of benefit

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
14

• Frame aspect of Annotation, and View aspect of Plan Object were considered part of
user interfaces and were deleted

• Plan and Action were kept as “holders” for other objects, i.e., detailed objects to
represent who, what, when, where, why and how questions

• Retained PlanObject superclass to allow any object to have constraints, annotations,
imprecision and uncertainty

• World State was removed as DEEP did not use “qualifier” objects
• Evaluation Criteria was removed as it lacked a common language with the effects of

actions
• Entity was removed as it was not needed under the DEEP approach
• Constraints used as a “language for tying Actions and Objectives; however, Actions

now needed Preconditions (which were missing entirely) and Effects (which were
unspecified with the loss of World State). Objectives now needed End States to
indicate when the Objective was met.

• Objectives specified by Purpose, Method and End State
• Case, a new object, was added to replace World State and provide a means to store

information for use in case-based reasoning and case recall. Case has three parts:
o Plan – What was intended to happen
o Event – What went wrong, or happened not as intended
o Outcome – What accomplishment or failure resulted from it? Initially

broader, this was simplified to include only met and failed goals

The resulting DEEP-CPR representation for a Case is shown in Figure 5. Simplified views of
the corresponding CPR and DEEP-CPR data structures are shown in Figure 6 and Figure 7
respectively.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
15

Figure 5: DEEP-CPR Representation Design

Figure 6: Simplified View of Original CPR Data Structure

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
16

Figure 7: Simplified View of DEEP-CPR Data Structure

3.1.3. Case-Based Reasoning / Case-Based Planning

Case-based reasoning (CBR) (Kolodner, 1993) is an AI approach that has successfully been used
in law, medicine, and computer help desk applications. Essentially, anything that involves
utilizing solutions from past experience. In CBR, past experience is formed as discrete cases,
with a clear beginning and end. This is different from episodic memory, in that episodic memory
is often based on more loosely defined chunks of time. For successful CBR to occur, a primary
enabling technology is the formation of sound analogies. While humans are adept at this form of
intuitive reasoning, machines need to be similarly enabled through sound reasoning. Approaches
to analogy forming include feature-based matching, semantic matching, structure-based
matching, and multi-constraint theory.

Case-based planning makes use of past experiences to implement new plans and retain their
outcomes. The planning agent uses a situation as an input to begin the process. The situation
includes statements about the problem’s objective, locations, actors, resources, and times. The
case base for each planning agent may be unique.

Once a situation has been placed on the blackboard, the blackboard will broadcast a message
notifying all registered systems about the new problem. The listeners in the other planning
agents determine what type of object was placed on the blackboard, and react to a new situation
by initiating cased-based reasoning for the new problem. The CBR process selects the best set of
cases from its case base and posts them onto the blackboard as candidate plans. Once the
candidate plans are placed on the blackboard, they are processed by the critic agents (discussed
in detail in Section 3.1.4 and Section 3.3.3)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
17

Each planning agent is expected to have a unique case base, since each planning agent represents
the experience of some entity or group of entities. The case base of an entity can contain
experiences of any kind. This variety is readily supported by DEEP’s plan representation, CPR,
because of its ability to work with planning knowledge at different levels of abstraction. Little
processing is done by the planning agent itself, but rather by an external system that it interfaces
with (e.g., CBR System). The agent itself is the medium between the reasoning process and the
blackboard. (Creating and Capturing Expertise in Mixed-Initiative Planning, 2007)

3.1.4. Multi-agent Systems

Although multi-agent systems were identified as an important component of the initial DEEP
vision, resources did not permit extensive research in this area. Related research was undertaken
under the Mixed-Initiative COA Critics/Advisors research described in Section 3.3.3.

3.2. Revised Program Focus

Although the initial objective of this effort was to research, develop, and evaluate technologies
for geographically dispersed commanders and senior staff to conduct intuitive, continuous, and
distributed planning in the complexity, dynamics, and chaos of forth generation warfare, it
became clear after a few years of research that a number of technical issues were beyond the
timeframe and resources allocated to the effort. In 2009, the DEEP program was de-scoped to
better concentrate on a few key research issues and less on the development of an operational
planning capability.

These defining research challenges included:

• Refinement of the plan representation scheme
• Development of appropriate and relevant case bases
• Improving case retrieval (response time and quality)
• Merging and deconfliction of partial plans
• Use of software agents for adapting, critiquing and modifying plans

3.2.1. Case-Base Development

It became evident during the early years of this project that even the best blackboard framework,
case-based retrieval process, and collection of agent-based plan modifiers would be dependent
on a sizeable, robust and quality set of cases if it were to produce quality plans as output.
Equally important is the need for such a case-base during the development process to ensure that
the technology was effective and efficient outside of “toy” domains, and that the embedded
algorithms and processes were not unduly biased by a small set of examples.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
18

The early stages of the effort focused on crafting and encoding real-world examples, from
naval/land/air engagements from World War II to contemporary humanitarian actions. Few if
any of these missions are succinctly encoded, or had sufficiently available data to allow the team
to do the encoding. It is easy to select the “best” case if there are only a hand-full of cases to pick
from. Seeking to avoid biasing the developmental environment by hand-crafting specific cases,
the team sought extant, operationally relevant and extensive case-bases to employ; thus avoid
both the tedium, expense and pitfalls of doing it themselves.

In the end, two distinct domains presented themselves and have become the underlying
domain(s) for the majority of the research in the latter half of the project: JAGUAR and
StarCraft.

3.2.1.1. JAGUAR

The Joint Air Ground Unified Adaptive Replanning System (JAGUAR) was a DARPA program
created in 2003 to develop technologies to enhance the capabilities of Air Operations Centers
(AOCs). (Crumb, 2003) Among the programs tasks was the development of a capability to
update models of assets and procedures that form the primitive elements of the plan. This will
then allow a supervisor to quickly and accurately install new models into the overall JAGUAR
software system.

The JAGUAR system was built as a model-driven planner to support a dynamically changing air
mission planning and execution environment. The JAGUAR case base contains historical
executed plans and objectives, along with the anomalies detected during execution of the
underlying models, and plan message data (e.g., world state, monitored events), that was
collected during the JAGUAR program.. Over the course of the program a large number of plans
and missions were generated as the various tools were executed and their performance assessed.
The data is stored as a repository of XML files.

In JAGUAR, the plan is a continuous entity that is comprised of one or more missions. For the
JAGUAR domain, the data available (historical plans, world state, objectives) is present in a set
of XML files. Hence the plan case base for JAGUAR is a case base of missions with
information on how they were executed during a given run of the software. A trial can be
viewed as a plan with a given time interval, e.g., all of the missions that were executed for a
given day. The initial plan data and the world state were archived for 1000s of missions.

This domain is being used by extramural contractors, principally Raytheon BBN Systems, as
they explore related anticipatory planning issues using the DEEP architecture and platform as the
core infrastructure for their work.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
19

3.2.1.2. StarCraft

StarCraft is a popular military science fiction force-on-force real-time strategy game developed
by Blizzard Entertainment and was initially released in 1998. Game-play involves force-against-
force engagements between red and blue forces which build an economy, construct physical
bases and develop certain military capabilities to employ against each other. A high-level aspect
of the game is the tradeoff between developing the economy and developing the army. If one
side focuses too much on building the economy, they are susceptible to attacks from an
opponent’s army. However, the benefit of building a strong economy is to improve technology
and build a more formidable army during the later stages of a game. There are many other
important aspects to the game which help a player achieve victory, such as effective scouting of
the opponent, setting up proper defenses, and countering your opponent’s capabilities and
actions. A screenshot of a typical StarCraft game in session is show in Figure 8.

Figure 8: StarCraft Screenshot

3.2.1.2.1. StarCraft Overview

Although StarCraft is a synthetic environment, is has a number of characteristics that make it an
excellent domain for case-based planning research. We selected StarCraft base on the following
aspects:

• Large case base – one of the most important requirements of a domain for experience
based reasoning is the ability to obtain a large corpus of experience (cases) over which to
reason. StarCraft has become very popular in the gaming world to the extent that it has a

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
20

large following and that success has generated international tournaments. The result of
each of the games in these tournaments, i.e., a replay, has been made recorded and is
available to the gaming and StarCraft community. Tactics can be extracted from these
replays either by direct examination or by re-running them in the StarCraft game
software.

• Complexity – although the StarCraft simulation engine is deterministic, the large action
space over which a game proceeds makes it unlikely to see the same outcomes given a
small set of actions taking place over a limited portion of a game’s duration.

• Active research domain – this domain is actively being researched by a number of
academic institutions and has been used as a research domain for several United States
Navy sponsored contracts. (Defeating Novel Opponents in a Real-Time Strategy Game,
2005) (Aha, et al., 2006)

• Abstract C2 domain – this domain allows planning and coordination of multiple entities
throughout the full spectrum from tactical to strategic military operations. Our work
focuses on strategic level planning and lets previously developed heuristics-based
components handle the tactical level details.

• Other Benefits:
o Asymmetric forces (different object classes, planning and coordinating differing

objectives)
o Uncertainty
o Quantitative metrics
o Real-time Execution
o Rich feature set
o Interface for human Interaction

In 2008 a public domain application programming interface (API), called Brood War API
(BWAPI), was developed within the StarCraft community using C++. It allows an application to
control unit movement and extract the game state from StarCraft. This is achieved by directly
manipulating the game engine while it is executing. Since the release of BWAPI, other
developers have added additional functionality and implemented the API using other languages.
Still other developers have created game controlling code, called “bots”, for use in research and
competitions. The result of all of this activity is the availability of thousands of past
confrontations stored in machine-readable form and executable (via replay) in minutes. In
addition the ability to evaluate modified game-plays, essentially courses of action, is invaluable
in assessing the output of the DEEP planning process - and thus the efficacy of the DEEP
technology.

A key component of this research has been the integration of the StarCraft execution engine with
the DEEP research platform. This has required the development of additional software to:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
21

• Provide the ability to change strategies during execution. Software on the DEEP side
analyzes the current situation and determines when to re-plan. If it is determined that re-
planning is called for during execution, this feature will allow DEEP to submit a new
plan, thus enabling continuous planning. Since the DEEP platform is currently developed
in Java and the BWAPI is developed in C++, each side must be able to interpret the
action of the other software.

• Determine when and how new software will be incorporated into the DEEP development
environment. As new versions of the BWAPI are released, they must be assessed and a
determination must be made as to whether the release should be incorporated into the
working version of DEEP.

This integration of the StarCraft AP with the DEEP infrastructure allows for the automated
creation of StarCraft units, rather than requiring the manual creation of prerequisite components.
This feature greatly facilitated controlling the StarCraft engine from a tactical level, but was
found to be inadequate for higher level strategic control. Various APIs were developed as
extensions to the BWAPI API and were evaluated. After searching for an open source API that
would provide the required functionality, BTHAI, a StarCraft “bot” which utilizes the BWAPI,
was determined to best meet the requirements of the DEEP development effort.

BTHAI extends the core BWAPI, providing an agent-based architecture for controlling each type
of unit. The BTHAI source code was examined and found to be well formatted and documented,
and logically organized. BTHAI’s use of separate files to control the operation of the API: one
for build order, one for technology upgrades, and one for squads, lent itself to serving as a basis
for the representation of a plan. The integration of BTHAI with DEEP is continuing under DTIC
contract FA1500-10-D-0005/0003, “Anticipatory Planning Integration and Demonstration”.

Although the DEEP project has ended, the DEEP framework remains an important research tool
within the Information Systems Division of AFRL and its support and management is being
continued under other projects. StarCraft has proven to be an excellent domain for exploration
due to its optimal complexity and large set of encoded cases.

3.2.1.2.2. StarCraft Case Base Definition

Once the DEEP team settled on StarCraft as a domain to use for research, a case base had to be
developed to support the case-based reasoning process. These steps included designing case
structure, selecting features, formal logic for a StarCraft plan, and automation logic to convert
StarCraft replays into cases.

As described in the StarCraft Overview, Section 4.2.4, one benefit to utilizing StarCraft as a data
domain was the large amount of publicly available replays available to us. Using built in game
functionality to save replays, it is easy to grow the case base over time. A replay is a saved game

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
22

that can be viewed later on or even executed again to monitor what happened. Combining an
open source API for parsing replays with a developed programmatic option to automate reading
the replays and parsing out the required information, the DEEP team was able to quickly
generate thousands of cases.

Before creating the case base, the DEEP team conducted internal discussions using empirical
evidence of game play to support a selection of features that would support initial case
construction. It was also decided the cases to be used would be one player versus one player
matches, so no games with more than two players are implemented in our platform. The
importance of what features to use was an iterative process. As the project continued the team
reviewed the work of other teams that were developing their own AI systems, such as bots, to be
used at the StarCraft AI conference such as the Berkeley Overmind Project (11UC) to see what
other features were being created by the AI community for possible inclusion into the DEEP
system.

We used a small set of features (attributes) to describe a particular case (game). Figure 9 shows
the features used to describe a case. We used a time-step of two-thousand game frames, so for
some of our features we are measuring values every two-thousand frames. These features are as
follows:

The state lattice is based on the build tree (or tech tree expansion) of the StarCraft (Broodwars
Expansion Pack). Specific buildings enable new features and capacities like: building new types
of combat units and buildings, researching new capabilities, etc. The SCReplay (11ht), an open-
source java based project was utilized to read contents of saved StarCraft games. This approach
enabled us to effectively reduce the complexity of representing an entire game state through
segmentation. Feature data for an example case is shown in Figure 10.

Game Features Player Features (for each player)

Unique Identifier Player name

Replay name Player race

Map name Count of buildings built

Winning player name Count of units built

Winning player final state lattice Count of workers built

Actions per minute of game Expansions and their game frame

 Final player state lattice

 Vector of player states by time step

 Unit type and production count at each time step

Figure 9: StarCraft Case Base Feature Set

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
23

Figure 10: Sample StarCraft Case with Feature Data

Most of the information in a case is used by retrieval to obtain the best match to a given
situation; however there is part of the case structure that is utilized later on by the plan execution
agent to implement the plan. All the information under the units at each time step describe what
was built and at what time. This is the build order the player used in the game and consequently,
is the action list the plan execution agent will use to construct buildings and build units. The
data for player expansions is also used to allow the plan execution agent to know when to build
an expansion.

Initially, one case base was created and formatted in an XML file. Once the move was made to
have multiple retrieval agents, one for each Terran versus race pair in the game to mimic having
multiple planning point of views or planning centers, the single case base was converted to one
overall case base containing all cases that can be used when there is more uncertainty in
information, such as not knowing the race you are playing, and three other smaller case bases for
each Terran versus race pair in the game that are used when the race of the enemy is known.
There are more possible case bases, but since the DEEP system plans as a Terran player, there
was no need to utilize the other case bases.

The DEEP team believes feature selection for this project is not complete and requires future
work to support better plan generation, more specific player information, more specific mapping
information, among others.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
24

3.2.2. Information Retrieval

One of the key requirements of a case-based reasoning system, such as is envisioned in DEEP, is
the ability to quickly and efficiently retrieve a right-sized set of relevant cases from a potentially
vast set of stored entries. Critical to this is the proper storage of historical data as a case-base is
assembled. Not enough distinction between cases can result in extraneous cases being returned
and a case-base that is unwieldy in size for the amount of useful information it contains. Too
much distinction can mean that the desired return case lies somewhere between two existing
entries, but not close enough to either one to trigger a partial match.

3.2.2.1. Memoire

Upon realizing that the initial retrieval algorithm used by DEEP (Carozzoni, et al., 2008) would
not scale well enough for multiple retrieval iterations as required by practical applications, the
DEEP team conducted a thorough literature search on the state of the art for information retrieval
techniques in case-based reasoning and similar domains. The team decided to implement a
baseline information retrieval algorithm, known as “Memoire” (Bichindaritz, 2006), that utilized
indexing techniques promising near-linear retrieval times. The resulting algorithm has two main
parts: the indexing algorithm and the retrieval algorithm.

The indexing algorithm iterates through each case in the case base. Each one of these cases is
analyzed by looking at each feature and indexing the value of that particular feature. The actual
index is a list of values which have occurred with the index of the cases they have occurred in.
As shown in Figure 11, for example, a single line in the index for a specific feature might be
Value1 = 1,3 indicating that for this feature, Value1 occurs in cases with id 1 and 3. This
example only shows one feature and there would be as many indices as features identified to be
used in the particular reasoning domain. The result is a set of inverted indices for which there is
a separate index for each feature. The decision to create a separate index for each feature was a
diversion from the original Memoire algorithm and was done so for a number of reasons. The
first reason is the value of the feature would have context within the feature of which it occurred.
In the simplest example, the value “22” might have a very different meaning for the feature of
temperature compared to representing a count for another feature. This context improved the
accuracy of the retrieval algorithm. Also, the division of these indices slightly lowers the
computational complexity of the algorithm.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
25

Figure 11: Inverted Indexing of Case features

Once the preprocessing of the inverted indices is completed and loaded into memory, retrieval of
relevant cases is very efficient as all that is needed is to perform a simple lookup based on the
case similarity score calculations. Figure 12 represents how a case’s score is calculated. The
algorithm begins with a set of features that it uses to match against the indexed feature sets. The
algorithm iterates over the vector of features, and determines what cases match. This particular
implementation uses an exact “Categorical Match” to increment a “hit score” for each of the
cases for which a match is found. This process is extremely fast because it is using hash table
lookups and the summing of occurrences. Upon completion of the iterations, a ranked order list
of the cases which best match the input feature vector is created.

Figure 12: Similarity Score Formula

The implementation of the algorithm provided exactly what was needed: reduced computational
complexity while retaining retrieval accuracy. One experiment measured the retrieval time
between the old algorithm and new algorithm using a simulated case base that was developed for
such experimentation. The simulated case base created thousands of cases choosing features
from a random distribution of values from our taxonomies. The experiment used case base sizes
of 100, 500, and 1000. The results showed the old algorithm with a linear increase in time with
respect to the number of cases, with the time approaching three minutes with the 1000 sized case
base. The new algorithm remained near-constant with respect to the number of cases and had a

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
26

retrieval time of just 390 milliseconds with the 1000 case case-base. The results of this
experiment can be seen Figure 13 below.

Figure 13: Indexing Algorithm Effectiveness

It must also be noted that that even though the DEEP team did not experiment with the
computational complexity with respect to feature size, it is expected that the complexity was
reduced from exponential to linear.

With this approach there are several tradeoffs. The first tradeoff was removing of the run-time
similarity score calculation. Although the implementation is currently using categorical matches
for the similarity function, this function is easily swapped out for a more complex similarity
calculation function. This function resides in the preprocessing algorithm, therefore retaining the
fast retrieval calculation times. Also, the memory usage is a consideration when using indexed
retrieval. There is a cost to consider of having these indices pre-loaded into memory. However,
with simple tables containing values and numbers representing case identifiers, it showed the
memory usage to be extremely minimal.

3.2.2.2. Latent Semantic Analysis (LSA)

The DEEP team faced a challenge in preparing historical StarCraft log files for storage in a
DEEP-friendly case-base. Latent semantic analysis (LSA) is a technique for analyzing
documents based on both the semantic distance between words in the document and the
proximity of those words as they are found in the document. (Using Latent Semantic Analysis to
Improve Information Retrieval, 1988) The challenge for DEEP was to convert a continuous

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
27

StarCraft replay file into a set of discrete individual states based on the build lattice tree (for each
race, respectively) that would then support efficient recall of cases. (Semantic Interoperability in
Distributed Planning, 2008) (Semantic Adaptation AGEnts (SAAGE), 2009) (Improving Plan
Adaptation Process Through Semantic Technologies, 2009)

A simple partitioning mechanism was devised to reduce the quadratic complexity of the
clustering algorithm while preserving the quality of the search results. The singular value
decomposition (SVD) is the most computationally expensive step of the LSA algorithm used to
align documents based on their latent semantic proximity with respect to neighboring documents.
The new approach is based on the premise that only the top set of search results are important
and that performance can be improved by loosening constraints on the proper rank order of
search results. The claim is that, in a majority of searches, users are interested only in the set of
top k results. For example, according to one study (Eye-Tracking Analysis of User Behavior in
WWW Search, 2004) the first five rank positions in Google search results get over 88% of
traffic, of which the first three positions get most (roughly 79%) of the traffic. Furthermore,
roughly 96% of users never left the first page of results, further reaffirming the premise that only
the first top set of results are the most significant. With this in mind, performance should be
significantly improved if the proper search order is only enforced for the top k results.

The resulting elementary optimization algorithm, ELOP, reduces computational complexity
while still preserving proper rank order of top k results. The approach is to split the entire case-
base into a set of p independent partitions. The SVD of each partition is roughly of the same size
and still relatively fast to compute and within linear time. During the search step, the top k
results from each partition are used to form a new term/document matrix. Next, the SVD
computation is performed (at runtime) on the newly created term/document matrix. The
computational complexity of the final SVD is significantly reduced as compared to the original
data set. While this approach is not exotic, it does preserve proper ranking order for the majority
of the top k results at the expanse of having loosely sorted lower ranking documents as indicated
by the preliminary results.

Results from this work are still being analyzed and will be documented in a pending paper.
(ELOP-DEEP, 2011)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
28

3.3. Related Explorations

A number of related technical investigations took place over the course of the DEEP project.
Some of these were directly related to the core aspects of DEEP, others sought to leverage the
new capabilities provided by the DEEP platform.

3.3.1. Robust Coherence

The vision of DEEP includes using the collective experience of many individuals, stored in the
form of distributed case-bases. Ability to semantically reason over this collective can assist
commanders in their development of military plans. One of the technical problems posed by this
approach is the need to differentiate between, and resolve contradictions between, retrieved
relevant past experiences that, taken independently, give an appearance of a valid satisfaction of
the posed mission need, but which taken together, contract each other or suggest an
incompatibility or deficiency in the retrieved case.

3.3.1.1. Robust Coherence Overivew

In case-based reasoning, previous solutions are recalled and adapted to fit new problems.
However, for complex problems with multiple stakeholders, multiple sources of experience
should be considered to increase the diversity and effectiveness of such solutions. The DEEP
team developed an approach for this called robust coherence. This approach combines two
seemingly contradictory theories from the philosophy of knowledge: coherence and falsification.
Using these two theories in concert, robust coherence seeks to justify contributions from several
agents in a collective context that also corresponds to outside evidence. Using this approach,
multiple agents can suggest actions and goals from experience to address a problem, and develop
the best option based on the robust coherence among these experiences.

In the philosophy of knowledge, coherence refers to a theory about knowledge where coherent
beliefs are beliefs that are mutually supportive in an overall context of justification. Coherent
beliefs exist in a web, where complex interrelationships hold the beliefs together in a
justificatory ‘package’ that makes up knowledge. (The Coherence Theory of Empirical
Knowledge, 1976)

Coherence has been described as a set of constraints between elements in a system of beliefs.
(Coherence as Constraint Satisfaction, 1998) Satisfying those constraints establishes the
coherence of the system. This is accomplished by choosing to accept or reject beliefs based on
how the various elements in the system ‘fit together’. This approach requires the establishment
of both positive and negative constraints based on how the elements in the system are related to
each other. Certain relations between beliefs can be characterized as coherent (such as explains,
associates, or facilitates), while others denote incoherence (such as incompatible, contradictory,
or inconsistent). Elements that are related by a coherent relation are positively constrained

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
29

(should be both accepted or both rejected), while elements related by an incoherent relation are
negatively constrained (one should be accepted while the other is rejected). Each of these
constraints has a strength value, which indicates how much that constraint contributes to the
overall coherence of the system. This allows us to employ soft-constraint optimization
techniques on large packages of beliefs to determine the most optimal set of beliefs to accept.
(MiniMaxSat: A New Weighted Max-SAT Solver, 2008) Coherence has been used as an
approach to determine the appropriate actions and goals in a situation, an approach called
deliberative coherence. (Thagard, 1995) The goal of this approach is to formulate a plan,
consisting of actions and goals based on a system of constraints. This system is populated with
facilitation and incompatibility relations that allow the set of possible actions and goals to be
pruned using coherence.

We used this notion of coherence to choose a set of actions and goals from experience that will
be acceptable to use in planning. Each agent suggests different actions and goals to address a
problem, and the agents use coherence to formulate the best approach in the collective endeavor.
In this way, suggested experiences exist in an overall context established by the whole group of
agents. Expertise is exchanged collectively, leading to shared understanding of a problem.

While this form of coherence may appear to be useful to establish the justification of different
options in a collective planning endeavor, there is the danger of forming a coherent set of beliefs
that does not correspond with outside reality. Generally, this is called the idealism objection to
coherence. In deliberative coherence, the acceptability of factual beliefs influences the relations
in the system. (Thagard, 1995) In the following section, we will address the idealism concern by
applying critical rationalism as a framework for influencing coherence relations. This will allow
a group of agents exchange actions and goals from experience that correspond with evidence
from the world the agents are trying to influence.

3.3.1.2. Critical Rationalism

To address the problem of idealism in coherence, the team turned to another form of reasoning to
help inform coherence as an epistemology: a deductive view of truth that seeks to refute theories
based on inconsistency with evidence. This method of reasoning is called critical rationalism.
(Popper, 1963)

Under critical rationalism, theories are postulated and stood to the test of falsification. In other
words, theories are considered which are potentially falsifiable, and then compared to a set of
observations. If the theory holds up to this set, compared to competing theories, it is considered
the least untrue (rather than most true). The measure of this aspect of truth is known as
verisimilitude. (Popper, 1963) Logically, critical rationalism is based on deduction, rather than
induction. This means that verisimilitude measures the degree to which a theory is able to stand

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
30

up to criticism based on what it deduces should be true. Whether or not those deductions match
evidence tells us which theories are more reasonable than competing interpretations.

We can use verisimilitude to better inform a coherent set of experiences by attempting to locate
information that refutes some of the aspects of the experiences. By doing this, we establish the
degree of falsehood in those experiences for facing a current problem, and avoid the pitfall of
blindly applying experience. This is what makes robust coherence different from ordinary
coherence. Rather than relying on coherence as the only mechanism of justification for beliefs,
robust coherence uses falsification to establish the anti-justification of beliefs.

The team incorporated falsification into the constraint-satisfaction interpretation of coherence in
two ways. First, we provided our constraint-optimizing algorithm with an initial assignment of
rejected to actions or goals which were shown to be false based on observations. Second,
constraints involving falsified elements were amplified in strength to ensure that the optimization
of the coherence system would more likely take into account the fact that some beliefs were
initially rejected. In other words, by initially assigning rejection to falsified beliefs, and making
their constraints to other beliefs more drastic in strength, the team could influence a constraint-
optimizer to act in such a way that generated coherent beliefs which also corresponded with
outside evidence.

Our approach uses coherence informed by critical rationality to create set of coherent, robust
experiences which address a specific problem. Falsifying information allows us to examine how
those experiences’ utility is inhibited by facets of the ever-changing world. In this way, critical
rationalism can also indicate critical conditions in the world, allowing for the discovery of new
goals. In the following section, we will examine the mechanisms the team employed to
accomplish a system of robust coherence for the task of planning.

3.3.1.3. Planning with Robust Coherence

In this section we will introduce a case-based planning approach that applies robust coherence to
planning. As different planning agents (Robust Coherence: An Approach to Multi-Agent
Experience-Based Planning, 2009) suggest experiences from their own case bases, a coherence
agent interprets the actions and goals from these experiences in a system of deliberative
coherence, while critic agents use information from the world to adjust these relations (reflecting
falsification). This reasoning establishes the positive and negative constraints between these
portions of experience, allowing a collective set of actions and goals to emerge as justified. This
collective set can then be adapted and de-conflicted as a cohesive plan. Below we outline the
guiding principles the team used to establish the facilitation and incompatibility relations
between actions and goals in this approach:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
31

• Let C represent a Constraint Satisfaction Problem that describes how different actions
and goals relate to one another under the following conditions.

• M1. Structure. Actions stored in a case facilitate the successful goals of that case, and are
incompatible with the failed goals of that case. Upon instantiation, the degree of
similarity between the past and present goals weighs upon the strength of this relation.

• M2. Effect Transitivity. Information about effects and how actions achieve or avoid them
indicate coherence relationships to other actions or goals.

• If an action, A, achieves an effect, and another action or goal, B, requires that
effect, then A facilitates B.

• If an action, A, avoids an effect, and another action or goal, B, requires that
effect, then A is incompatible with B.

• M3. Competition. If two actions must compete for resources in order to be accomplished,
then those actions are incompatible with one another.

• M4. Pragmatism. If some goals are considered critical to success, then the initial
assignment of C includes accepting these required goals.

• M5. Falsification. If an action or goal, A, includes preconditions that are not present in
the outside environment, and no action under consideration can create those
preconditions, then A is assigned as rejected in the initial assignment of C. Relations that
involve A within C are amplified to a

3.3.1.4. Weighted Constraint Satisfaction

The robust coherence approach described in 3.3.2.1 above results in a constraint satisfaction
problem (CSP) where a weight is associated with each constraint representing the amount of
coherence that would be gained if that constraint were to be satisfied, thus known as a weighted
CSP (WCSP). The issue remains, however, of how that weight is to be selected. The CSP solver
itself must not be arbitrarily selected. The default implementation in DEEP was to use a static
weight assignment. (Creating and Capturing Expertise in Mixed-Initiative Planning, 2007)

Alternatively, an investigation was undertaken to develop a dynamic weighted CSP (DWCSP)
allowing for the dynamic addition and removal of constraints from the WCSP. (Hasseler, 2010)
As the set of experiences (cases) available to the DEEP reasoned change, so too can the WCSP
be updated in real time without needing to restart the WCSP solver.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
32

The DWCSP algorithm and solvers were evaluated against the MAX-SAT canonical CSP
benchmarks through the addition and removal of new constraints. (Argelich, et al.) Both the
dynamic DMaxWalkSAT and real-time dynamic RDMaxWalkSAT solvers performed better that
MaxWalkSAT on DWCSP problems. These algorithms are small and non-complex, which
should encourage their implementation and inclusion in future systems.

We’ve presented the notion of robust coherence; a method of group decision making that seeks a
maximally coherent decision while corresponding to the dynamic world. By combining
seemingly contradictory theories of knowledge, robust coherence allows for group decision-
making focused on both consensus and fact. We’ve also applied this approach to a case based
planning algorithm called rob-coh, and implemented that algorithm to provide a test-bed for
further research in coherence.

While our initial implementation focused on multi-agent planning, the basic approach of robust
coherence can be applied to a wide variety of knowledge-based domains. For example, a robust
coherence system can be established to discover what theories and observations a collection of
agents hold in common. Using this coherent picture of a domain, the agents could use the
selected theories to generate predictive data, adding to the set of observations and further
refining the coherent theories.

3.3.2. Model Adaptation Using Software Agents and a Case Base

Initially separate from the DEEP program itself, a group of researchers with AFRL/RI were
exploring the use of software agents to automatically adapt models, determining if and when
supervision or suggestion by a human was appropriate. The models of interest were associated
with the DARPA Joint Air Ground Unified Adaptive Replanning System (JAGUAR) program.
This group teamed with the DEEP researchers to investigate using the DEEP blackboard
framework in support of the former team’s goals. Several of the JAGUAR tools were modified
to operate within the DEEP framework and a number of software agents were developed to
support autonomous model change. This work was conducted under the extramural research
contract FA8750-10-C-0149, “Agent Based Model Diagnosis and Repair.” (Mulvehill, 2011)

The final technical report for this work documents the results of this work, describing how the
JAGUAR tools were extended to operate within DEEP, how software agents running on the
DEEP blackboard were developed to support autonomous model change, and the results of the
experimentation that followed.

The JAGUAR system was built as a model-driven planner to support a dynamically changing air
mission planning and execution environment. The JAGUAR case base contains historical
executed plans and objectives, along with the anomalies detected during execution of the
underlying models, and plan message data (e.g., world state, monitored events), that was
collected during the JAGUAR program.. A number of JAGUAR tools were available to provide

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
33

mixed-initiative support to the operator on model diagnosis and repair. (Expectation Failure as a
Basis for Agent-Based Model Diagnosis and Mixed-Initiative Model Adaptation During
Anomalous Plan Execution, 2007) In the DEEP application, specialized software agents that
leverage several of the JAGUAR tools originally developed to support human operators were
developed. The DEEP blackboard was used to support communication between all of the major
elements. The final DEEP-Agents architecture is shown in Figure 14.

Figure 14: DEEP Agents Architecture

The use of DEEP for this effort produced two particular results of importance to DEEP: (1)
Validation of the applicability and usefulness of the DEEP architecture and exercising of all key
DEEP components in what was, in effect, a blind test as the JAGUAR program was not
considered during any of the DEEP development stages; and (2) Using agents (via the DEEP
blackboard) to modify models entities extracted from case bases is analogous to using planning
agents to critique and modify plans and plan fragments extracted from other case bases. This
latter result played a prominent role in the subsequent development of software agents, operating
in a mixed-initiative environment, to construct viable courses of action (COAs) from partial
plans retrieved from a case base(s) of past activities as described in Section 3.3.3 of this report.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
34

3.3.3. Mixed-Initiative COA Critics / Advisors (MICCA)

The reasoning component of DEEP was anticipated to reside in three distinct areas: (1) case-
based retrieval, and (2) plan adaptation and modification and (3) plan evaluation or assessment.
The resources available to the research team precluded serious investigation into these areas. A
plan critiquing and advising capability was needed to augment the existing DEEP capability by
adding a software component to refine rough, higher-order plans, based on the output of a
multiple case-based plan retrieval process, into more detailed, cohesive plans by analyzing
aspects such as quality, critical dependencies, possible omissions, undesirable effects, resource
constraints, etc. . Coherent plans and context needed to be mapped to a set of critic engines
which, in turn, provide their domain expertise back as validation and/or improvements to the
plan, making the plan complete and consistent at these lower levels.

Many of the agents in the as-built infrastructure were either nominal or stubbed, with low levels
of expertise or ability to handle real-world planning. In addition the goal of a mixed-initiative
planning environment, supported by DEEP, had not yet been addressed. To this end, a
solicitation was made to do this work under extramural contract and to extend the ARPI CPR
schema and blackboard-based architecture to support multi-agent non-deterministic opportunistic
reasoning, using case-based reasoning to capture experiences (successes and/or failures) and
mixed-initiative critic agents for plan refinement.

This plan critiquing and advising capability component would be used to refine rough, higher-
order plans, based on the output of a multiple case-based plan retrieval process, into more
detailed, cohesive plans. Review and assessment of specific aspects of the plan at lower levels of
detail was desired over a single assessment of the plan as a whole.

A separate research contract, FA98750-10-C-0184, “Mixed-Initiative COA Critic / Advisors”,
was initiated. This effort contained three main components: (a) Development of individual
critics - addressing scenario interaction, scope of application, initial assessment and categories of
expertise; (b) Multi-critic framework - addressing critic interaction and communication, critic
control and collaboration, and negotiation and division of labor between human and machine
critics; and (c) Enhanced performance - addressing metric identification, explanation and
information assurance issues. Execution of the critics was foreseen to be independent of the
larger CBR framework, allowing dynamic assembly of a critic community, distributed
implementations and sourcing of plans and plan fragments from multiple case-bases.

Issues being addressed under this contractual effort include, but are not limited to: activation of
specific critics, de-confliction of critic output, collaboration between critics, plan modification by
critics; trust, pedigree and, authority of critics to act; assembly and integration of critics, control
and oversight of activated critics, and the necessary run-time support environment, including

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
35

interfacing and integration of the critics to both the underlying DEEP architecture and human
operators. (Mulvehill, et al., 2011)

Utilizing the aforementioned CPR and blackboard framework, the research team is developing a
set of adaptation, critique and assessment plan critics to facilitate the evaluation of plans and
partial plans generated by the DEEP-based case-based reasoning framework and adapt them to
current conflicts, planning, temporal adaptation and resource scheduling agents to revise
candidate plans, and meta-critic agents to select a set of “best” candidate plans for final human
review.

Software agents developed under MICCA will fall into the following categories:

• Plan Evaluation and Execution Agents
• Comparison Agents
• Ranking Agents
• Adaptation Agents
• Planning Agents
• Coordination Agents

3.3.3.1. Plan Evaluation Agents and Execution Agents

Evaluation agents are being designed to communicate via the DEEP blackboard and to have their
conclusions filtered for execution/selection by both a human and a meta-critic (software agent).
The meta-critic agents (comparison and ranking agents) will act as a filter on evaluations and
repairs to preclude possible human criticisms. These filtered evaluations and repairs can be
presented to the human operator as the best different options. Plans will be ranked based on one
or more evaluation agent scores along different dimensions using lexicographic preference
models (LPMs). An LPM defines an order of importance on the measure variables (criteria) and
uses it to make preference decisions. These variables are often domain dependent.

The following plan evaluation agent types have been identified as supporting the evaluation of
retrieved/revised plans in any planning domain:

• Executability Evaluation Agent - evaluates the fragility of the plan
• Cost Evaluation Agent - computes the execution cost of the plan
• Risk Evaluation Agent - scores the plan with respect to mission threats
• Policy Evaluation Agent - checks if a plan violates any policies
• Adaptability Evaluation Agent – determines how much adaptation is needed in order to

utilize a candidate plan as retrieved from a library of historical plans.

Final implementations of MICCA will contain specialized instances of these evaluation types,
e.g., cost evaluations associated with time, fuel, usages of valuable resources.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
36

3.3.3.2. Comparison Agents

The input for this agent is a set of scored plans, although it is not a requirement that every scored
plan lead to a pair comparison. A plan is compared to other plans with the same context when all
the scores of the plan are available. The comparison agent organizes the scores with respect to
the context and the plan. The context of the plan also identifies the lexigraphic preference model
(LPM) (Democratic Approximation of Lexicographic Preference Models, 2008) or other model
that will be used for comparing plans within the same context. For example, a different LPM
might be used for evaluating plans from different domains. Similarly the comparison of revised
and retrieved plans might also need different preference models.

The output of this agent is a set of PlanPairComparison objects of the form:

 <PlanID1, PlanID2, SourceID, ObjectiveID, StateID, Result,
Justification>

Where:
• PlanID1 and PlanID2: Identifiers of the plans that are compared.
• SourceID, ObjectiveID and StateID: come from the Scored Plans

that give the scores for these two plans in the same context.
• Result: 0 if the plans are equally good. 1 if the first plan is better, -1 otherwise.
• Justification: The rationale for the result.

3.3.3.3. Ranking Agents

The input for this agent is a set of PlanPairComparison objects. PlanPairComparisons objects
induce a total order on the plans that share the same context. The ranking agent then sorts those
plans accordingly. The output of the ranking agent is a set of Execution Candidates or Revision
Candidates which will be of the form:

 <PlanID, SourceID, ObjectiveID, StateID>

Where:
• PlanID: Identifier for the selected plan.
• SourceID, ObjectiveID, StateID: come from the input

PlanPairComparison objects.

If the PlanID comes from a retrieved plan (identifiable by the SourceID) then the output
will be a RevisionCandidate which will be used by the Adaptation agents. Otherwise the output
will be an ExecutionCandidate which will be published to the blackboard and might be stored in
the case base and/or passed onto a simulator

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
37

3.3.3.4. Adaptation Agents

Several types of adaptation agents might be needed for repairing candidate plans. These will
include adaptation agents that are specialized in such areas as: planning, temporal reasoning and
resource scheduling, as well as specialized agents that will be designed to handle domain-
specific issues, such as route planning, geospatial reasoning and/or motion.

Agent interaction will be managed through a meta-critic or coordination agent. As the
adaptation agents take turns to revise the current plan, the coordination agent is responsible for
notifying the next agent when it is appropriate to work on the current plan. All adaptation agents
will be designed to communicate with the DEEP framework, to pass on information between the
agents, and to communicate with the human operator.

There can be several plan adaptation agents ranging from fully domain independent to domain
specific. The current design assumes that the plans are hierarchical. As planning agents are
envisioned as iterating over every goal task in the objective and relying on subordinate agents or
utilities to fix deficient tasks or plans as they are identified.

3.3.3.5. Coordination Agents

Given a candidate plan which might need multiple adaptations, possibly by multiple agents, the
challenge becomes one of how the adaptation agents interact with each other to produce coherent
plans. The most likely approach for MICCA is to pick one adaptation agent to work on the plan
in a given cycle, fix everything it can and then hand it over to another agent. This approach
necessitates a meta-critic agent, or coordination agent, that will be responsible for imposing an
order on the adaptation agents.

The function of the coordination agent will be to:

• keep track of adaptation agents and their capabilities

• keep track of domains and their needs

• implement a set of agent interaction policies

• implement a set of human interaction policies

In addition to developing the individual critic agents, a framework for supporting the interaction
and de-confliction of multiple critics, and a means for exposing the critic activity for human
review are also under development. This work is expected to be completed in September 2012.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
38

3.3.4. Case-Based Tactician

This work investigated the use of competitive experience by multiple individuals to develop
sensible plans. It utilized an implementation of the Case-based Tactician (CaT) algorithm (Aha,
et al., 2006) applied to the StarCraft domain using the DEEP architecture.

This approach is based on a hypothesis, that sensible and relevant solutions, such as a list of
suitable candidate actions, can be derived from past planning experience. Genetic Algorithms
(GA) were explored to develop an automated capability to learn good plans, and thus be able to
select them from a case-base of possible plans. A GA approach is often used when the solution
space may be too large or too complex.

There are three major components to the GA: chromosome, fitness function and genetic
operations. The chromosome is the generic representation of the solution domain. The fitness
function is used to evaluate a goodness of the chromosome. The genetic operations are used to
modify and mutate the chromosome. The basic idea is to keep changing and mutating
chromosomes and gravitate toward chromosomes that yield better solutions.

The StarCraft domain can be quite complex due to the large number of variables present. The
StarCraft solution space was partitioned into a set of states, derived from the build state lattice of
the game. The game (or replay of the game) was transcribed as a collection of states making up
the chromosomes. The GA fitness function used is described in Figure 15, where the four
variables used represent key game parameters easily extracted from game replays.

Figure 15: Fitness function for the DEEP-StarCraft GA

Four genes that were used to represent a state, or GA chromosome, are shown in Figure 16:
Economy gene, Build gene, Research gene, and Combat gene. The Economy gene specifies
when and how many worker drones to build. The Build gene specifies when to build specific
types of buildings. The Research gene specifies when to perform research and upgrades on
players units. The Combat gene defines the type of units to build, their quantity, and their attack
or defend strategy.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
39

The GA operations used were: state crossover 30% of the time, 30% rule replace mutation, 30%
biased mutation and 10% randomization (entire chromosome is randomized). The
randomization at 10% was too chaotic and was later reduced to 2%.

Resources and priorities prevented a comprehensive development and assessment of this
approach. A major impediment to developing an effective GA for case selection was getting an
objective measure or a meaningful goodness score. No effective means was available for
deriving concise measurements of performance of the DEEP / StarCraft GA approach while the
game was running, particularly with the “fog-of-war” option enabled. This was due primarily to
the lack of access and availability of objective assessment tools for StarCraft. If future work
leads to better means for measuring StarCraft internal performance, this area will be revisited.

Chromosome (representation)

:= State
Economy Gene (number of worker drones)
Build Gene (type of structure to build)
Research Gene (type of research to perform)
Combat Gene (type of combat units to build)

Ex: <<S1, E4, B3, R8, C1, 3, 4>, <S3, ...> ...>

Fitness Function (evaluation metric):

𝐹 =

⎩
⎨

⎧min�
𝐺𝐶
𝐸𝐶

 ∙
𝑀 𝑑

𝑀𝑑 +𝑀𝑜
 ∙ 𝑏� {𝑑 𝑙𝑜𝑠𝑡}

max�𝑏 ∙
𝑀𝑑

𝑀𝑑 + 𝑀𝑜
 � {𝑑 𝑤𝑜𝑛}

�

Figure 16: Chromosome representation for the DEEP-StarCraft GA

3.3.5. Simulation of DEEP Generated Plans

AFRL/RIS has had a long-standing relationship with researchers at the Agent Technology Center
of the Czech Technical University (CTU) in Prague, Czech Republic. They have been doing
research into agent-based computing in distributed adversarial planning. The aim of the project
was to investigate problems of adversarial reasoning and planning, and goal-oriented decision
making in the presence of other adversarial actors. In contrast to existing approaches, the project
aimed to address the problem within the context of complex, asymmetric domains with

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
40

properties similar to those found in real world conflict situations (a higher number of actors,
asymmetry in an actor's objectives and resources, continuous time and space, etc.)

The pursued approach combined theoretical analysis and practical algorithm development with
strong emphasis on empirical evaluation using a multi-agent adversarial behavior simulator test
bed. This adversarial planning simulator was integrated as an external component for evaluating
candidate operational plans through their simulated execution.

As part of their work, AFRL funded the CTU team to develop tools for automated translation of
DEEP plan representation objects into representations executable by their simulator. The
simulated execution results were reported back to the user. The results of their work are detailed
in the final technical report for FA8655-07-1-3083. (Pechoucek, et al., 2007)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
41

4. Results and Discussion

4.1. Research Platform

A core part of this project was the development of a research platform upon with which the
AFRL research team could explore and develop technology to assist commanders and their staff
in improving their planning work, drawing on and utilizing past planning output and experience.

As described in this report and in the various references, (Lachevet, et al., 2008), DEEP was
successfully implemented as a research platform. It has been utilized for a number of related and
spin-off efforts as described in Section 3.3.

The software implementation remains the principle product of the DEEP program. Its usefulness
is evidenced by its continued use as an underlying component of ongoing and future research
efforts, describe in the following section.

4.2. Future Work

Based on the result of the DEEP project, future research focus has been focused on continuing
the Mixed-Initiative COA Critics/ Advisors (MICCA) work as well as the initiation of a new line
of inquiry known as Experience Based Adaptation and Replanning (EBAR). The data sources
and planning goals for these efforts are drawn from the JAGUAR and StarCraft domains,
respectively.

4.2.1. MICCA

Initial work in this area is described in Section 3.3.3. As noted earlier, the technical objective of
the MICCA project is to develop software that can be used to aid human operators in adapting
and aligning past military plans to meet current objectives and constraints. This work will
complement the DEEP technology developed by AFRL. MICCA will develop adaptation,
evaluation (for critiquing the plan along one or more dimensions) and assessment routines, in the
form of software agents, to assist in transforming past plans into viable current plans. The long
term operational goal of the resulting plan critic advisory system is to provide a commander and
his staff a capability to better utilize past experience for planning and generating a new COA in
response to a current threat, crisis or adversarial action.

Note that MICCA is avoiding the larger issue of when does plan adaptation devolve into
generative planning. The working assumption is that the case bases involved are rich and
complete enough to “always” be able to suggest a good first-round planning suggestion. The
purpose of this is ensure that the objectives of the effort are attainable and that progress and
contribution of the technology is easily measureable against low-complexity baselines, without
the effort being drawn into the whole other research area of generative planning.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
42

4.2.2. EBAR

The vision for future Air Force operations is that commanders will be able to continuously
monitor and adjust plans during their execution as the situation evolves, and more relevant and
timely information becomes available. A more autonomous way of adaptive replanning must be
established to provide plausible decisions to the warfighter earlier in the process. Current
planning lacks autonomy to provide planning options to operators when plans are deviating from
optimal performance as current Air Operations Center processes have too long of a latency
window between planning cycles (e.g. many hours). Equally noteworthy is a key finding from
Air Force Technology Horizons that natural human capacities are becoming increasingly
mismatched to the enormous data volumes, processing capabilities, and decision speeds that
technologies either offer or demand. (2010)

Planning for military operations is notoriously difficult; initial plans rarely survive first contact
with the enemy. The reasons for this are many, including: a significant amount of uncertainty
associated with predicting future consequences and events, the complex and real-time nature of
these problems forces commanders to make timely decisions without doing a complete search of
the domain for planning options, and the adversarial nature of the military domains means that
our adversaries will actively perform actions to disrupt our plans.

To achieve these objectives, technology is needed to:

• Devise methods for determining when an executing plan is deviating from its
expected performance

• Establish deviation thresholds upon which replanning actions should be undertaken

• Perform rapid, adaptive replanning as necessary to reduce the differential between
current state and some desired outcome.

The focus of this work will address the challenge of optimally determining the circumstances
under which unforeseen deviations from an executing plan warrant replanning. As military plans
are executed monitored plan features will often deviate from what was expected due to
incomplete information or actions by an adversary. Once the world state deviates enough the
current plan may become non-viable and a new plan will be required. Techniques for deriving
robust decision criteria are an open research area to be explored.

The two specific objectives of EBAR are focused on the first two needs listed above:

• Develop a method of measuring the distance between the state variables and between
two or more world states. This is critical for determining whether the plan is going as
expected, or deviating from expected performance

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
43

• Develop a methodology for establishing thresholds for adaptive replanning. Given a
method for measuring the deviations in actual plan performance against expected plan
performance, the challenge then becomes determining how much of a deviation
should be allowed before replanning takes place.

In the real world, intelligence, surveillance and reconnaissance and assessment services exist to
provide information from which to build a representation of the current state of the executing
plan. In the case of EBAR, this function will be driven by the StarCraft real-time strategy game
operating in conjunction with the DEEP blackboard architecture, agents and infrastructure as the
default research platform. StarCraft will be used for both generation of cases for historical
archiving and retrieval as well as playing forward plans and generating data to be used in
assessing the quality of EBAR. Based on the description of the world-state contained in the state
variable, the DEEP case-based planning system will retrieve relevant actions to be executed.

Planning under this vision can be viewed as a sequential decision-making process that iteratively
modifies states in a state space. Because we are measuring the current world state, this lends
itself towards framing the problem as a Markov Decision Process (MDP), represented as a 4-
tuple (S, A, T, R), where: S is a set of state variables, A is a set of actions, T is a transition
function, and R is the reward function. The state variables comprising S are a set of features
representing the world state in which the plan is being executed. (Toward Integrating Feature
Selection Algorithms for Classification and Clustering)

The experience base represents individual plans as Markov Chains, containing sequences of
states and actions which occurred to reach an objective. Because this is a model-free approach,
we do not have complete models of the entire state-space and therefore the probability of an
action (a) moving from the current state (s) to the desired state (s') is not 1. This is represented
as Pr(s,a,s’) ≠1. Similarly, we are also not undertaking the modeling of the transitional
probabilities for transitioning from state to state. Case Based Reasoning allows uncertainty
management by drawing upon past experience to choose an action set based on the current state
variable. Therefore, when the state variable is sufficiently defined, it can be used to retrieve
Markov Chains from the experience base to suggest sequences of states and actions to solve
current objectives.

There are two central challenges this effort will address. First, can optimal feature sets for case
retrieval and plan monitoring be derived automatically? Features are the sensors and variables
that describe the current state of a problem. A concise and complete feature set is critical for
managing the size of a search space and ensuring a decision maker, human or synthetic, has
enough information to make an appropriate decision. In practice, features are typically manually
selected and derived by subject matter experts. Manually selecting features is expensive, error
prone, and inflexible. An automated method for feature selection would be much or robust, less
costly, and more capable in dynamic domains. Automatic feature selection is an open field of

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
44

research where there has been much work in the supervised learning domain (An Introduction to
Variable and Feature Selection, 2003) but little in unsupervised learning domains. (Automatic
Feature Selection in Neuroevolution, 2005) (Embedded Incremental Feature Selection for
Reinforcement Learning, 2011) Advanced in both these areas will be reviewed for application to
EBAR.

The second major challenge this work will address is how to automatically determine thresholds
for when to replan. As military plans are executed monitored plan features will often deviate
from what was expected due to incomplete information or actions by an adversary. Once the
world state deviates enough the current plan becomes no longer viable and a new plan is
required. Determining what and when is enough is an open research question we want to
address. Similar to feature selection, determining thresholds is often a manual process. Past
approaches have relied on a commander’s intuition to determine thresholds on specified mission
parameters. There has been some work in automatic plan monitor thresholding from the robotics
community, such as the Rationale Based Monitoring framework. (Rationale-Based Monitoring
for Planning in Dynamic Environments, 1998) This approach is promising, but relies on
complete models of the domain, which are not readily available, to determine thresholds. Our
research will build off of this approach and also investigate using Vector Space Models (Salton,
et al., 1975) to determine appropriate distance functions for replanning thresholds.

4.2.3. Robust Coherence

As noted in Section 3.3.1, an important issued identified in the course of the DEEP project was
the potential conflict arising from retrieval of multiple past actions, which may not be self-
consistent.

Current approaches for synthesizing multiple experiences often involve the use of constraint
satisfaction to understand how experiences interact. This sometimes involves representing cases
themselves as constraint satisfaction problems (Adaptation Using Constraint Satisfaction
Techniques, 1995), or using constraint satisfaction to order actions within a plan. (Merging
Strategies for Multiple Case Plan Replay, 1997) Future work in this area will also be using
constraint satisfaction techniques, but will be taking a different approach. In our approach,
constraints are used to represent the compatibilities and incompatibilities of different
perspectives.

Drawing upon ideas from the philosophy of knowledge, our approach to robust coherence can
help collaborative partners understand how their epistemic processes differ. Instead of generally
disagreeing, different stakeholders can use robust coherence to single out incompatibilities in
reasoning and knowledge and narrow the discussion to important issues facing collaborative
work. In the future, we will be testing this approach in a variety of knowledge-based domains to

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
45

discover how people can better share information collectively in a way that they can agree to and
corresponds to the dynamic world.

Our constraint satisfaction algorithm allows us to utilize both soft and hard constraints, the
inclusion of which is also a future research area for our coherence approach. The negative
constraints produced by the falsification mechanism, for example, could be hard constraints
instead of soft. This will enforce correspondence with the world, but may make some of our
coherence systems unsolvable. Future efforts will test this hypothesis.

4.2.4. StarCraft

The StarCraft domain will most likely remain the domain of choice for AFRL/RIS internal
research programs in case-based reasoning for the near term. As new technologies are identified,
investigated and proven on this domain, corresponding extramural efforts will be considered to
move out of the laboratory and to apply the results to DoD military domains and problem sets.

The current focus of DEEP on the strategic level of planning is being carried forward into the
EBAR research using StarCraft as the domain as that is where experiential reasoning is well
suited. There are components of the Starcraft API discussed in Section 3.2.1.2 that allow for the
use of “Managers” to handle the tactical level tasks of the game. These managers include:

• Resource Manager –handles the gathering of resources in the game including the
production of these resource gatherers.

• Building Manager – alleviates the need of spending time writing algorithms to deal
with X & Y placement on the map.

• Attack Manager(s) – applies tactical-level actions and behaviors to specific units.

A high-level view of the DEEP/StarCraft architecture is shown in Figure 17. The central
component will continue to be the DEEP Blackboard which easily supports rapid research and
testing. The blue objects are the information passed between the StarCraft APIs and DEEP
components. The “SCSituation” object is the set of information populated by the StarCraft APIs.
This contains information such as map details, unit details, building details, red information, blue
locations, etc. The plan feature attribute-value pairs necessary to tracking the world state remain
to be defined.

The StarCraft Case-Based Reasoning Agent, SCCBRAgent shown on the left side of Figure 17,
represents the case-based reasoning engine currently used in DEEP. This agent uses the current
situation to retrieve relevant past experiences (replays) and proposes new plans (actions) based
on this information. One of the hard problems remaining to be addressed is when to replan.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
46

Figure 17: DEEP / StarCraft Architecture

For the EBAR project, the planning system itself is of less interest. The focus of EBAR is to
address the challenge of optimally determining the circumstances under which unforeseen
deviations from an executing plan warrant replanning. As military plans are executed, monitored
plan features will often deviate from what was expected due to incomplete information or actions
by an adversary. Once the world state deviates enough the current plan may become non-viable
and a new plan is required. The capabilities developed should interact with the planning system
on whatever level of complexity the planning system supports. For example, if the planning
system supports contingency planning, the developed capability would notify the planning
system that some form of contingency planning needs to take place using the latest information.
Conversely, if the planning system only supports the creation of a single plan from scratch, the
developed capability would notify the system to do a complete re-plan using the latest
information of the current situation, or world state.

The duration of the StarCraft game can vary significantly in both time and complexity.
Attempting to model the entire (or a previously replayed) game while keeping track of many
variables can be overwhelming. Our approach was to utilize Fine State Machines (Howland,
1999) to segment an entire game into a set of smaller manageable units called states. This
representation of the game as a state lattice is based on the build tree (or tech tree expansion) of
the StarCraft (Broodwars Expansion Pack). Specific buildings enable new features and
capacities, e.g., building new types of combat units and buildings, researching new capabilities,
etc. The SCReplay (11ht), an open-source java based project, was utilized to read contents of
saved StarCraft games. This approach enabled us to effectively reduce the complexity of
representing an entire game state through segmentation.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
47

5. Conclusions

DEEP was initiated in 2006 as an internal AFRL Rome Research Site in-house project. The
original objective of the DEEP project was to “research, develop, and evaluate technologies for
geographically dispersed commanders and senior staff to conduct intuitive, continuous, and
distributed planning in the complexity, dynamics, and chaos of forth generation warfare.” The
proposed approach was to develop a mixed-initiative planning environment to augment the
commander’s and staff’s experience base by drawing on expert knowledge that has been
interactively captured and represented in machine understandable form. A spiral development
paradigm was envisioned. The first spiral was to leverage readily available components to
quickly “breadboard” a basic demonstration of the concept. For the first spiral, the focus was on
developing core, individual capabilities rather than integrating the capabilities. The initial goals
of the DEEP project were to create a research platform that embodied a complete planning cycle
in a distributed architecture, and demonstrate that capability. Latter spirals were expected to
enhance the basic functionality and integrate the capabilities.

Focus areas included, but were not limited to: knowledge elicitation and representation for the
case-base and episodic memory, analogical reasoning for experience retrieval, principled
methods of case adaptation for creating skeleton plans, distributed case base reasoning for plan
development and update, and exploratory evaluation of plans by distributed commanders. The
products of the research and development effort were identified as demonstration software
exemplifying the scientific concepts under study, and papers published in refereed conferences
and journals.

The DEEP team successfully met this challenge, providing a solid research platform upon which
to build in the following years. As described in this report and in the various references,
(Lachevet, et al., 2008), DEEP was successfully implemented as a research platform and has
been utilized for a number of related and spin-off efforts.

Although technical advances were made, as the work progressed it became clear that a number of
technical issues were beyond the timeframe and resources allocated to the effort. The original,
comprehensive DEEP architecture included components for modeling and simulation and for
distributed implementations involving networking of multiple DEEP instantiations. Regrettably,
work in these areas was not accomplished due to resource limitations and the need to focus on
getting the core DEEP functionality coded and running reliably. Subsequently, the research
focus was narrowed to concentrate on refining the plan representation scheme, developing
appropriate and relevant cases, merging and deconflicting partial plans, and developing protocols
and processes for adapting, critiquing and modifying plans.

The software implementation has remained as a demonstration and exploration prototype and has
not been hardened or rigorously exercised to a maturity level sufficient to support distribution to

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
48

other research communities – it has remained an AFRL/Rome Research Site implementation
only. Even within that limited set of applications, DEEP has supported a number of interesting
and potential significant research forays, as described in Section 3.3 and will continue to see use
in support of the Experience Based Adaptive Replanning and Mixed-Initiative Course-of-Action
Critic/Advisors research projects as described in Section 4.2.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
49

6. Bibliography

[Online] UC Berkeley. http://overmind.cs.berkeley.edu/.

[Online] http://www.cs-replay.com.

Adaptation Using Constraint Satisfaction Techniques. Purvis, Lisa and Pu, Pearl. 1995. [ed.] M. Veloso
and A. Aamody. s.l.: Springer Verlag, 1995. Topics in Case Based Reasoning, Proceedings of the First
International Conference on Case Based Reasonin, LNAI Series.

Aha, D, Molineaux, M and Ponsen, M. 2006. Learning to Win: Case-Based Plan Selection in a Real-Time
Strategy Game. Kunstlichen Intelligenz. 1 2006, pp. 39-44.

Alberts, D., Hayes, E. 2007. Planning: Complex Endeavors. s.l.: Command and Control Research
Propgram (CCRP), 2007.

Allen, John, et al. 2004. Future Command. s.l. : Defense Advanced Research Projects Agency (DARPA),
2004. DARPA ISAT Study.

An Introduction to Variable and Feature Selection. Guyon, I and Elisseeff, A. 2003. 2003, Journal of
Machine Learning Research, Vol. 3, pp. 1157-1182.

Argelich, J, et al. Fourth Max-SAT Evaluation. Max-SAT 2009. [Online] [Cited: October 20, 2011.]
http://www.maxsat.udl.cat/09/index.php?disp=organizers.

Automatic Feature Selection in Neuroevolution. Whiteson, S, Stone, P and Stanley, K. 2005. 2005.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 05). pp. 1225-1232.

Bichindaritz, I. 2006. Memory Organization as the Missing Link Between Case Based Reasoning and
Information Retrieval in Biomedicine. Computational Intelligence. 2006, Vol. 22, pp. 148-160.

Braun, G. 2006. AFFOR Command and Control Enabling Concept - Concept 2. s.l.: USAF/A5XS, 2006.
Internal.

Carozzoni, Joseph, et al. 2008. Distributed Episodic Exploratory Planning. s.l.: Air Force Research
Laboratory, 2008. Interim Technical Report. AFRL-RI-RS-TR-2008-279.

Coherence as Constraint Satisfaction. Thagard, P., Verbeurgt, K. 1998. 1, 1998, Cognitive Science, Vol.
22, pp. 1-24.

Collaborating with Multiple Distributed Perspectives and Memories. Ford, Anthony and Mulvehill, Alice.
2009. 2009. Proceedings of the International Workshop on Social Computeing, Behavioral Modeling and
Prediction.

Corkill, D. 1991. Blackboard Systems. AI Expert. 1991, Vol. 6, 9, pp. 36-38.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
50

Creating and Capturing Expertise in Mixed-Initiative Planning. Ford, A., Carozzoni, J. 2007. 2007.
Proceedings of the 12th International Command and Control Research and Technology Symposium.

Crumb, F. 2003. AFRL-Rome Awards contracts for JAGUAR Program. Defense AT&L. October 24, 2003.

Defeating Novel Opponents in a Real-Time Strategy Game. Molineaux, M, Aha, D and Ponsen, M. 2005.
2005. Proceedings of the IJCAI 2005 Workshop on Reasoning, Representation, and Learning in Computer
Games.

Democratic Approximation of Lexicographic Preference Models. Yaman, F, et al. 2008. 2008. Proceedings
of the ICML 2008.

Distributed Planning in a Mixed-Initiative Environment Collaborative Technologies for Network centric
Operations. Destafano, C., Lachevet, K. and Carozzoni, J. 2008. 2008. Proceedings of the 13th
International Command and Control Research and Technology Symposium.

ELOP-DEEP. Staskievich, G. 2011. s.l. : (Unpublished), 2011.

Embedded Incremental Feature Selection for Reinforcement Learning. Wright, R, Yu, L and Loscalzo, S.
2011. 2011. Proceeding of the 2011 ICAART.

Engelmore, Robert and Morgan, Tony. 1988. Blackboard Systems. 1988.

Expectation Failure as a Basis for Agent-Based Model Diagnosis and Mixed-Initiative Model Adaptation
During Anomalous Plan Execution. Mulvehill, A, Benyo, B and Cox, M, Bostwick, R. 2007. Hyderabad,
India : AAAI Press, 2007. Proceedings of the 20th International Joint Conference on Artificial
Intellligence. pp. 489-494.

Eye-Tracking Analysis of User Behavior in WWW Search. Granka, L, Joachims, T and Gay, G. 2004.
Sheffield, South Yorkshire, UK : ACM, 2004. SIGIR 2004.

Hasseler, G. 2010. Adapting Stochastic Search for Real-Time Dynamic Weighted Constraint Satisfaction.
s.l.: State University of New York, 2010. Master's Thesis.

Howland, G. 1999. A Practical Guide to Building a Complete Game AI: Vol I. s.l. : GameDev.net, 1999.

Hughes, C. and Hughes, T. 2003. Parallel and Distributed Programming Using C++. s.l. : Pearson
Education, 2003.

Improving Plan Adaptation Process Through Semantic Technologies. Staskevich, Gennady and
Carozzoni, Joseph. 2009. 2009. Proceedings of the 14th International Command and Control Research
and Technology Symposium.

Kolodner, Janet. 1993. Case-Based Reasoning. Morgan Kaufmann Series in Represenation and
Reasoning. s.l.: Morgan Kaufmann, 1993.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
51

Lachevet, Kurt, Kaczynski, D. and Rogers, G. 2008. Distributed Episodic Exploratory Planning. s.l.: Air
Force Research Laboratory, 2008. Contract FA88750-07-C-0176, AFRL-RI-RS-TR-2008-322.

Merging Strategies for Multiple Case Plan Replay. Veloso, Manuela M. 1997. [ed.] D. B., Plaza, E. Leake.
1997. Proceedings of the 2nd International Conference on Case-Based Reasoning.

MiniMaxSat: A New Weighted Max-SAT Solver. Heras, F., Larrosa, J., Oliveras, A. 2008. Guangzhou,
China: s.n., 2008. Theory and Applications of Satisfiability Testing SAT 2008, 11th international
Conference.

Mission Assurance in a Distributed Environment. Destefano, Chad and Clark, Thomas. 2009. 2009.
Proceedings of the 14th International Command and Control Research and Technology Symposium.

Mixed-Initiative Planning in a Distribued Case-Based Reasoning System. Lachevet, Kurt. 2009. 2009.
Proceedings of the 14th International Command and Control Research and Technology Symposium.

Mulvehill, A, Benyo, B and Yaman, F. 2011. MICCA Consolidated Design Document. s.l.: (unpublished),
2011. Contract FA8750-10-C-0184.

Mulvehill, A., Benyo, B. 2011. Agent-Based Model Diagnosis and Repair. s.l.: Air Force Research
Laboratory, 2011. Contract FA8750-10-C-0149, AFRL-RI-RS-TR-2011-139.

Mulvehill, A., Deutsch, S. and Rager, D. 2007. Case-Based Reasoning for DEEP: Observations and
Recommendations. s.l.: BBN Technologies, 2007. BBN-12-071.

Pease, A. 1998. Core Plan Representation. 1998.

Pechoucek, M, et al. 2007. Agent-Based Computing in Distributed Adversarial Planning. Gerstner
Laboratory, Agent Technology Center, Czech Technical University. s.l. : U.S. Air Force, 2007. Final.
Contract FA8655-07-1-3083.

Popper, Karl. 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. s.l.: Rutledge,
1963.

Rationale-Based Monitoring for Planning in Dynamic Environments. Veloso, M, Pollack, M and Cox, M.
1998. Pittsburgh, PA: s.n., 1998. Proceedings for the 4th International Conference on AI Planning
Systems. pp. 171-179.

2010. Report on Technology Horizons: A Vision for Air Force Science and Technology During 2010-2030.
AF/ST. s.l.: U.S. Air Force, 2010. AF/ST-TR-10-01.

Robust Coherence: An Approach to Multi-Agent Experience-Based Planning. Ford, Anthony. 2009. 2009.
2009 AAAI Spring Symposium on Technosocial Predictive Analytics.

Salton, G, Wong, A and Yang, C. S. 1975. A Vector Space Model for Automatic Indexing. Information
Retrieval and Language Processing. 1975, pp. 613-620.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
52

Semantic Adaptation AGEnts (SAAGE). Staskevich, Gennady and Carozzoni, Joseph. 2009. 2009.
Proceedings of the Knowledge Systems for Coalition Operations Conference.

Semantic Interoperability in Distributed Planning. Staskevich, Gennady, et al. 2008. 2008. Proceedings
of the 13th International Command and Control Research and Technology Symposium. Post-Printed as
AFRL-RI-RS-TP-2008-6.

Synthesizing Disparate Experiences in Episodic Planning. Ford, Anthony and Lawton, James. 2008. 2008.
Proceedings of the 13th International Command and Control Research and Technology Symposium.

Thagard, P., Milligram, E. 1995. Inference to the Best Plan: A Coherence Theory of Decision. [ed.] A.,
Leake, D. Ram. Goal-Driven Learning. 1995, pp. 439-454.

The Coherence Theory of Empirical Knowledge. Bonjour, Lawrence. 1976. 5, 1976, Philosophical Studies,
Vol. 30, pp. 281-312.

Toward Integrating Feature Selection Algorithms for Classification and Clustering. Liu, H and Yu, L. 4,
IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 17, pp. 491-502.

Using Latent Semantic Analysis to Improve Information Retrieval. Dumais, S, et al. 1988. New York, NY :
ACM, 1988. Proceedings of CHI'88: Conference on Human Factors in Computing. pp. 281-285.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
53

Symbols, Abbreviations and Acronyms

AF/A5 – Air Force Plans Office
AFFOR – Air Force Forces
AFRL – Air Force Research Laboratory
AFRL/RI – Air Force Research Laboratory Information Directorate
AFRL/RIS – Air Force Research Laboratory Information Systems Division
AI – Artificial Intelligence
AOC – Air Operations Center
API – Application Programming Interface
ARPI – Advanced Research Projects Agency (ARPA) Rome Planning Initiative
API – Application Programming Interface
ATO – Air Tasking Order
BBUID – Blackboard Unique Identifier
BTHAI – A StarCraft Broodwar “bot”
BWAPI – Brood War API
C2 – Command and Control
CaT – Case-based Tactician
CBR – Case Based Reasoning
COA – Course of Action
CPR – Core Plan Representation
CSP – Constraint Satisfaction Problem
CTU – Czech Technical University
DARPA – Defense Advanced Research Projects Agency
DEAR – Distributed Episodic Analogical Reasoning
DEEP – Distributed Episodic Exploratory Planning
DTIC – Defense Technical Information Center
DWCSP – Dynamic Weighted Constraint Satisfaction Problem
EBAR – Experience Based Adaptation and Replanning
ELOP – ELementary OPtimization
GA – Genetic Algorithm
JAGUAR -- Joint Air Ground Unified Adaptive Replanning system
LPM – Lexicographic Preference Model
LSA – Latent Semantic Analysis
MDP – Markov Decision Process
MICCA – Mixed-Initiative COA Critics / Advisors
NCO – Network Centric Operations
SAAGE – Semantic Adaptation AGEnts
SAT – SATisfiability problem
SVD – Singular Value Decomposition

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
54

UID – Unique Identifier
USAF – United States Air Force
WCSP – Weighted Constraint Satisfaction Problem
WWW – World Wide Web
XML – eXtensible Markup Language

	List of Figures
	1. Executive Summary
	2. Introduction
	2.1. Problem Statement
	2.2. Initial DEEP Project Objective
	2.3. Revised DEEP Objectives

	3. Methods, Assumptions and Procedures
	3.1. DEEP Research Platform Overview
	3.1.1. Blackboard Architecture
	3.1.1.1. Blackboard Central Repository
	3.1.1.2. Blackboard Knowledge Sources
	3.1.1.3. Blackboard Control Structure
	3.1.1.4. Additional Blackboard Components

	3.1.2. Core Plan Representation (CPR)

	/
	3.1.3. Case-Based Reasoning / Case-Based Planning
	3.1.4. Multi-agent Systems

	3.2. Revised Program Focus
	3.2.1. Case-Base Development
	3.2.1.1. JAGUAR
	3.2.1.2. StarCraft
	3.2.1.2.1. StarCraft Overview
	3.2.1.2.2. StarCraft Case Base Definition

	3.2.2. Information Retrieval
	3.2.2.1. Memoire
	3.2.2.2. Latent Semantic Analysis (LSA)

	3.3. Related Explorations
	3.3.1. Robust Coherence
	3.3.1.1. Robust Coherence Overivew
	3.3.1.2. Critical Rationalism
	3.3.1.3. Planning with Robust Coherence
	3.3.1.4. Weighted Constraint Satisfaction

	3.3.2. Model Adaptation Using Software Agents and a Case Base
	3.3.3. Mixed-Initiative COA Critics / Advisors (MICCA)
	3.3.3.1. Plan Evaluation Agents and Execution Agents
	3.3.3.2. Comparison Agents
	3.3.3.3. Ranking Agents
	3.3.3.4. Adaptation Agents
	3.3.3.5. Coordination Agents

	3.3.4. Case-Based Tactician
	3.3.5. Simulation of DEEP Generated Plans

	4. Results and Discussion
	4.1. Research Platform
	4.2. Future Work
	4.2.1. MICCA
	4.2.2. EBAR
	4.2.3. Robust Coherence
	4.2.4. StarCraft

	5. Conclusions
	6. Bibliography
	Symbols, Abbreviations and Acronyms

