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Abstract

In this paper, we present a framework for parsing video events with stochastic Temporal And-Or Graph
(T-AOG) and unsupervised learning of the T-AOG from video. This T-AOG represents a stochastic event
grammar. The alphabet of the T-AOG consists of a set of grounded spatial relations including the poses
of agents and their interactions with objects in the scene. The terminal nodes of the T-AOG are atomic
actions which are specified by a number of grounded relations over image frames. An And-node represents
a sequence of actions. An Or-node represents a number of alternative ways of such concatenations. The
And-Or nodes in the T-AOG can generate a set of valid temporal configurations of atomic actions, which can
be equivalently represented as a stochastic context-free grammar (SCFG). For each And-node we model the
temporal relations of its children nodes to distinguish events with similar structures but different temporal
patterns and interpolate missing portions of events. This makes the T-AOG grammar context-sensitive.
We propose an unsupervised learning algorithm to learn the atomic actions, the temporal relations and the
And-Or nodes under the information projection principle in a coherent probabilistic framework. We also
propose an event parsing algorithm based on the T-AOG which can understand events, infer the goal of
agents, and predict their plausible intended actions. In comparison with existing methods, our paper makes
the following contributions. i) We represent events by a T-AOG with hierarchical compositions of events
and the temporal relations between the sub-events. ii) We learn the grammar, including atomic actions and
temporal relations, automatically from the video data without manual supervision. iii) Our algorithm infers
the goal of agents and predicts their intents by a top-down process, handles events insertion and multi-agent
events, keeps all possible interpretations of the video to preserve the ambiguities, and achieves the globally
optimal parsing solution in a Bayesian framework; iv) The algorithm uses event context to improve the
detection of atomic actions, segment and recognize objects in the scene. Extensive experiments, including
indoor and out door scenes, single and multiple agents events, are conducted to validate the effectiveness of
the proposed approach.

Keywords: Temporal And-Or Graph (T-AOG), Event Parsing, Unsupervised learning, Goal prediction,
Information projection.

1. Introduction

1.1. Motivation and Objective

Cognitive studies [1] show that humans have a
strong inclination to interpret observed behaviors
of others as goal-directed actions. In this paper,
we take such a teleological stance for understand-
ing events in surveillance video, in which people are
assumed to be rational agents [2] whose actions are
planned to achieve certain goals. In this way, we
infer the underlying goals and predict the next ac-
tions on the fly as the events unfold.

Imagine an office scene, where an agent picks up
a cup, and walks to a desk on which there is a tea
box. One might infer that his goal is to make a cup
of tea, and one predicts that his next action is to
put a tea bag in the cup. But instead, he picks up
the phone on the desk, one then infers that his goal
has been interrupted by an incoming call. After
the call, he walks to a dispenser, and his action
is obscured due to our viewing angle. After some
time, he is observed drinking. One can now infer
that he had poured water in the cup in the occluded
time interval.
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Daily videos contain a large variety of actions and
events, which are defined through gestures and in-
teractions between agents and environments. These
action and event concepts constitute a large portion
of human visual knowledge, therefore learning from
video data is a promising way to acquire rich com-
mon sense knowledge.

To achieve the above event understanding capa-
bility, we need to address the following problems:

i) Events are compositional. An event can often
consist of a sequence of actions and can be exe-
cuted in multiple ways. Therefore a good rep-
resentation must be hierarchical and account
for temporal relations between sub-events.

ii) An inference algorithm must deal with event
insertions, interruptions, multi-agent events
and agent-object interactions. The inference
process must also preserve the ambiguities
both in the lower level atomic action detection
and higher level event recognition to achieve
globally optimized solution.

iii) A learning algorithm must discover the struc-
ture of the events from video data with mini-
mal user supervision.

1.2. Overview of our work

In this paper, we represent events by Temperal
And-Or Graph (T-AOG). The AOG was first intro-
duced to compute vision in [3] and [4] for modeling
visual objects, and has been used in [5] to analyze
sports videos.

The T-AOG consists of a set of terminal nodes
and And, Or-nodes. A terminal node specifies a
contextual atomic action defined by a set of spatial
relations (e.g. agent poses, agent’s interaction with
objects in the scene) grounded in the images. The
And-nodes and Or-nodes represent verb concepts
and are composed by the atomic actions. And-
nodes represent temporal compositions of their chil-
dren nodes. Or-nodes represent alternative ways to
realize events, where each alternative has an asso-
ciated probability to account for its branching fre-
quency. With recursively defined And, Or-nodes,
the T-AOG specifies a stochastic context free gram-
mar (SCFG) whose language is the set of valid con-
figurations of events. For each And-node, we model
the temporal relations of its children nodes to dis-
tinguish events with similar structures but differ-
ent temporal patterns and interpolate missing por-

tions of events. This makes the T-AOG grammar
context-sensitive.

We propose an inference algorithm for T-AOG
based on the Earley Parser [6]. It finds the most
likely parse graph by iterative bottom-up detection
and top-down inference similar to the image pars-
ing algorithm in [7]. Our inference algorithm is de-
signed to have the capacity of handling interleav-
ing events (e.g. event A interrupts event B) and
online prediction of future events. Due to ambigu-
ity arising from bottom-up detections, the parsing
algorithm needs to keep a large number of parse
graphs. For computational efficiency we prune the
parse graphs at the time points corresponding to
“deciding moments”, so it is much more affordable
than its counterpart in image grammar.

We propose an unsupervised learning algorithm
to learn a T-AOG from video. The learning algo-
rithm uses a recursive block pursuit procedure to
generate terminal nodes and And-nodes from the
data matrix of detected spatial relations. The ambi-
guity of bottom-up compositions is resolved during
the recursive block pursuit. Then a graph compres-
sion procedure is then used to generate Or-nodes
of T-AOG. The learning algorithm is guided by the
information projection principle that minimizes the
total description length.

1.3. Related work

Existing methods for event representation and
recognition can be divided into two categories.

1) HMMs and DBN based methods. Brand et al.
[8] modeled human actions by coupled HMMs.
Natarajan [9] described an approach based on
Coupled Hidden Semi Markov Models for rec-
ognizing human activities. Kazuhiro et. al.
[10] built a conversation model based on dy-
namic Bayesian network. Al-Hames and Rigoll
[11] presented a multi-modal mixed-state dy-
namic Bayesian network for meeting event clas-
sification. Although HMMs and DBN based
algorithms achieved some success, the HMMs
do not model the high order relations between
sub-events, and the fixed structure of DBN lim-
its its power of representation.

2) Grammar based methods. Ryoo and Aggarwal
[12] used the context free grammar (CFG) to
model and recognize composite human activi-
ties. Ivanov and Bobick [13] proposed a hierar-
chical approach using a stochastic context free
grammar (SCFG). Joo and Chellappa [14] used
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probabilistic attribute grammars to recognize
multi-agent activities in surveillance settings.
Zhang et al [15] applied an extended grammar
approach to modeling and recognizing complex
traffic events. These methods focus on the hi-
erarchical structure of events, but the temporal
relations between sub-events are not fully uti-
lized. There are other methods for event rep-
resentation and reasoning in the higher level,
such as VEML and VERL [16, 17], and PADS
[18].

In contrast to HMMs and DBN, the T-AOG
can model higher order constraints than HMMs,
while the Or-nodes enable the reconfiguration of the
structures. So the T-AOG is more expressive than
the fixed-structured DBN. The T-AOG also repre-
sents the temporal relations between multiple sub-
events by the horizontal links between the nodes,
so the resulting grammar is context-sensitive.

Most of the existing work predefine the event
models manually and learn (or define) the param-
eters of the models for a predefined set of event
classes. In contrast, we study an unsupervised
learning algorithm that can generate richer event
classes, reduce tedious manual labeling, thus pro-
vide more scalability for knowledge acquisition sys-
tems. Our work is inspired by recent progress in un-
supervised learning and data mining [19, 20] as well
as grammatical learning and inference [13, 21, 15]
on video data. For event grammar learning, our
strategy is most similar to Zhang et al. [15], which
learns a stochastic context free grammar for tra-
jectory analysis of multiple agents (e.g. vehicles
in street intersections). In contrast, we adopt a
richer feature representation including interactions
between agents and environments. In addition, we
append a Markov model of time constraints for ad-
jacent events, resulting in a stochastic context sensi-
tive grammar, which was introduced into computer
vision by Zhu and Mumford in [4]. The stochas-
tic T-AOG provides an efficient representation for
knowledge extracted from video.

1.4. Main contributions

The contributions of our paper are:

1) We represent events by a T-AOG which rep-
resents the hierarchical compositions of events
and the temporal relations between the sub-
events.

2) We propose an unsupervised learning algo-
rithm to learn the T-AOG automatically from
video, based on the information projection
principle.

3) Our parsing algorithm can afford to generate
all possible parse graphs of single events, com-
bine the parse graphs to obtain the interpreta-
tion of the input video, and achieve the global
maximum-a-posteriori inference.

4) The agent’s goal and intent at each time point
is inferred by a bottom-up and top-down pro-
cess based on the top-ranked parse graphs as
the most probable interpretations. We show in
human experiments that our parsing algorithm
can correctly infer agent’s goals and intents ac-
cording to the video content.

5) We show that event context can be used to
improve the detection result of atomic actions,
and to better segment and recognize objects in
the scene. We put the event learning and infer-
ence in the perspective of scene context, where
there is a rich collection of agent-environment
interactions. By inference on the joint prob-
ability of agent and environment events, we
show how to use recognition of actions to help
object recognition and scene segmentation.

6) We collect a video data set, which includes
videos of daily life captured both in indoor and
outdoor scenes to evaluate the proposed algo-
rithm. The events in the videos include single-
agent events, multi-agent events, and concur-
rent events. The results of the algorithm are
evaluated by human subjects and our experi-
ments show satisfactory results.

This paper is an enhanced combination of our
previous conference papers [22] and [23] which fo-
cus on event parsing and grammar learning respec-
tively. Here we integrate them into a coherent
framework. We add more experimental results to
evaluate the proposed algorithm, and new exper-
iments on segmenting and recognizing objects in
scene are shown in this journal paper.

2. Event representation by T-AOG

In this section, we introduce the T-AOG for event
representation.

T-AOG is based on interactions between agents
and objects in the scene. In the videos that we
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Figure 1: The detection result of objects in the office scene

collected, there are 13 classes of interest objects in-
cluding mug, laptop, water dispenser in our training
and testing data. These objects should be detected
automatically, however, detection of multi-class ob-
jects in a complex scene cannot be solved perfectly
by the state-of-art. Therefore, we adopt a semi-
automatic object detection system. The objects in
each scene are detected by the Multi-class boost-
ing with feature sharing [24], and segmented by a
recent indoor scene parsing algorithm [25]. This is
not time consuming as it is done only once for each
scene, and the objects of interest are tracked auto-
matically during the video events. Figure 1 shows
the detection result of the objects of interest in an
office.

2.1. Grounded relations — the alphabet

The T-AOG is defined on a set of unary and bi-
nary relations which can be directly detected from
video. We call these relations the grounded rela-
tions.

• A unary relation r(A) is a time varying prop-
erty of the agent or object A in the scene. As
Figure 2 shows, it could be agent poses, e.g.
Stand(person1) and Bend(person2), and ob-
ject states, e.g. Open(door) and Closed(door).

• A binary relation r(A,B) is the spatial rela-
tion (e.g. Touch(person1.hand, phone)) be-
tween A,B which could be agents, body parts
(hands, feet), and objects. Figure 3 illustrates
some typical relations.

In our experiments we use video data from rela-
tively simple scenes with few people appearing at

the same time. In this case, we can detect the spa-
tial relations with minor ambiguity. It is beyond
the scope of this paper to study complex behaviors
in crowds (e.g. [26]).

Table 1 specifies the 24 unary and binary re-
lations in the office scene. There are four types
of relations: agent location (r01 ∼ r13), agent-
environment interaction (r14 ∼ r17), agent pose
(r18 ∼ r21) and environment event (r22 ∼ r24).
Here we do not use the “Off” relation as shown
in Figure 3 since we can infer the status of “Off”
from the status of “On”. The details of how these
relations are detected are explained in Section 3.2.

Figure 2: Some unary relations. The left part of the ta-
ble shows the four unary relations as agent poses, including
’Stand’, ’Stretch’, ’Bend’ and ’Sit’. The right part shows the
two fluents (’On’ and ’Off’) of the phone and the screen of
laptop.

Figure 3: Some binary relations between agents (parts) and
background objects.

2.2. Atomic actions — the terminal nodes

An atomic action is a vector of grounded relations
a = (r1, ...rJ) that happen sequentially in the joint
domain of space and time.

Figure 4 shows three atomic actions defined on
the grounded relations. Table 2 shows the atomic
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Figure 4: Some atomic actions. Each atomic action is defined on a set of grounded relations shown by 2 half circles. Unary
relations ’Bend’ and ’On’ are defined in Figure 2. Binary relations ’Near’ and ’Touch’ are defined in Figure 3. For the
atomic action ’ShakeHands’, when P1 is considered as the agent, P2 is regarded as object and vice versa. See [27] for a more
sophisticated system to detect agent poses and interactions with the scene.

actions used in the office scene. These atomic ac-
tions are learned automatically from the training
data. The learning process is explained in Section
3.

An atomic action is detected when all its rela-
tions are detected with probability higher than a
given threshold, and the probability of the atomic
action is computed as the product of the proba-
bilities of all its constituent relations. An atomic
action a = (r1, ..., rJ), has the following probability
given a short video snipet I1:t,

p(a | I1:t) =
1

Z

J∏
j=1

p(rj) ∝ exp{−E(a)} (1)

where

E(a) = −
J∑
j=1

log p(rj)

is the energy of a and Z is the normalizing con-
stant for all atomic actions. We use n = 26 learned
atomic actions shown in Table 2.

In our experiments, we only detect several sim-
ple agent poses (e.g. standing, sitting) as we fo-
cus on interactions between agents and objects in
the scene. In future work, we will extend our ex-
periments to detect a richer collection of more so-
phisticated agent poses using animated AND-OR
Templates [27].

Given the input video I∧ in a time interval ∧ =
[0, T ], multiple atomic actions are detected with
probabilities to account for the ambiguities in the
grounded relations contained in the atomic actions,
for example, the relation ’Touch(A,B)’ cannot be
clearly differentiated from the relation ’Near(A,B)’
unless kinect data is used. The other reason is the
inaccuracy of foreground detection. Fortunately,
most of the ambiguities can be removed by the
event context in the top-down bottom-up inference,
we will show this in the experiment section.
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Figure 5: T-AOG for events in the office scene. S is the root node which represents the sequential events happened in the
office. It is a Set-node and could be any combinations of K single events. For example, S could be E1|E2|E1E2|E3E2E3|....
E1, ..., E7 are And-nodes representing single events. The atomic actions are also represented by Set-nodes, and could last for
1 to n frames. The temporal relations are given by the ratio of the lasting time between related nodes. For clarity, only the
temporal relations between sub-events are shown.

2.3. The T-AOG for events

An T-AOG (see Figure 5 for an example) is spec-
ified by a 6-tuple

T−AOG =< S, VN , VT , R,Σ, P > .

S is the root node for an event category, VN =
V and ∪V or is the set of non-terminal nodes (events
and sub-events) composed of an And-node set and
an Or-node set.

Each And-node represents an event or sub-event,
and is decomposed into sub-events or atomic ac-
tions as their children nodes. The children nodes
must occur in a certain temporal order.

An Or-node has a number of alternative ways to
realize an event or sub-event, and each alternative
has a probability associated with it to indicate the
frequency of occurrence. A Set-node is a special
Or-node which can repeat m times with probability
p(m) and accounts for the time warping effects.

VT is a set of terminal nodes for atomic actions.
R is a number of relations between the nodes (tem-
poral relations), Σ is the set of all valid configura-
tions (possible realizations of the events) derivable
from the T-AOG, i.e. its language, and P is the
probability model defined on the graph. The T-
AOG for events in the office scene is shown in Fig-
ure 5. These events are learned from the training
data automatically which is illustrated in the next
section.

2.4. Non-parametric temporal relations

The And-nodes have already defined the tempo-
ral order of its children-nodes, and the Set-nodes
representing atomic actions have modeled the last-
ing time of the atomic action by the frequency of its
production rules. Here we augment the T-AOG by
adding temporal constraints between related nodes.

Unlike [13] and [15] which use Allen’s 7 binary
temporal relations [28], we use non-parametric fil-
ters to model the relations between multiple nodes.
We use the T-AOG of E1 shown in Figure 5 to il-
lustrate the temporal relations. E1 is an And-node
and A, B and C are three sub-nodes; τA, τB and
τC are the lasting time of A, B and C, respectively.
There is a constraint between the lasting time of A,
B and C. For example, when an agent does event
E1 in a hurry, the lasting time of A, B and C will
be shorter than usual, while the ratio of the lasting
time between A, B and C will remain stable. This
relation r is modeled by a distribution of a function
response over the nodes included in the relation.
We use τE1

= (τA, τB , τC) to represent the lasting
time of E1, and F = (F1, F2, F3) to represent the
function on which the response of τE1

is modeled, F
could be regarded as a filter and < τE1 , F > could
be regarded as a filter response. We use histogram
to model the distribution of the response, and the
F ∗, on which the distribution of the training data’s
response has the minimum entropy, are selected to
model the relation as in [4]. Given τ and F ∗, the
probability of the relation r is
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Table 1: The grounded spatial relations of T-AOG: directly
detectable from video.

Name Definition Description

r01 absent(agent) not found in the
frame

r02 near(agent,
other agent)

near other agent

r03 near(agent,
board)

near the white
board

r04 near(agent,
door)

near the door

r05 near(agent, dis-
penser)

near the water dis-
penser

r06 near(agent,
trash can)

near the trash can

r07 near(agent, mug) near the mug
r08 near(agent, lap-

top)
near the laptop

r09 near(agent,
phone)

near the phone

r10 near(agent,
basin)

near the basin

r11 near(agent, mi-
crowave)

near the microwave

r12 near(agent,
tea box)

near the tea box

r13 in(agent, door) agent is in the door
r14 touch(agent,

keyboard)
typing on keyboard

r15 touch(agent,
mug)

grabbing the mug

r16 touch(agent,
phone)

grabbing the phone

r17 touch(agent,
tea box)

grabbing the tea
box

r18 bend(agent) bend down
r19 sit(agent) sitting on some-

thing
r20 raise arm(agent) raising arm
r21 stand(agent) standing straight
r22 occlude(soccer

match, screen)
soccer match on
the screen

r23 on(phone) phone is in use
r24 on(screen) screen is on

Table 2: Learned atomic actions.

Node
Name

Semantic Name Contained relations

a01 absent r01

a02 arrive at door r04, r21

a03 enter door r04, r21, r13

a04 stand near phone r09, r21

a05 sit near phone r09, r19

a06 stand and use
phone

r09, r21, r16, r23

a07 sit and use phone r09, r19, r16, r23

a08 arrive at trashcan r06, r21

a09 throw trash r06, r18

a10 arrive at basin r10, r21

a11 dump water r10, r18, r15

a12 arrive at dispenser r05, r21, r15

a13 use dispenser r05, r18, r15

a14 arrive at tea box r12, r21, r15

a15 use tea box r12, r21, r15, r17

a16 arrive at board r03, r21

a17 discussion r03, r21, r02

a18 arrive at laptop r08, r21

a19 sit near laptop r08, r19

a20 watch soccer r08, r19, r22, r24

a21 celebrate r08, r20, r22, r24

a22 use laptop r08, r19, r14, r24

a23 arrive at mi-
crowave

r11, r21

a24 use microwave r11, r18

a25 arrive at mug r07, r19

a26 take mug r07, r19, r15
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p(r) ∼ h(< τ, F ∗ >) (2)

where h is the histogram of the training data’ s
response over F ∗. One may use multiple F to model
the relations if needed.

2.5. Parse graph

A parse graph is an instance of the T-AOG ob-
tained by selecting variables at the Or-nodes and
specifying the attributes of And-nodes and termi-
nal nodes. We use pg to denote the parse graph
of the T-AOG of a single event Ei. We denote the
following components in pg:

• V t(pg) = {a1, ..., ant(pg)} is the set of leaf
nodes in pg.

• V or(pg) = {v1, ..., vnor(pg)} is the set of non-
empty Or-nodes in pg, p(vi) is the probability
that vi chooses its sub-nodes in pg.

• R(pg) = {r1, ..., rn(R)} is the set of temporal
relations between the nodes in pg. Without
temporal relations, the pg reduces to a parse
tree.

The energy of pg is defined as in[4]:

ε(pg) =
∑

ai∈V t(pg)

E(ai) +
∑

vi∈V or(pg)

− log p(vi)

+
∑

ri∈R(pg)

− log p(ri) (3)

The first term is the data term. It expresses the
energy of the detected terminal nodes (atomic ac-
tions) which is computed by Eq. 1. The second
term is the frequency term. It accounts for how
frequently each Or-node decomposes in a certain
way, and can be learned from the training data.
The third term is the relation term which models
the temporal relations between the nodes in pg and
can be computed by Eq. 2.

Given input video I∧ in a time interval ∧ = [0, T ].
We use PG to denote parse graph for a sequence of
events in S and to explain the I∧. PG is of the
following form,

PG = (K, pg1, ..., pgK)

where K is the number of parse graphs for events.

3. Learning the T-AOG

3.1. Information projection

The unsupervised learning of stochastic T-AOG
is conducted under the information projection and
minimum description length principle [23]. Here we
provide a review of the related theoretical instru-
ments.

Let X+ = {x1, ...,xN} be positive examples (e.g.
observed video clips) governed by an unknown tar-
get distribution f(x). Let X− be a large set of
random negative examples governed by a reference
distribution q(x) (here q is an i.i.d. uniform dis-
tribution). For each example x, a list of spatial
relations

(r1(x), r2(x), ..., rD(x))

are extracted from the video clip. These relations
form a predefined alphabet, just like the set of weak
classifiers in adaboost. Our objective of learning is
to pursue a model p(x) to approximate f(x) in a
series of steps:

q(x) = p0(x)→ p1(x)→ · · · pT (x) = p(x) ≈ f(x)

starting from q.
The above model updates are performed by se-

lecting a most informative subset from all the spa-
tial relations. The model p after T iterations con-
tains T selected spatial relations {rt : t = 1, ..., T}.
If the selected spatial relations capture all the re-
lated information about the scene semantics in x, it
can be shown by variable transformation [29] that:

p(x)

q(x)
=
p(r1, ..., rT )

q(r1, ..., rT )
.

So p can be constructed by reweighting q with the
marginal likelihood ratio on selected spatial rela-
tions.

Under the maximum entropy principle, p(x) can
be expressed in the following log-linear form:

p(x) = q(x)
T∏
t=1

[
1

zt
exp {βtrt(x)}

]
. (4)

where βt is the parameter for the t-th selected spa-
tial relation rt and zt (zt > 0) is the individual
normalization constant determined by βt:

zt =
∑
rt

q(rt) exp{βtrt}.

8



Figure 6: Pursuing homogeneous blocks from the data ma-
trix. Each block corresponds to a terminal node or an And-
node in T-AOG.

By the information projection principle [30, 31,
29], we adopt a step-wise procedure to for select-
ing spatial relations. In particular, the t-th spatial
relation rt is selected and model pt is updated by:

pt = arg min K(pt|pt−1)

s.t. Ept [rt] =
1

N

N∑
i=1

rt(xi) (5)

where K denotes the Kullback-Leibler divergence,
and by minimizing it we select a most informative
spatial relation rt to augment pt−1 towards pt. The
constraint equation in Eq. (5) ensures that the up-
dated model is consistent with the observed train-
ing examples on marginal statistics. The optimal
βt can be found by a simple line search or gradient
descent to satisfy the constraint in Eq. (5).

3.2. Block pursuit on data matrix

Data matrix. Firstly we set up a data matrix
R using spatial relations of positive training exam-
ples as shown in Figure 6. Each row of R is the
vector of spatial relations detected from one exam-
ple (or video clip) in X+. For simplicity, we assume
all positive training examples are aligned and have
the same dimensionality. Therefore R is a matrix
with N (number of positive examples) rows and D
(number of all candidate spatial relations) columns,
and each entry

Rij = rj(xi)

is a binary response. Rij = 1 means the spatial
relation j holds in example xi.
Block pursuit. On the data matrix, we pursue

large homogeneous blocks {Bk : k = 1, ...,K}. A
block is specified by a set of common spatial rela-
tions (columns) that co-occur in a set of examples
(rows). Each block corresponds to a frequent verb

concept, i.e. an terminal node or And-node com-
posed by several spatial relations. For example,
the verb concept a02 (arrive at the door) in Table
2 is composed by two spatial relations: near(agent,
door) and stand(agent). The verb concept emerges
from data because it appears frequently and with
high confidence, thus it is readily represented by
an AND node that strongly binds its constituent
relations. Quantitatively, we can measure this by
the information gain of block Bk, computed by the
summation over the block:

Gain(Bk) =
∑

i ∈ rows(Bk)
j ∈ cols(Bk)

(βk,jRi,j − log zk,j) (6)

where rows(·) and cols(·) denote the rows and
columns of block Bk. cols(Bk) correspond to
the selected spatial relations, capturing their co-
occurrence in space and time. And rows(Bk) are
the examples that belong to the k-th block. βk,j
is the multiplicative parameter of selected spatial
relation j, and zk,j is the individual normalizing
constant determined by βk,j . Eq. (6) measures the
information gain by explaining the submatrix cov-
ered by Bk using the foreground model p instead of
the background model q. Similar approaches have
also been adopted in the grammar learning of tex-
tual data [32].

Recall that we pursue a series of models starting
from q(x) to approximate the target distribution
f(x) governing training positives X+. This corre-
sponds to maximizing the log-likelihood log p(x) on
X+. Initially p = q, and the data matrix has a
log-likelihood L0(R). After pursuing K blocks, the
resulting image log-likelihood is:

L = L0 +

K∑
k=1

Gain(Bk). (7)

The block pursuit algorithm is a greedy procedure
that maximizes the log-likelihood in Eq. (7). Each
time we permute rows and columns the data matrix
to pursue the block with the largest gain as com-
puted in Eq. (6). The entries covered by the block
are then explained away and excluded from subse-
quent block pursuit. This procedure is repeated un-
til the information gain of the newly pursued block
is negligible.

To penalize the model complexity, we apply a
constant penalty for each additional block learned.
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This is equivalent to imposing a Laplacian prior on
the size of the learned grammar.

The above block pursuit procedure can be imple-
mented either by clustering, which produces multi-
ple blocks or non-terminal nodes at the same time,
or by stepwise pursuit, which produces one block or
non-terminal node at a time.

The block pursuit procedure for T-AOG is car-
ried out into two stages. (1) Learn a set of terminal
nodes as blocks on the data matrix of grounded
spatial relations. These terminal nodes account for
atomic events which directly specify spatial tem-
poral configurations of grounded relations. This is
done by clustering. (2) Learn non-terminal nodes
as blocks on the data matrix of atomic actions, to
account for longer events composed of atomic ac-
tions.

3.3. Detecting grounded spatial relations

As a preprocessing step, we perform one round of
bottom up detection for grounded spatial relations.

Firstly we use a standard background subtrac-
tion algorithm to segment moving agent and fluent
changes of objects, and use a commercial surveil-
lance system to track the detected agent.

The relations of agents’ location (r0 ∼ r13) are
detected by the distance between agent and objects
which belongs to normal distribution. The location
of the agent is detected by combining foreground
segmentation and skin color detection that locates
head and hands of the agent . Then the distance
between agent and objects is computed directly as
the location of objects are known (automatically
detected or manually labeled).

The agent pose is inferred by a nearest neigh-
bor classifier using both pixels and foreground
segmentation map within the estimated bound-
ing box for the agent. An illustration of four
poses using segmented foreground mask is shown
in Figure 7. The agent-environment interac-
tion touch(agent, keyboard) and touch(agent,

phone) are detected by checking whether there is
enough skin color within the designated area for the
laptop and phone, which are static objects in the of-
fice environment. The relation touch(agent, mug)

and touch(agent, tea box) are also detected us-
ing skin color, and also the unique color and shape
of the mug and tea box. When a relation involves
an object, the object is tracked until the relation
finishes and the new position of the object will be
updated.

The environment relations occlude(soccer

match, screen) is determined by checking
whether there is large amount of green color within
the designated area of laptop. The on relations are
detected by the properties of the object area such
as intensity histogram of the bounding box.

Using the techniques described above, we detect
grounded relations for every video frame. The de-
tection result is organized as a spatial temporal ta-
ble where each row corresponds to a time frame.
Each column corresponds to a grounded relation.

Figure 7: Standing, bending, sitting and raising-arm poses.

3.4. Learning atomic actions
We define atomic actions to be simple and tran-

sient events composed spatially and temporally by
grounded relations. To learn an alphabet of atomic
actions, we use a temporal scanning window span-
ning 5 frames to collect a large number of small
clips. Each 5-frame clip is described by the detected
relation vector:

{(r1,1, ..., r1,D, ..., r5,1, ..., r5,D)}

where D = 24 is the number of grounded rela-
tions detected per frame. A k-means clustering is
then performed on the grounded relation vectors
of these 5-frame clips, using the simple Hamming
distance as the metric. And a centroid of a clus-
ter is simply determined as the grounded relation
vector that has minimal distance to all the cluster
members. As the times pan is very small, we can
assume that the grounded relations (e.g. agent lo-
cation, pose) stay constant during the short period.
So we constrain the centroids to be stationery, i.e.
r1,d = r2,d = ...r5,d,∀d = 1, ...D. For each clus-
ter, we estimate the symbol probabilities p(r1), ...,
p(r24) by counting the member sub-sequences of the
cluster. And we represent this stochastic model by
its mode (the most likely sub-sequence) as the clus-

ter prototype r
(k)
1:24 for brevity. Each cluster cor-

responds to a block pursued in the data matrix in
Figure 6.

The result of clustering is a list of 26 atomic ac-
tions shown in Table 2. Each atomic action is repre-
sented by a list of grounded relations that are acti-
vated. The semantic description for these atomic
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Figure 8: The duration model for the length of repetition.

actions is in Table 2. The atomic actions that
happen most frequently include a19 (sit near lap-
top), a22 (use laptop), a20 (watch soccer) and a03

(enter door). a19, a22 can be considered as con-
stituent components of a longer event “working by
laptop”. a03 indicates the student is entering or
leaving. The the learned atomic actions and their
relative frequencies are representative and truthful
to the video data.

Now the sequence of multi-dimensional relations
is encoded by the alphabet of 26 atomic actions. For
the computational efficiency in discovering longer
events, we use hard assignments by computing the
most likely atomic action per every 5 frames. The
resulting sequence of atomic actions is

w1:T = (w1, ..., wT ), where wt ∈ {a01, ..., a26}

and T is the total number of video frames divided
by 5.

3.5. Learning longer events and T-AOG

There is large variation in the duration of atomic
actions. For example, a student may repeatedly
enter the office, work for a varying time and leave
the office. If we naively group atomic actions into
longer ones, we get a large number of repetitive
patterns of various lengths, providing little informa-
tion. To deal with temporal variation, we perform a
simple compression operation: every repetitive sub-
sequence is summarized into one symbol (e.g. bbbb
substituted by b ). We may interpret this opera-
tion as learning a large number of grammar rules
in the form Ñ → NN...N with various lengths of
repetition. We estimate a non-parametric model
(Figure8) for the length of repetition, or duration
under maximum likelihood principle.

After compression, the original sequence of
atomic actions w1:T is transformed into a much

shorter one c1:M (M << T ) where each symbol
ci takes value from the same domain as wi.

There will be some frames that non of the re-
lations are activated except r21, that is, in these
frames the agent just stand somewhere that not
near any interested objects. These frames are re-
garded as background frames, that is during these
frames, no interest event or action happened. The
background frames and the frames in which absent
is detected are used to separate the video into dif-
ferent sequences, each sequence is an single event.
One example sequence (event) is a01, a02, a03, it
is the entering event, which composed of absent,
arrive at door and enter door. Another example
is a25, a26, a14, a15, a12, a13. It is the taking water
event, which composed of arrive mug, take mug,
arrive at tea box, use tea box, arrive dispenser, use
dispenser. These sequences are used to learn the
grammar.

We then scan the sequence c1:M to collect subse-
quences of length l (l = 2 in our system) and form a
data matrix. Now the columns of this data matrix
are atomic actions instead of grounded relations. A
large number of homogeneous blocks (i.e. frequent
sub-sequences) are identified from the data matrix.
They are candidates for the right hand side of pro-
duction rules in the event grammar. From the can-
didates, we select a subset of production rules in a
step wise fashion.

The proposed candidate production rule takes
the form α → βγ. It re-encodes the current se-
quence into a new sequence by replacing all occur-
rences of βγ by α. By doing this, the reduction in
description length is computed as:

reduction = ∆1 + ∆2 + ∆3 − constant (8)

and,

∆1 = n′α ·
(

log
nα
n′

)− log
nβ
n
− log

nγ
n

)
∆2 = n′β ·

(
log

n′β
n′
− log

nβ
n

)
+n′γ ·

(
log

n′γ
n′
− log

nγ
n

)
∆3 = (n′ − n′β − n′γ − n′α) · log

n

n′

where n′α, n
′
β , n
′
γ are the frequencies of α, β, γ in

the new sequence respectively, nβ , nγ are the corre-
sponding frequencies in the current sequence. n is
the length of the current sequence. n′ = n − n′α is
the length of the new sequence. We rank the can-
didate production rules using Eq.8 and select the
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Table 3: Learned production rules of T-AOG. For simplicity,
we omit the starting symbol S and the branching probabili-
ties that S produces the following non-terminal nodes.

Production rule Semantic

N01 → a01a02a03a02 absent, arrive at door, en-
terdoor, arrive at door

N02 → a02a03a02a01 arrive at door, enter door,
arrive at door, absent

N03 → a04a06 stand near phone, stand
and phone

N04 → a05a07 sit near phone, sit and use
phone

N05 → a25a26 arrive at mug, take mug
N06 → a10a11 arrive at basin, tdump wa-

ter
N07 → a14a15 arrive at tea box, use tea

box
N08 → a12a13 arrive at dispenser, use dis-

penser
N09 → a26a25 take mug, arrive at mug

N10 →
N05N06N07N08N09

take mug, dump water,
make tea, take water, take
mug

N11 → N05N07N08N09 take mug, make tea, take
water, take mug

N12 → N05N08N09 take mug, take water, take
mug

N13 → N05N06N08N09 take mug, dump water,
take water, take mug

N14 → a18a19a22 arrive at laptop, sit near
laptop, use laptop

N15 → N14a19 use laptop, sit near laptop

N16 → a20a21 watch soccer, celebrate

N17 → N14N16, a19 use laptop, watch soccer,
sit near laptop

largest one. This learning procedure is recursively
carried out, until the reduction of description length
is too small for any new candidate production rule.

As a result, we obtain a dictionary of new pro-
duction rules shown in Table 3, where to make the
grammar more compact we merge shorter produc-
tion rules into a longer ones that maximally reduce
the description length.

We can see from the table that N10 ∼ N13 are
taking water events, we can cluster them by the
objects involved in them, the mug. Similarly, N15

and N17 are clustered by the laptop. Then, we
can align them to learn the OR-Node. We intro-
duce a special event (action) “NULL” to repre-
sent that the NULL event(action). It represents
the event or action that is not interested. We put
NULL event in the aligned sequence as show in Fig-
ure. 9, and by combining the production rules (e.g.
N4NULL ∪ N4N5 → N4(NULL ∪ N5)) we get a
stochastic T-AOG for each clustered event. The T-
AOG of the take water event is illustrated in Fig-
ure. 10, where for brevity we only show the graph
structure and omit the branching probabilities of
OR nodes. Here an AND node represents an event
is decomposed into sub-events or atomic actions; an
OR node represents alternative ways to realize an
event. The T-AOG presents a large amount of node
sharing in the compositional hierarchy.

The terminal nodes {a1, a2, ...} and non-terminal
And-nodes form a compositional hierarchy. By
learning them altogether, we greatly reduce the am-
biguity of segmenting video into events and atomic
actions.

3.6. Learning the parameters of T-AOG

After the structure (i.e. And-Or nodes) of T-
AOG is learned, we can compute the probability
of each branch of OR-Node by counting the time
each branch appears. This is essentially a maximum
likelihood estimation. The details can be found in
[4]. Let V ori be an Or-node and v be an index of
one of V ori ’s branches, then

p(V ori = v) =

∑
pg∈PG 1Vi(pg)=v

|PG|

where PG is the set of all parse graphs on the train-
ing data.
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Figure 9: The aligned rules of fetching water.

Figure 10: The learned T-AOG of fetching water.

4. Event parsing with Goal inference and In-
tent Prediction

In this section, we first show the event parsing
process by assuming that there is only one agent
in the scene in Section 4.1 - 4.3. In Section 4.4 we
show how to parse events when there are multiple
agents in the scene.

4.1. Formulation of event parsing

The input of our algorithm is a video I∧ in a time
interval ∧ = [0, T ], and atomic actions are detected
at every frame It. We denote by ∧pgi the time ex-
plained by parse graph pgi. PG = (K, pg1, ..., pgK)
is regarded as an interpretation of I∧ where{

∪Ki=1∧pgi = ∧
∧pgi ∩ ∧pgj = ∅ ∀ij i 6= j

(9)

We use a small T-AOG in Figure 11(a) to illus-
trate the algorithm. Figure 11(b) shows a sam-
ple input of atomic actions. Note that there are
multiple atomic actions at each time point. Fig-
ure 11(c), (d) and (e) show three possible parse
graphs (interpretations) of the input up to time t4.
PG1 = (1, pg1) in figure 11(c) is an interpretation
of the video I[t1,t4] and it segments I[t1,t4] into one
single event E1 at the event level, and segments

Figure 11: (a) A small T-AOG. (b) A typical input of the
algorithm. (c),(d) and (e) are three possible parse graphs
(interpretations) of the video I∧[t1,t4]. Each interpretation
segments the video I∧[t1,t4] into single events at the event
level and into atomic actions at the atomic action level.

I[t1,t4] into three atomic actions a1, a3 and a4 at the
atomic action level. PG2 = (2, pg2, pg3) in Figure
11(d) segments I[t1,t4] into two single events E1 and
E2, where E2 is inserted in the process of E1. Sim-
ilarly PG3 = (2, pg4, pg5) in 11(e) is another parse
graph and segments I[t1,t4] into two single events
E1 and E2.

We can see that the segmentation of events is
automatically integrated in the parse process and
each interpretation could segment the video I∧ into
single events, and remove the ambiguities in the
detection of atomic actions by the event context.
The energy of PG is

E(PG | I∧) = p(K)
K∑
k=1

(ε(pgk | I∧pgk )− log p(k))

(10)

where p(k) is the prior probability of the single
event whose parse graph in PG is pgk, and p(K)
is a penalty item that follows the poisson distribu-

tion as p(K) =
λKT e

−λT

K! where λT is the expected
number of parse graphs in I∧. The probability for
PG is of the following form

p(PG | I∧) =
1

Z
exp{−E(PG | I∧)} (11)

where Z is the normalization factor and is summed
over all PG as Z =

∑
PG exp{−E(PG | I∧)}. The

most likely interpretation of I∧ can be found by
maximizing the following posterior probability

PG∗ = arg max
PG

p(PG | I∧) (12)
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Figure 12: (a) The two T-AOGs of single event E1 and E2.
(b) The input in the worst case. (c) The parse graphs at
time t1. (d) The parse graphs at time t2

When the most possible interpretation is ob-
tained, the goal at frame IT can be inferred as the
single event whose parse graph pgi explains IT , and
the intent can be predicted by the parse graph pgi.

4.2. Generating parse graphs of single events

We implemented an online parsing algorithm for
T-AOG based on Earley’s [6] parser to generate
parse graphs based on the input data. Earley’s al-
gorithm reads terminal symbols sequentially, creat-
ing a set of all pending derivations (states) that is
consistent with the input up to the current input
terminal symbol. Given the next input symbol, the
parsing algorithm iteratively performs one of three
basic operations (prediction, scanning and comple-
tion) for each state in the current state set.

For clarity, we use two simple T-AOGs of E1 and
E2 without set nodes as shown in Figure12(a) to
show the parsing process. Here we consider the
worst case, that is, at each time, the input will con-
tain all the atomic actions in E1 and E2 as shown
in Figure12(b). At time t0, in the prediction step,
E1’ s first atomic action a1 and E2’ s first atomic
action a4 are put in the open list. At time t1, in
the scanning step, since a1 and a4 are in the in-
put, they are scanned in and there are two partial
parse graphs at t1 as shown in Figure 12(c). Notice
that we do not remove a1 and a4 from the open list.
This is because the input is ambiguous, if the input
at t1 is really a1, then it cannot be a4 and should
not be scanned in and should stay in the open list
waiting for the next input. It is the same that if the
input at t1 is really a4. Then based on the parse
graphs, a2, a3 and a5 are predicted and put in the
open list. Then at time t1, we have a1, a2, a3, a4, a5

in the open list. At time t2, all of the five nodes

in the open list are scanned in and we will have 7
parse graphs (five new parse graphs plus the two
parse graphs at t1) as shown in Figure 12(d). The
two parse graphs at t1 are kept unchanged at t2 to
preserve the ambiguities in the input. This process
will continue iteratively and all the possible parse
graphs of E1 and E2 will be generated.

4.3. Run-time incremental event parsing

As time passes, the number of parse graphs will
increase rapidly and the number of the possible in-
terpretations of the input will become huge, as Fig-
ure 13(a) shows. However, the number of accept-
able interpretations (PG with probability higher
than a given threshold) does not keep increasing,
it will fluctuate and drop sharply at certain time,
as shown in Figure 13(b). We call these time points
the “decision moments”. This resembles human
cognition. When people watch others taking some
actions, the number of possible events could be
huge, but at certain times, when some critical ac-
tions occurred, most of the alternative interpreta-
tions can be ruled out.

Our parsing algorithm behaves in a similar way.
At each frame, we compute the probabilities of all
the possible interpretations and only the acceptable
interpretations are kept. The parse graphs which
are not contained in any of these acceptable inter-
pretations are pruned. This will reduce the com-
plexity of the proposed algorithm greatly.

4.4. Multi-agent Event parsing

When there are multiple agents in the scene,
we can do event parsing for each agent separately.
That is, for each agent in the scene, the atomic
actions are detected (all other agents are regarded
as objects in the scene) and parsed as mentioned
above, then the interpretations of all the agents in
the scene are obtained.

5. Experiments

5.1. Data set

For evaluation, we collect videos in 5 indoor and
outdoor scenes, including office, lab, hallway, cor-
ridor and near vending machines. Figure 14 shows
some screen-shots of the videos. The training video
total lasts for 60 minutes, and contains 34 types
of atomic actions (26 of the 34 types of atomic ac-
tions are listed in Table 2 for the office scene) and
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Figure 13: (a) The number of possible interpretations (in
logarithm) vs time (in seconds). (b) The number of accept-
able interpretations vs time. The decision moments are the
time points on which the critical actions happen and the
number of acceptable interpretations drops sharply.

Figure 14: Some screen shots of the data.

12 events categories. Each event happens 3 to 10
times.

The structures of the T-AOG are learned auto-
matically from the training data as described in sec-
tion 3, the parameters and temporal relations are
also learned from the training data. The testing
video lasts 50 minutes and contains 12 event cate-
gories, including single-agent events like getting wa-
ter and using a microwave, and multi-agent events
like discussing at the white board and exchanging
objects. The testing video also includes event in-
sertion such as making a call while getting water.

5.2. Event recognition

The performance of event recognition is shown
in Table 4. Figure 15 shows the recognition results
of events which may involve multiple agents and
happen concurrently.

Using the learned T-AOG, we parse the sequence
of atomic actions extracted from a long video in
Figure16. The sequence is already compressed so
that repeating subsequences are suppressed into
single symbols. In the zoomed-out parts of the
parse graph in Figure16, we also show the detected
bounding boxes of the agent. The semantic descrip-

tion for different non-terminal nodes is also illus-
trated.

5.3. Goal inference and intent prediction

Besides the classification rate, we also evaluate
the precision of the goal inference and intent pre-
diction online. We compare the result of the pro-
posed algorithm with 5 human subjects as was done
in the cognitive study with toy examples in a maze
world in [2]. The participants viewed the videos
with several judgement points, at each judgement
point, the participants were asked to infer the goal
of the agent and predict his next action with prob-
ability.

Table 4: Recognition accuracy of our algorithm.

Scene Number of
event instances

Correct Accuracy

Office 32 29 0.906
Lab 12 12 1.000
Hallway 23 23 1.000
Corridor 9 8 0.888
Outdoor 11 11 1.000

Figure 17 (a) shows five judgement points of an
event insertion (making a call in the process of get-
ting water). Figure 17 (b) shows the experimental
results of event segmentation and insertion. Fig-
ure 17 (c) shows the goal inference result obtained
by participants and our algorithm respectively, and
Figure 17 (d) shows the intent prediction results.
Our algorithm can predict one or multiple steps ac-
cording to the parse graph. Here we only show the
result of predicting one step. Although the proba-
bilities of the goal inference and intent prediction
results are not the same as the average of the par-
ticipants, the final classifications are the same. In
the testing video, we set 30 judgement points in the
middle of events. The accuracy of goal inference is
90% and the accuracy of intent prediction is 87%.

5.4. Atomic action recognition with event context

Due to the ambiguity of bottom up detection,
the sequence of detected atomic actions is noisy
and prone to error. We propose to use the learned
T-AOG to “de-noise” the atomic actions sequence.
With the learned spatial and temporal grammars
as the prior, the detection of atomic actions follows
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Figure 15: Experiment results of event parsing for multiple agents. Agent P1 works during frames 4861 to 6196, agent P2 enters
the room from frames 6000 to 6196, then they go to the white board, have a discussion and leave the board. The semantic
meaning of the atomic actions are shown in Table 2.

Figure 16: Video parsing result.

a Bayesian maximum-a-posteriori:

a∗ = arg max
a

p(r|a; Θ)p(a;G)

where r is the sequence of grounded relations in the
video. It is more robust than merely using bottom
up proposals:

abottom up = arg max
a

p(r|a; Θ)

where G is the learned grammar, and Θ are param-
eters of the bottom up detectors of atomic actions.
We perform an experiment on a collection of 12061
frames.

Figure 18 shows the ROC curve of the recogni-
tion results of all the atomic actions in the test-

ing data. The ROC is computed by changing the
threshold used in the detection of atomic actions.
From the ROC curve we can see that with event
context, the recognition rate of atomic actions is
improved greatly.

5.5. Scene labeling using events

In the previous sections, the learning and pars-
ing of T-AOG relies on the detection or manual
labeling of objects in the scene. Now we try to re-
lease this requirement of manual labeling, and use
the T-AOG to infer scene semantics automatically,
thus closing the loop of unsupervised learning.

Our objective is to label the scene image, espe-
cially objects involved in the event parsing for a
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Figure 17: Experiment results of event segmentation, in-
sertion, goal inference and intent prediction. The semantic
meanings of the atomic actions in (d) are shown in Table 2.

Figure 18: The ROC curve of recognition results of atomic
actions.

Figure 19: Scene labeling by parsed trajectories. (a) The tra-
jectories of the agent’s hands and feet. (b) The segmentation
of objects by the trajectory “scribbles”. (c) The segmenta-
tion of adjacent areas of 4 and 5. (d) The final labeling result
for interesting objects.

video IΛ in a time interval Λ = [0, T ]. For example,
a drinking action indicates the location of a cup,
while a sitting function indicates a chair.

Suppose pg is an event parse graph from IΛ, and

R(pg) = {r1, ..., rN}

is the set of relations in pg for contextual actions
involving the interactions between agent at ob-
served position xagt

i , and object at unknown po-
sition xli where l is the object label: l ∈ ΩL =
{′desk′,′ chair′,′ cup′, ...}. Thus ri = ri(x

agt
i , xli).

This can be easily extended to multi-way rela-
tions. We denote by L = {L(x), L(x) ∈ ΩL,∀x ∈
rmimagelattice} the scene label.

The scene labeling problem is then formulated as
a joint inference,

(L∗,pg∗) = arg max p(L,pg∗|IΛ)

where we denote pg = (R,pg−, R is the alphabet of
the T-AOG and pg− is the hierarchical parse graph.
Or,

(L∗, R∗,pg−) = arg max p(L,R, pg−|IΛ)

= arg minE(L,R) + E(R,pg−)

+E(L) + E(pg−)

where E(L) is a smoothness prior on L. E(L,R)
is the energy terms involving the set of relations R
and the object label L,

E(L,R) =

N∑
i=1

K(xli − x
agt
i ),
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with K() being a distance function, and xli being
the point that satisfies two conditions:

1. xli ∈ Ωl = {x : L(x) = l};
2. It is close to xagt

i .

So

xli = arg min
xi∈Ωl

K(xi − xagt
i ).

Thus the labeling component given pg or R(pg) is

L∗|pg = arg minE(L,R) + E(L).

The first time is similar to the “user scribbles” in
interactive segmentation and labeling [33]. Each
label l ∈ ΩL has a set of scribble points {xlj : j =
1, ..., nl}, where

∑
l∈ΩL

nl = N . The second term
utilizes the “scribble” and label the whole scene
based on image properties and smoothness assump-
tions. In Figure 19 we show an example of applying
the above scene labeling inference procedure.

Figure 19 (a) shows the trajectories of the agent’s
hands and feet. Figure 19 (b) shows the segmenta-
tion result by the trajectories. The ground is suc-
cessfully segmented by the trajectories of the feet.
The keyboard, phone, microwave are segmented by
concentrated trajectories of hands.

The segments 4 and 5 in Figure 19 (b) are too
large to be interest objects, so we prune them.

Figure 19 (d) shows the final segmentation result
of interesting objects in the scene.

6. Discussion and Conclusion

In summary, we propose a prototype system for
event learning, which explores all activities that
happen in a certain environment, and organizes
them in a meaningful way by a hierarchical event
dictionary and a stochastic T-AOG. The learned T-
AOG can be used to parse newly observed videos to
recognize events. We also show a promising appli-
cation where it is used to discover scene semantics
without manual labeling of the scene. We are work-
ing towards applying to more diverse data sets and
obtaining richer T-AOG.

We present an algorithm for parsing video events
with goal inference and intent prediction. Our ex-
periments results show that events, including those
involving multi-agents and those happening concur-
rently can be recognized accurately, and the ambi-
guity in the recognition of atomic actions can be
reduced largely using hierarchical event contexts.

Future work. The objects of interest in the
scene are detected semi-automatically at present.
The event context provides a lot of information of
the objects involved in the event, and can be uti-
lized to detect and recognize objects. We are ac-
tively pursuing further progress in the following as-
pects:

• Using kinect data to better define agent poses
in the 3D setting.

• Clustering more specific actions. An action can
be defined as a set of typical configurations,
each specified by a number of spatial interac-
tions between agent and environment. E.g. a
sitting pose can be specified by interactions be-
tween person’s body and chair, hand and key-
board, body and desk etc.

• Using n-nary relations to handle group activi-
ties.
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