
Open Source Software Development*
Walt Scacchi

Institute for Software Researcher

University of California, Irvine

Irvine, CA 92697-3455 USA

Abstract
This article examines and reviews what is known so far about free/open source software development
(FOSSD). FOSSD is not the same as software engineering as that is portrayed in common textbooks.
Instead, it is a complementary approach to address the many challenges that arise in the development of
complex software systems that are often built outside of a traditional corporate software development
environment. This article highlights some of the basic understandings for how FOSSD works based on
empirical studies of FOSSD projects, processes, and work practices in different communities. This
includes identification of different types of informal online artifacts that facilitate and constrain FOSSD
projects. This article also identifies what different studies examine as well as the approaches used to
sample and systematically study FOSSD. Next, opportunities for constructive crossover studies of
software engineering and FOSSD help reveal new directions for further research study. Finally, the last
section presents limitations and conclusions regarding studies of FOSSD.

Keywords: open source software, free software, FLOSS, free/open source software development

* Revised version appears in Encyclopedia of Software Engineering, Taylor and Francis, 614-626,
2011.

1. Introduction
This articles examines practices, patterns, and processes that have been observed in studies of
free/open source software development (FOSSD) projects. FOSSD is a way for building, deploying,
and sustaining large software systems on a global basis, and differs in many interesting ways from the
principles and practices traditionally advocated for software engineering [26]. Thousands of FLOSS
systems are now in use by thousands to millions of end-users, and some of these FLOSS systems entail
hundreds-of-thousands to millions of lines of source code. So what’s going on here, and how is FOSSD
being used to build and sustain these projects different, and how might differences be employed to
explain what's going on with FOSSD, and why.

One of the more significant features of FOSSD is the formation and enactment of complex software
development processes and practices performed by loosely coordinated software developers and
contributors [24]. These people may volunteer their time and skill to such effort, and may only work at
their personal discretion rather than as assigned and scheduled. However, increasingly, software
developers are being assigned as part of their job to develop or support FLOSS systems, and thus to
become involved with FOSSD efforts. Further, FLOSS developers are generally expected (or prefer) to

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Open Source Software Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697-3455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This article examines and reviews what is known so far about free/open source software development
(FOSSD). FOSSD is not the same as software engineering as that is portrayed in common textbooks.
Instead, it is a complementary approach to address the many challenges that arise in the development of
complex software systems that are often built outside of a traditional corporate software development
environment. This article highlights some of the basic understandings for how FOSSD works based on
empirical studies of FOSSD projects, processes, and work practices in different communities. This includes
identification of different types of informal online artifacts that facilitate and constrain FOSSD projects.
This article also identifies what different studies examine as well as the approaches used to sample and
systematically study FOSSD. Next, opportunities for constructive crossover studies of software engineering
and FOSSD help reveal new directions for further research study. Finally, the last section presents
limitations and conclusions regarding studies of FOSSD.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

provide their own computing resources (e.g., laptop computers on the go, or desktop computers at
home), and bring their own software development tools with them. Similarly, FLOSS developers work
on software projects that do not typically have a corporate owner or management staff to organize,
direct, monitor, and improve the software development processes being put into practice on such
projects. But how are successful FOSSD projects and processes possible without regularly employed
and scheduled software development staff, or without an explicit regime for software engineering
project scheduling, budgeting, staffing or management [24]? What motivates software developers to
participate in FOSSD projects? Why and how are large FOSSD projects sustained? How are large
FOSSD projects coordinated, controlled or managed without a traditional project management team?
Why and how might the answers to these questions change over time? These are the kinds of questions
that will begin to be addressed in this article.

The remainder of this article is organized as follows. The next section provides a brief background on
what FOSS is and how free software and open source software development efforts are similar and
different. From there attention shifts to identify different types of informal online artifacts that facilitate
and constrain FOSSD projects. The article also identifies what different studies examine as well as the
approaches used to sample and systematically study FOSSD. Next, opportunities for constructive
crossover studies of software engineering and FOSSD help reveal new directions for further research
study. Finally, the article concludes with a discussion of limitations and constraints in the FOSSD
studies so far regarding what is known about FOSSD through systematic empirical study.

2. What is free/open source software development?
Free (as in freedom) software and open source software are often treated as the same thing [8].
However, there are differences between them with regards to the licenses assigned to the respective
software. Free software generally appears licensed with the GNU General Public License (GPL), while
OSS may use either the GPL or some other license that allows for the integration of software that may
not be free software. Free software is a social movement, whereas FOSSD is a software development
methodology, according to free software advocates like Richard Stallman and the Free Software
Foundation [10]. Yet some analysts also see OSS as a social movement distinguishable from but
surrounding the free software movement [6], as in a set to sub-set relationship. The hallmark of free
software and most OSS is that the source code is available for public access, open to study and
modification, and available for redistribution to others with few constraints, except the right to ensure
these freedoms. OSS sometimes adds or removes similar freedoms or copyright privileges depending
on which OSS copyright and end-user license agreement is associated with a particular OSS code base.
More simply, free software is always available as OSS, but OSS is not always free software. This is
why it often is appropriate to refer to FOSS or FLOSS (L for Libre, where the alternative term “libre
software” has popularity in some parts of the world) in order to accommodate two similar or often
indistinguishable approaches to software development. Thus at times it may be appropriate to
distinguish conditions or events that are generally associated or specific to either free software
development or OSSD, but not both. Subsequently, for the purposes of this article, focus is directed at
FOSSD practices, processes, and dynamics, rather than to software licenses though such licenses may
impinge on them. However, when appropriate, particular studies examined in this review may be
framed in terms specific to either free software or OSS when such differentiation is warranted.

FOSSD is mostly not about software engineering (SE), at least not as SE is portrayed in modern SE
textbooks [e.g., 26]. FOSSD is also not SE done poorly. It is instead a different approach to the

2

development of software systems where much of the development activity is openly visible, and
development artifacts are publicly available over the Web. Furthermore, substantial FOSSD effort is
directed at enabling and facilitating social interaction among developers (and sometimes also end-
users), but generally there is no traditional software engineering project management regime, budget or
schedule. FOSSD is also oriented towards the joint development of an ongoing community of
developers and users concomitant with the FLOSS system of interest.

FLOSS developers are typically also end-users of the FLOSS they develop, and other end-users often
participate in and contribute to FOSSD efforts. There is also widespread recognition that FOSSD
projects can produce high quality and sustainable software systems that can be used by thousands to
millions of end-users [18]. Thus, it is reasonable to assume that FOSSD processes are not necessarily
of the same type, kind, or form found in modern SE projects [cf. 24, 26]. While such approaches might
be used within an SE project, there is no basis found in the principles of SE laid out in textbooks that
would suggest SE projects typically adopt or should practice FOSSD methods. Subsequently, what is
known about SE processes, or modeling and simulating SE processes, may not be equally applicable to
FOSSD processes without some explicit rationale or empirical justification. Thus, it is appropriate to
review what is known so far about FOSSD.

2.1 The Early Days of Software Source Code Sharing
The sharing, modification, and redistribution of open software source code did not begin with the
appearance of the first Linux software in the early 1990's, nor with the appearance of the Emacs text
editor or Gnu C Compiler, GCC (later to evolve into the Gnu Compiler Collection, but still called
GCC) by Richard Stallman in the mid 1980's. Instead, the sharing of open software source code dates
back to the early days of computing in the 1950's. IBM established SHARE as a community of software
developers and users of its early mainframe computers, who were aided in the efforts to create, share,
enhance, reuse, and distribute open software source code [1]. IBM supported SHARE and open
software source code until it decided to unbundle software purchases from its mainframe computer
sales efforts, as being in its best interest. The early days of operating systems like TENEX for the
DecSystem-10 mainframe and later for Unix on the DEC PDP-11 series mini-computers in the 1970's
also benefited from access, study, modification, and sharing of modifications made by user-developers
primarily in the computer science research community. Similarly, efforts to share, reuse, study,
enhance, and redistribute then new programming languages interpreters or compilers for languages
like Lisp, Pascal, and C again with the academic research community in the 1970-1980's was common,
as no computer manufacturers showed interest in developing or sustaining such software until their
commercially viability as products could be substantiated. Even complete relational database
management systems like Ingres from UC Berkeley first appeared as open software source code that
was available in the public domain in this same time period. Similarly, scientific computing routines
were widely shared and reused, and their source code was published in books [20], as such tradition of
publishing open application software source code for research or play purposes had already been
established and in practice in the 1960's, such a Spencer's Game Playing With Computers [27], and the
accessible through Internet-based online repositories with the computer-aided design package, BRL-
CAD in 1983. Finally, large, integrated software development environments such as the USC System
Factory Project incorporated hypertext facilities for navigating software sources, and for organizing
and storing hypertext-linked software artifacts in team-based, multi-project repositories, also were
developed for open access, sharing, study, enhancement, and redistribution over the Internet using
minimally restrictive academic software licenses [5,21]. So the practice of sharing open source
software source code that was accessible, available for study and modification, and with some but not

3

universal accommodations for redistributing modified versions the source were all established
practices by the early-mid 1980's. But the mid-1980's to the early 1990's is the period most often
identified as the origins of the FOSS, the Free Software Movement, as documented in many forms,
including the documentary film, Revolution OS [19]. Subsequently, by the mid-late 1990's we began to
see the first “revolutionary” writings and studies about the practice of FOSSD that utilize the World-
Wide Web, the GPL software license, and free software as a social movement [3], though nearly all of
it somehow unaware, forgetful, or ignoring the open software efforts preceding it.

2.2 The Rise of Empirical Studies of FOSSD
The presence of the so-called revolution in software development that FOSS was said to represent
challenged many scholars to think about what whether what was known about software development
practices was still accurate, or whether something new was at hand. These concerns then gave rise to
burst of new studies of FOSSD projects and practices to help determine what the revolution was all
about.

Studies and recommended practices for FOSSD often focus on the interests, motivations, perceptions,
and experiences of developers or end-user organizations. Typically, attention is directed to the
individual agent (most commonly a person, unitary group, firm, or some other stakeholder, but
sometimes a software system, tool, or artifact type) acting within a larger actor group or community.
Individual behavior, personal choices, or insider views might best be analyzed, categorized, and
explained in terms of volunteered or elicited statements of their interests, motivations, perceptions, or
experiences. Popular treatments of OSS development [3] and Free software development [9,10],
provide insight and guidance for how FLOSS development occurs, based on the first-hand experiences
of those authors.

Other authors informed by such practitioner studies and informal industry/government polls (like those
reported in CIO Magazine, the Open Source Business Conference, the Open Solutions Alliance, and
elsewhere) seek to condense and package the experience and wisdom of these FLOSS practices into
practical advice that may be offered to business executives considering when and why to adopt FLOSS
options [13].

Many of these studies and insights about how FOSSD works result from reflective practice rather than
systematic empirical study. However, personal reflection on software development practice often tends
to (a) be uncritical with respect to prior scholarship or theoretical interpretation, or (b) employ
unsystematic collection of data to substantiate pithy anecdotes or proffered conclusions. Thus, by
themselves such studies offer a limited basis for further research or comparative analysis. Nonetheless,
they can (and often do) offer keen insights and experience reports that may help sensitize future
FOSSD researchers to interesting starting points or problems to further explore.

3. Understanding FLOSS development across different communities
It is best to assume there is no general model or globally accepted framework that defines how FLOSS
is or should be developed. Subsequently, our starting point is to investigate FLOSS practices in
different communities from an ethnographically informed, qualitative perspective [4, 25]. Here we
briefly examine four different FOSSD communities to describe and compare. These are those centered
about the development of software for networked computer games, Internet/Web infrastructure,
scientific computing, and academic software engineering research. The following sections briefly

4

introduce and characterize these FLOSS sub-domains. Along the way, example software systems or
projects are highlighted or identified via external reference/citation, which can be consulted for further
information or review.

3.1 Networked computer game worlds
Participants in this community focus on the development and evolution of first person shooters (FPS)
games (e.g., Quake Arena, Unreal Tournament), massive multiplayer online role-playing games (e.g.,
World of Warcraft, Lineage, EveOnline, City of Heroes), and others (e.g., The Sims (Electronic Arts),
Grand Theft Auto (Rockstar Games)). Interest in networked computer games and gaming
environments, as well as their single-user counterparts, have exploded in recent years as a major mode
of entertainment, playful fun, popular culture, and global computerization movement. The release of
DOOM, an early first-person action game, onto the Web in open source form in the mid 1990’s, began
what is widely recognized the landmark event that launched the development and redistribution of
computer game mods – open source and distributable modifications of commercially available games
created with software development kits provided with the retail game package by the game's software
developer. The end-user license agreement for games that allow for end-user created game mods often
stipulate that the core game engine (or retail game software product) is protected as closed source,
proprietary software that cannot be examined or redistributed, while any user created mod can only be
redistributed as open source software that cannot be declared proprietary or sold outright, and must
only be distributed in a manner where the retail game product must be owned by any end-user of a
game mod. This has the effect of enabling a secondary market for retail game purchases by end-users
or other game modders who are primarily interested in accessing, studying, playing, further modifying,
and redistributing a game mod.

Mods are variants of proprietary (closed source) computer game engines that provide extension
mechanisms like (domain-specific) game scripting languages (e.g., UnrealScript for mod development
with Unreal game engines from Epic Games Inc.) that can be used to modify and extend a game.
Extensions to a game created with these mechanisms are published for sharing across the Web with
other game players, and are licensed for such distribution in an open source manner. Mods are created
by small numbers of users who want and are able to modify games (they possess some software
development skills), compared to the huge numbers of players that enthusiastically use the games as
provided. The scope of mods has expanded to now include new game types, game character models
and skins (surface textures), levels (game play arenas or virtual worlds), and artificially intelligent
game bots (in-game opponents). For additional background on computer game mods, see
http://en.wikipedia.org/wiki/Mod_(computer_gaming).

Perhaps the most widely known and successful game mod is Counter-Strike (CS), which is a total
conversion of Valve Software's Half-Life computer game. Valve Software has since commercialized CS
and many follow-on versions. CS was created by two game modders who were reasonably
accomplished students of software development. Millions of copies of CS have subsequently been
distributed, and millions of people have played CS over the Internet, according to
http://counterstrikesource.net/. Other popular computer games that are frequent targets for modding
include the Quake, Unreal, Half-Life, and Crysis game engines, NeverWinter Nights for role-playing
games, motor racing simulation games (e.g., GTR series), and even the massively popular World of
Warcraft (which only allows for modification of end-user interfaces, and not the game itself).
Thousands of game mods are distributed through game mod portals like http://www.MODDB.com. In
contrast, large successful game software companies like Electronic Arts and Microsoft do not embrace

5

nor encourage game modding, and do not provide end-user license agreements that allow game
modding and redistribution.

3.2 Internet/Web infrastructure
The SourceForge web portal (http://www.sourceforge.net), the largest associated with the FLOSS
community, currently stores information on more than 1,750K registered users and developers, along
with nearly 200K FOSSD projects (as of July 2008), with more than 10% of those projects indicating
the availability of a mature, released, and actively supported software system. However, some of the
most popular FLOSS projects have their own family of related projects, grouped within their own
portals, such as for the Apache Foundation and Mozilla Foundation. Participants in this community
focus on the development and evolution of systems like the Apache web server, Mozilla/Firefox Web
browser, GNOME and K Development Environment (KDE) for end-user interfaces, the Eclipse and
NetBeans interactive development environments for Java-based Web applications, and thousands of
others. This community can be viewed as the one most typically considered in popular accounts of
FLOSS projects. However, it is reasonable to note that the two main software systems that enabled the
World Wide Web, the NCSA Mosaic Web browser (and its descendants, like Netscape Navigator,
Mozilla, Firefox, and variants like K-Meleon, Konqueror, SeaMonkey, and others), and the Apache Web
server (originally know as httpd) were originally and still active FOSSD projects.

The GNU/Linux operating system environment is one of the largest, most complex, and most diverse
sub-community within this arena, so much so that it merits separate treatment and examination. Many
other Internet or Web infrastructure projects constitute recognizable communities or sub-communities
of practice. The software systems that are the focus generally are not standalone end-user applications,
but are often directed toward system administrators or software developers as the targeted user base,
rather than the eventual end-users of the resulting systems. However, notable exceptions like Web
browsers, news readers, instant messaging, and graphic image manipulation programs are growing in
number within the end-user community.

3.3 Scientific computing in X-ray astronomy and deep space imaging
Participants in this community focus on the development and evolution of software systems supporting the
Chandra X-Ray Observatory, the European Space Agency's XMM-Newton Observatory, the Sloan Digital
Sky Survey, and others. These are three highly visible astrophysics research projects whose scientific
discoveries depend on processing remotely sensed data through a complex network of open source software
applications that process remotely sensed data. In contrast to the preceding two development oriented
FOSSD communities, open software plays a significant role in scientific research communities. For example,
when scientific findings or discoveries resulting from remotely sensed observations are reported, then
members of the relevant scientific community want to be assured that the results are not the byproduct of
some questionable software calculation or opaque processing trick. In scientific fields like astrophysics that
critically depend on software, open source is considered an essential precondition for research to proceed,
and for scientific findings to be trusted and open to independent review and validation. Furthermore, as
discoveries in the physics of deep space are made, this in turn often leads to modification, extension, and
new versions of the astronomical software in use that enable astrophysical scientists to further explore and
analyze newly observed phenomena, or to modify/add capabilities to how the remote sensing or
astrophysical computation mechanisms operate. For example, the NEMO Stellar Dynamics Package at
http://bima.astro.umd.edu/nemo/ is now at version 3.2.5, as of September 2008.

To help understand these matters, consider the example at http://antwrp.gsfc.nasa.gov/apod/ap010725.html .

6

This Website page displays a composite image constructed from both X-ray (Chandra Observatory) and
optical (Hubble Space Telescope) sensors. The open software processing pipelines for each sensor are
mostly distinct and are maintained by different organizations. However, their outputs must be integrated, and
the images must be registered and oriented for synchronized overlay, pseudo-colored, and then composed
into a final image, as shown on the cited Web page. Subsequently, there are dozens of open software
programs that must be brought into alignment for such an image to be produced, and for such a scientific
discovery to be claimed and substantiated.

3.4 Academic software systems design
Participants in this community focus on the development and evolution of software architecture and UML
centered design efforts, such as for ArgoUML (http://argouml.tigris.org) or xARCH at CMU and UCI
(http://www.isr.uci.edu/projects/xarch/). This community can easily be associated with a mainstream of SE
research. People who participate in this community generally develop software for academic research or
teaching purposes in order to explore topics like software design, software architecture, software design
modeling notations, software design recovery (reverse software engineering), etc. Accordingly, it may not be
unreasonable to expect that open software developed in this community should embody or demonstrate
principles from modern SE theory or practice. Furthermore, much like the X-ray astronomy community,
members of this community expect that when breakthrough technologies or innovations have been declared,
such as in a refereed conference paper or publication in a scholarly journal, the opportunity exists for other
community members to be able to access, review, or try out the software to assess and demonstrate its
capabilities. An inability to provide such access may result in the software being labeled as “vaporware” and
the innovation claim challenged, discounted, or rebuked. Alternatively, declarations of “non-disclosure” or
“proprietary intellectual property” are generally not made for academic software, unless or until it is
transferred to a commercial firm. However, it is often acceptable to find that academic software constitutes
nothing more than a “proof of concept” demonstration or prototype system, not intended for routine or
production use by end-users.

3.5 Overall characteristics across different FOSSD communities

In contrast to efforts that draw attention to generally one (but sometimes many) open source
development project(s) within a single community [e.g., 4, 7, 12, 18, 23], there is something to be
gained by examining and comparing the communities, processes, and practices of FOSSD in different
communities. This may help clarify what observations may be specific to a given community (e.g.,
GNU/Linux projects), compared to those that span multiple, and mostly distinct communities. Two of
the communities identified above are primarily oriented to develop software to support scholarly
research (scientific computing and academic software systems design) with rather small user
communities. In contrast, the other two communities are oriented primarily towards software
development efforts that may replace/create commercially viable systems that are used by large end-
user communities. Thus, rather than focusing on a single community as the primary source for insight,
reflective practice, or systematic empirical study, it is clear that FOSSD processes, practices, and
projects can be studied with or across (a) disparate communities, as well as (b) different application
domains.

Each of these highlighted items (in italics or via Web links above) point to the public availability of
data that can be collected, analyzed, and re-represented within ethnographic narratives [4, 7],
computational process models [24], or for quantitative studies [16, 17]. Significant examples of each
kind of data (source code and artifacts, development processes, project repositories, etc.) have been

7

collected and analyzed by different FOSSD researchers [11]. A later section highlights different types
of FOSSD studies that use such substantial, diverse, and publicly available data. The next section
identifies a number of FOSSD artifact types that serve to document the social actions and technical
practices that facilitate and constrain FOSSD processes.

Beyond the communities identified above, other empirical studies of FOSSD reveal that FOSSD work
practices, engineering processes, and project community dynamics can best be understood through
observation and examination of their socio-technical elements at different, or across multiple, levels of
analysis. In particular, FOSSD projects can be examined through a micro-level analysis of (a) the
actions, beliefs, and motivations of individual FOSSD project participants [4, 7], and (b) the social or
technical resources that are mobilized and configured to support, subsidize, and sustain FOSSD work
and outcomes [12, 18, 22]. Similarly, FOSSD projects can be examined through meso-level analysis of
(c) patterns of cooperation, coordination, control, leadership, role migration, and conflict mitigation [2,
7, 15, 22], and (d) project alliances and inter-project socio-technical networking [14, 16, 23]. Last,
FOSSD projects can also be examined through macro-level analysis of (d) multi-project FLOSS
ecosystems [17], and (e) FOSSD as a social movement and emerging global culture [6]. Each of these
levels of analysis can be decomposed into finer granularity topics for study. For example, micro-level
studies can address topics in FOSSD including (1) motives or incentives for individual participation,
(2) use of personal computing resources, (3) individual beliefs supporting free versus open source
software development, (4) self-organization and self-management of competent FLOSS developers, (5)
the discretionary time and effort committed by FLOSS developers, (6) trust and social accountability
mechanisms, or (7) types and uses for different types of online artifacts that support decentralized
development work of project participants. We take this last topic for further elaboration in the next
section. However, it should be clear that studies of FOSSD at any level of analysis will require
appropriately selected research methods and data samples [11].

4. Informalisms for describing FLOSS requirements and design rationale
Functional and non-functional requirements for FLOSS systems are elicited, analyzed, specified,
validated, and managed through a variety of Web-based artifacts. These descriptive documents can be
treated as software informalisms. Software informalisms [22] are the information resources and artifacts
that participants use to describe, proscribe, or prescribe what's happening in a FOSSD project. They are
informal narrative resources codified in lean descriptions that are comparatively easy to use, and
publicly accessible to those who want to join the project, or just browse around. An early study
demonstrated how software informalisms can take the place of formalisms, like “requirement
specifications” or software design notations which are documentary artifacts seen as necessary to
develop high quality software according to the SE community [22]. Yet these software informalisms
often capture the detailed rationale, contextualized discourse, and inquisitive debates for why changes
were made in particular development activities, artifacts, or source code files. The example in Exhibit 1
displays a software informalism in the form of a threaded message discussion that describes,
contextualizes, and rationalizes why a new software system version and feature set were implemented
and now required. The contents of such an informalism embodies requires peer review and
comprehension by other developers on a project before acceptable or trusted contributions can be
made, or retrospectively justified [7, 15]. Finally, the choice to designate these descriptions as
informalisms is to draw a distinction between how the requirements of FLOSS systems are described,
in contrast to the recommended use of formal requirements notations and deliverable documents
(“formalisms”) that are advocated in traditional approaches [26]. However, to be clear, though SE often

8

stresses the need to formalize software requirements specifications and designs, formalisms need not be
limited to those based on a mathematical logic or state transition semantics, but can include descriptive
schemes that are formed from structured or semi-structured narratives, such as those employed in
Software Requirements Specifications documents. But as described below, FOSSD informalisms are
generally quite different from formal SE documents.

---------------- Exhibit 1 about here --------------

Two dozen types of software informalisms can be identified, and each has sub-types that can be further
identified and studied more closely. Each FOSSD project usually employs only a subset as its informal
document ecosystem that meets the interests or needs of local project participants. There are no
guidelines or best practices for which informalisms to use for what. Instead, we have observed
practices that recur across FOSSD projects. Thus it is pre-mature and perhaps inappropriate to seek to
further organize these informalisms into a classification or taxonomic scheme whose purpose is to
prescribe when or where best to use one or another. Subsequently, they are presented here as an
unordered list since to do so otherwise would transform this descriptive information into an interpretive
scheme that suggests untested, hypothetical prescriptions [22].

The most common informalisms used in FOSSD projects include (i) communications and messages
within project Email, (ii) threaded message discussion forums (see Exhibit 1), bulletin boards, or group
blogs, (iii) news postings, and (iv) instant messaging or Internet relay chat. These enable developers
and users to converse with one another in a lightweight, semi-structured manner, and now use of these
tools is global across applications domains and cultures. As such, the discourse captured in these tools
is a frequent source of FLOSS requirements. A handful of FOSSD projects have found that
summarizing these communications into (v) project digests [7] helps provide an overview of major
development activities, problems, goals, or debates. A project digest, such as that displayed in Exhibit
2, represents a multi-participant summary that records and hyperlinks the original contextualized
rationale accounting for focal project activities, development problems, current software quality status,
and desired software functionality. Project digests (which sometimes are identified as “kernel cousins”)
record the discussion, debate, consideration of alternatives, code patches and initial operational/test
results drawn from discussion forums, online chat transcripts, and related online artifacts [7].

---------------- Exhibit 2 about here --------------

As FLOSS developers and users employ these informalisms, they have been found to also serve as
carriers of technical beliefs and debates over desirable software features, social values (e.g.,
reciprocity, freedom of choice, freedom of expression), project community norms, as well as affiliation
with the global FLOSS social movement [6, 10].

Other common informalisms include (vi) scenarios of usage as linked Web pages or screenshots of
software in operation, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked Questions, and other
itemized lists, and (x) project Wikis, as well as (xi) traditional system documentation and (xii) external
FOSSD publications [3, 9]. FLOSS (xiii) project property licenses (whether to assert collective
ownership, transfer copyrights, insure “copyleft,” or some other reciprocal agreement) are documents

9

that also help to define what software or related project content are protected resources that can
subsequently be shared, examined, modified, and redistributed.

Next, (xiv) open software architecture diagrams, (xv) intra-application functionality realized via
scripting languages like Perl or PhP, and the ability to either (xvi) incorporate externally developed
software modules or “plug-ins”, or (xvii) integrate software modules from other FOSSD efforts, are all
resources that are used informally, where or when needed according to the interests or actions of
project participants.

All of the software informalisms are found or accessed from (xix) project related Web sites or portals.
These Web environments are where most FLOSS software informalisms can be found, accessed,
studied, modified, cross-referenced and redistributed.

A Web presence helps make visible the project's information infrastructure and the array of information
resources that populate it. These include FOSSD multi-project Web sites (e.g., SourgeForge.net,
Savanah.org, Freshment.org, Tigris.org, Apache.org, Mozilla.org, or Google.com/code), community
software Web sites (PhP-Nuke.org), and project-specific Web sites (e.g., www.GNUenterprise.org), as
well as (xx) embedded project source code Webs (directories), (xxi) project repositories such as those
implemented using CVS or Subversion [9], and (xxii) software bug reports and (xxiii) issue tracking
data base like Bugzilla [see http://www.bugzilla.org/]. Last, giving the growing global interest in online
social networking, it not surprising to find increased attention to documenting various kinds of social
gatherings and meetings using (xxiv) social media Web sites (e.g, YouTube, Google Video, Flickr,
MySpace, etc.) where FLOSS developers, users, and interested others come together to discuss, debate,
or work on FLOSS projects, and to use these online media to record, and publish photographs/videos
that establish group identity and affiliation with different FLOSS projects. For example, a video
presentation from 2007, http://video.google.com/videoplay?docid=-4216011961522818645 (accessed
September 2008), describes how to identify and remove troublesome or unwelcome members of a
FOSSD project team, who may cause the project to fragment, lose focus, become conflict laden, or
otherwise fail.

In FOSSD projects, software informalisms are the preferred scheme for describing or representing
FLOSS requirements, rationalizing software design choices, discussing alternative software
implementations and releases, and more. There is no explicit objective or effort to treat these
informalisms as "informal software requirements" that should be refined into formal requirements or
design notations within these communities (academic software design community perhaps being the
exception). Accordingly, each of the available types of FOSSD informalisms have been found in one or
more of the four communities identified above. Subsequently, knowledge about who is doing what,
where, when, why, and how is captured in different or multiple informalisms.

Together, these two dozen types of software informalisms constitute a substantial yet continually
evolving web of informal, semi-structured, or processable information resources that capture, organize,
and distribute knowledge that embody the requirements for an FOSSD project. This web results from
the hyperlinking and cross-referencing that interrelate the contents of different informalisms together.
Subsequently, these FLOSS informalisms are produced, used, consumed, or reused within and across
FOSSD projects. They also serve to act as both a distributed virtual repository of FLOSS project assets,
as well as the continually adapted distributed knowledge base through which project participants

10

evolve what they know about the software systems they develop and use.

Overall, it appears that none of these software informalisms would defy an effort to formalize them in
some mathematical logic or analytically rigorous notation. Nonetheless, in the three of the four
software communities examined in this study, there is no perceived requirement for such formalization
(academic software design being the exception), as the basis to improve the quality, usability, or cost-
effectiveness of the FLOSS systems. If formalization of these documentary software informalisms has
demonstrable benefit to members of the other three communities, beyond what they already realize
from current practices, these benefits have yet to be articulated in the different types of software
informalisms for online discourse that pervades each community. However, in contrast, the academic
software design community often does encourage and embrace the development of formal
requirements specification and design documents in order to coordinate and guide development of their
software projects. Thus, as before, understanding FOSSD practices, processes, or projects can vary by
community, such that studying such projects or associated artifacts in only one community can skew or
bias what can be observed or put into practice when comparing across multiple communities. This in
turn sets the stage for examining how studies of FOSSD may be organized or structured to facilitate
comparative investigations.

5. FOSSD Research Studies and Approaches
A growing group of software researchers is beginning to investigate large software projects empirically,
using freely available data from FLOSS projects. A body of recent work point out the need for
community-wide data collections and research infrastructure to expand the depth and breadth of
empirical FLOSS research, and several initial proposals have been made. Most importantly, these data
collections [16, 17] and shared research infrastructure [14] are intended to support an active and
growing community of FLOSS scholars addressing contemporary issues and theoretical foundations in
disciplines that include anthropology, economics, informatics (computer-supported cooperative work),
information systems, library and information science, management of technology and innovation, law,
organization science, policy science, and software engineering [11]. Approximately 700 published
studies can be found at the FLOSShub collection of research papers, at http://flosshub.org/biblio.
Furthermore, this research community has researchers based in Asia, Europe, North America, South
America, and the South Pacific, thus denoting its international and global membership. Consequently,
the research community engaged in empirical studies of FLOSS can be recognized as another member
in the growing movement for interdisciplinary software engineering research.

This section seeks to clarify the need for community-wide, sharable research infrastructure and
collections of FLOSS data. The kinds of research questions that such data sampling and corresponding
research methods enable are discussed elsewhere [11].

5.1 Objects of study, success indicators, and critical factors for understanding FOSSD
As an organizing framework, there are primarily five main objects of study--that is, things whose
characteristics researchers are trying to describe and explain--in F/OSS-based empirical software
research: software artifacts and source code, software processes, development projects, communities,
and participants' knowledge. Table 1 provides a simplified set of associations between representative
characteristics of FOSSD that have been investigated for each of these objects of study, and show some
critical factors that researchers have begun linking to these characteristics as explanations. It is
important to point out that these objects of study are by no means independent from one another. They

11

should be considered as interdependent elements of FLOSS (e.g., knowledge and processes affect
artifacts, communities affect processes, etc.). Also, each of the indicators of success shown in Table 1
may play a role as a critical factor in other categories.

5.2 Current FOSSD research approaches
Based on published studies of FOSSD since 2000, there are four alternative approaches in empirical
research on the objects of study, measures of variables that contribute to FOSSD success, and causal
mechanisms or factors that drive FOSSD success, as shown in Table 1 [11]:

Objects Success Measures Critical Driving Factors
Source Code

and
Artifacts

Quality, downloads,
reliability, usability,

durability, fit, structure,
growth, diversity,

localization

Size, complexity, bugs and features, software
architecture (structure, substrates, modularity,

versions, infrastructure), information architecture,
artifact types, and document genres

Processes Efficiency, ease of
improvement, adaptability,
effectiveness, complexity,

manageability, predictability

Size, distribution, collaboration,
knowledge/information management, artifact

structure, configuration, agility, innovativeness

Projects Type, size, duration, number
of participants, number of
software versions released

Development platforms, tools supporting
development and project coordination, software
imported from elsewhere, social networks, roles

and role migration paths, leadership and core
developers, socio-technical vision

Communities Ease of creation,
sustainability, trust,

increased social capital, rate
of participant turnover

Size, economic setting, organizational architecture,
behaviors, incentive structures, institutional forms,

motivation, participation, core values, common-
pool resources, public goods

Knowledge Creation, codification, use,
need, management

Tools, conventions, norms, social structures,
technical content, acquisition, representations,

reproduction, application
Table 1: Characteristics of empirical FLOSS studies.

 Very large, population-scale studies examining common objects selected and extracted from
hundreds to tens-of-thousands of FLOSS projects from multi-project repositories or FLOSS
research portals like FLOSSmole [14], or from international surveys of comparable numbers of
FLOSS developers.
 Large-scale cross-analyses of project and artifact characteristics, such as code size and code
change evolution, development group size, composition and organization, or development
processes [16, 17].
 Medium-scale comparative studies across multiple FLOSS projects within different
communities or software system application domains [15, 17, 18].
 Smaller-scale in-depth case studies of specific FLOSS practices and processes, for concept or

12

hypothesis development, and for exposing and investigating details of socio-technical interactions
[4, 7, 12, 18].

These four alternative research strategies are separated less by fundamental differences in objectives
than by technical limitations in existing tools and research methods, or by the socio-technical research
constraints associated with quantitative studies of data mined from publicly accessible repositories
versus the challenges of qualitative ethnographic research methods. For example, qualitative analyses
are hard to implement on a large scale, while quantitative methods must rely on uniform, easily
processed data. We believe these distinctions are becoming increasingly blurred as researchers develop
and use more sophisticated analysis and modeling tools [25], leading to finer gradations in empirical
data needs. Accordingly, attention can now turn to identifying opportunities for future research and
practice that may span FOSSD and SE.

6. OPPORTUNITIES FOR FOSSD AND SE RESEARCH AND PRACTICE
There are a significant number of opportunities and challenges that arise when we look to identifying
which software development or socio-technical interaction practices found in studies of FOSSD projects
might be applied in the world of SE. Some of these opportunities follow. However, it is perhaps
surprising to observe that it is unclear whether the world of FOSSD is interested in adopting the best
practices found in the world of SE, and vice versa. For example, why would software developers seek out
to engage in FOSSD projects and practices if they were the same or less than those found in SE? That is,
most FOSSD projects are not seen as stepping stones to SE, nor feeble attempts at SE. Instead, FOSSD
projects in most communities are seen as currently the most effective way to develop and sustain both
large software systems as well as a community of like-minded developers and end-users. As such, let us
consider the opportunities for what FOSSD might contribute to the world SE.

First, FLOSS poses the opportunity to favorably alter the costs and constraints of accessing, analyzing,
and sharing software process and product data, metrics, and data collection instruments. FOSSD is thus
poised to alter the calculus of empirical SE. Software process discovery, modeling, and simulation
research [25] is one arena that can take advantage of such a historically new opportunity. Similarly, the
ability to extract or data mine software product content (source code, development artifacts, etc.) within
or across FLOSS project repositories to support its visualization, restructuring/refactoring, or redesign has
become a high-yield, high impact area for SE study and experimentation. Another would be examining
the effectiveness and efficiency of traditional face-to-face-to-artifact SE approaches or processes for
software inspections compared to the online peer reviews and multi-modal discourse informalisms
prevalent in FOSSD efforts.

Second, based on results from studies of motivation, participation, role migration, and work practices of
individual FLOSS developers [4, 15], it appears that the SE community would benefit from empirical
studies that examine similar conditions in conventional or proprietary software development enterprises.
Current SE textbooks and development processes seem to assume that individual developers have simple
technical roles (e.g., software designer or programmer) and motivations driven by financial compensation
and technical education, and therefore seek the quality assuring rigor that purportedly follows from the
use of formal notations and mathematically based analytical schemes. Consequently, if FOSSD is more
fun, interesting, and rewarding compared to SE, then what can be done to make SE more fun, interesting
and rewarding to SE students and new software developers? Said simply, SE may benefit from FOSSD
practices that developers find are more fun, interesting, and rewarding, rather than merely following the

13

40 year legacy of SE practices, processes, and procedures prescribed in SE textbooks.

Third, based on results from studies of resources and capabilities employed to support FOSSD projects
[7, 12, 18, 22], it appears that conventional software cost estimation or accounting techniques (e.g., “total
cost of operation” or TCO) are limited to analyzing resources or capabilities that are easily quantified or
monetized. This in turns suggests that many social and organizational resources/capabilities are slighted
or ignored, thus producing results that miscalculate the diversity of resources and capabilities that affect
the ongoing/total costs of software development projects, whether FLOSS or SE based.

Fourth, based on results from studies of cooperation, coordination, and control in FOSSD projects [2, 12,
15, 23], it appears that virtual project management and socio-technical role migration/advancement can
provide a slimmer and lighter weight approach to SE project management. However, it is unclear whether
we will see corporate experiments in SE that choose to eschew traditional project management and
administrative control regimes in favor of enabling software developers the freedom of choice and
expression that may be necessary to help provide the intrinsic motivation to self-organize and self-
manage their SE project work.

Fifth, based on results of studies on alliance formation, inter-project social networking, community
development, and multi-project software ecosystems [14, 16, 17], it appears that SE projects currently
operate at a disadvantage compared to FOSSD projects. In SE projects, it is commonly assumed that
developers and end-users are distinct communities, and that ongoing software evolution is governed by
market imperatives, the need to extract maximum marginal gains (profit), and resource-limited software
maintenance effort. SE efforts are setup to produce systems whose growth and evolution is limited, rather
than capable of sustaining exponential growth of co-evolving software functional capability and
developer-user community [23].

Last, based on studies of FOSSD as a social movement [6], it appears that there is an opportunity and
challenge for encouraging the emergence of a social movement that combines the best practices of
FOSSD and SE. The emerging niche world of open source software engineering (OSSE) is the likely
locus of collective action that might enable such a movement to arise. For example, as suggested in
Exhibit 3, the community Web portal for Tigris.org is focused on cultivating and nurturing the
emerging OSSE community—the community that spans both FOSSD and SE. Nearly 1000 OSSE
projects are currently affiliated with this portal and community. It might therefore prove fruitful to
closely examine different samples of OSSE projects at Tigris.org to see which SE tools, techniques,
and concepts are being brought to bear and to what ends in different FLOSS projects, as well as which
SE concepts and methods are employed to develop FLOSS-based software development tools.

----------- Insert Exhibit 3 about here -------------

7. Limitations and Conclusions on FOSSD
FOSSD is certainly not a panacea for developing complex software systems, nor is it simply SE done
poorly. Instead, it represents an alternative community-intensive socio-technical approach to develop
software systems, artifacts, and social relationships. However, it is not without its limitations and
constraints. Thus, we should be able to help see these limits as manifest within the level of analysis or
research for empirical FOSSD studies examined above.

14

First, in terms of participating, joining, and contributing to FOSSD projects, an individual developer’s
interest, motivation, and commitment to a project and its contributors is dynamic and not indefinite.
Some form of reciprocity and self-serving or intrinsic motivation seems necessary to sustain participation
in a FOSSD project, whereas a perception of exploitation by others can quickly dissolve a participant’s
commitment to further contribute, or worse to dissuade other participants to abandon a FOSSD project
that has gone astray. Similarly, most FOSSD projects are not open to anyone who just wants to
immediately become a core developer, system architect, or group leader without going through a
protracted socio-technical process that requires demonstration of technical competence, as well as
willingness to help other project participants and facilitate project growth in ways aligned to the
dominant interests of the overall project community. Developers who want to pursue alternative
approaches, software architectures, or divisions of labor may be undesirable, unwanted, and at times be
pushed out of a FOSSD project (cf. Footnote 8). FOSSD is as much about developing and sustaining the
project community as it is about the software and how it is being developed.

Second, in terms of cooperation, coordination, and control, FOSSD projects do not escape conflicts in
technical decision-making, or in choices of who gets to work on what, or who gets to modify and update
what. As FOSSD projects generally lack traditional project managers, then they must become self-reliant
in their ability to mitigate and resolve outstanding conflicts and disagreements. Beliefs and values that
shape system design choices, as well as choices over which software tools to use, and which software
artifacts to produce or use, are determined through negotiation rather than administrative assignment.
Negotiation and conflict management then become part of the cost that FLOSS developers must bear in
order for them to have their beliefs and values fulfilled. It is also part of the cost they bear in convincing
and negotiating with others often through electronic communications to adopt their beliefs and values.
Time, effort, and attention spent in negotiation and conflict management represent an investment in
building and sustaining a negotiated socio-technical network of dependencies.

Third, in terms of forming alliances and building community through participation, artifacts, and tools
points to a growing dependence on other FOSSD projects. The emergence of non-profit foundations that
were established to protect the property rights of large multi-component FOSSD project creates a demand
to sustain and protect such foundations. If a foundation becomes too bureaucratic, then this may drive
contributors away from a project. So, these foundations need to stay lean, and not become a source of
occupational careers, in order to survive and evolve. Similarly, as FOSSD projects give rise to new types
of requirements for community building, community software, and community information sharing
systems, these requirements need to be addressed and managed by FOSSD project contributors in roles
above and beyond those involved in enhancing the source code of a FOSSD project. FOSSD alliances
and communities depend on a rich and growing web of socio-technical relations. Thus, if such a web
begins to come apart, or if the new requirements cannot be embraced and satisfied, then the FOSSD
project community and its alliances will begin to come apart.

Fourth, in terms of the co-evolution of FLOSS systems and community, as already noted, individual and
shared resources of people’s time, effort, attention, skill, sentiment (beliefs and values), and computing
resources are part of the socio-technical web of FOSS. Reinventing existing software systems as FLOSS
coincides with the emergence or reinvention of a community who seeks to make such system reinvention
occur. FLOSS systems are “common pool resources” that require collective action for their development,
mobilization, use, and evolution. Without the collective action of the FOSSD project community, the
common pool will dry up, and without the common pool, the community begins to fragment, drift away
and disappear, perhaps to search for another pool elsewhere.

15

Last, empirical studies of FOSSD are expanding the scope of what we can observer, discover, analyze,
or learn about how large software systems can be or have been developed. In addition to traditional
methods used to investigate FOSSD like reflective practice, industry polls, survey research, and
ethnographic studies, comparatively new techniques for mining software repositories and multi-modal
modeling and analysis of the socio-technical processes and networks found in sustained FOSSD
projects [7, 15, 24] show that the empirical study of FOSSD is growing and expanding. This in turn
will contribute to and help advance the empirical science in fields like SE, which previously were
limited by restricted access to data characterizing large, proprietary software development projects.
Thus, the future of empirical studies of software engineering practices, processes, and projects will
increasingly be cast as studies of free/open source software development efforts.

Overall, one of the defining characteristics of FOSSD projects is that data about development processes,
work practices, and project/community dynamics is publicly available on a global basis. Data about
FOSSD products, artifacts, and other resources is kept in repositories associated with a project’s Web
site, though finding and extracting it may involve substantial effort. This may include the site’s content
management system, computer mediated communication systems (email, persistent chat facilities, and
discussion forums), software versioning or configuration management systems, and networked file
systems. FOSSD process data is generally either extractable or derivable from data/content in these
artifact repositories, though not always easily, nor in forms readily amenable to systematic analysis
without further processing, reformatting and cleaning. First-person data may also be available to those
researchers or students who participate in a project, even if just to remotely observe (“lurk”) or to
electronically interview other participants about development activities, tools being used, the status of
certain artifacts, and the like. The availability of such data suggest a growing share of empirical SE
research will henceforth be performed in domains of FOSSD projects, rather than using data from in-
house or proprietary software development projects that have constraints on access and publication.
FOSSD process data collection from publicly accessible artifact repositories will be found to be more
cost-effective compared to studies of traditional closed-source, proprietary, and in-house software
development repositories [11]. Your chance to further study or participate in a FOSSD project starts from
here.

Acknowledgements
Research for this article was supported by grants #0534771, #0749353, and #0808783 from the U.S.
National Science Foundation; and from the Acquisition Research Program, and also the Center for the
Edge, at the Naval Postgraduate School, Monterey, CA.

References
1. Cambell-Kelly, M. and Garcia-Swartz, D.D., Pragmatism, not ideology: Historical perspectives
IBM's adoption of open-source software, Information Economics and Policy, 2009, 21(3), 229-244.
2. Crowston, K., and Scozzi, B., Open Source Software Projects as Virtual Organizations:
Competency Rallying for Software Development, IEE Proceedings--Software, 2002, 149(1), 3-17.
3. DiBona, C., Cooper, D., and Stone, M. (Eds.), Open Sources 2.0, 2005, O’Reilly Media,
Sebastopol, CA. Also see, C. DiBona, S. Ockman, and M. Stone (Eds.). Open Sources: Vocides
from the Open Source Revolution, 1999. O'Reilly Media, Sebastopol, CA.
4. Ducheneaut, N. Socialization in an Open Source software community: A socio-technical
analysis. Computer Supported Cooperative Work, 2005, 14(4), 323-368.

16

5. Eliot, L. and Scacchi, W., Developing a Knowledge-Based System Factory: Issues and
Concepts, IEEE Expert, 1986, 1(4), 51-58.
6. Elliott, M., Examining the Success of Computerization Movements in the Ubiquitous
Computing Era: Free and Open Source Software Movements, in M. Elliott and K.L. Kraemer
(Eds.), Computerization Movements and Technology Diffusion: From Mainframes to Ubiquitous
Computing, Information Today, Inc, Medford, NJ, 2008, 359-380.
7. Elliott, M., Ackerman, M.S., and Scacchi, W.,Knowledge Work Artifacts: Kernel Cousins for
Free/Open Source Software Development, Proc. ACM Conf. Support Group Work (Group07),
Sanibel Island, FL, ACM Press, 2007, 177-186, November.
8. Feller, J., Fiztgerald, B., Hissam, S. and Lakhani, K. (eds.), Perspectives on Free and Open
Source Software, 2005, MIT Press, Cambridge, MA.
9. Fogel, K. Producing Open Source Software: How to Run a Successful Free Software Project,
2005, O'Reilly Press, Sebastopol, CA.
10. Gay, J. (ed.), Free Software Free Society: Selected Essays of Richard M. Stallman, 2005, GNU
Press, Free Software Foundation, Boston, MA.
11. Gasser, L. and Scacchi, W., Towards a Global Research Infrastructure for Multidisciplinary
Study of Free/Open Source Software Development, in IFIP Intern. Federation Info. Processing,
Vol. 275; Open Source Development, Community and Quality; B. Russo, E. Damiani, S. Hissan, B.
Lundell, and G. Succi (Eds.), Boston, Springer, 2008, 143-158.
12. German, D., The GNOME Project: A case study of open source, global software development,
Software Process—Improvement and Practice, 2003, 8(4), 201-215.
13. Goldman, R. and Gabriel, R.P., Innovation Happens Elsewhere: Open Source as Business
Strategy, Morgan Kaufmann Publishers, San Francisco, CA, 2005.
14. Howison, J., Conklin, M., and Crowston, K., FLOSSmole: A Collaborative Repository for
FLOSS Research Data and Analyses. Intern. J. Info. Tech. And Web Engineering, 2006, 1(3), 17-26.
15. Jensen, C. and Scacchi, W., Role Migration and Advancement Processes in OSSD Projects; A
Comparative Case Study, Proc. 29th. Intern. Conf. Software Engineering, Minneapolis, MN, ACM
Press, 2007, 364-374.
16. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., and Herraiz, I., Applying Social
Network Analysis to Community-Drive Libre Software Projects, Intern. J. Info. Tech. and Web
Engineering, 2006, 1(3), 27-28.
17. Madey, G., Freeh, V., and Tynan, R., Modeling the F/OSS Community: A Quantitative
Investigation, in S. Koch (ed.), Free/Open Source Software Development, IGI Publishing, Hershey,
PA, 2005, 203-221.
18. Mockus, A., Fielding, R., & Herbsleb, J.D., Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM Transactions on Software Engineering and Methodology,
2002, 11(3), 309-346.
19. Moore, J.T.S., Revolution OS, 2001, See http://www.revolution-os.com/ Also available for
viewing at Google Videos and the Internet Archive.
20. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The Art
of Scientific Computation, 1986, Cambridge University Press, NewYork. Also see, W.T. Vetterling,
W.T., Teukolsky, S.A., Press, W.H. and Flannery, B.P., Numerical Recipes Example Book
(FORTRAN), 1985, Cambridge University Press, NewYork.
21. Scacchi, W., The Software Infrastructure for a Distributed System Factory, Software
Engineering Journal, IEE and British Computer Society, 1991, 6(5), 355-369.
22. Scacchi, W., Understanding the Requirements for Developing Open Source Software Systems,
IEE Proceedings--Software, 2002, 149(1), 24-39, February.

17

23. Scacchi, W., Free/Open Source Software Development Practices in the Computer Game
Community, IEEE Software, 2004, 21(1), 59-67, January/February.
24. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K, Understanding Free/Open
Source Software Development Processes, Software Process--Improvement and Practice, 2006,
11(2), 95-105, March/April.
25. Scacchi, W., Jensen, C., Noll, J., and Elliott, M. Multi-Modal Modeling, Analysis, and
Validation of Open Source Software Development Processes, Intern. J. Internet Technology and
Web Engineering, 1(3), 49-63, 2006.
26. Sommerville, I., Software Engineering, 8th Edition, 2006, Addison-Wesley, New York.
27. Spencer, D.D., Game Playing With Computers, 1968, Spartan Books, New York.

18

Exhibit 1. A screenshot display of a software informalism use to described, contextualize, and rationalize
why a particular software feature was implemented and is thus required (Source:

http://dot.kde.org/996206041/, accessed October 2008. Also appears in [22]).

19

Exhibit 2. A project digest that summarizes multiple messages including those hyperlinked (indicated
by highlighted and underlined text fonts) to their originating online sources. (Source:
http://www.kerneltraffic.org/GNUe/latest.html, July 2006).

20

Exhibit 3. A view of the mission of the Tigris.org project community and its intent to span and bring
together the FOSSD and SE communities (Source: http://www.tigris.org, accessed October 2008).

21

	Open Source Software Development*
	Abstract
	1. Introduction

	Open Source Software Development*
	2. What is free/open source software development?
	3. Understanding FLOSS development across different communities
	4. Informalisms for describing FLOSS requirements and design rationale
	5. FOSSD Research Studies and Approaches
	5.1 Objects of study, success indicators, and critical factors for understanding FOSSD
	5.2 Current FOSSD research approaches
	6. OPPORTUNITIES FOR FOSSD AND SE RESEARCH AND PRACTICE
	7. Limitations and Conclusions on FOSSD
	Acknowledgements
	References

