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a b s t r a c t

A reduced shallow water model under constant, non-zero advection in the infinite channel
is considered. High-order (Givoli–Neta) non-reflecting boundary conditions are introduced
in various configurations to create a finite computational space and solved using a spectral
element formulation with high-order time integration. Numerical examples are used to
demonstrate the synergy of using high-order spatial, time, and boundary discretization.
We show that by balancing all numerical errors involved, high-order accuracy can be
achieved for unbounded domain problems.
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1. Introduction

The numerical solution of a wave propagation problem in a very large or unbounded domain provides a challenging com-
putational difficulty – namely, solving the problem on a finite computational domain while maintaining the true essence of
the solution. One of the modern techniques that has garnered a significant amount of attention in handling this challenge is
the absorbing or non-reflecting boundary condition (NRBC) method. In using this method, the original infinite domain is
truncated by an artificial boundary B, resulting in a finite computational domain X and the residual domain D.

When truncating the domain, the modeler must devise boundary conditions for the truncated domain. Of course, by
imposing a boundary where one does not physically exist, the problem is changed – and unless chosen carefully, would cer-
tainly be expected to pollute the solution as the problem evolves and impinges on the boundary. Therefore, two main pos-
sibilities exist for the modeler:

� Choose a convenient, easily implementable boundary condition that does not necessarily reflect the physical problem and
solve it on a large sub-domain. The idea behind this technique is that the boundary effects are negligible for a short time
evolution of the problem in a small area of interest away from the boundaries.
� Choose a boundary condition that preserves the true behavior of the infinite solution at the boundary and solve the prob-

lem on a smaller sub-domain. The idea behind this technique is that the additional effort extended to impose a better
boundary condition will be worth the effort and allow for solving the problem on a smaller domain.

For obvious reasons, the first possibility has only limited usefulness. To see why, suppose that we wanted to model the
wave motion following a pebble dropped in the center of a large, still pond. Now, suppose that we have a truncated domain
to model this phenomena – say a bathtub. If the pebble is dropped in the bathtub, the waves generated by the pebble would
propagate much like that in the pond – until, that is – the wave front reaches the hard walls of the bathtub. At this point, the
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bathtub model ceases to be a useful representation of the pond due to behavior caused by the non-physical boundary. If the
modeler wishes to see what happens a short time later – a larger bathtub would be required. This same principle would ap-
ply for the numerical solution of this propagation problem – a poor choice of boundary condition mandates the use of a lar-
ger computational domain. This in turn, requires additional computational resources. For this reason, much effort has and
continues to be exerted on finding stable, efficient, accurate and practical means of reducing this reflection through so-called
NRBCs [1].

Several high-order NRBCs have been devised to reduce spurious reflections that would pollute the solution. Beginning in
the late 1980’s, the well-known Engquist–Majda [2] and Bayliss–Turkel conditions [3] gave way to Collino’s [4] low deriv-
ative, auxiliary variable formulation for the 2D scalar wave equation. This sparked a flurry of activity in an effort to find qual-
ity, high-order NRBCs that were easily implementable. See [5–8] for reviews on the subject.

The starting point for the family of NRBCs discussed here is the condition devised by Higdon in a series of papers [9–14],
which was demonstrated in a low-order finite difference setting. While in theory, Higdon’s NRBC is considered a high-order
NRBC, the formulation requires evaluation of increasing high-order spatial and temporal derivatives as the order of the NRBC
increased. In [15] Givoli and Neta directly extended the Higdon scheme to high-order finite difference discretizations via an
algorithm where the order of the NRBC was simply an input parameter. Long term stability using this formulation was dem-
onstrated in [16]. They later extended this formulation to one that does not involve any high derivatives (hereafter referred
to as the G–N formulation). The elimination of all high-order derivatives is enabled through the introduction of special aux-
iliary variables on B. This construction demonstrated in [17,18] for finite differences was further extended in [19] for finite
element schemes to solve the dispersive wave equation.

Hagstrom and Warburton [20] (H–W) also used the Higdon and auxiliary variable framework to develop a symmetric
boundary formulation in a full-space configuration where special corner compatibility conditions were developed for the
non-dispersive wave equation. One reviewer pointed out a recently published article by Bécache et al. [21] where the H–
W formulation is extended for anisotropic and convective wave equations in a finite element setting. Results are presented
for the anisotropic case demonstrating significant improvements as the order of the NRBC is increased, although convergence
appears to be limited by the numerical discretization.

Several extensive comparisons of the G–N and H–W formulations [21–23] have shown certain advantages of the H–W for-
mulation. One such advantage of the H–W formulation is that the auxiliary variables are shown to decay as the order of the NRBC
is increased. While this property is not required for convergence, it is a useful property if dynamic adjustment of the NRBC order
is desired. Additionally, while both the G–N and H–W formulations decay exponentially fast as a function of the NRBC order, the
H–W formulation has a reflection coefficient that decays twice as fast as the G–N formulation [22, p. 3676]. On the other hand,
the G–N formulation is convenient in that through a judicious choice of NRBC parameters, the G–N formulation can be reduced
to a first-order (in time) system which is extremely sparse in nature and quite easy to implement. This choice of NRBC param-
eters does not hamper convergence properties of the boundary scheme.

To see how these auxiliary variable formulations are constructed, consider Fig. 1 that illustrates the NRBC set-up using an
infinite wave-guide. Here, the artificial boundary B extends from the southern (CS) to the northern (CN) boundaries of the
wave-guide, thus creating the east (CE) and west (CW) boundaries of X at x = xE, xW respectively. Outside of the area enclosed
by these boundaries is the residual infinite domain D.

Once a suitable NRBC is devised, the problem is solved numerically in X, by the finite difference, or, as in the case of this
analysis, the spectral element (SE) method. The SE method, originally introduced by Patera, ‘‘. . . combines the generality of
the finite element method with the accuracy of spectral techniques. . .” [24, p. 468]. This generalized high-order finite ele-
ment method selects the integration and interpolation points carefully in order to yield accurate but efficient solutions.
See e.g. Giraldo–Restelli [25] for more details on this method.

In the present paper, the G–N auxiliary formulation of the Higdon NRBC is implemented on a reduced form of the line-
arized shallow water equations (SWE) under non-zero advection. This formulation has been previously demonstrated in a
finite difference formulation to arbitrarily high NRBC order [26], however, accuracy gains realized by increasing the NRBC
ceased after order 2. The formulation used here seeks to remedy this limitation by using a high-order treatment of space
(SE) and time (Runge–Kutta) to show the benefits of using the high-order boundary (G–N) scheme. Specifically, the interior

Fig. 1. An infinite wave-guide truncated by artificial boundaries CW and CE.
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and boundary formulations are discretized using high-order basis functions in a stable, equal-order interpolation scheme for
all the variables (this does not violate the inf-sup condition). High-order time integration is performed as well in an effort to
balance all of the errors involved with the numerical solution. The computational effort associated with the high-order
boundary scheme can be shown to grow only linearly with the order [19].

It should be noted that the only other spectral element, high-order boundary approach (to the authors’ knowledge) are
Kucherov and Givoli [27] and Lindquist et al. [28]. Kucherov and Givoli demonstrate exponential error convergence of the
classical wave equation on a semi-infinite channel when solved using spectral elements and high-order boundary treatment
(using the H–W boundary scheme). They further show how the spectral element formulation allows the NRBC to realize its
true potential, prior masked by low-order numerical schemes. They note that, ‘‘Although it is generally felt that there is no
need to treat the time domain ‘spectrally’ like the spatial domain, [they] feel that a consistently high-order treatment re-
quires that the entire approximation be spectral, i.e. the convergence of all three types of error – the spatial and temporal
discretization errors and the ABC error – be exponential.” [27]

Subsequent spectral element and boundary work by the current authors [28] using the G–N formulation of the dispersive
wave equation on a semi-infinite channel showed similar results to those presented by Kucherov and Givoli and how a high-
order treatment of the time domain (up to order 10) produces additional improvements. These improvements, however,
have their limits thus confirming the hypothesis of Kucherov and Givoli. The key difference in this work is that we extend
the high-order space, boundary and time integration results previously demonstrated in a non-zero advection setting to one
where the wave medium is not at rest.

The following is the outline of the rest of this paper. In Section 2, the problem under investigation is stated. In Section 3,
an overview of the G–N auxiliary formulation is presented. In Section 4, a SE semi-discrete formulation that incorporates the
G–N NRBC with any desired order is constructed. In Section 5 the time-integrator used to March the equations in time is
discussed. The performance of the method is demonstrated in Section 6 via numerical examples.

2. Statement of the problem

To motivate the problem under consideration, consider the SWE:

@tuþ u@xuþ v@yu� f v ¼ �g@xg;
@tv þ u@xv þ v@yv þ fu ¼ �g@yg;
@tgþ @xðHuÞ þ @yðHvÞ ¼ 0:

ð1Þ

We use the following shorthand for partial derivatives

@i
a ¼

@i

@ai
:

The shallow water model in its current form is non-linear. We have three state variables: u(x,y, t) and v(x,y, t) are the un-
known velocities in the x and y directions and g(x,y, t) is the water depth above a reference value. Further, H is the water
depth as shown in Fig. 2 such that H = hB + g, f is the Coriolis parameter, and g is the gravity acceleration. Now, suppose that
the bottom topography is flat such that hB is constant and u and v can be described by a constant mean term and a small O(d)
deviation from that value, i.e.

u ¼ U þ u� v ¼ V þ v�:

To be clear, U and V are the mean velocities with respect to the coordinate axes. Using these substitutions and neglecting any
O(d2) terms results in the linearized form of the SWE:

Fig. 2. The shallow water model with irregular bottom topography. (Adapted from [29, p. 58]).
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@tu� þ U@xu� þ V@yu� � f ðV þ v�Þ ¼ �g@xg;
@tv� þ U@xv� þ V@yv� þ f ðU þ u�Þ ¼ �g@yg;
@tgþ U@xgþ V@ygþ hB @xu� þ @yv�

� �
¼ 0:

ð2Þ

van Joolen shows in [30], how, using the operator:

D
Dt
¼ @

@t
þ U

@

@x
þ V

@

@y
;

the SWE can be reduced to a single variable Klein Gordon equation (KGE) equivalent for the wave perturbation g under non-
zero, constant advection velocities U and V. Once g has been found, the unknown velocities can be computed in a similar
manner (see [29] for details). This work seeks to numerically solve this two-dimensional advective, dispersive wave
equation:

@2
t gþ U2 � C2

0

� �
@2

xgþ V2 � C2
0

� �
@2

ygþ 2U@2
xtgþ 2V@2

ytgþ 2UV@2
xygþ f 2g ¼ 0; ð3Þ

where C2
0 ¼ gH, using continuous Galerkin methods.

While the assumptions for this reduced form of the SWE may undermine the predictive capability of the already simpli-
fied equations of fluid motion, the advective KGE serves as an important test-bed to extend and improve non-reflecting
boundary conditions for wave propagation in a non-static environment. When shown to improve performance in test cases
as those presented here, these conditions will then be extended to the full linearized SWE system and further to include non-
linear effects.

We begin this analysis by considering the semi-infinite wave-guide where Dirichlet boundary conditions g(0,y, t) = f(y, t)
are prescribed on CW, no-flux boundary conditions @g

@y ¼ 0 on CN and CS and the G–N NRBCs are enforced on CE. Further, ini-
tial data g(x,y,0) and @tg(x,y,0) are prescribed at t = 0. The set-up is illustrated in Fig. 3.

3. G–N auxiliary variable formulation

We present a brief summary of the G–N auxiliary variable process as described in [19]. This auxiliary formulation begins
with the Higdon [14] boundary condition given by:

HJ :
YJ

j¼1

@x þ
1
Cj
@t

� �" #
g ¼ 0 on CE: ð4Þ

Note that the first-order condition J = 1 corresponds to the Sommerfeld radiation condition, provided that Cj = C0. Auxiliary
functions /1, . . . ,/J�1, which are defined on CE as well as in the exterior domain D (see Fig. 3) are now introduced. Eventually
we shall use these functions only on CE, but the derivation requires that they be defined in D as well, or at least in a non-
vanishing region adjacent to CE. The functions /j are defined via the relations

@x þ
1
C1
@t

� �
g ¼ /1; ð5Þ

@x þ
1
C2
@t

� �
/1 ¼ /2; ð6Þ

..

.

@x þ
1
CJ
@t

� �
/J�1 ¼ 0: ð7Þ

By definition, these relations hold in D, and also on CE. It is easy to see that (5)–(7), when imposed as boundary conditions on
CE, are equivalent to the single boundary condition (4). If we also define

Fig. 3. A semi-infinite channel domain X truncated by artificial boundary CE.
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/0 � g /J � 0; ð8Þ

then we can write (5)–(7) concisely as:

@x þ
1
Cj
@t

� �
/j�1 ¼ /j j ¼ 1; . . . ; J: ð9Þ

This set of conditions involves only first-order derivatives. However, due to the appearance of the x-derivative in (9), one
cannot discretize the /j on the boundary CE alone. Therefore, we shall manipulate (9) in order to get rid of the x-derivative.

The function g satisfies the dispersive, advective wave Eq. (3) in D. Since the function /1 is obtained by applying the linear
(constant coefficient) operator @x þ 1

C1
@t

� �
to g, it is clear that /1 should also satisfy the same equation in D. Further, since /j

is obtained by applying the same linear operator j � 1 times to /1, the functions /j should satisfy an equation like Eq. (3),
namely,

@2
t /j þ U2 � C2

0

� �
@2

x/j þ V2 � C2
0

� �
@2

y/j þ 2U@2
xt/j þ 2V@2

yt/j þ 2UV@2
xy/j þ f 2/j ¼ 0: ð10Þ

Using the following identities:

@2
x/j ¼ @x �

1
Cjþ1

@t

� �
@x þ

1
Cjþ1

@t

� �
/j þ

1

C2
jþ1

€/j;

@2
xt/j ¼ @t @x/j

� �
;

@2
xy/j ¼ @y @x/j

� �
and combining with (10) allows us to write (9) as:

2U
Cj
� 1� U2 � C2

0

C2
j

 !
€/j�1 þ

2UV
Cj
� 2V

� �
_/0j�1 � V2 � C2

0

� �
/00j�1

þ U2 � C2
0

� � 1
Cj
þ 1

Cjþ1

� �
� 2U

� �
_/j � 2UV/0j � f 2/j�1 ¼ U2 � C2

0

� �
/jþ1 for j ¼ 1; . . . ; J � 1: ð11Þ

In (11) and elsewhere, a prime indicates differentiation with respect to y along C, i.e. the tangential derivative along C. As
desired, the new boundary condition (11) does not involve x-derivatives. In addition, there are no high-y or t derivatives be-
yond second order. It should be noted that van Joolen et al. [26] developed an equivalent formulation using Lagrangian
derivatives.

Rewriting (5), (11) and (8), the new formulation of the Jth-order NRBC on C can be summarized as follows:

b0 _gþ @xg ¼ /1; ð12Þ
aj

€/j�1 þ fj
_/0j�1 � ky/

00
j�1 þ bj

_/j � c/0j � f 2/j�1 ¼ kx/jþ1; ð13Þ
/0 � g /J � 0; ð14Þ

b0 ¼
1
C1
; aj ¼

2U
Cj
� 1� U2 � C2

0

C2
j

; fj ¼
2UV

Cj
� 2V ; ky ¼ V2 � C2

0;

bj ¼ U2 � C2
0

� � 1
Cj
þ 1

Cjþ1

� �
� 2U; c ¼ 2UV ; kx ¼ U2 � C2

0:

4. Spectral element method

The spectral element (SE) method is a generalized high-order finite element method where the integration and interpo-
lation points are selected carefully in order to yield accurate but efficient solutions. For this problem, we will discuss two
formulations-one for the interior and one for implementing the boundary conditions.

4.1. Interior formulation

The weak form of the problem in X is constructed. The solution is sought in the space of trial functions,

V ¼ fgjg 2 H1ðXÞ and g ¼ 0 on CWg: ð15Þ

Here, H1(X) is the Sobolev space of functions whose first derivatives are also square-integrable in X. Now, Eq. (3) is multi-
plied by the basis functions Wiðx; yÞ 2 V and integrated over X so the weak form is:
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Z
X

Wi €gdXþ kx

Z
X

Wi@
2
xgdXþ ky

Z
X

Wi@
2
ygdXþ 2U

Z
X

Wi@x _gdXþ 2V
Z

X
Wi@y _gdXþ UV

Z
X

Wi@
2
xygdX

þ UV
Z

X
Wi@

2
yxgdXþ f 2

Z
X

WigdX ¼ 0: ð16Þ

In order to maintain a symmetric form of the problem, the mixed derivative has been split appropriately. To ensure the
solution g is in the vector space H1 requires some special handling of the second order derivatives, which is facilitated by the
use of Green’s theorem, i.e.Z

X
Wi@

2
xgdX ¼

Z
C

Wi@xgnxdC�
Z

X
@xWi@xgdX; ð17Þ

where ~n is the outward normal on C and nx is the x-component of that outward normal.
Extending this idea for each second order derivative in (16) gives the weak form:Z

X
Wi €gdX� kx

Z
X
@xWi@xgdX� ky

Z
X
@yWi@ygdX� UV

Z
X
@yWi@xgdX� UV

Z
X
@xWi@ygdXþ 2U

Z
X

Wi@x _gdX

þ 2V
Z

X
Wi@y _gdXþ f 2

Z
X

WigdXþ kx

Z
C

Wi@xgnx dCþ ky

Z
C

Wi@ygny dCþ UV
Z

C
Wi@xgny dC

þ UV
Z

C
Wi@ygnx dC ¼ 0: ð18Þ

Using the no-flux boundary conditions on the northern and southern borders along with the normal vectors specified by
the structured, rectangular grid shown in Fig. 4, the problem may be simplified to account for contributions on individual
boundaries. Using this information along with (12) to eliminate the normal derivative term on CE, we get:Z

X
Wi €gdX� kx

Z
X
@xWi@xgdX� ky

Z
X
@yWi@ygdX� UV

Z
X
@yWi@xgdX� UV

Z
X
@xWi@ygdXþ 2U

Z
X

Wi@x _gdX

þ 2V
Z

X
Wi@y _gdXþ f 2

Z
X

WigdXþ kx

Z
CE

Wi/1 dCE � b0kx

Z
CE

Wi _gdCE þ UV
Z

CN

Wi@xgdCN � UV
Z

CS

Wi@xgdCS

þ UV
Z

CE

Wi@ygdCE ¼ 0: ð19Þ

4.2. Boundary formulation

Since the term /1 appears in the interior formulation (19), this is not a complete weak form of the problem in X. We turn
our attention to computing a separate weak form for (13) to complete the problem statement.

As in the interior formulation, we multiply (13) by the test function sj and integrate it over CE. After integration by parts
and simplifying yields:

aj

Z
CE

si
€/j�1 dCE þ fj

Z
CE

si
_/0j�1 dCE þ ky

Z
CE

si0/0j�1 dCE þ bj

Z
CE

si
_/j dCE � c

Z
CE

si/
0
j dCE � f 2

Z
CE

si/j�1 dCE

¼ kx

Z
CE

si/jþ1 dCE ð20Þ

for j = 1, . . . , J � 1, /j 2 H1(CE) and any si 2 H1(CE). Recall from the auxiliary variable formulation (14) that /0 � g and /J � 0.

Fig. 4. Normal derivatives to boundaries.
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The formal problem statement is then: Find g 2 V and /j 2 H1(CE), j = 1, . . . , J � 1, such that Eqs. (19) and (20) are satisfied
8Wi 2 V and si 2 H1(CE).

4.3. Galerkin expansion

We now turn our attention to the spatial discretization. First, we expand the solution variables g and /j using the same
basis functions used in the weak form as follows:

gN ¼
XNp

k¼1

Wkgk; /jN ¼
XNb

k¼1

sk/
k
j ; j ¼ 1;2; . . . ; J � 1: ð21Þ

Here, Np refers to the number of points that X is discretized into and Nb refers to the number of points that CE is discretized
into. Next, we substitute this basis function expansion directly into the weak form, resulting in the following matrix form of
this problem:

M€gþ 2UDx þ 2VDy
� �

_gþ �kxLxx � kyLyy þ f 2M � UVLyx � UVLxy
� �

gþ kxAE/1 � b0kxBE _g

þ UVCN � UVCS þ UVCEð Þg ¼ 0; ð22Þ

ajM
b €/j�1 þ fjD

b _/j�1 þ kyLb � f 2Mb
� �

/j�1 þ bjM
b _/j � cDb/j ¼ kxMb/jþ1 j ¼ 1; . . . ; J � 1; ð23Þ

where M, Dx, Dy, L xx, Lyy, Lxy and Lyx are interior formulation matrices of size Np � Np. Further, BE, CN, CS and CE are interior
formulation matrices integrated along the boundaries of size Np � Np while AE is of size Np � Nb. Finally, Mb, Db and Lb are
auxiliary formulation matrices of size Nb � Nb. These global matrices are obtained from analogous element arrays via assem-
bly, given by:

M ¼
N̂e

e¼1

Me; BE ¼
N̂e

e¼1

Be
E; Dx ¼

N̂e

e¼1

De
x; Dy ¼

N̂e

e¼1

De
y;

Lxx ¼
N̂e

e¼1

Le
xx; Lyy ¼

N̂e

e¼1

Le
yy; Lxy ¼

N̂e

e¼1

Le
xy; Lyx ¼

N̂e

e¼1

Le
yx;

Mb ¼
N̂b

b¼1

mb; Db ¼
N̂b

b¼1

db
; Lb ¼

N̂b

b¼1

lb
; CN ¼

N̂e

e¼1

Ce
N ;

CS ¼
N̂e

e¼1

Ce
S; CE ¼

N̂e

e¼1

Ce
E; AE ¼

N̂e

e¼1

Ae
E;

ð24Þ

where
VNe

e¼1 is the direct stiffness summation operator required by all continuous Galerkin methods. The expressions for the
element arrays are:

Me
ij ¼

Z
Xe

wiwj dXe Be
E;ij ¼

Z
CE

e

wiwjdCE
e De

x;ij ¼
Z

Xe

wi@xwj dXe;

De
y;ij ¼

Z
Xe

wi@ywj dXe Le
xx;ij ¼

Z
Xe

@xwi@xwj dXe Le
yy;ij ¼

Z
Xe

@ywi@ywj dXe;

Le
xy;ij ¼

Z
Xe

@ywi@xwj dXe Le
yx;ij ¼

Z
Xe

@xwi@ywj dXe mb
rs ¼

Z
Ce

mrms dCe;

db
rs ¼

Z
Ce

mrm0s dCe lbrs ¼
Z

Ce

m0rm
0
s dCe Ce

N;ij ¼
Z

CN
e

wi@xwj dCN
e ;

Ce
S;ij ¼

Z
CS

e

wi@xwj dCS
e Ce

E;ij ¼
Z

CE
e

wi@ywj dCE
e Ae

E;ir ¼
Z

CE
e

wimr dCE
e ;

ð25Þ

where Xe and Ce denote, the part of X and C associated with element e. Also, wi and mi are the locally defined basis functions
from which the global basis functions (Wi and si) are formed. For quadrilateral elements with spectral order N as used in this
analysis, wi will be discretized into (N + 1)2 points, and mi into (N + 1) points, thus, i, j = 1,2, . . . , (N + 1)2 and r, s = 1,2, . . . ,N + 1.

Now, let:

A ¼ M�1 b0kxBE � 2UDx � 2VDy
� 	

;

B ¼ M�1 kxLx þ kyLy � f 2M þ UVLxy þ UVLyx � UVCN þ UVCS � UVCE
� 	

;

C ¼ �kxM�1Ab
E

ð26Þ
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and substitute Eq. (26) into Eq. (22) to get the matrix form of the interior problem:

€g ¼ A _gþ Bgþ C/1: ð27Þ

If we examine the boundary auxiliary variable formulation (13) we see that the selection of appropriate Cj values for the
auxiliary variables has not yet been addressed. It should be noted that van Joolen et al. [31] show that any choice of Cj is
guaranteed to reduce spurious reflection as the order of the NRBC (J) increases. While we omit the details here, the core
of this argument is the computation of a so-called reflection coefficient that is a product of J factors, each of which are less
than one. The reflection caused by the artificial boundary must decrease as the order of the NRBC increases. They note, ‘‘Of
course, a good choice for the Cj would lead to better accuracy with a lower order J, but even if the ‘wrong’ Cj’s are taken. . . one
is still guaranteed to reduce the spurious reflection as the order J increases.” [31, p. 1045]

Armed with this, we choose convenient values for our Cj’s that cause the second order in time (aj) terms to vanish. In the
case of the semi-infinite channel, on the eastern boundary this value is: Cj = C0 + U. A physical argument for this choice is that
since the predominant speed of the wave, absent the advection terms, is C0, the Cj terms ‘‘correct” the boundary formulation
to account for the advection. This selection for the Cj’s then makes:

a1 ¼ a2 ¼ � � � ¼ aJ�1 ¼ 0;
f1 ¼ f2 ¼ � � � ¼ fJ�1 ¼ f;

b1 ¼ b2 ¼ � � � ¼ bJ�1 ¼ b:

Now, let:

D ¼ f 2Mb � kyLb ð28Þ

and substitute (28) into (23) to get the following form of the problem:

bMb _/1 ¼ DgC � fDb _gC þ cDb/1 þ kxMb/2;

fDb _/1 þ bMb _/2 ¼ D/1 þ cDb/2 þ kxMb/3;

fDb _/2 þ bMb _/3 ¼ D/2 þ cDb/3 þ kxMb/4;

..

.

fDb _/J�2 þ bMb _/J�1 ¼ D/J�2 þ cDb/J�1:

ð29Þ

If we now collect the terms on the left and right, we get the matrix form of the problem:

E _U ¼ FUþ �g; ð30Þ

where:

E ¼

bMb 0 . . . 0
fDb bMb . . . 0

..

. ..
. . .

. ..
.

0 0 fDb bMb

0
BBBBB@

1
CCCCCA; F ¼

cDb kxMb 0 . . . 0

D cDb kxMb . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 D cDb

0
BBBBB@

1
CCCCCA;

U ¼

/1

/2

..

.

/J�1

0
BBBB@

1
CCCCA; _U ¼

_/1

_/2

..

.

_/J�1

0
BBBBB@

1
CCCCCA and g ¼

DgC � fDb _gC

0
..
.

0

0
BBBB@

1
CCCCA:

It should be noted that if U and V are taken to be zero, that this entire formulation reduces to the formulation shown by
Lindquist et al. [28].

5. Time integration

The formulation outlined in (22) and (23) constitute a system of coupled ODEs that must be solved to yield a solution for
g(x,y, t). Since the goal of this analysis is to uncover the ‘‘true” gains made by high-order boundary treatment, it is possible
that any high-order treatment of the boundary and spatial discretization without considering a high-order treatment of the
temporal component could mask gains made by high-order boundary treatment. For this purpose, our approach uses stan-
dard kth order Runge–Kutta (RK) methods (up to order 10) to integrate the system in time.

The set-up of this scheme is a standard one, namely, the second order system is expanded to a larger system of first-order
ODEs, then solved appropriately using the associated RK tableau. For most cases in this analysis (unless otherwise stated)
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time integration is performed using a 4th order RK scheme using a time-step chosen to ensure a Courant number of 0.25,
where the Courant number is defined:

Courant number ¼ C0Mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mxð Þ2 þ Myð Þ2

q :

Here, Mx and My are chosen as the minimum distance between any two points in the x- or y- directions respectively. Addi-
tionally, This choice is made since the interpolation points are not uniformly distributed when using spectral elements.

6. Numerical experiments

Several numerical experiments were performed to solve the KGE under advection with and without dispersion. In order to
simplify the numerical simulation of the problem at hand, the KGE (3) is converted to a non-dimensional form as described
in [32]. Using typical mesoscales in the ocean, the length scales were chosen O(100 km), vertical depth scales O(100 m) and
the dispersion parameter f for Coriolis O(10�4 s�1). In terms of advective velocities, Majda [32, p. 61] describes typical advec-
tive velocities as roughly 3

100 that of the medium wave speed C0. Here, we choose to challenge the boundary further by choos-
ing faster advective velocities at 1

10 that of the medium wave speed.
For experiments that follow, the reference wave speed is C0 = 1, which allows the initial wave to propagate through the

region of interest in a reasonable time for all experiments. Given the scale choices above yields a dispersion parameter f2 of
0.1. Further, U and V are set to 0.0 or 0.1 under a two-dimensional Gaussian initial condition to test the formulation in a
semi-infinite and infinite channel setting. The truncated domain X is defined on x = [�2,2], y = [�2,2] and the initial condi-
tion is given by:

gðx; y;0Þ ¼ e�10 x2�y2ð Þ; @tgðx; y;0Þ ¼ 0:

In order to see the effect of the NRBC, we have compared our solution to the same one on a larger domain (x = [�2,10] for
the semi-infinite channel, and x = [�6,6] for the infinite channel). This expanded domain reference solution replaces the
NRBC with no-flux boundary conditions as well. The problem is then solved for t = 3 ensuring that the disturbance has prop-
agated through the artificial boundary, yet has not had time to reach the no-flux boundary and pollute the reference solution.

To quantify the errors observed between the reference and NRBC solutions, we use the normalized L2
X error defined as

follows:

kerrorkL2
X
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNp

k¼1 gN
k � gR

k

� �2

PNp

k¼1 gR
k

� �2

vuut ;

where gN and gR are the NRBC and reference solutions.

6.1. Semi-infinite channel

For the first experiment, the KGE is examined on a semi-infinite channel with the NRBC at xE = 2 and constant advection
with U = 0.1 and V = 0. In Fig. 5 we plot the reference solution on the top panel and the solution of the truncated domain

x

y

Expanded Domain Reference Solution
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−2 −1 0 1 2
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Fig. 5. Semi-infinite channel comparing extended domain reference solution and the NRBC solution. 4th order spectral elements using NRBC order J = 4
with advection velocities U = 0.1, V = 0.0 shown.
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using the G–N NRBCs on the bottom panel. The solution on the truncated domain uses 4th order spectral elements on a
24 � 24 element grid, discretizing the domain into 9,409 points. The reference solution is computed on the extended domain
using the same spectral order and 72 � 24 elements. Qualitatively speaking, the results show very little reflection using the
combination of high-order elements and NRBC. The differences between the reference and NRBC solutions are shown in
Fig. 6 for NRBC orders of 1, 5 and 10.

Quantitative results can be observed in Fig. 7 showing the error on X as a function of spectral and NRBC order
(J = 1, . . . ,10,15,20). The number of elements is adjusted for each spectral order to maintain an equal number of points
(9,409) that the domain is discretized into. It is clear that increasing the NRBC order yields significant gains in accuracy,
but by J = 5, the spatial discretization error dominates NRBC error in the low-order element (order 1 and 2) cases. However,
by increasing the spectral order of the elements, this spatial discretization error decreases and allows the true accuracy of the
NRBC to be realized. The Higdon boundary condition, while general in nature, implicitly assumes that by the time the wave
pulse gets to the artificial boundary, it is traveling primarily as a plane wave normal to the boundary. The previous example,
where the advective velocity was in the same direction as the channel, does not significantly challenge this assumption. In
other words, to really test the value of the boundary condition, one must try advective velocities with some tangential com-
ponent to the boundary. Fig. 8(c) and (d) show the same L2

X plots for advection velocities in other directions, one being the
contrived case where the advection is perfectly tangential to the NRBC. These L2

X plots correspond with the contour plots
directly below that show the comparative solutions. Examining these results, it is clear that the boundary condition-even
when put to a test with a wave pulse containing a significant tangential component to the boundary-performs well. It is
noted that the order of the error suffers slightly under diagonal advection when compared to its individual axial counter-
parts. This may be due to the additional terms activated in the interior and boundary formulations (19) and (20) when U
and V are simultaneously non-zero.

6.2. Infinite channel

For the next set of experiments, the domain is an infinite channel with the NRBCs located at x = ±2. The set-up is similar to
that of the semi-infinite channel. To begin, consider the Higdon boundary condition for the western boundary given by:

Fig. 6. Differences between the NRBC solutions (J = 1,5,10) and the truncated reference solution with U = 0.1, V = 0.0.
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Fig. 7. Semi-infinite channel L2
X error versus NRBC and spectral element order. Domain is discretized into 9,409 points for all spectral element orders with

advection velocities U = 0.1, V = 0.0.
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HJ :
YJ

j¼1

@x �
1
Cj
@t

� �" #
g ¼ 0 on CE: ð31Þ

Using a similar strategy for introducing a set of auxiliary variables for the western NRBC, applying them to the KGE equiv-
alent, then converting any normal derivatives on the boundary to time and tangential boundaries, results in another, very
similar formulation that is directly incorporated into the weak form (18). The selection of parameters Cj follows the ‘‘conve-
nient” choice as developed for the eastern boundary, namely to remove the second order in time auxiliary variable term. This
choice is Cj = C0 � U.

Fig. 8. Top Plots: Semi-infinite channel, 4th order spectral element (J = 4) contour plots showing g(x,y,3) on extended and truncated domains. Domain is
discretized into 9,409 points for all spectral element orders with advective velocities specified. Bottom Plots: Corresponding L2

X error versus NRBC and
spectral element order.

Fig. 9. Infinite channel comparing extended domain reference solution and the NRBC solution. 4th order spectral elements using NRBC order J = 4 with
advection velocities U = 0.1, V = 0.1 shown.
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Similar experiments to those run in the semi-infinite channel were conducted using various advective velocities. In Fig. 9
we show the case where advection is towards the north-east corner of the domain. Again, qualitatively and quantitatively,
the NRBC solution performs quite well. The differences between the reference and NRBC solutions are shown in Fig. 10 for
NRBC orders of 1, 5 and 10.

6.3. Long term results

In many applications, there is concern for the stability and behavior of the NRBC scheme in the long term. In the final
infinite channel experiment, we have run the KGE with J = 10 using 4th order basis functions (9,409 global points) for
t = 1000. By this time the wave front has exited the truncated domain and the reference solution is expected to be zero
throughout the entire domain. The differences between the reference (g(x,y,1000) = 0) and the NRBC solution are shown
in Fig. 11 are of order 10�4. This figure shows that, as expected, absent sources in the domain, the wave front exits the do-
main with minimal reflection and in the long run, tends toward a steady state of zero. This would imply long term stability of
the method when used in this context.

6.4. Effects of time integration technique

At the outset of this work, it was believed that at some point the improvements realized by improving the spatial discret-
ization and NRBC would eventually be limited by the time integration scheme [33]. To this end, the order of the time inte-
gration scheme (RK2–RK10) was varied to examine the effects of time integration on the accuracy of the solution. As has
already been presented, gains made by increasing the order of the NRBC halt for lower order spectral elements after J = 5.
Even for high-order (order 8 and 16) spectral elements, the gains made by increasing the order of the NRBC are limited at
some point using RK4. In [28] the authors showed that high-order time integration allowed boundary gains to improve solu-
tion quality for the KGE under zero advection. Here, in a problem incorporating advection, one might surmise that the
changes in time would exaggerate any temporal discretization error.

For this experiment, consider the KGE on a semi-infinite domain with g = 0 on CW. To ensure that any boundary or time
effects are not masked by the interior discretization, we consider 8th order spectral elements discretized into 9,409 global

Fig. 10. Differences between the NRBC solutions (J = 1,5,10) and the truncated reference solution with U = V = 0.1.

x

y

Extended Time Solution
(Time t=1000, J=10)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

x 10
−4

Fig. 11. Infinite channel, extended time solution (t = 1000). 4th order spectral elements using NRBC order J = 4 with advection velocities U = 0.1, V = 0.0
shown.
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points. The Gaussian initial condition is used and is evaluated until t = 3. The reference solution in this case was computed as
described previously, except that time integration was performed with a 10th order Runge–Kutta scheme (RK10) using a
time-step chosen to ensure a Courant number of 0.1. Further, to exaggerate the issue of advection and dispersion, we con-
sider the case where U = 0.75 and f2 = 1.

As can be observed in Fig. 12, gains made by improving the time integration matter only if combined with high-order
treatment of the boundary. Conversely-gains using high-order treatment of the boundary can only be realized if there is a
sufficiently high-order treatment of the time integration. While this analysis conducted time integration using up to RK10
(18 stages), RK4 or RK5 appears to be sufficient in exploiting gains when using high-order boundary treatment. It should
be noted that these results (error on the order of 10�9) cannot be observed unless high-order treatment of the interior also
accompanies the high-order treatment of the boundary and time. Several experiments were conducted which varied the or-
der of the interior, boundary and time integration. The clear result was that without high-order treatment of all components
in concert, convergence to the reference solution is stalled.

While these results are for a specific problem (KGE with advection), we believe that the principle of a balanced approach
to all components (interior, boundary and time) is a sound, extensible procedure for any problem. If high-order treatment of
any of the three components is missing, the high-order treatment of the other components is essentially wasted.

7. Conclusions

In this paper, we considered a reduced form of the shallow water equations on an infinite (channel) domain. Using the
Givoli–Neta auxiliary variable formulation of the Higdon non-reflecting boundary conditions, we truncated the original infi-
nite domain and developed the boundary conditions specific to the problem at hand. Using a high-order approach to the spa-
tial discretization (spectral element), time integration (high-order Runge–Kutta) in concert with the high-order boundary
treatment, we showed exponential convergence to the reference solution in various examples. These results suggest a bal-
anced approach to dealing with truncation errors – namely, to make improvements in all components of the problem to
see improved accuracy.

Future work includes extending these results to the quarter and open plane and extending all of this work to the full first-
order SWE system. Challenges in extending this formulation primarily lie in developing appropriate corner compatibility
conditions for the intersection of two boundaries. As the auxiliary variable formulation is itself a system of PDEs, well-posed-
ness requires appropriate boundary conditions – which are not obvious – for each of the auxiliary variables when employed
in a ‘‘corner-type” configuration. The authors have developed stable, low-order boundary conditions for the auxiliary vari-
ables for the KGE with advection, albiet with less impressive results, as well as alternative ways of handling the auxiliary
variable formulation for an arbitrarily shaped convex boundary in [34]. Work is ongoing to further develop the auxiliary var-
iable formulation that will maintain stable, high-order results in the quarter and open domain experiments.
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