Secure and Efficient Network Fault Localization

Xin Zhang

CMU-CS-12-104
Feburary 27, 2012

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Adrian Perrig, chair
Hui Zhang, chair
Virgil D. Gligor
David Maltz

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

© 2012 Xin Zhang

This research was supported by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389, W911NF-09-1-0273,
and MURI W 911 NF 0710287 from the Army Research Office, and by support from NSF under the TRUST STC
award CCF-0424422, CNS-0831440, and CNS-1040801. The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either express
or implied, of ARO, CMU, NSF or the U.S. Government or any of its agencies.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
27 FEB 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Secur e and Efficient Network Fault L ocalization £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University,School of Computer Science,Computer REPORT NUMBER
Science Department,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

High-quality online services demand reliable packet delivery at the network layer. However, clear evidence
documents the existence of compromised routersin | SP and enter prise networks, threatening network
availability and reliability. A compromised router can stealthily drop, modify, inject or delay packetsin the
forwarding path to launch Denial-of-Service, surveillance, man-in-the-middle attacks, etc. Unfortunately,
current networksfail to provide any assurance of data delivery in adversarial environments, nor areliable
way to identify misbehaving routersthat jeopardize packet delivery. Data-plane fault localization serves as
an imper ative building block to enhance network availability and reliability, sinceit localizes faulty links of
misbehaving routers, enables a sender to find a fault-free path, and enfor ces contractual obligationsamong
networ k nodes. Until recently however, the design of secure fault localization protocols has proven to be
surprisingly elusive. Existing fault localization protocolsfail to achieve high security and efficiency, incur
unacceptably long detection delays, and requir e forwarding pathsto be impractically long-lived. In this
dissertation we show a suite of secure and efficient fault localization protocols exploring distinct
dimensionsin the design space of fault localization. Our key idea isto achieve a lower bound on packet
forwarding correctnessvia fault localization by limiting the amount of malicious packet drops/forgeries at
the data plane, instead of perfectly detecting every single malicious activity which tendsto result in high
overhead. In thisway, wetrap an attacker into adilemma: if the attacker inflicts damage wor se than a
threshold, it will be detected, which may lead to removal from the network; otherwise the damageis
limited and thus a lower bound on data-plane packet delivery isachieved. Thisdesign principle enablesthe
construction of efficient probabilistic algorithms and the derivation of provable perfor mance bounds. Both
the analytical and experimental results show that the proposed protocols outperform prior work by 100 to
1000 times regar ding efficiency with provable security against sophisticated attackers.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

186

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: fault localization, secure forwarding, data plane security, accountability, network
reliability

PhD. Dissertation: Xin Zhang
Abstract

High-quality online services demand reliable packet delivery at the network layer. However, clear
evidence documents the existence of compromised routers in ISP and enterprise networks, threat-
ening network availability and reliability. A compromised router can stealthily drop, modify, inject,
or delay packets in the forwarding path to launch Denial-of-Service, surveillance, man-in-the-middle
attacks, etc. Unfortunately, current networks fail to provide any assurance of data delivery in ad-
versarial environments, nor a reliable way to identify misbehaving routers that jeopardize packet
delivery. Data-plane fault localization serves as an imperative building block to enhance network
availability and reliability, since it localizes faulty links of misbehaving routers, enables a sender to
find a fault-free path, and enforces contractual obligations among network nodes. Until recently,
however, the design of secure fault localization protocols has proven to be surprisingly elusive. Ex-
isting fault localization protocols fail to achieve high security and efficiency, incur unacceptably long
detection delays, and require forwarding paths to be impractically long-lived. In this dissertation,
we show a suite of secure and efficient fault localization protocols exploring distinct dimensions in
the design space of fault localization. Our key idea is to achieve a lower bound on packet forwarding
correctness via fault localization by limiting the amount of malicious packet drops/forgeries at the
data plane, instead of perfectly detecting every single malicious activity which tends to result in
high overhead. In this way, we trap an attacker into a dilemma: if the attacker inflicts damage
worse than a threshold, it will be detected, which may lead to removal from the network; other-
wise, the damage is limited and thus a lower bound on data-plane packet delivery is achieved. This
design principle enables the construction of efficient probabilistic algorithms and the derivation of
provable performance bounds. Both the analytical and experimental results show that the proposed
protocols outperform prior work by 100 to 1000 times regarding efficiency with provable security

against sophisticated attackers.

Acknowledgments

I am grateful to my advisors, Adrian Perrig and Hui Zhang, for guiding me in my research, helping
me to develop strong research skills, and encouraging me to to become a better person overall. I
enjoyed many stimulating research discussions with Adrian and Hui, as well as casual chats about
life in the US. I especially cherish my first summer at CMU when Adrian met with me almost every
day to help me improve my writing skills. Adrian and Hui have been my greatest guides, friends

and supporters.

I am also very grateful to the other members of my thesis committee, Professor Virgil Gligor
and Dr. David Maltz, for their advice and guidance throughout the dissertation process. Their
invaluable comments, guidance and encouragement dramatically helped me clarify my thesis, refine
my approach, improve the algorithms, and broaden my vision of networking and security research.

Seeing their work and accomplishments inspired me to become a more rigorous researcher.

I would also like to thank all my co-authors for their indispensable collaboration help: Dave
Andersen, Fan Bai, Bhargav Bellur, David Bermingham, Laxmi Bhuyan, Zhiping Cai, Haowen
Chan, Hao Che, Kai Chen, Yan Chen, Rituik Dubey, Virgil Gligor, Xiaohong Guan, Geoff Hasker,
Hsu-Chun Hsiao, Chengchen Hu, Abhishek Jain, Tiffany Kim, Chang Lan, Soo Bum Lee, Wei
Li, Yanlin Li, Dong Lin, Bin Liu, Yunhao Liu, Zhenhua Liu, Hongbin Lu, Aravind Lyer, Maggie
McGinnis, Hossen Mustafa, Onur Mutlu, Derek Pao, Adrian Perrig, Ahren Studer, Patrick Tague,
Thanos Vasilakos, Xiaojun Wang, Zhijun Wang, Ying Xi, Wenyuan Xu, Baohua Yang, Mu Yang,
Hui Zhang, Yue Zhang, Kai Zheng, Jian Zhou, Peng Zhou, and Zongwei Zhou.

I greatly appreciate the guidance and assistance of my mentors Dr. Yinglian Xie and Dr.

Fang Yu at Microsoft Research, and Dr. Sylvia Ratnasamy and Dr. Gianluca Iannaccone at Intel

vi

Research during my internships at their institutions.
Finally, I dedicate this dissertation to my wife, Jiayao Han, for her continuous love and support,

and my daughter, Jinjin Zhang, for the ultimate joy and happiness she brings to me.

Contents

1 Introduction

1.1 What is Fault Localization?
1.2 Challenges and Insights L
1.3 Dissertation Overview e

2 Thesis, Problem Statements, Metrics, and Assumptions

2.1 General Thesis e
2.2 Scope and Assumptions
2.3 Attacker Model
2.4 Problem Formulation
2.5 Metrics . . . Lo e

3 Security Challenges

3.1 Challenge 1: Acknowledgment-based Approach
3.2 Challenge 2: Sophisticated Packet Modification Attacks
3.3 Challenge 3: Colluding attacks
4 PAAI
4.1 Introduction
4.2 Setting e e
4.3 A Strawman Approach: Full-ack oL
4.4 Overview of PAAT

vii

viii CONTENTS
4.5 The PAAI Protocols e 28
4.5.1 PAAIL-L . . o e 28

4.6 PAAL-2 . . e 30
4.7 Security Propertieso 32
4.8 Theoretical Analysis 34
4.8.1 Bounding Malicious End-to-End Corruption Rate 34
4.8.2 Detection Delay oo 36
4.8.3 Communication Overhead, 37
4.8.4 Storage Overhead L 38

4.9 Simulation Results and Analysis o 39
4.9.1 Methodology 39
4.9.2 Results and Analysis L 40

4.10 Summary of Resultso 44
4.11 Combination e 45
412 SUMMATYo e e e e e 47
5 ShortMAC 49
5.1 Imtroduction 49
5.2 ShortMAC Overview o i 51
5.2.1 ShortMAC Packet Authentication, 52
5.2.2 ShortMAC Example 53
5.2.3 Fault Localization and Guaranteed 6 54

5.3 ShortMAC Details 55
5.3.1 ShortMAC Packet Format 55
5.3.2 Protocol Details 57

5.4 Security Analysis 59
5.5 Theoretical Results and Comparison, 62
5.6 SSFNet-based Evaluation o 65
5.7 Linux Prototype and Evaluation 71

CONTENTS ix
5.8 Discussion and Limitations L 75
5.9 Summary e 78

6 TrueNet 81
6.1 Introduction L 81
6.2 Setting o e 84
6.3 Fundamental Challenges 85
6.4 Design Building Blocks oo 86
6.5 TrueNet Overview e 88
6.6 TrueNet Setup e 91
6.7 TrueNet 1-Hop Monitoring 93

6.7.1 Per-packet Monitoring 93
6.7.2 Aggregate Monitoring 95
6.7.3 Per-Packet vs. Aggregate Monitoring 97
6.8 TrueNet Trustworthy Broadcasting 97
6.9 TrueNet Fault Localization Analysis 99
6.9.1 Fault Localization Delay oo 99
6.9.2 Security analysis 100
6.9.3 Overhead Analysis 101
6.10 TrueNet Router Architecture 102
6.11 Implementation and Evaluation 104
6.11.1 Prototype and Computational Overhead 104
6.11.2 Storage Overhead Measurement, 107
6.12 Discussion e 108
6.12.1 Incremental Deployment 108
6.12.2 Interdomain Deployment 109
6.13 Summary 110

7 DynaFL 111

7.1 Introduction 111

CONTENTS

7.2 Setting
7.2.1 Problem Formulation
7.3 Challenges and Overview
7.3.1 High-Level Steps
7.3.2 The Fingerprinting Function F

7.3.3 Challenges in a Neighborhood-based fault localization

734 DynaFL KeylIdeas
7.4 Recording Traffic Summaries
7.4.1 Storing Packets oo
7.4.2 Secure Function Disclosure
7.4.3 Sampling and Fingerprinting
7.5 Reporting Traffic Summaries,
7.6 Detection
7.7 Security Analysis
7.8 Performance Evaluation00
7.8.1 Storage Overhead
7.8.2 Key Management Overhead
7.8.3 Bandwidth Overhead
7.8.4 Detection Delay 0L
7.9 Summary

8 Related Work

8.1 Detecting the Presence of Data-Plane Attacks
8.2 Vulnerabilities of Existing Fault Localization Schemes
8.3 Applicability and Practicality
8.4 Trusted Computing for Network Security

9 Conclusion

CONTENTS xi

A Proofs for PAAI 161
A1 Proof of Theorem 7. e 161
A2 Proofof Corollary 8 162
A3 Proofof Corollary 9 163
A4 Proof of Theorem 10 e 164
A5 Proof of Corollary 11 166

B Proofs for Short MAC 167
B.1 Proofof Lemma 13 e 167
B.2 Proof of Lemma 14 e 169
B.3 Proof of Theorem 15 e 171

C Proof for DynaFL 173

C.1 Proof of Property 2 for Sketch o 173

xii CONTENTS

Chapter 1

Introduction

1.1 What is Fault Localization?

Performance-sensitive services, such as cloud computing, and mission-critical networks, such as the
military and ISP networks, require high assurance of network data delivery. However, real-world
incidents [2, 7, 13, 41, 55, 87] and studies [14, 21, 71, 97] reveal the existence of compromised
routers in ISP and enterprise networks, and demonstrate that current networks are surprisingly
vulnerable to data-plane attacks. Also, in a 2010 worldwide security survey [1], 61% network
operators ranked infrastructure outages due to misconfigured network equipment such as routers
as the No. 2 security threat. A compromised router or a dishonest transit ISP can easily drop,
delay, inject or modify packets on the forwarding path to mount Denial-of-Service, surveillance,

man-in-the-middle attacks, etc.

Unfortunately, current networks do not provide any assurance of data delivery in the presence
of misbehaving routers, and lack a reliable way to identify misbehaving routers that jeopardize
packet delivery. For example, a malicious or misconfigured router can “correctly” respond to
ping or traceroute probes while corrupting other packets, thus cloaking the attacks from ping
or traceroute. Yet most recent network diagnosis protocols are not designed for adversarial
environments and can be evaded by adversaries [48, 49, 99, 47]. Though secure end-to-end path

monitoring [18, 36] and multi-path routing [33, 35, 54, 72, 90, 91, 95] can mitigate data-plane

1

2 CHAPTER 1. INTRODUCTION

attacks to some extent, they are proven to render poor performance guarantees [76, 97]: without
knowing exactly which link is faulty, a source node may need to explore an ezponential number
of paths in the number of faulty links in the worst case. As illustrated in Figure 1.1, where the
default route from S to D is path (1/, 2,3, 4), end-to-end monitoring only indicates if the current
path is faulty without localizing a specific faulty link (if any) of a compromised or misconfigured
router on the path. In the worst case, S needs to explore 2% paths to find the path with no faulty
links, i.e., path (1,2,3,4).

Data-plane fault localization serves as a promising remedy for securing data delivery. In a
nutshell, a fault localization protocol monitors data forwarding at each hop and localizes abnormally
high packet loss, injection, and /or forgery on a certain link. Fault localization provides the following

vital benefits.

Intelligent path selection. The current Internet Protocol (IP) instantiates a best-effort service
model without indicating if, when, or where a packet is lost or corrupted during the packet trans-
mission. Though aiming to provide reliable packet transmission, TCP is an end-to-end protocol
which only detects whether or not a packet is lost on an end-to-end path but not exactly where
the packet is lost. In contrast, fault localization provides accurate feedback about link quality and
forwarding behavior of transit routers in the path. In recently advocated edge-controlled or multi-
path routing protocols [94, 98, 96, 79], edge routers or source nodes can utilize such information
on the network status to make the optimal path selection and adapt to adverse network conditions

for improved reliability and quality of service.

Figure 1.1: Exponential path exploration problem for end-to-end monitoring. Dotted links are
faulty links of malicious routers (black nodes).

1.1. WHAT IS FAULT LOCALIZATION? 3

Accountability. Computer networks (such as the Internet and mesh networks) tend to represent
a contractual business in which a node pays its peers or providers for forwarding its packets. Failing
to provide information on the fate of transmitted packets by current Internet protocols prevents
nodes from detecting failures of their peers or providers. Fault localization provides forwarding
accountability, which refers to the ability to associate a certain forwarding behavior to a specific
node, or to hold a specific node responsible for its activities. Forwarding accountability proves
to be a necessary component for enforcing contractual obligations between participating nodes
in a contractual networking service, as demonstrated by Laskowski and Chuang [56]. Intuitively,
forwarding accountability can assure each node that its partners are indeed fulfilling the service

agreement for packet forwarding.

Fast failure recovery. Fault localization enables a source node S to identify a faulty link of a
malicious router M on which M drops, modifies, or injects packets during packet forwarding. By
integrating the fault localization mechanism into edge-controlled routing, a source node can avoid
using the identified faulty links when selecting routing paths, thus eliminating the exponential
path exploration problem as shown in Figure 1.1. Assuming €2 faulty links in the network, a benign
source node can identify and remove all faulty links and thus find a fault-free path after exploring
at most €2 paths (linear in) in the worst case. Figure 1.2 depicts the interaction between fault

localization and routing for fast failure recovery.

Network diagnosis and performance measurement. Network diagnosis and performance
measurement play an important role in ensuring normal network operations and performing in-
formed traffic engineering. However, current practice and research studies in network diagnosis
and performance measurement largely rely on ad hoc monitoring and probing, and assume no
presence of malicious routers in the network [48, 49, 99, 47]. Secure fault localization provides
information about link quality which cannot be biased by malicious routers and is thus verifiable

to others even in the presence of adversaries.

4 CHAPTER 1. INTRODUCTION

Routing plane

C T e)
I I
| Path ’ topology Topology :
| selection discovery :
I I
I 1

path for data identified faulty links to be
delivery removed
YT TN i
: packets :
! Forwarding »| Fault Localization |
I I
| I
I I
Forwarding plane

Figure 1.2: The network layer integrating data-plane fault localization for fast failure recovery
(linear path exploration).

1.2 Challenges and Insights

In addition to providing security against strong adversaries, a fault localization scheme must also be
practical; in particular, it must possess all of the following properties: (i) low detection delay (i.e.,
the time required to accurately localize a faulty link), (ii) low computational overhead, (iii) low
communication overhead, and (iv) low storage overhead. Failing to achieve any of the above four
properties may render the protocol impractical. For example, a fault localization protocol with high
communication and/or storage overhead will perform poorly even when the network data plane is
not under attack; this will be unacceptable in most settings, especially in resource-constrained
networks such as sensor networks. Similarly, a fault localization protocol with a long detection
delay will enforce only a poor bound on an adversary’s ability to degrade end-to-end throughput
before being identified. This may result in a significant monetary loss to a service provider and,

worse, in cases where routing paths change periodically, the attacker may escape unscathed.

Until now, the design of fault localization protocols has proven to be surprisingly difficult when

confronting security, efficiency, and agility challenges in the presence of strong adversaries.

1.2. CHALLENGES AND INSIGHTS 0]

e Security and efficiency: Sophisticated attacks such as framing and collusion attacks and
natural packet loss tend to break fault localization protocols (e.g., Fatih [71], ODSBR [19],
Watchers [25], Audlt [14], Network Confessional [15], etc) or lead to heavy-weight protocols

(to prevent sophisticated attacks).

e Agility: In addition, current secure and relatively light-weight protocols leverage coarse-
grained flow fingerprinting along end-to-end paths to prevent packet modification attacks
while reducing communication overhead. However, in addition to having high storage over-
head, these techniques result in long detection delays and require monitored paths to be
long-lived (e.g., after monitoring 10® packets over the same path in Statistical FL by Barak

et al. [21]), which is impractical for networks with short-lived flows and agile routing paths.

Our key insight is that we can achieve a high packet forwarding guarantee via fault localization
by limiting the number of malicious packet drops/forgeries at the data plane, instead of perfectly
detecting every single malicious activity which tends to result in high overhead. Therefore, strong
per-packet monitoring or authentication to achieve perfect detection of every single dropped or
forged packet is unnecessary for limiting the adversary’s influence. Instead, the fault localization
protocol can employ probabilistic approaches to yield statistical guarantees, e.g., via probabilistic
packet monitoring using packet sampling or probabilistic packet authentication using a set of short
packet-dependent random integrity bits. In this way, each dropped or forged packet has a non-trivial
probability of detection. Hence, if a malicious node drops or forges more than a threshold number of
packets, the malicious activity will cause a detectable deviation in the state maintained at different
routers. Essentially, this methodology traps an attacker in a dilemma: if the attacker inflicts
damage worse than a threshold, it will be detected, which may lead to removal from the network; if
the attacker inflicts damage under a threshold, the damage is limited and thus a guarantee on data-
plane packet delivery is achieved. To measure the effectiveness of confining data-plane attackers
with fault localization, we propose a new metric called guaranteed forwarding correctness,
which is the lower bound of the successful ratio of packet forwarding achievable along an end-to-

end path, even in the presence of adversaries.

6 CHAPTER 1. INTRODUCTION

1.3 Dissertation Overview

Based on the philosophy of limiting the adversarial activities, we propose four protocols in this
dissertation: PAAI, ShortMAC, TrueNet, and DynaFL, for secure and practical data-plane fault
localization. PAAI, ShortMAC, and DynaFL are probabilistic protocols. More specifically, PAAT
utilizes a secure packet probabilistic sampling technique, ShortMAC features a probabilistic packet
authentication mechanism, and DynaFL employs a probabilistic packet fingerprinting data struc-
ture. In contrast, TrueNet is a deterministic protocol leveraging trusted computing technologies
with special hardware support (such as TPM chips). From another perspective, both PAAI and
ShortMAC are path-based, where the fault localization procedure is executed on the granularity
of end-to-end paths and the source node of a path needs to directly interact with each router in
that path. In contrast, TrueNet and DynaFL are 1-hop-based, as the operations required by fault
localization are only performed between 1-hop neighbors. Figure 1.3 summarizes the characteristics

of the four protocols.
Techniques: Protocols:

sampling packets PAA
Approaches: to acknowledge

path-based

probablllst!c p.acket y[Short M O
authentication

Thesis:
data-plane fault ——
localization
TC-b i
as?d ne.|ghbor >/ Tr ueNet
verification

1-hop-based

neighborhood
> nakFL
based monitoring Dy

Figure 1.3: Summary of the proposed protocols in this dissertation.

These four protocols explore different approaches and directions in the design space of fault
localization, and achieve various tradeoffs between storage overhead, communication overhead,

computational overhead, and deployability. We summarize the tradeoffs of the proposed protocols

1.3. DISSERTATION OVERVIEW 7

using these performance metrics in Table 1.1 to provide some intuition (we will provide a more
detailed comparison including the effectiveness of fault localization in Chapter 9). Our results in
this dissertation show that by limiting the adversarial activities with probabilistic algorithms or
emerging hardware technologies, secure fault localization can be achieved with a lower bound on
the forwarding performance and fundamentally higher efficiency than previously known protocols
for fault localization. Our proposed fault localization protocols also address the security threats

that defy most prior work.

Protocol Storage Communication Computation Deployability
PAAI per-path state ~ 3% per-packet PRF loose time sync
ShortMAC per-path state < 0.1% per-packet MAC change packet header

change packet header

TrueNet per-neighbor state < 0.1% per-packet MAC require TPMs

DynaFL per-neighbor state < 0.1% per-packet hash loose time sync

Table 1.1: Metrics and tradeoffs.

The remainder of this dissertation includes the following chapters. Chapter 2 formally defines
the problem and states the assumptions. Chapter 3 sketches the challenges in achieving secure
fault localization by presenting several strawman approaches and their security vulnerabilities.

Chapters 4 and 5 present the two path-based protocols, PAAI and ShortMAC, respectively.
Both protocols (and path-based fault localization protocols in general) require a source node S to
solicit acknowledgments from intermediate routers in the forwarding path for the packets S has sent.
PAAI explores schemes where a single acknowledgment returned by a router only acknowledges a
single packet that S has sent, and focuses on studying how to employ secure sampling to reduce
protocol overhead: whether and how to sample a subset of packets to acknowledge, or whether and
how to sample a subset of routers to send the acknowledgments. In contrast, ShortMAC studies a
different approach, using a single acknowledgment to acknowledge a set of aggregated packets for
higher efficiency.

To overcome certain limitations of path-based fault localization protocols (e.g., poor support
for dynamic routing paths), Chapters 6 and 7 present two 1-hop-based protocols, TrueNet and
DynaFL, respectively. TrueNet assumes the deployment of trusted computing components in the

network, and thus achieves secure fault localization with high efficiency unachievable in traditional

8 CHAPTER 1. INTRODUCTION

networks. Due to the inherent limitation of current trusted computing technologies, TrueNet is
most effective against software-based (as opposed to hardware-based) data-plane attacks, which we
argue is the major form of large-scale data-plane attacks. DynaFL implements secure 1-hop-based
fault localization without relying on trusted computing, and thus is resilient against hardware-based
attacks as well. DynaFL aims to localize forwarding faults to a specific 1-hop neighborhood instead
of a specific link, trading precision for practicality of fault localization.

Finally, Chapter 8 summarizes the related work and Chapter 9 concludes the dissertation.

Chapter 2

Thesis, Problem Statements, Metrics,

and Assumptions

2.1 General Thesis

This dissertation aims to achieve secure and efficient data-plane fault localization and explore the
tradeoffs in this design space. More specifically, given a set of adversarial nodes in the network, we
are interested in the design of protocols that monitor the forwarding behavior of intermediate nodes
for packet dropping, modification, injection, and delaying activities over a period of time and then
securely localize the presence of the adversary on a particular link (or a set of links). Note that
the literature has showed that such protocols can only identify links adjacent to malicious nodes,

rather than identifying the nodes [21]. Our thesis statement is as follows:

Thesis statement. Instead of aiming to detect any single forwarding failure, we explore if fault
localization can be utilized to limit the damage an adversary can inflict at the data plane and in
turn produce a provable lower bound on the forwarding correctness. We also attempt to see if the
philosophy of limiting the adversarial activities can enable the use of probabilistic algorithms and
emerging hardware virtualization technologies, which may give rise to negligible protocol overhead

without sacrificing security.

10 CHAPTER 2. THESIS, PROBLEM STATEMENTS, METRICS, AND ASSUMPTIONS

To support this thesis statement, we take the following steps in this dissertation. We classify
the fault localization protocols into path-based and 1-hop-based. In a path-based approach, the
fault localization process is operating on individual end-to-end paths, where the source node of a
path requires provable “receipts” (or acknowledgments) from the destination and the intermediate
nodes on the forwarding path for the packets that the source node has sent. We study probabilistic

algorithms exploring different design dimensions to reduce the protocol overhead:

e intermediate nodes only send packet receipts for a probabilistically selected subset of packets

(PAAI);
e only a probabilistically selected subset of packets send packet receipts to the source (PAAI);

e instead of acknowledging a single packet, a packet receipt can acknowledge a set of packets

aggregated in a probabilistic and efficient way (ShortMAC).

In a 1-hop-based approach, the fault localization process is running between 1-hop neighbors, i.e.,
each node only monitors its 1-hop neighbors to detect any forwarding fault. As we show later,
compared to path-based approaches, 1-hop-based fault localization can better cope with dynamic
routing paths and traffic patterns, but tends to localize data-plane faults to a 1-hop neighborhood
instead of a specific link (DynaFL). We also show that, with the aid of trusted computing, 1-hop-
based fault localization can localize data-plane faults to a specific link with much lower overhead

(TrueNet).

2.2 Scope and Assumptions

Scope. Since we focus on data-plane security at the network layer, we assume the following
network control-plane and link-layer mechanisms, each of which represents a separate line of research

orthogonal to ours.

e We can borrow existing secure routing protocols [50, 42, 73, 96] by which nodes can learn the

genuine network topology and the source can know the outgoing path.

2.2. SCOPE AND ASSUMPTIONS 11

e We assume secure neighbor identification so that a node upon receiving a packet knows which

neighbor sent that packet, which can be achieved via link-layer authentication.

e In addition, when needed, a source node S can set up a shared secret key K, with router
fi using a well-studied key exchange protocol, e.g., Diffie-Hellman as in Passport [60]. This
symmetric key exchange happens very infrequently thus representing only a one-time cost.
Barak et al. [21] prove that such a shared secret is necessary for any secure fault localization

protocol via path monitoring.

We focus on achieving secure fault localization against malicious routers. We do not consider
control-plane or routing attacks and endhost- or source-based attacks such as DoS, while TrueNet

complements existing secure routing [26, 27, 37] or DoS prevention schemes [92].

Cryptography assumptions. For the sake of efficiency, we avoid using per-packet asymmetric
cryptography due to its high per-packet computation and communication overhead. We assume
that the nodes can perform symmetric key operations as well as compute a collision-resistant hash

function and a keyed pseudo-random function PRF.

Network model. We consider a general multi-hop network model where routers relay packets
between sources and destinations, such as the ISP, enterprise, and datacenter networks. We as-
sume that the links in the network independently exhibit some natural packet loss due to congestion
and/or transmission errors. Throughout the paper, we follow the notation as illustrated in Fig-
ure 2.1. We denote the routers in a path by fi, fo,..., f4_1, the destination by fy, and the link
between f;_1 and f; by l;. We call nodes closer to the destination downstream nodes, and nodes

that are further away from the destination as upstream nodes.

Basic notation. We denote the round-trip time from a node f; to f; as r;. Let Ex(-) denote
encryption using symmetric key K. Further, let MACk(m) denote a message m authenticated
by key K using a message authentication code (MAC). For simplicity, in our description, we do
not differentiate between the keys for encryption and MAC computation; although in practice, one

would derive separate keys for encryption and MAC computation.

12 CHAPTER 2. THESIS, PROBLEM STATEMENTS, METRICS, AND ASSUMPTIONS

upstream downstream
Source Destination
.I—. o o o.f. e o o .f.
S 1 f; fig 0 for ' fq

Figure 2.1: An example path and notation.
2.3 Attacker Model

We assume an adversary in complete control of an arbitrary number of intermediate nodes on a path,
including knowledge of their secret keys. The adversary can eavesdrop and perform traffic analysis
anywhere on the path. The adversary may drop, inject or alter packets on the links that are under
its control. We allow the protocol parameters to be public; consequently, the adversary may try to
bias the measurement results in order to evade detection or incriminate honest links. However, the
adversary cannot control the natural packet loss rate on the links in the path, because this would
constitute a physical-layer attack which can be dealt with through physical-layer protections.

The goal of an adversary who controls malicious routers is to sabotage data delivery at the
forwarding path. Instead of considering an individual forwarding attack, we seek a general way of
defining malicious forwarding behavior. We identify packet dropping and packet injection as the
two fundamental data-plane threats, while other data-plane attacks can be reduced to these two
threats as follows: (i) packet modification is equivalent to dropping the original packet and injecting
a fabricated packet, (ii) packet replay can be regarded as packet injection, (iii) packet delay can
be treated as dropping the original packet and later injecting it, and (iv) packet misrouting can
be regarded as dropping packets along the original path and injecting them on the new path. A

formal definition follows:

Definition 1. An (x,y)—Malicious Router is a router that intentionally drops up to a fraction
x of the legitimate data packets from a source S to a destination fq, and injects up to y spurious
packets to fq, pretending that the packets originate from S. The misbehavior space of such a mali-
cious router comprises (i) dropping packets, (ii) injecting packets on any of its adjacent links which

we call malicious links (non-malicious links are called benign links), (iii) strategically claiming

2.4. PROBLEM FORMULATION 13

arbitrary local state (e.g., number of packets received) to its own advantage, or (iv) colluding with

other malicious routers to perform the above attacks.

Such a strong attacker model is not merely born out of academic curiosity, but has been widely
witnessed in practice. For example, outsider attackers have leveraged social engineering, phish-
ing [7], exploration of router software vulnerabilities [2, 13], and compromising weak passwords [41]
to compromise ISP and enterprise routers [87]. Also, in a 2010 worldwide security survey [1], 61%
of network operators ranked infrastructure outages due to misconfigured routers, which also fall
under our attacker model, as the No. 2 security threat.

Finally, we note that the protocols proposed in this dissertation heavily depend on several
cryptographic primitives, such as the Message Authentication Code (MAC) and Pseudo-Random
Function (PRF). Though different protocols may utilize different implementations or instantiations
of these cryptographic primitives, we assume the MAC resists existential forgery under chosen-
plaintext attacks, and the PRF with a randomly chosen key provides outputs that look unpre-
dictable and cannot be distinguished from a truly random function (except with a negligible prob-
ability). In other words, we assume the adversary cannot break these cryptographic primitives
(though different implementations of them may be resilient against different numbers of adversarial

queries, assuming their high-level security properties suffices for this dissertation).

2.4 Problem Formulation

This dissertation focuses on providing data-plane fault localization for a lower-bound guarantee on
data-plane packet delivery. In this section, we define detection thresholds, faulty links, and finally
we formalize fault localization.

We introduce the detection thresholds to limit the adversarial activities at network data plane:

Definition 2. Given a drop detection threshold Ty, (i.e., fraction of dropped packets) and an
injection detection threshold T;, (i.e., number of injected packets), a link l; is defined as faulty
iff: (i) more than Ty, fraction of packets are dropped on l; by f;, or (ii) more than Ty, packets are

injected by f;, or (iii) the adjacent router f; or fi11 makes l; appear faulty over a period of time.

14 CHAPTER 2. THESIS, PROBLEM STATEMENTS, METRICS, AND ASSUMPTIONS

When Ty, and T;, are carefully set based on the prior knowledge such that the natural packet

loss and corruption are below Ty, and T;,, respectively, a faulty link must be a malicious link.

Definition 3. (N, §)—Data-Plane Fault Localization is achieved iff: given an end-to-end com-
munication path p, after a detection delay of sending N packets, the source node S of path p can

identify a specific faulty link along that path (if any) with false positive or negative rate less than .

Definition 4. (12, 0)— Guaranteed Forwarding Correctness (Guaranteed Data-Plane Packet
Delivery) is achieved iff: after exploring at most § paths, a source can find a non-faulty path
(if any) along which all routers have correctly forwarded at least 6 fraction of the source’s data

packets sent along the path to fg.

To achieve a guaranteed 6, we need to bound (not necessarily eliminate) the adversary’s ability
to drop packets and to inject packets so that if the adversary drops more than « percent of packets

or injects 0 bogus packets, it will be detected with a high probability. A formal definition follows.

Definition 5. For an epoch with a sufficiently large number of data packets by a source, a fault
localization protocol achieves («, 3)s—Forwarding Security iff two conditions are simultaneously

satisfied:

1. (Low False Negative Rate) When the adversary drops more than o percent of the data packets
on a single link, or injects more than [fake packets on a single link, the source will detect at

least one of the malicious links under the adversary’s control with probability at least 1 — §;

2. (Low False Positive Rate) The probability of falsely incriminating at least one benign link is

at most 4.

2.5 Metrics

The forwarding correctness (Definition 4) and forwarding security (Definition 5) provide a system-
atic way to quantify the effectiveness and security of fault localization. We also identify three key

metrics to evaluate the efficiency or practicality of such protocols:

2.5. METRICS 15

e detection rate, i.e., the number of data packet transmissions required to detect a malicious

link (with the false positive and negative rates below a certain threshold),

e communication overhead, i.e., the additional packets (and their size) that are sent per data

packet from the source, and

e storage overhead, i.e., the amount of temporary storage that must be maintained at each

intermediate node per unit time.

16 CHAPTER 2. THESIS, PROBLEM STATEMENTS, METRICS, AND ASSUMPTIONS

Chapter 3

Security Challenges

A common approach to achieve data-plane fault localization is for the source node to require ac-
knowledgment packets (ACK) from the destination and the intermediate nodes in the forwarding
paths. In a realistic setting, a forwarding link may incur some benign packet loss due to congestion
or channel errors. At the same time, an adversary who potentially controls multiple intermediate
nodes may try to bias the identification procedure by selectively dropping, modifying, or injecting
packets in order to evade detection or incriminate honest nodes. Consequently, a secure fault local-
ization protocol must be simultaneously robust to both benign packet loss and malicious behavior.
In other words, it must exhibit low false positive (falsely identifying a legitimate link as malicious)
and false negative (falsely leaving a malicious link undetected) rates. This chapter presents sev-
eral common security pitfalls or vulnerabilities in prior fault localization schemes to illustrate the

challenges in achieving security against strong adversaries.

3.1 Challenge 1: Acknowledgment-based Approach

Let us consider that the source S in Figure 2.1 sends out a data packet m towards the destination
fa- Upon receiving m at each hop in the path, router f; must return an acknowledgment (ACK)
to S authenticated with the secret key shared with S (assuming S and f; have pre-established a
secret key using Diffie-Hellman [32] as in Passport [60], or some other key exchange protocol). If

S receives correct ACKs from routers fi,..., f;—1 but not from router f;, S concludes link I; 1 is

17

18 CHAPTER 3. SECURITY CHALLENGES

faulty. In this approach however, a malicious router f; can drop the ACK from another remote
router, say fiy5, without dropping other packets to frame /;;4 as malicious to the source (framing
attack).

To reduce the overhead of ACK packets, the source node may “sample” a subset of packets
and only the sampled packets will require ACKs from the routers. In this approach however, if a
malicious router f,, can distinguish between sampled and non-sampled packets, f,, can safely drop
all and only non-sampled packets without being detected.

Chapter 4 presents more sophisticated attacks against such acknowledgment-based fault local-

ization protocols.

3.2 Challenge 2: Sophisticated Packet Modification Attacks

In Fatih [71], WATCHERS [25, 43], and AudlIt [14], each router records a traffic summary based
on counters or Bloom Filters [24], which are updated with no secret keys for the packets the router
forwards. The routers periodically exchange local summaries with others for fault detection based
on flow reservation. Without any authentication of the data packets, these schemes suffer from
packet modification attacks. For example in Audlt [14], each router simply counts the number of
packets it received for a certain path, and periodically sends the counter to the source node of the
path for packet loss detection. However, malicious packet modification cannot be detected based
solely on packet counts. Even when Bloom Filters are used [71] to reflect the packet contents, a
malicious router can still tactically modify packets without affecting the Bloom Filter image (since
Bloom Filters may not be collision-resistant).

Chapter 7 describes more challenges in dealing with packet modification attacks in fault local-

ization protocols relying on flow conservation.

3.3 Challenge 3: Colluding attacks

Routers in a path may employ “hop-by-hop” monitoring to detect packet delivery fault to reduce
the communication overhead of sending the traffic summaries back to the source. For example in

Figure 2.1, each router f; asks for the traffic summaries (e.g., acknowledgments) only from the

3.3. CHALLENGE 3: COLLUDING ATTACKS 19

2-hop neighbor f;y2 in the path, and accuses [; if f; does not receive the correct traffic summaries.
In this approach however, if f; is colluding with f;11 and does not accuse f;;1 even if f; does not
receive the correct traffic summaries from f;;o, then f;41 can safely drop packets without being
detected. Watchdog [66], Catch [65], and the proposal due to Liu et al. [58] are vulnerable to similar

colluding attacks.

20

CHAPTER 3. SECURITY CHALLENGES

Chapter 4

PAAI

In this chapter, we present our first path-based fault localization protocol, PAAI (including PAAI-1
and PAAI-2), that is robust against strong adversaries with a practical tradeoff between detection
delay, communication overhead, and storage overhead. As a path-based protocol, in PAAI, the
source node requires packet receipts, or acknowledgments (ACKs), for the packets the source has

sent.

Instead of sending an ACK for each received packet by each router, PAAI employs secure sam-
pling to reduce the communication overhead incurred by the ACKs. We systematically explore the
design space of utilizing secure sampling for path-based fault localization protocols. We investigate
a set of basic protocols, each exemplifying a design dimension and examine the underlying trade-
offs. In particular, PAAI-1 and PAAI-2 sample along different dimenions: PAAI-1 investigates how
to sample a subset of packets to be acknowledged by all the routers in the forwarding path, and
PAAI-2 investigates how to sample a subset of routers to send the ACKs for each packet. We also
show the possibility of constructing hybrid protocols based on PAAI-1 and PAAI-2.

To clearly demonstrate the tradeoff between the two sampling approaches, in PAAI a single
ACK sent by a router only acknowledges one single packet sent by the source, while we may
extend the protocols to enable one ACK to acknowledge a set of packets, just like ShortMAC
shown in Chapter 5. For the ease of understanding, the PAAI protocol described in this chapter
only focuses on detecting packet dropping and modification attacks. For PAAI-1 and PAAI-2,

21

22 CHAPTER 4. PAAI

we present both upper and lower performance bounds via theoretical analysis, and average-case
results via simulations. We conclude that the proposed PAAI-1 protocol outperforms other related

schemes.

4.1 Introduction

We observe that designing any path-based fault localization protocols using ACKs involves making

two fundamental decisions:
1. which data packets to acknowledge; and
2. which intermediate nodes should send the ACKs.

With this in mind, we explore different design choices along the two aforementioned aspects and
investigate the tradeoff using the performance metrics. More specifically, we study the following

approaches:

1. A strawman approach: Fvery intermediate node sends an ACK for every lost or modified

data packet.

2. The Probabilistic ACK-based Adversary Identification (PAAI) approaches: either (i) only a
subset of data packets must be acknowledged (PAAI-1), or (ii) only a subset of intermediate
nodes must respond to an ACK request (PAAI-2).

The full-ACK scheme achieves the lowest detection delay by determining the link for every
single packet transmission failure. However, gathering such fine-grained information introduces
high communication overhead. In contrast, PAAI-1 and PAAI-2 employ probabilistic sampling to
gather only coarse-grained information, differing from each other in that they perform probabilistic
sampling in different dimensions. In both PAAI schemes, we aim to achieve a low detection delay
while retaining practicality for most networks.

The PAAI-1 protocol is fairly intuitive, simple and flexible, yet achieves more desirable proper-
ties than the full-ACK scheme, PAAI-2, and other related work. Finally, we also discuss the viability

of constructing protocols that exemplify hybrids of the basic design primitives (Section 4.11).

4.2. SETTING 23

Contribution. To the best of our knowledge, this is the first attempt to design a secure fault
localization protocol that obtains a practical trade-off between the detection rate and the communi-
cation and storage overhead for realistic network settings. It is also the first systematic study of the
design space for fault localization protocols (Section 4.3, Section 4.4 and Section 4.5). We propose
a set of basic fault localization protocols, one for each design dimension, where the PAAI-1 proto-
col (Section 4.5.1) is distinctly more practical than the others. We obtain theoretical bounds for
the performance of our protocols (Section 4.8), and also launch simulations to derive average-case

results and validate our theoretical results (Section 4.9).

4.2 Setting

Besides the problem formulation described in Chapter 2, we introduce additional assumptions and

conventions for this chapter below.

ACK structure. For any data packet m sent out by S, let the hash of m, denoted by H [m], be a
packet identifier for m. For any m, we define the corresponding ACK from f; to have the structure
a; = (H[m]||A"), where A]" is a report computed by f;. The report A" will be a function of f;’s
local report R; and its downstream neighbor f;11’s ACK (if present). Specific details may vary in

each protocol description.

Onion reports. We recall the well-known notion of an onion report. When each intermediate
node f; must return a local report R; to S in an authenticated manner, then we have inductively,

for i € [1,d — 1], A; = MACK,('LHRz”Aerl)a while A; = MACKd(dHRd)

Assumptions. We assume the presence of symmetric paths, where the forward path (for data)
and reverse paths (for acknowledgments) are identical; and we assume that a source node knows
its forwarding path to the destination. We assume that the nodes on any given path are loosely
time-synchronized.

Finally, given a path from a source to a destination, recall from Section 2.2 that the source can

establish a shared pairwise symmetric key K; with each intermediate node f; on the path to the

24 CHAPTER 4. PAAI

destination.

Throughout this chapter, we focus on the localization of packet dropping and modification
attacks, and use the general term packet corruption to denote packet dropping and modification

activities.

4.3 A Strawman Approach: Full-ack

We observe that designing any path-based fault localization protocol involves making two funda-
mental decisions: (i) which data packets to acknowledge, and (ii) which intermediate nodes should
send the acknowledgments. As a first step towards a systematic exploration of the protocol design
space for fault localization protocols along the two aforementioned aspects, we discuss the simple
and fairly intuitive ‘full-ack’ protocol (similar to the Optimistic Per-Packet FL Protocol from Barak
et al. [21]), where every intermediate node on the forwarding path must return an ACK for every
corrupted data packet sent by the source. A corrupted packet refers to one that fails to reach the
destination intact (either dropped or modified). Below, we give a brief description of the protocol
and discuss its security and performance. A theoretical analysis and simulation results for the

full-ACK protocol are given later in Section 4.8 and Section 4.9 respectively.

Protocol. Let us consider that S sends out a data packet m towards the destination f;. On
receiving m, fg must return an ack, a4, authenticated with the secret key shared with S, i.e.,
aqg = MACk_,(H[m]). If no valid ACK is received from f; within a pre-specified wait-time, S will
send out an onion report request. The onion report is computed by the intermediate nodes in the
manner explained earlier, wherein a local report R; is set to be (i||H [m]||aq). Upon receiving the
ACK containing the onion report from fi, S can sequentially verify each report embedded in it.
For some i < d, if the MAC from each intermediate node f;,j € [1,4] is valid but the MAC from
fi+1 is invalid or not present in the final ack, then S identifies link I; as faulty and adds one to its
corruption score. Over a period of time, if the corruption score of a particular link exceeds a fixed

threshold determined from the natural packet loss rate then that link is identified as malicious.

4.4. OVERVIEW OF PAAI 25

Security. In the above protocol, if a malicious node corrupts a packet (data or ack), one of its
adjacent links has its corruption score increased. This follows largely from the security of onion
reports. Since PAAI-1 employs similar techniques, we defer more details to Section 4.4. The
adversarial nodes on the path may collude to share packet corruption activities among themselves;
however, in this case, the corruption rate will still be bounded (proportional to the number of

malicious nodes in the path).

Performance. For each corrupted packet, the full-ACK scheme can determine precisely the loca-
tion of the packet corruption, thus it is able to directly compute the corruption rate of each link on
a given path and identify malicious links within a small number of packet corruption. However, this
high detection rate is achieved at the price of a large amount of communication overhead at each
node. Specifically, the full-ACK scheme imposes an overhead of at least one packet of O(1)-size per
data packet sent out by S; and an additional overhead of one packet of O(d)-size (the onion report)
in case packet corruption occurs. The storage overhead is high in the worst case but lower on
average due to the low detection delay. More details are given later in Section 4.8 and Section 4.9.

The high overhead makes the full-ACK protocol unaffordable for most networks; therefore, fault

localization protocols with a better trade off amongst the three performance metrics are desirable.

4.4 Overview of PAAI

In contrast to the full-ACK protocol, where the ACK mechanism was completely deterministic, we
now investigate probabilistic ack-based adversary identification (PAAT) approaches with the under-
lying motive of reducing the protocol overhead at the expense of slightly worsening the detection
delay. Loosely speaking, we investigate two contrasting approaches: one where only a subset of
data packets must be acknowledged, and another where only a subset of intermediate nodes must
send the acknowledgments!. In particular, we construct, (i) the PAAI-1 protocol: every intermedi-
ate node sends an ACK for only a selected fraction of data packets; and (ii) the PAAI-2 protocol:
only one selected intermediate node sends an ACK for each data packet. At first glance, the two

approaches may seem to be only minor variations of the full-ack mechanism; however, we stress

Tt is natural to imagine the possibility of composing these approaches. We discuss this in Section 4.11.

26 CHAPTER 4. PAAI

that there are several challenges involved in ensuring security of these approaches. We now briefly

outline these approaches along with the challenges involved.

In the first approach (PAAI-1), S monitors the path for only a fraction of the total traffic. More
specifically, for a given data packet, S solicits an ACK from every intermediate node only with
some probability p. Now, since a fraction of traffic is unmonitored, the protocol must ensure that a
malicious node f, is not able to determine from the content of a data packet m whether S solicits
an ACK for m. Otherwise, on receiving m, if f, determines that m need not be acknowledged,
then it could safely corrupt m without increasing its probability of being identified.

In PAAI-2, S monitors the path for every data packet, with the provision that S solicits an
ACK for a corrupted data packet from only one selected node on the path. However, the protocol
must ensure that a malicious node f, cannot decipher the identity of the selected node f, from the
content of a data packet m. Otherwise, on receiving m, if f. determines that f. < f, (i.e., whether
fe is upstream to or equal to f,), then it could safely corrupt m without increasing its probability
of being identified.

In order to circumvent the above attacks and still perform probabilistic monitoring, we make
use of a delayed sampling mechanism. Specifically, in both PAAI protocols, S sends out an ack
request (henceforth referred to as a probe) at a later time for a data packet sent earlier. In PAAI-
1, the probe conveys the information that the corresponding data packet must be acknowledged
(otherwise no probe is sent). In PAAI-2, the probe content determines which intermediate node
is selected. However, in either protocol, a malicious node may withhold a data packet until the
arrival of the corresponding probe in an attempt to decide whether to corrupt m. To circumvent
this, we require loose time-synchronization among the nodes in the network such that the clock
error between two adjacent nodes f; and f;y; is less than min(rg), i.e., the minimum value of the
round trip time from S to the destination. In this scenario, an intermediate node would discard a
data packet if it carries an expired timestamp.

Both PAAI protocols employ a scoring mechanism in order to identify malicious links over a
period of time. We set a threshold for the end-to-end corruption rate of data packets for a given
path. The threshold value is chosen based on the natural packet loss rate, such that the natural

end-to-end loss rate will not exceed the threshold value. At the end of each probe, S computes

4.4. OVERVIEW OF PAAI 27

the end-to-end corruption rate so far, based on the number of sent data packets and successfully
received ACKs from the destination; if the corruption rate exceeds the threshold value, then it
indicates that an adversary is present on the path. Using the history of scores (i.e., the scores
accumulated so far) of the links, S will identify the adversarial presence on a link (or a set of
links) whose score exceeds a per-link score threshold within a bounded number of probes. On the
other hand, the score of an honest link will not exceed the per-link score threshold. Note that this
mechanism is in sharp contrast to the on-demand secure routing approach [19] where the probing
is launched only when the end-to-end drop exceeds a certain threshold; consequently there is no
history of scores which can be used, thus allowing an adversary to freely corrupt packets until the
end-to-end corruption rate reaches the threshold and then cause arbitrary links to be incriminated

due to natural packet loss when probing is initiated.

We now give some details on the specific scoring mechanism employed by each PAAI protocol.
Loosely speaking, in PAAI-1, if an intermediate node fails to return an ACK for a probed data
packet, then S will increase the corruption score of its upstream link. However, note that if each
intermediate node were to send a separate ack, then a malicious node could selectively drop the
ACKs from legitimate nodes in order to incriminate honest links. To circumvent this, PAAI-1

employs the use of onion reports similar to the full-ACK protocol.

PAAI-2, on the other hand, utilizes a slightly different scoring mechanism. For a given data
packet, if the selected node f. fails to return an ack, then S infers that there exists at least one
malicious link upstream of f.; consequently S will increase the corruption score of each link between
fe and itself. Now, suppose that a malicious packet corruption occurred at a link {;_1. Then, let X
be the event that the intermediate node f; is selected. We ensure that event X occurs with a fized
probability. Due to the above scoring mechanism, each occurrence of X will create a difference in
the scores of the links on either side of f;. Over a period of time, a difference in the score of two
adjacent links would indicate a potential malicious link. In order to ensure that event X occurs
with a fixed probability, PAAI-2 selects an intermediate node uniformly at random for any data
packet. The protocol must also ensure that the identity of the selected node for any data packet is
not revealed at any point in time; otherwise, a malicious node could selectively drop ACKs from

legitimate nodes in order to incriminate honest links. Specifically, in order to incriminate an honest

28 CHAPTER 4. PAAI

link /5, a malicious node could drop the ACK every time fj,11 is selected, while behaving honestly
every time fj, is selected. This would create a difference between the scores of [;,_1 and [j. In order
to circumvent this, we design an oblivious selection and acknowledgment procedure, such that the
identity of the selected node is hidden to each node (except S) even through traffic analysis.
Finally, we remark that an adversary may choose to modify or drop any of the following:
(i) data packet, (ii) probe, or (iii) ack. However, our protocol design ensures that the source node
S interprets each such activity simply as a data packet drop. In what follows, we will simply use
the term drop to refer to any kind of packet modification or drop. Looking ahead, in Section 4.8, we
show that an adversary achieves the same total end-to-end corruption rate by employing different

individual corruption rates for different packet types.

4.5 The PAAI Protocols

Formally, the two PAAT protocols PAAI-1 and PAAI-2 consist of five stages: (i) send data and
decide whether to probe, (ii) probe, (iii) acknowledge, (iv) score, and (v) identify. We give the
details of both PAAI-1 and PAAI-2 below.

4.5.1 PAAI-1

PAAI-1 employs probabilistic sampling in order to determine which data packets must be acknowl-
edged. For every sampled data packet, PAAI-1 requires each intermediate node and the destination

to return an onion report. The protocol details follow.

Stage 1: send data and decide whether to probe

Consider that S sends out a data packet m = (datal|timestamp) towards the destination. On
receiving m, an intermediate node f; first checks whether the embedded timestamp is recent. If
verification fails, then m is dropped. Otherwise, f; stores the identifier H[m] for m and starts a
wait timer ¢; = ro/2. Finally, m is forwarded toward the destination.

S then uses a secure sampling (SS) algorithm to determine whether it must send out a probe

for m. When given any input m, the SS algorithm must output “Yes” with a fixed probability p,

4.5. THE PAAI PROTOCOLS 29

where p is the probe frequency fixed at setup time. Such an algorithm can easily be constructed
by making use of a PRF keyed with a secret key known only to S. Note that such a mechanism is
necessary to prevent an adversary from correctly predicting whether or not a specific data packet
is sampled.

If the SS algorithm outputs “No”, then the protocol is terminated for the current round. Oth-
erwise, S executes the next stage of the protocol. In the following, it is implicit that a node f;

accepts a packet (probe or ack) iff it contains a data packet identifier already stored at f;.

Stage 2: probe

S sends out a probe ¢ = H[m] towards the destination. The probe contains the identifier H [m]
for the data packet m sent earlier. On receiving a probe, an intermediate node f; starts a wait-
timer t; = r;, forwards the probe towards the destination, and moves to the next stage. Note
that, in practice, the probe frequency p will be set to a very low value. Therefore, if we use
unauthenticated probes, an adversary could potentially waste a lot of communication power of the
intermediate nodes by sending bogus probes. As a countermeasure, one could use authenticated

probe packets, where a chain of MACs (one for each intermediate node) is attached to each probe.

Stage 3: acknowledge

In this stage, the destination f; and intermediate nodes must return an onion report to 5. Ideally,
the onion report must either originate at the destination, or at the upstream node of the link where
m; was dropped. To this end, we employ the following rules: (i) If no downstream ACK is received
within the wait time ¢;, f; originates an onion report A; = MACk . (i||H [m]). (ii) Otherwise, on
receiving a downstream ACK within the wait-time, f; sets the local report R; to be (i||H[m])
to create an onion report A; as explained earlier in Section 4.2. Finally, f; sends out an ACK

a; = (H[m]||A;) towards S.

Stage 4: score

Upon receiving the ACK containing the onion report from fi, S can sequentially verify each report

embedded in it. For some i < d, if the MAC from each intermediate node f;,j € [1,4] is valid

30 CHAPTER 4. PAAI

but the MAC from f;1; is invalid or not present in the final ack, then S identifies link I; as faulty
and adds one to its corruption score. In the case where S does not receive any report within a

wait-time, S can simply conclude that a packet corruption occurred at its downstream link [g.

Stage 5: identify

At any point in time, let s; be the corruption score of link /;, and n be the total number of probes
evoked by S so far. The average packet corruption rate p; for link /; so far can be computed as .
We set a per-link corruption rate threshold (denoted by Ty,.) according to the natural loss rate p;

(Tar > pi). Thenif p; > Ty,, S convicts [; as a malicious link. More details are given in Section 4.8.

4.6 PAAI-2

Now we turn to the other design alternative: probabilistically sampling a subset of intermediate
nodes which must return an ack. We propose PAAI-2 where only one intermediate node is selected
to return a report for every data packet. We remark that the strategy of selecting a subset of
intermediate nodes which must return an ACK tends to be vulnerable to selective dropping attacks
(see Section 4.4). Consequently, we find that PAAI-2 requires more algorithmic complexity but
achieves a higher detection delay than PAAI-1.

Stage 1: send data and decide whether to probe

Consider that S sends out a data packet m = (data||timestamp) towards f;. On receiving m,
an intermediate node (including fy) first checks whether the embedded timestamp is recent. If
verification fails, then m is dropped. Otherwise, f; stores the identifier H[m| for m and starts a
wait timer t; = r;. Finally, m is forwarded toward the destination.

On receiving m, fy creates a report A; = MACk_,(H [m]) and returns an ACK ag = (H [m]||.A;)
to S. On receiving an ACK from f; within the wait-time, an intermediate node f; stores a copy of
it, forwards it towards S, and starts a waiting time t; = rg — ;.

If S receives a valid ACK from f; within a waiting time, it concludes that m arrived unaltered

at fy and the protocol is terminated for the current round. Otherwise, S executes the next stage

4.6. PAAI-2 31

of the protocol. In the following, it is implicit that a node f; accepts a packet (probe or ack) iff it

contains a data packet identifier already stored at f;.

Stage 2: probe

S sends out a probe ¢ = (H[m]||Z) towards f;. The probe contains an identifier H [m| for m, and
a random challenge Z.

On receiving a probe within the wait-time, an intermediate node f; computes a PRF g, (-)-based

1
d—i+1°

predicate T; over input Z, where T; returns “true” with probability If the wait-timer expires,
then the state maintained for m is deleted. In what follows, we say that a node f; is sampled for a
data packet m if T; returns true on input R.

Finally, f; starts a wait-timer ¢; = r; and forwards the probe towards fy.

Stage 3: acknowledge

In this stage, the intermediate nodes must return an ACK to S. Ideally, the ACK must originate
at the upstream node of the link where m was corrupted. To this end, we employ the following
rules: (i) If an intermediate node f; does not receive any ACK from its downstream neighbor within
the wait-time ¢;, it generates an encrypted report A; = Ex_,(MACk_,(i||c||laq)). If no ACK was
received from f; in stage 1, then ag4 is set to L. (ii) Otherwise, on receiving a downstream ACK
within the wait-time, f; performs one of the following actions. If f; was sampled for m during stage
1, it generates an encrypted report A; (as described in previous case) to overwrite the report in
the received ack. Otherwise it re-encrypts the report in the received ack, i.e., A; = Eg_,(Ait1).
The security reason for the re-encryption is given in Section 4.7. Finally, f; sends out an ack

a; = (H[m]||A;) towards S.

Definition 6. We say that a node f. is selected for a data packet m, if (i) fe is sampled for m,
and (ii) fi,..., fe—1 are not sampled .

From the above definition, it follows that, for a given data packet, only one intermediate node
is selected uniformly at random with probability é. Observe that due to the ACK forwarding
mechanism described above, S expects an ACK that was generated at the selected node f. and

re-encrypted by each upstream node between f. and S.

32 CHAPTER 4. PAAI

Stage 4: score

In this stage, S assigns numerical scores to the links. On receiving an ACK from f1, S first decodes
the embedded report A7* by performing successive decryption using the keys K1, ..., Kqe in that
order, where K. is the secret key shared between S and f.. If the final decoded value matches the
expected value (MACg, (e||c)), then S decides that there was no malicious activity in the interval
[lo,le—1]; consequently, no scores are updated. Otherwise, S is convinced that there exists at least
one malicious link in the interval [lg,l.—1]. Since each link in this interval has equal probability of
being malicious, S adds 1 to the individual score of each link in the interval. No scores are updated

for the links in the interval [l¢, [q—1].

Stage 5: identify

S pre-determines a per-link corruption rate threshold T}, based on which it further sets a threshold
iy, for the end-to-end corruption rate of data packets. S constantly monitors the actual end-to-end
data packet corruption rate 1 based on the number of sent data packets and successfully received
ACKs from the destination. It is guaranteed that vy, < ¥ 4ff there is at least one link with a
corruption rate exceeding 7y,.. Then the source can compute per-link corruption rate based on the
accumulated data and identify the link with the excessive corruption rate. More details are given

in Section 4.8.

4.7 Security Properties

In order to prove our theoretical results in section, we require the PAAI protocols to exhibit some

key security properties. Below, we discuss four important security properties of the PAAI protocols.

Delayed Sampling. Recall that in PAAI-1, for a given data packet, S solicits an ACK only
with some probability p. We note that a malicious node f,, should not be able to decipher from
the content of a data packet m whether S solicits an ACK for m. Otherwise, on receiving m, if
fm determines that m need not be acknowledged, it could safely corrupt m without increasing its

probability of being identified. Now recall from Stage 3 of PAAI-2 that for a given data packet,

4.7. SECURITY PROPERTIES 33

a sampled node must overwrite the ACK received from its downstream neighbor with a fresh ack.
Hence, we note that on receiving a data packet m, if a malicious node could decipher from its content
whether it is sampled for m, then it could safely corrupt m without increasing its probability of
being identified.

To prevent the above attacks, in both PAAI protocols, a probe c is sent at a later time to request
ACKs for a data packet sent at an earlier time. In PAAI-1, the probe conveys the information that
the corresponding data packet must be acknowledged. In PAAI-2, the probe content determines
whether an intermediate node is sampled. However, in both PAAI protocols, a malicious node may
now try to wait for the arrival of the probe ¢ before forwarding m, in an attempt to decide whether
to drop m. Therefore, we require loose time-synchronization amongst the nodes in the network
such that the clock error between two adjacent nodes f; and f;11 is less than min(rg), i.e. the
minimum value of the round trip time from S to the destination. In this scenario, an intermediate

node would discard a data packet that carries an expired timestamp.

Security against selective packet corruption. It is easy to observe that the use of onion
report mechanism prevents any selective dropping attacks by an adversary in PAAI-1. Now recall
that in PAAI-2, if an intermediate node does not receive any ACK within a wait-time, it generates
a new ACK even if it is not sampled; otherwise an adversary could observe the ACK origin to
infer whether an intermediate node is sampled. Further, the re-encrypt or overwrite technique in
PAAI-2 ensures that a constant size ACK is forwarded at each hop. If this were not the case, then
an adversary who eavesdrops at all the links on the path to observe any difference in the size of
the ACK at various links can infer additional information about the origin of the ack. Furthermore
in PAAI-2, for a given data packet, the probed node is selected uniformly at random; otherwise
an adversarial node can simply preferentially perform data-plane attacks at nodes that are not as

likely to be sampled as others.

Adversary localization. In PAAI-1, for each sampled data packet (i.e., the data packet for
which an onion report is requested) that was corrupted, S can localize the location of the packet

corruption to a specific link from the verification of the onion report. Now recall that in PAAI-2,

34 CHAPTER 4. PAAI

for a given data packet, the ACK expected by S is the one that is generated by the selected node.
Therefore, if the selected node is located between S and the adversary, then the adversary cannot
influence the final ack received at S. This implies that if no ACK or an invalid ACK is received at

S, then there must exist at least one malicious link in the interval [lo, lc—1].

4.8 Theoretical Analysis

In this section, we theoretically analyze the guaranteed end-to-end forwarding correctness, detection
delay, communication and storage overhead of the proposed protocols. Proofs of the theorems and
corollaries are given in the appendix. The results are summarized in Table 4.1, which also gives
a clear comparison between the full-ack, PAAI and statistical FL protocol [21]. We compare our
PAALI protocols mainly with the statistical FL protocol because it is the state-of-the-art and the
only protocol with a rigorous theoretical analysis to the best of our knowledge. In Section 4.9, we

validate our theoretical results and present average-case results from simulations.

Definitions and notation. Let p; be the natural packet loss rate of link [;, and suppose that
pi’s are i.i.d. random variables with maximum value p. Let Ty denote the per-link corruption
rate threshold; and p; be the actual average corruption rate of link /;, including both natural and
malicious corruption. Let ¢ be the malicious end-to-end corruption rate, i.e., the corruption rate
due to malicious links. When the observed corruption rate value approaches its true value within
a small uncertainty interval, the fault localization false positive/negative rate is limited below a
certain threshold e. We call this the converged condition.

Let p be the probe frequency employed in PAAI-1. Further, in PAAI-2, let ¢, be the threshold
of the end-to-end data packet corruption rate. Let 7; be the number of times that node f; is selected

so far.

4.8.1 Bounding Malicious End-to-End Corruption Rate

For ease of understanding, all the theoretical bounds in this subsection are computed under the

converged condition. In Section 4.8.2 we derive the detection delay (number of data packets sent

4.8. THEORETICAL ANALYSIS 35

by the source required to reach converged condition) for the fulll ACK and PAAT schemes. We can
see the detection rates are high in the full ACK and PAAI-1 schemes, so the “unconverged” time
period is negligible.

For simplicity, we first assume that an adversary employs an identical corruption rate for all
types of packets (data, probe or ACK packets) at a controlled link /;, and thus the probability that
a packet of any kind is corrupted at [; is p}. The following theorem proves the (€2, 6)-guranteed
forwarding correctness (Definition 4) and (o, 3)s-forwarding security (Definition 5) of full-ACK,
PAAI-1, and PAAI-2. Since PAAI does not consider packet injection attacks, 3 is inapplicable
here. In addition, 2 equals to the number of malicious links in the network, which is explained
in Section 1.1. The following theorem also provides a general bound on the damage that an
adversary with an arbitrary number of links under its control can inflict to the network’s end-to-

end throughput.

Theorem 7. Forwarding Security and Correctness: Given a path of length d, the fractions
() of packets an adversary can drop on any link without being detected in full-ACK, PAAI-1, and
PAAIL-2 are: (i) a = Ty in fulllACK and PAAI-1, and (i) o =1 — ((11__573(21 in PAAI-2 by setting
the end-to-end corruption rate threshold 1y, as by = 1—(1—Ta)?¢, respectively. And the guaranteed
forwarding correctness is 6 = (1 — Tdr)d, given the drop detection threshold T, .

In general, an adversary in control of z intermediate links can cause (at most) the following
malicious end-to-end corruption rates without being detected: (i) ¢ = 2Ty, in fullACK and PAAI-
1, and (11) ¢ =1— (g:)’figgﬁ; in PAAI-2 by setting the end-to-end corruption rate threshold iy, as
Yo =1— (1 =Ty

It is possible that an adversary may choose to corrupt different types of packets at different
rates. However we can intuitively see that the adversary cannot gain any advantage by doing this,

because corrupting any type of packet will always result in an increase in the corruption score of

the link where the packet was corrupted.

Corollary 8. An adversary who employs different corruption rates for different types of packets

achieves the same maximum end-to-end corruption rate.

Corollary 9 presents the optimal strategy that an adversary can employ in order to cause

36 CHAPTER 4. PAAI

maximum degradation to the network throughput. The corresponding bounds on the degradation

in network throughput under the optimal strategy are also presented.

Corollary 9. Given a fixzed number of malicious links, the malicious end-to-end corruption rate
(increases approzimately linearly with the increase of natural loss rate p. Given a fized number
z of malicious links, the optimal strategy for the adversary in order to cause the maximum end-
to-end corruption rate across all the paths containing malicious links in the network is to deploy
one malicious link for one path. In this case, the total malicious corruption rate across all paths

containing compromised links increases linearly with z.

4.8.2 Detection Delay

We compute the detection delays and prove the (N, d)-data-plane fault localization (Definition 3)
for the full-ACK scheme and PAAIs in the following theorem.

Theorem 10. (N,¢)- Data-Plane Fault Localization: Given the threshold Ty = p+ € and the
allowed false positive rate §, the full-ACK and the PAAI protocols require the following number of
packets transmitted by the source to converge. (i) Ny =) for full-ACK scheme, (ii) No = %

8- (1—p)2Ta

for PAAI-1, where p is the probe frequency, and (iii) N3 = 24 Tg(i) -d -log(d) for PAAI-2.

Corollary 11 shows the sensitivity of the detection delay (achieved by the full-ACK and PAAI
protocols) to the various protocol parameters. As it turns out, PAAI-1 can achieve shorter detection

delays under various parameter settings (and thus, a wide range of empirical scenarios).

Corollary 11. For both the full-ACK scheme and PAAI-1, the allowed false positive rate § is the
dominating factor on their detection delays, while the network-related parameters (natural packet
loss rate p and path length d) have negligible influence on the detection delays. However, the
detection delay of PAAI-2 heavily depends on the path length d.

For example, if we set 6 = 0.03 and p = d%, and choose an arbitrary network setting where
Ty = 0.03, p = 0.01 and d = 6, then we have Ny = 1500, Ny = 5 x 10% and N3 = 6 x 10°; whereas
the detection delay in statistical FL protocol [21] is 2 x 107. Per Corollary 11, the detection delay
for PAAI-1 does not vary much given other network-related parameter settings. Table 4.1 compares

the detection delays achieved by the different protocols.

4.8. THEORETICAL ANALYSIS 37

Protocol Detection Delay | Communication Storage
worst ideal
in(2
Full-ACK 852-(1(—%))%1 O(1 + vd) O(2rov) O(rov)
In(%
PAAL1 pﬁ O(pd) O(ro(0.5 +p)v) O(ro(0.5 + p)v)
In(2
PAAI-2 24 18(652) . d(-llog(d) 0(12) O(2rov) O(rov)
Statistical FL [21] d? ’p’g O(+£57) O(prov) O(prov)
ns
2
Combination 1 p% O(p(1 +vad)) O(ro(0.5 4+ 2p)v) O(ro(0.5+ 2p)v)
2
Combination 2 | 2¢ 12(21)11 -d-log(d) O(p) O(ro(1 +p)v) O(rov)

Table 4.1: Detection rate and overhead comparison. The notation is given at the beginning of Sec-
tion 4.8. We translate the related results [21] using our notation. Combination 1 and Combination
2 are described in Section 4.11.

4.8.3 Communication Overhead

In this section we compute and compare the communication overhead incurred by the full-ACK and

the PAAI protocols for a given path of length d. The analysis results are presented in Table 4.1.

Full-ack. Recall from Section 4.3 that in the benign case where no packet corruption occurs, each
data packet requires one O(1)-sized ACK from the destination. When a packet corruption happens,
the source solicits a O(d)-sized onion report via a O(1)-sized probe packet. Therefore, given the

end-to-end corruption rate 1, the overall communication overhead per packet is O(1 4 dv)).

PAAI-1. Recall from Section 4.5.1 that for each sampled data packet, the source solicits one O(d)-
sized onion report (in case of authenticated probes, the size of a probe packet is also O(d)). Since
a given data packet is sampled only with probability p, the amortized communication overhead
per data packet is O(pd). By setting p = d% we can get O(%) overall communication overhead
per packet. Note that the above results apply regardless of whether there are packet corruption

activities or not.

PAAI-2. Recall from Section 4.6 that each intermediate node f; on the forwarding path either

generates a new ACK or re-encrypts the ACK received from downstream. Therefore, an ACK packet

38 CHAPTER 4. PAAI

traversing the path has a constant size (O(1)) at any point in time. Further, PAAI-2 requires one
O(1)-sized probe packet per data packet sent by the source. Note that the above results apply

regardless of whether there are packet corruption activities or not.

4.8.4 Storage Overhead

Storage is a major concern in certain resource-constrained networks. An adversary may even exploit
the storage limitation and manipulate packet corruption activities to intentionally create the worst
case condition for the storage overhead of an fault localization protocol. On the other hand, in
practical settings, including when the adversary has been identified (and bypassed), excessive packet
corruption is infrequent (thus the worst cases do not arise frequently). A high storage overhead in
such an ideal case is undesirable. Therefore, in this section we analyze and compare the storage
overhead in both worst and ideal cases for the full-ACK scheme and PAAIs. In Section 4.9 we
present the average-case storage overhead via simulations.

In the following, let v be the number of data packets that .S sends out per unit time. Recall that
r; denotes the round trip time between node f; and f;. The results given below are summarized in

Table 4.1.

Full-ack. In the worst case, on receiving a data packet m, an intermediate node f; needs to first
wait 7o time for a probe from the source, and r; time for an ACK from f;11. Therefore f; can at
most store O(2rgr) packets at a time. In the ideal case without packet drop, f; only needs to store

a packet for r; time before receiving an ACK from f; ;.

PAAI-1. If a data packet m is not selected for a probe, f; needs to wait % time for a probe
packet from the source. If m is selected for a probe, in the worst case f; needs to further wait r;
time for an ACK from f;41; whereas in the ideal case, f; needs to further wait r; time for the ACK
from f;11. Therefore given the probe frequency p, f; can at most store (0.5 + p)rg x v packets at a

time in both the worst and ideal cases.

PAAI-2. In the worst case, on receiving m, f; waits r; time for an ACK from f;1q, o — r; time

for a probe from the source, and r; time for an ACK from f;11 again, which gives the worst case

4.9. SIMULATION RESULTS AND ANALYSIS 39

storage overhead O(2rgv). In the ideal case, f; only needs to wait r; time for the ACK from fj;1.

Therefore in ideal case the storage bound is O(rg x v) packets at a time.

4.9 Simulation Results and Analysis

We implement a simulator to study the average-case performance of the proposed protocols, and
also contrast the average-case results with the theoretical results (as listed in Table 4.2). Through
simulations, we not only validate our theoretical results and make comparisons, but also derive new

observations missing from theoretical analysis by itself.

4.9.1 Methodology

Adversary. Note that, in practice, an adversary usually directly compromises a node, corrupting
the traffic lowing through that node at the adversary’s will. We emulate such a realistic scenario
by setting malicious nodes in the path to perform malicious packet corruption activity. We simulate
the adversary’s optimal strategy by deploying exactly one malicious node on the path (Corollary 8).
Recall that, in our protocols, if a malicious node corrupts packets, it can manifest high corruption
rates only on its adjacent links. We also set the adversary to employ the following tactics: (i) Since
the full-ACK scheme and PAAI protocols ensure that the adversary cannot gain benefit by cor-
rupting different packets at different rates (Corollary 8), the adversary corrupts all types of packets
at the same rate. (ii) Without loss of generality, we assume that, when the malicious node receives
but corrupts a data packet, on receiving an ACK request it will still send back the ACK as if it
were functioning correctly. In this way, a malicious node f;’s corruption activity always increases

the corruption score of its downstream adjacent link [;. Therefore [; is the target to identify.

Topology and Parameters. Recall the example topology given in Figure 2.1. We simulate the
proposed protocols on one path with various lengths and varying locations of the malicious link.
Due to lack of space, here we only present the results for an arbitrary setting where d = 6 and fy is
set to be the node controlled by the adversary (results from other settings present similar trends and

conclusions). According to our aforementioned adversarial setting, the malicious packet corruption

40 CHAPTER 4. PAAI

will directly increase l4’s corruption score; thus I is the target link for our fault localization protocols
to identify. In the following we also call [4 as the malicious link [3;. We follow the example
parameter settings used in our previous theoretical analysis, i.e., we set benign per-link loss rate
threshold p = 0.01 and malicious per-link corruption rate Ty, = 0.03 (we implement this by setting
a corruption rate of 0.02 for the malicious node fy). However, recall from Corollary 11 and Table 4.1
that the performance of PAAI-1 does not degrade in the case of longer paths and higher natural
loss rates. Each packet traversing a link (or the malicious node) has an independent probability
of being corrupted bi-directionally below the corresponding corruption rate threshold of that link
(or the malicious node). We also set per-link bi-directional latency distributed within 0 to 5 ms

uniformly at random.

Evaluation Metrics. We evaluate (i) fault localization false positive and negative rates (which
directly relate to detection delays) and (ii) storage overhead of each node for the fullACK and
PAAI protocols. We did not simulate the communication overhead because the theoretical analysis
already gives straightforward and tightly bounded results. We run the simulation 10000 times for
each protocol to calculate the false positive and false negative rates and plot their dynamics over
time. Recall from Table 4.1 that storage overhead directly depends on packet origination rate; as
such we evaluate it for different orders of origination rate: 1000 and 100 data packets per second
(the storage overhead under a source’s sending rate of 10 packets per second is too low to exhibit

any insightful traits).

4.9.2 Results and Analysis

As presented below, we are able to both validate our theoretical results and to derive new and

interesting observations from the simulation results.

False positive and negative rates. Figure 4.1 plots the false positive and false negative rates
observed from 10000 simulation runs for each protocol. From the figure we can observe that, given
the same false positive threshold 6 = 0.03, the detection delays are nearly half of the corresponding

theoretical bounds. We summarize the comparisons between theoretical and experimental results in

4.9. SIMULATION RESULTS AND ANALYSIS

41

False Positive / Negative

w

10

0

(a) FulllACK scheme. We use logarithmic scale for the

y-axis.

10°

-1

10

10

False Positive / Negative

10°°

Malicious Link Lm

N

500 1000 1500 2000 2500
Time (No. of Packets)

: Malicious Link Lm
Sy

-, Benign Link LO

o
-

A .
N -

- A
s u

Benign Link

1 2 " 3; 4 5
Time (No. of Packets) M 104

(b) PAAI-1. We use logarithmic scale for the y-axis.

0

10
o alicious Link Lm
= 14 V’ PRY
® . -1 Vi Benign Link L5
g 10 A"\ . 1 S
z N
g
i) 4
& Benign Link LO
-2 'I
©10 °r : i g
@ T
& o,
by
L}
¥
)
:
-3
10 : X
10 10* 0 ¥ 10’

1 10
Time (No. of Packets)

(c) PAAI-2. We use logarithmic scale for both axes.

Figure 4.1: False positive and negative rates. The time is measured by the number of packets sent

by the source.

42 CHAPTER 4. PAAI

0.45 : : ;
—-©— Full-ACK w/o FL
0.4+ —— PAAI-1w/o FL |
—A— PAAI-2 w/o FL
0.35- -%- Full-FACKw/ FL |
(0]
g 0.3
'_
5 0.25
c
2 0.2
(8]
©
- 0.15

0.1

0 10 20 30 40 50
Storage (No. of Packets)

(a) Sending rate = 1000 pkt/sec.

0.9 : ‘
-6~ Full-ACK w/o FL

0.8F > PAAI-1w/oFL H
—£— PAAI-2 w/o FL
0.7 -%- Full-FACK w/ FL

0.5¢

0.4F

Fraction of Time

0.2r

0.1r

10 12

6
Storage (No. of Packets)

(b) Sending rate = 100 pkt/sec.
45

40(l\fde 1

Node 3

N N w w
o [)] o al
T T

Storage (No. of Packets)
=
al

Node 3

=
o

[¢)]

. 1000
Time (No. of Packets)

0

0 500 1500 2000

(c) Storage traits with sending rate = 1000 pkt/sec in full-
ACK scheme.

Figure 4.2: Storage overhead. The storage is measured by the number of packets stored at any
given time.

4.9. SIMULATION RESULTS AND ANALYSIS 43

Protocol Detection Delay (minutes) | Storage (# pkt)
bound average bound average
Full-ACK 0.25 0.17 12 3.2
PAAI-1 9 4.2 3.2 3.0
PAAI-2 100 50 12 6.4
Statistical FL [21] | 3333 N/A <1 N/A

Table 4.2: Comparison of detection rates between theoretical results and simulation results. The
source’s sending rate is set to 100 data packets per second. The storage overhead is the average
number of packets stored in f; with the presence of a malicious link I4.

Table 4.2. In addition, we can see that in PAAI-2, the source takes more time to accurately observe
the per-link corruption rate for a link farther away from the source. This fact can be theoretically

proved via the mathematical formula (we defer the proof to the full version).

Storage overhead. We launch two different sets of simulations to study the characteristics of
storage overhead in fault localization protocols. In each scenario if a fault localization protocol
reaches the converged condition (after 103, 2.5 x 10* and 3 x 10° data packets sent by the source in
full-ack, PAAI-1 and PAAI-2 schemes, respectively), we assume the source bypasses the identified
l4 by replacing f; with a honest node fAi to connect nodes f3 and f5 (we implement this in the
simulation by resetting f4’s corruption rate to zero). We label cases where adversary identification
comes into play as “w/ FL”. We also simulate the case where the existing adversary is not identified
and bypassed, which is labeled as “w/o FL”.

We first investigate the storage overhead of a single node f; (which has the highest storage
overhead, as we show later) under different source’s sending rates (1000 and 100 data packets per
second). We first let the source send 2000 data packets in total, within which only the full-ACK
scheme can reach the converged condition. However, we present the results for the full-ACK scheme
in both “w/ FL” and “w/o FL” cases to compare with the PAAI protocols. Figures 4.2(a) and
4.2(b) present fi’s storage overhead when the source’s sending rate is 1000 or 100 data packets
per second, respectively. It is apparent that the storage overhead decreases with the lower sending
rate. We further observe that, in the “w/o FL case, PAAI-1 possesses the lowest storage overhead;

and the storage overhead of each protocol increases roughly linearly with the source’s sending rate.

44 CHAPTER 4. PAAI

This fact complies with our theoretical bounds (Table 4.1). In addition, it is clear that the full-
ACK scheme achieves a lower storage overhead after bypassing the adversary (“w/ FL”). Therefore,
though the full-ACK scheme presents the highest theoretical bound of worst-case storage overhead,
it achieves the lowest storage overhead in practice when fault localization comes into play. This
observation implies that, in essence, a protocol with a lower detection delay benefits more in the
ideal cases where packet corruption activities are rare after the adversary is quickly bypassed.

In another simulation, we investigate the storage overhead of nodes at different locations in the
path and the influence of fault localization on storage overhead. Since the fulllACK scheme has
the lowest detection delay, we only present the simulation results of the full-ACK scheme due to
space limitations (the results derived from other protocols present common trends). To make the
influence of fault localization more graphically obvious, we enlarge the corruption rate of f4 to 0.1.
In this simulation we let the source send 2000 data packets at the rate of 1000 data packets per
second, and bypass the adversary after sending 1000 data packets. Figure 4.2(c) plots the resulting
dynamics of the storage overhead of nodes fi, f3 and f5, from which we can observe that, nodes
closer to the destination have lower storage overhead and are less affected after adversarial packet

corruption. This observation can be explained according to the theoretical analysis in Section 4.8.4.

4.10 Summary of Results

From the theoretical and experimental results, we can make the following major observations:

Theory vs. Simulation. The average-case results derived from our simulations are within the
corresponding theoretical bounds. For the detection delay, the average-case results are nearly two
times better than the corresponding theoretical results. For the storage overhead, the average-
case result of the full-ACK scheme is far smaller than its worst-case bound, thanks to its fast
convergence. The PAAI-1 protocol also presents low storage overhead, even with the presence of

an adversary.

Practicality. We make the following conclusions about the trade-off between the three perfor-

mance metrics achieved by the various protocols: (i) The fulllACK scheme offers the shortest

4.11. COMBINATION 45

detection delay and incurs a low storage overhead, but at the cost of impractical communication
overhead. (ii) The PAAI-1 protocol offers a practical (though not the best) detection delay and
communication and storage overhead simultaneously. More specifically, given that each data packet
is 1.5KB (which is the currently popular MTU standard), per Figures 4.2(a) and 4.2(b), PAAI-1
introduces less than 45KB additional storage overhead even at its peak value under an intense
packet sending rate of 1.5MB per second, and around 6KB at its peak value under a packet send-
ing rate of 150KB per second. Furthermore, by setting the sampling rate p = #, PAAI-1 poses
only around 3% additional communication overhead in a path with length d = 6, per Table 4.1;
while the detection delay is 45 minutes given by the theoretical bound, and around 20 minutes on
average per Table 4.2 (in previous analysis and simulation we set p = d%) (iii) The PAAI-2 proto-
col presents worse performance compared to the full-ACK scheme and PAAI-1 protocol, but still
presents a more practical detection delay compared to the statistical FL scheme [21] (see below).
(iv) The statistical FL protocol [21] incurs almost optimal communication and storage overhead,
but achieves a rather impractical detection delay — nearly 50 hours in the worst case (Table 4.2).
We conclude that PAAI-1 offers the most desirable trade-off between the performance metrics. In

contrast, all the other protocols only optimize at most two performance metrics at the cost of

deteriorating the other metric(s) undesirably.

4.11 Combination

So far we have explored three different basic approaches, namely: (i) every node acknowledges
every corrupted data packet (exemplified by the full-ACK scheme), (ii) every node acknowledges a
selected fraction of data packets (instantiated by the PAAI-1 protocol), and (iii) a selected subset
of nodes acknowledge every data packet (represented by the PAAI-2 protocol). Intuitively, it might
be tempting to consider combinations of the above basic approaches in order to improve upon
a certain performance metric. However, as we demonstrate below, the combinations may not
necessarily achieve a better trade-off between the performance metrics as compared to the basic
approaches, and may therefore be unfavorable in practice. Specifically, although a combination

may further optimize a certain performance metric, other metrics can degrade undesirably at the

46 CHAPTER 4. PAAI

same time. Due to lack of space, we will briefly discuss two sample combinations and analyze the

corresponding tradeoff.

Combination 1. By combining the basic approaches (a) and (b) above, we can design a protocol
where every node must acknowledge a selected fraction of corrupted data packets. The PAAI-
1 protocol can be easily modified to follow the above approach. Specifically, instead of using a
secret key known only to S to implement the probe function, we will use the secret key Ky shared
between S and fy. Now, on receiving a data packet, f; can independently decide whether it must
be acknowledged. For a sampled data packet m, .S will send out a probe only if it fails to receive an
ack from f;. The remaining details follow from PAAI-1. While retaining the same detection delay
as PAAI-1, the new protocol further reduces the communication overhead, since S now solicits an
onion report for only a corrupted sampled packet (instead of every sampled packet in PAAI-1).
However, the storage overhead increases: in the worst case, on receiving m, each node must first
wait an additional rg time for an ACK from f;, such waiting time which was not required in PAAI-1.

Its performance is summarized in Table 4.1.

Combination 2. By combining the basic approaches (b) and (c) above, we can design a protocol
where one selected node acknowledges a selected fraction of data packets. Similar to Combination
1, we will use a probe function that is implemented using the secret key K;. The data packet
structure will be similar to that in PAAI-2. Now, on receiving a data packet, f; can independently
decide whether it must be acknowledged. If an intermediate node receives a wvalid ACK from
fa, it immediately knows that the packet was sampled and that there will be no further probe.
For a sampled data packet, S will send out a probe only if it fails to receive an ACK from fj.
The remaining details follow from PAAI-2. It is intuitive to see the new protocol incurs lower
communication overhead than both PAAI-1 and PAAI-2, but at the price of a longer detection

delay. Its performance is summarized in Table 4.1.

4.12. SUMMARY 47

4.12 Summary

In this chapter, we address the problem of designing a secure fault localization protocol that offers
a practical trade-off between detection delay, communication overhead, and storage overhead. To
this end, we systematically explore the design space of path-based fault localization protocols where
an ACK packet acknowledges a single data packet, and propose a set of basic protocols where each
protocol exemplifies a design dimension. Based on our theoretical analysis and simulation results,
we conclude that the proposed PAAI-1 protocol achieves the best trade-off, and as a result is
more practical than the other protocols. We note, however, that PAAI bears some limitations in
its extensibility and generality; e.g., both PAAI-1 and PAAI-2 require loose time-synchronization,
which, although a viable assumption for many network settings, might limit their applicability. We

address these limitations in the next chapter.

48

CHAPTER 4. PAAI

Chapter 5

Short MAC

Existing fault localization protocols cannot achieve a practical tradeoff between security and effi-
ciency. For example, they require unacceptably long detection delays and require monitored flows to
be impractically long-lived. Though PAAT improves the practicality of fault localization compared
to prior work, in both PAAI-1 and PAAI-2, an ACK packet sent by a router only acknowledges
a single corresponding packet. Intuitively, acknowledging a set of packets with one ACK packet
might further reduce the communication overhead, eliminate the need of packet sampling, and
eventually reduce the detection delay. In this chapter, we propose an efficient path-based fault
localization protocol called ShortMAC, in which routers locally cache fingerprints for a set of pack-
ets it receives, and periodically send the fingerprints with a single ACK packet to the source. By
leveraging probabilistic packet authentication and efficient fingerprinting data structure, ShortMAC

achieves 100 — 10000 times lower detection delay and overhead than related work.

5.1 Introduction

In this chapter, we propose ShortMAC, an efficient fault localization protocol to provide a theoret-
ically proven guarantee on end-to-end data-plane packet delivery even in the presence of sophisti-
cated adversaries. More specifically, we aim to guarantee that, given a correct routing infrastruc-
ture, a benign source node can quickly find a non-faulty path along which a very high fraction of

packets can be correctly delivered. Our key insights are two-fold:

49

50 CHAPTER 5. SHORTMAC

Insight 1. We first observe that localizing data-plane faults along a communication path can be
reduced to monitoring packet count (number of received packets) and packet content (payload of
received packets) at each router on that path. Furthermore, if packets can be efficiently authen-
ticated, packet count also becomes a verifiable measure of packet content, because forged packets
(with invalid contents) will be dropped by the routers and manifest an observable deviation in the
packet count. Thus, routers can dramatically reduce storage overhead by storing counters instead

of packet contents.

Insight 2. We also observe that we can achieve a high packet delivery guarantee via fault lo-
calization by limiting the amount of malicious packet drops/modifications, instead of perfectly
detecting each single malicious activity. Furthermore, strong per-packet authentication to achieve
perfect detection of every single bogus packet is unnecessary for limiting the adversary’s ability to
modify/inject bogus packets. Instead, the source can use much shorter packet-dependent random
integrity bits as a weak authenticator for each packet such that each forged packet has a non-trivial
probability to be detected. In this way, if a malicious node modifies or injects more than a thresh-
old number of (e.g., tens of) packets, the malicious activity will cause a detectable deviation on
the counter values maintained at different routers. Essentially, Short MAC traps an attacker into a
dilemma: if the attacker inflicts damage worse than a threshold, it will be detected, which may lead
to removal from the network; otherwise, the damage is limited and thus a guarantee on data-plane

packet delivery is achieved.

Contributions. 1) We propose a data-plane fault localization protocol Short MAC that achieves
high security assurance with 100 - 10000 times lower detection delay and storage overhead than
related work.

2) We derive a provable lower bound on successful end-to-end packet forwarding rate, by limiting
adversarial activities instead of perfectly detecting every single malicious action which would incur
high protocol overhead.

3) We theoretically derive the performance bounds of ShortMAC and evaluate ShortMAC via

SSFNet-based [6] simulation and Linux/Click router implementation. Our implementation and

5.2. SHORTMAC OVERVIEW ol

evaluation results show that ShortMAC causes negligible throughput and latency costs while re-

taining a high level of security.

5.2 ShortMAC Overview

Short MAC monitors both the packet count and content at each hop. Specifically, a router maintains
per-path counters to record the number of received data packets originated from the source in the
current epoch. To ensure that the packet count is a verifiable measure of the desired monitoring
task, we require that both packet modification and injection by malicious (colluding) routers affect
counter values at benign nodes.

We first introduce the concept of an epoch to facilitate our protocol design and formal analysis:

Definition 12. An end-to-end communication is composed of a set of consecutive epochs. An epoch
for an end-to-end path is defined as the duration of transmitting a sequence of N data packets by
a source S toward a destination fg along that path. The epochs are asynchronous among different

paths.

At the beginning of each epoch denoted by e, a source node S selects a path p and starts
sending packets along p, with each packet carrying several ShortMAC authentication bits. The
routers verify the authentication bits in each received packet based on the symmetric key shared
with the source node, increment locally stored counters for p accordingly, and forward only the
authentic packets. Due to the Short MAC authentication bits, modified /injected packets can result
in an observable deviation in the counter values which enable fault localization by the source at
the end of each epoch.

At the end of each epoch e, the source S retrieves the counter reports from all routers and
the destination in p for ey, via a secure channel as Section 5.3 will describe. S then performs fault
detection based on the retrieved counters, and bypasses the detected faulty link (if any) by finding
another path excluding the identified faulty link (e.g., via source routing, path splicing [72], pathlet
routing [35], or SCION routing [96]). The detection result is only used by S itself for selecting
its own routing paths, instead of being shared with other nodes which is susceptible to framing

attacks.

52 CHAPTER 5. SHORTMAC

Although the high-level epoch-based protocol flow (nodes periodically send certain locally logged
traffic summaries to the source) bears great similarity with Fatih [71], AudIt [14], and Statistical
FL with sketch [21], both Fatih and AudIt use simple counters or Bloom Filters without keyed
hash functions as the traffic summaries, thus remaining vulnerable to packet modification/injection
attacks. In addition, the sketch-based packet fingerprints used in Statistical FL. consume several
hundreds of bytes for each path. In contrast, ShortMAC efficiently tackles packet modification

attacks with only several-byte counters as shown below.

5.2.1 ShortMAC Packet Authentication

Our approach is to turn packet count into a reliable measure of packet content so that routers
only need to store space-efficient counters. To this end, the integrity of the source’s data packets
must be ensured in order to detect malicious packet modification during the forwarding path;
otherwise, a malicious router can always perform packet modification attacks without affecting the
counter values, or inject bogus packets on behalf of the source to manipulate the counter values
of the reporting routers. Hence, we reduce the problem to how the source node can authenticate
its packets to all the routers in the path. However, traditional broadcast authentication schemes
provide high authenticity for every single message, which is neither necessary nor practical in our
setting where the messages are line-rate packets:

1) Not practical: On one hand, perfectly ensuring the authenticity of every single data packet
introduces high overhead in a high-speed network. For example, digital signatures or one-time sig-
natures for per-packet authentication is either computationally expensive or bandwidth-exhaustive,
and using amortized signatures would either fail in the presence of packet loss or incur high commu-
nication overhead [63]. Attaching a Message Authentication Code (MAC) for each node along the
path (as is used by Avramopoulos et al. [17]) is too bandwidth-expensive (e.g., reserving a 160-bit
MAC space for each hop). In addition, TESLA authentication [77] would require time synchro-
nization and routers to cache the received packets until the authentication key is later disclosed
(longer than the end-to-end path latency). Finally, some recently proposed multicast/broadcast
authentication schemes still require considerable communication overhead (e.g., up to hundreds of

bytes per packet [64]) or multiple rounds for authenticating a message [29].

5.2. SHORTMAC OVERVIEW 53

2) Not necessary: On the other hand, as we aim to limit the damage the adversary can inflict
for a lower-bound guarantee on data-plane packet delivery, perfect per-packet authenticity is not

necessary. Instead, our goal only requires the authenticity of a large fraction of data packets.

Short MAC approach. Based on these observations, we propose ShortMAC, a light-weight
scheme trading per-hop overhead with the adversary’s ability to forge only a few (e.g., tens of)
packets. More specifically, in Short MAC, the source attaches to each packet a k-bit random nonce,
called k-bit MAC, for each node on the path, where the parameter k is significantly less than the
length of a typical MAC (e.g., k = 2). To construct the k-bit MAC for f;, the source S uses a
Pseudo-Random Function (PRF) which constructs a k-bit string as a function of the packet m and
key K; shared between S and f;. We rely on the result that the output k-bit MAC is indistin-
guishable from a random k-bit string to any observer without the secret key K; [67]. Each router
fi maintains two path-specific counters C’igwd and C% to record the numbers of received packets
along that path with correct and incorrect k-bit MACs, respectively, in the current epoch. Such
a scheme considerably reduces communication overhead compared to attaching entire MACs while

retaining high security assurance and communication throughput, as shown later.

5.2.2 ShortMAC Example

We present a toy example in Figure 5.1 to provide intuition on how ShortMAC enables data-plane
fault localization. Suppose the source node sends out 1000 packets in a certain epoch. The source
uses a PRF taking a secret key as input which can map a packet into two bits (called 2-bit MAC)
uniformly at random to anyone without knowledge of the secret key. The source computes the PRF

four times for each packet, taking as input the epoch symmetric key shared with fi, f2, f3, and the

c9°°d — 997 (Cgood C9°%¢ = 923 C9°°% = 904

= —
send 1C{’“d =0 ngad = bad =74 (C%d =19
1000 pkts
Source . f1 2 f3 . Destination
' naturally 1drop 100 pkts ‘naturally
Ydrop 3 pkts Yinject 100 pkts Ydrop 2 pkts

Figure 5.1: Fault localization example with ShortMAC using 2-bit MAC. f5 is malicious.

54 CHAPTER 5. SHORTMAC

destination, respectively. Then the source attaches the resulting four 2-bit MACs to each packet.
Among the 1000 packets, suppose three packets are spontaneously dropped on the first link, and
router f; receives the remaining 997 packets. f; computes the PRF on each of the received packets
taking as input the epoch symmetric key shared with the source, and compares the resulting
2-bit MACs with the one embedded in each packet. All verifications are successful, so f1 has
C’i]wd = 997 and C{’“d = 0. Suppose the malicious router fo drops 100 good packets and injects
100 malicious packets. For each injected packet, fs needs to forge 2-bit MACs for both f3 and
the destination that “authenticate” the fabricated data content. However, since fs does not know
the corresponding epoch symmetric keys of f3 and the destination, fo can only guess the 2-bit
MAC:s for its injected packets. Since the 2-bit MACs produced by the PRF are indistinguishable
from random bits, fo can correctly guess each 2-bit MAC with probability %. Since fo must
guess two correct MACs, each forged packet will be accepted by the destination with probability
%6. Suppose next that 26 of the 100 2-bit MACs that fs forged for fs3 happen to be valid with
respect to the the malicious data content. f3 thus computes C’é’“d = 100 — 26 = 74 and C’gwd =
997 — 100 (dropped legitimate packets) + 26 (bogus but undetected packets) = 923. Similarly, we

can analyze the counters for the destination in Figure 5.1, assuming 7 out of the 26 received bogus

packets happen to be consistent with their 2-bit MACs at the destination.

5.2.3 Fault Localization and Guaranteed @

At the end of each epoch, routers and the destination report their counter values to the source using
a secure transmission approach (detailed in Section 5.3). The source can identify excessive packet
drops between f,,, and fp,11 if the C’f,fﬁ value of f,,11 is abnormally lower than that of f,, based
on the drop detection threshold Ty, that is carefully set based on the customized acceptable per-
link drop rate. Moreover, this scheme can successfully bound the total number of spurious packets
with fabricated k-bit MACs that the adversary can inject, because at least one of the downstream
recipient routers will detect the inconsistency of the k-bit MACs with a non-trivial probability, thus
having a non-zero C**? value. For example in Figure 5.1, although f; can claim any values for its
own counters, no matter what values fs claims, the source can notice excessive packet loss and a

large number of fake packets either between fi and fs, or fo and f3. Hence one of fy’s malicious

5.3. SHORTMAC DETAILS 95

links will be detected by the source.

Once the source S bypasses all malicious links identified by ShortMAC, S can find a working
path with no excessive packet corruption at any link, thus achieving a guaranteed successful for-
warding rate 6. With secure fault localization, a source can find a working path after exploring
at most) paths, where €2 is the number of malicious links in the network. In contrast, with only
end-to-end path monitoring, a source may explore a number of paths exponential to §2 as we showed

in Section 1.1.

5.3 ShortMAC Details

In this section we describe the Short MAC protocol in detail, where the source can either guarantee
that a high fraction 6 of its data has been correctly forwarded if no malicious activities are detected,
or can bypass the faulty links and find a working path after exploring a number of paths linear to
the number of faulty links.! In the following, we first formalize the ShortMAC packet format and

then detail the protocol.

5.3.1 ShortMAC Packet Format

A source node S adds a trailer to each data packet it sends:
(5.1) trailer = (SN, My, ..., My),

where SN is a per-path sequence number to make each packet unique along the same path to prevent
packet replay attacks, and M, denotes the k-bit MAC computed for f;, which is constructed in a

recursive way starting from fy:

Mg — PRFy.,(IPimyar||SN||TTLy)

Md—l — PRFK.(d,l) (IPin?)ar||SN||TTLd—1||Md)

s

(5.2)

M — PRFg,,(IPinvar[|SN||TTLi[[Mzl - . . [Ma)

'Recall that forwarding fault localization protocols protocols can only identify faulty links, rather than identifying
the nodes [21]. However, given that a malicious node has a limited degree, after bypassing all its malicious links the
source can eventually bypass that node.

56 CHAPTER 5. SHORTMAC

TTL=64 TTL=2 TTL=1 ‘dropdueto
=2 toTTL=1toTTL =011 =0

Source S 2 I3 Destination

maliciously detects bad M5
modifies M3 increases C3*

Figure 5.2: Illustration of framing attacks. f; is malicious.

where “||” denotes concatenation and PRFk_(-) denotes a PRF keyed by the symmetric key Kg;
shared between S and f;. As previously discussed, the output of this PRF can be guessed correctly

with probability no larger than 2% by anyone without the secret key K, [67]. In addition,

1) [Pjar denotes the invariant portion of the original IP packet that should not be changed
at each router during forwarding, including the packet payload and IP headers excluding variable
fields such as TTL, RecordRoute IP option, Timestamp IP option etc. If these invariant fields
are unexpectedly changed during forwarding, each downstream router can detect inconsistency
between the (modified) packet and embedded k-bit MAC with a non-trivial probability 1 — 2% and

thus increase its C?®? counter.

2) TTL; denotes the expected TTL value at router i. Without authenticating this field in the
k-bit MAC, a malicious router can strategically lower the TTL field to cause packet drop at a
remote downstream router due to zero TTL value, thus performing framing attacks. For example
in Figure 5.2, if M; in Eq.(5.2) had not authenticated the TTL field, f; can maliciously change
the TTL value in the packets to 2, instead of decrementing it by 1. This causes the packets to be
dropped at f3, thus framing the link between fs and fs.

3) M, also authenticates the downstream M1, ..., My, so that if a malicious router f,, changes
any of these downstream k-bit MACs, f; can observe the inconsistency in M; with a probability
1-— 2% and increase its C’f’“d value. Otherwise, the protocol is vulnerable to framing attacks. For
example in Figure 5.2, if M; in Eq.(5.2) had not authenticated the downstream k—bit MAC field,

f1 can maliciously modify Ms in the packets which causes f3 to detect inconsistent Mg with a

non-trivial probability and increase C’g“d, thus framing the link between fo and f3.

5.3. SHORTMAC DETAILS o7

5.3.2 Protocol Detalils

Formally, ShortMAC consists of Request, Report, Identify, Bypass and Send stages, described as

follows.

Stage 1: Request with hop-by-hop reliable transmission

At the end of each epoch ey (i.e., after sending every N data packets), the source S will send a
request packet, denoted by request = (5,p), along the path p = (fi,..., f4) used in epoch e.
This r equest asks each router f; and the destination f; to report their counter values (C’f’“d and
CfOOd) along the reverse of path p. Then S expects these counter reports in Acknowledgment (ACK)
packets from all the nodes in p containing the requested information authenticated with each node’s
K.

Note that a spontaneous loss of request or ACK packets will prevent S from learning the
counter values by certain routers in the previous epoch. To preclude such damage, we use the
following hop-by-hop reliable transmission approach: when f; forwards either a r equest or
an ACK packet to its neighbor, f; tries up to r times (e.g., 7 = 5) until it gets a confirmation from
the neighbor. In this way, the failure of receiving a r equest or ACK packet can only indicate
malicious drops — more precisely, with the probability of 1 — p", where p is the natural loss rate
of a link. Then thanks to the Onion ACK approach presented below, the source can immediately
identify a malicious link that drops or modifies r equest or ACK packets; hence the r equest

packets do not need to be authenticated by the source as we show below.

Stage 2: Report with Onion ACK

Upon receiving a r equest , f; starts a timer whose value is the maximum round trip time from f;

to the destination.? At the same time, f; constructs its local report R;:

(5.3) Ri = (fi.p.C{ Cr?)

2We can expect a reasonable upper bound of link latency in benign cases, which can be used to compute the
maximum round trip time according to the hop count from f; to the destination. Avramopolous et al. [17] first
introduced the use of such a timer.

58 CHAPTER 5. SHORTMAC

where f; is the node id, p is the requested path, and CigOOd and Cf’“d are the counter values from
the previous epoch. Each router finds C’fOOd and C’f’ad corresponding to path p based on the source

and destination IDs in p (assuming single path routing). Once the report is constructed:

Case 1. If f; receives an ACK A;,1 from neighbor f; 1 before the timer expires, f; further commits

R; into a new ACK A; by combining the received 4,41 via an Onion ACK approach:
(5.4) Ai = (Ri, Aix1, MACk,,(Ril| A1),

MACk,,(-) denotes a message authentication code computed with K. Then, f; forwards A; to

fi—1 toward S.

Case 2. If f; receives no ACK packet from f;,; before the timer expires, f; will initiate a new
ACK with its local report and send it to f;_1.

The Onion ACK prevents the adversary from selectively dropping the r equest or the reports
of a certain router f; and framing a benign link /; [97]. In Onion ACK; all the reports are combined
and authenticated in one ACK packet at each hop so that a malicious node can only drop or modify
the onion report from its immediate neighbors. Intuitively, if f,,, drops or modifies the received
request or Onion ACK, the source can receive the correct reports from fi,..., f;,,—1 but not from
fms -, fa; hence one of fp,’s links will be pinpointed by the source node, in the identify stage
described below.

After sending the local reports, each router f; resets C’f]wd and Cf’“d to zero, to be used for the

next epoch along path p (if p is still used).

Stage 3: Identify

Upon receiving an Onion ACK A; from f1, S first iteratively retrieves A;, As,... in order, until it
either completes at d or fails at j (j # d). S can verify if a certain retrieved report R; is valid
by checking the embedded message integrity code MACk_,(R;||Ai+1). When the check fails at j
(j # d), S will immediately identify {; as faulty due to the use of reliable hop-by-hop transmission
and Onion ACK. For example, if S receives no report it will identify /; as faulty (j = 1).

5.4. SECURITY ANALYSIS 99

In addition, S extracts Ri,...,R; in turn which include the C?*¢ and CigOOd values. A non-zero
Cf“d implies the existence of malicious packet injection between f; and S. However, S cannot
blame [; simply whenever Cf“d > 0, say, Cf“d = 1. A possible scenario is that a malicious node
fi—o injects a fake packet, but the k-bit MAC intended for f;_1 “happens” to be consistent with the
fake packet at benign node f;_1 (e.g., when k = 2, this can happen with probability 0.25). In this
case, f;—1 will forward the fake packet which f; may detect and thus increase C’f“d. Similarly, due
to natural packet loss, S cannot simply accuse link /; when CquOOd < Cff‘{d. Therefore, we leverage
two detection thresholds T;, and Ty, where T;, is the injection detection threshold for the number
of injected packets on each link, and 7T}, is the drop detection threshold for the fraction of dropped
packets on each link. As we will show in Section 5.5, these thresholds reduce false positives while
limiting the adversary’s ability to corrupt packets and ensuring a lower bound on the successful
packet forwarding rate. The detection thresholds are used in two detection procedures:

1) check-injection: S checks the extracted C’fad, C’Sad, e C’]I-’“d values in order. If C’f“d > T;, for
some i, then S identifies ; as faulty and the check-injection procedure stops.

2) check-dropping: If no fault is detected by check-injection, S further checks the extracted Cfo‘)d,
CSOOd, - C]“[-’OOd values in order. If CigOOd <(1—-Ty)- C’ffid (with C’gOOd = N) holds for certain 7,

then S identifies I; as faulty and the check-dropping procedure terminates.

Stage 4: Bypass and Send

If Stage 2 outputs any malicious link I,,, S selects a new path excluding the previously detected
malicious links and sends its packets with ShortMAC authentication shown in Eq.(5.2). Each node
fi examines its corresponding k-bit MAC M; in each packet to increase C’fOOd or €% accordingly.
In addition, each router remembers the last seen per-path SN embedded in the packets as shown

in Eq.(5.1), and discards packets with older SN in that path.

5.4 Security Analysis

This section discusses Short MAC’s security against data-plane attacks by malicious routers. Sec-

tion 5.5 provides theoretical proofs on ShortMAC’s security. In our adversary model, a malicious

60 CHAPTER 5. SHORTMAC

router can drop and inject data packets, r equest s and ACKs, and can send arbitrary counter
values in its reports. We show that Short MAC is secure against a single malicious router (say, fp,)

as well as multiple colluding nodes.

Corrupting data packets. Dropping legitimate data packets by f,,, will cause a discrepancy
of the counter values between f,, and its neighbors. For example, if f,, correctly reports Cjy Od,
then C2°°¢ — Cgfﬁ will exhibit a large discrepancy; if f, reports a lower C92°?, then Cfrff‘f — ogeed
will exhibit a large discrepancy. Hence, either [,,_1 or [, will become suspicious. Moreover, if
fm injects/modifies packets, M, +1 will be inconsistent at f,,+; with high probability and cause a
non-zero Cf’,?jil. Hence, both dropping and injection attacks can be detected as long as the source
can learn the correct counter values in the ACK packets sent by the nodes between f,,, and the

destination, which is described next.

Corrupting ACKs or r equest s. Since the r equest s are not authenticated by .S, f,, can modify
the content of r equest s (such as the source ID and the path); however, this will result in S failing
to receive the correct counter reports from fp,+1 (or f,) ,..., fa in p, thus causing l,,,+1 or I, to
be detected. f,, cannot selectively drop the ACK reports due to the use of Onion ACK. Instead,
fm can only drop the ACKs or r equest s from its immediate neighbors, which will again harm its

incident links.

Replay, reorder, and traffic analysis attacks. To prevent replay and reorder attacks, each
packet contains a per-path sequence number SN in Eq.(5.1) and each router discards packets with
older SNs. Hence, the replayed and reordered packets will be dropped at the next-hop benign node
without influencing the counter values of benign nodes. Note that because ShortMAC runs on a
per-path basis and a SN is a per-path sequence number providing natural isolation across different
paths, packets along the same path are expected to maintain the same order during forwarding
as they were sent by the source in benign cases. On the other hand, if f,, falsely reports a large
SN, fin+1 will drop the subsequent packets and [,,, will be identified as malicious due to its high
packet drop rate. Moreover, the per-path SN can prevent ShortMAC from traffic analysis attacks,
where f,, attempts to find out the correct k-bit MAC of a packet m by re-sending m with different

5.4. SECURITY ANALYSIS 61

k-bit MACs and observing whether the next-hop f,,4+1 forwards the packet. Such traffic analysis
is ineffective because f,,+1 can detect packets with the same SN and each packet is unique due to
the use of the per-path SN, and thus f,,, cannot send the same packet m with only the k-bit MAC

changed.

DoS attacks. A malicious router f,,, may launch bandwidth Denial-of-Service (DoS) attacks by
generating an excessive amount of packets. However, this attack can be reduced to a packet injection
attack and will be reflected by Cgﬂl. A malicious router may also attempt to open many bogus
flows with spoofed sources to exhaust other routers’ state. We can borrow existing work to provide
source accountability and reliable flow/path identification [12, 92]. Also note that in our adversary
model we consider malicious routers which threaten the communication between benign hosts. We
do not consider DDoS attacks launched by malicious hosts (botnets), which other researchers have
strived to defend against [59, 92, 61]. Hence in our problem setting, a link under DDoS attacks thus
exhibiting high loss rate is simply considered a faulty link under our adversary model. Meanwhile,

the path setup phase in ShortMAC can be naturally integrated with capability schemes [92] for

DDoS limiting, and the per-path counters may also be used for per-path rate limiting.

Collusion attacks. Each of the colluding routers can commit any of the misbehavior discussed
above. We can prove by induction that in any case, one of the malicious links of one of the colluding

nodes is guaranteed to be detected. A proof sketch is given below.

Consider the base case where two nodes f,, and f,,; (m < m') collude. Without loss of gener-

ality:
Fm
Source Destination
.....|1 I FI ® ---0
S m-1 m-1 fm i fn|+1 m+1 fm+2 fd

Figure 5.3: Security against colluding nodes — one base case with two adjacent colluding nodes f,
and fy,41 forming a virtual malicious node Fi,.

62 CHAPTER 5. SHORTMAC

1) When f,, and f,, are not adjacent (i.e., m’ > m + 1), the security analysis in Section 5.4
applies to f,, and one of f,,’s malicious links will become suspicious if f,, misbehaves. This is
because if f,, commits the above attacks, such misbehavior will be reflected in the benign neighbor

fm+1’s counters which cannot be biased by f,,.

2) When f,, and f,, are adjacent (m’ = m + 1), these two nodes can be regarded as one single
“virtual” malicious node F, with neighbors f,,—1 and fy, 42, as shown in Figure 5.3. (i) If f,, or
fma+1 drops packets, a discrepancy will exist between Cﬁffcf and Cﬁf’i‘;, no matter what values of
%% and Cf,fﬁ F,, claims. (ii) If fo, or fu11 injects packets, C%¢, will become non-zero and
make l,,+1 suspicious. In any case, an adjacent link of F},, (a malicious link) will become suspicious.

In the general case with n colluding nodes, we can first group adjacent colluding nodes into
virtual malicious nodes as in Figure 5.3, resulting in non-adjacent malicious nodes (including virtual
malicious nodes). Then we can show non-adjacent malicious nodes can be detected based on the
above analysis.

Despite colluding attackers cannot corrupt packets more than the same thresholds as an indi-
vidual attacker on any single link, they can choose to distribute packet dropping across multiple

links. In this case, the total packet drop rate by colluding attackers increases (and is still bounded)

linearly to the number of malicious links in the same path, as analyzed in Section 5.5.

5.5 Theoretical Results and Comparison

We prove the (IV,§)—data-plane fault localization (Definition 3) and («, #)s—forwarding security
of ShortMAC (Definition 5), which in turn yield the #—guaranteed forwarding correctness (Defini-

tion 4). Proofs of the lemmas and theorems are provided in Appendix B.

Comparison of theoretical results. Before presenting the theorems, we first summarize and
compare ShortMAC theoretical results with two recent proposals, PAAI-1 [97] and Stat. FL [21]
(including two approaches denoted by SSS and sketch). Table 5.1 presents the numeric figures
using an example parameter setting for intuitive illustration, while Short MAC presents similarly

distinct advantages in other parameter settings. In this example scenario shown in the table,

5.5. THEORETICAL RESULTS AND COMPARISON 63

’ Protocol ‘ ShortMAC ‘ PAAI-1 ‘ SSS ‘ Sketch ‘
Detect. Delay (pkt) | 3.8 x10* [7.1 x10° | 1.6 x 108 | ~ 10°
Comm. (extra %) <1077 1 1 <107
Marking Cost (bytes) 2 0 0 0
Per-path State (bytes) 21 2x10° 4 x10% | =500

Table 5.1: Theoretical comparison with PAAI-1 [97] and Stat. FL [21] (including two approaches
SSS and sketch). Note that the details of sketch are not provided in the published paper [21], and
the full version of [21] does not present the explicit bounds on detection delay. The above figures
for sketch are estimated from their earlier work [36]. In this example scenario, d = 5, § = 1%,
p = 0.5%, Ty = 1.5%, a symmetric key is 16 bytes, and ShortMAC uses 2-bit MACs. PAAI-1
specific parameters include the “packet sampling rate” set to 0.01, the end-to-end latency set to 25
ms, the source’s sending rate set to 10° packets per second, each packet hash is 128 bits.

the guaranteed data-plane packet delivery ratio is 8 = 92%. The communication overhead for a
router in ShortMAC is 1 extra ACK for every 3.8 x 10* data packets in an epoch; the marking
cost is 10 bits for the 2-bit MACs in a path with 5 hops, and the per-path state at each router is
21 bytes (16-byte symmetric key, 2-byte C9°°? 1-byte C** and 2-byte per-path SN). Though
Barak et al. proved the necessity of per-path state for a secure fault localization protocol [21],
such a minimal per-path state in ShortMAC is viable for both intra-domain networks with tens of

thousands of routers and the Internet AS-level routing among currently tens of thousands of ASes.

We provide the intuition for ShortMAC’s distinct advantages. PAAI-1 or Stat. FL used either
low-rate packet sampling or approximation techniques for packet fingerprinting, both of which
waste entropy contained in certain packet transmissions, thus resulting in long detection delay
(e.g., the transmission results of non-sampled packets will not contribute to the detection phase).
In contrast, Short MAC counts every packet transmission thus achieving much faster detection rate.
In addition, secure packet sampling requires additional packet buffering [97], and packet fingerprint

takes considerable memory [21].

Lemma 13. Injection Detection: Given the bound d on detection false negative and false positive

2d
21In 5

rates, the injection detection threshold T;, can be set to T;, = T where d is the path length and

q= 21;;1 1s the probability that o fake packet will be inconsistent with the associated k-bit MAC.

The number of fake packets 3 an adversary can inject on one of its malicious links without being

64 CHAPTER 5. SHORTMAC

detected s limited to:

2
Tin N \/(ln%) —|—8qu1n%—l-ln %

(5.5) p== o

In Lemma 14, we derive N, the number of data packets a source needs to send in one epoch
to bound the detection false positive and false negative rates below §. Due to natural packet loss,
a network operator first sets an expectation based on her domain knowledge such that any benign
link in normal condition should spontaneously drop less than p fraction of packets. We first describe
how the drop detection threshold Ty, is set when N and § are given. Intuitively, by sending more
data packets (larger N), the observed per-link drop rate can approach more closely its expected
value, which is less than p; otherwise, with a smaller IV, the observed per-link drop rate can deviate
further away from p, and the drop detection threshold Ty, has to tolerate a larger deviation (thus
being very loose) in order to limit the false positive rate below the given §. On the other hand,
a small N is desired for fast fault localization. We define Detection Delay to be the minimum

value of N given the required §.

Lemma 14. Dropping Detection and (N,d)- Data-Plane Fault Localization: Given the
bound & on detection false positive and negative rates and drop detection threshold Ty,., the detection

delay N is given by:

In(%)

2(Tar = p)* (1= Tar)"

(5.6) N=

where d is the path length. Correspondingly, the fraction of packets a an adversary can drop on

one of its malicious links without being detected is limited to:

g

(5.7) o= 1—(1—Tdr)2+m.

In practice, Ty, can be chosen according to the expected upper bound p of a “reasonable”

normal link loss rate such that a drop rate above Ty, is regarded as “excessively lossy”.

Theorem 15. Forwarding Security and Correctness: Given Ty, d, and path length d, we can

5.6. SSFNET-BASED EVALUATION 65

achieve (o, B)s—forwarding security where o is given by Lemma 14 and [is given by Lemma 13.
We also achieve (£2,0)-Guaranteed forwarding correctness with 0 equal to the number of malicious
links in the network, and

s
(5.8) 0=(1—-Ty)" - ¥

where N is derived from Lemma 14

In Theorem 16, we analyze the protocol overhead with the following three metrics (we further
analyze the throughput and latency in Section 5.7 via real-field testing):
1) The communication overhead is the fraction of extra packets each router needs to transmit.
2) The marking cost is the number of extra bits a source needs to embed into each data packet.
3) The per-path state is defined as the per-path extra bits that a router stores for the security

protocol in fast memory needed for per-packet processing.?

Theorem 16. Owverhead: For each router, the communication overhead is one packet for each
epoch of N data packets. The marking cost is k - d bits for the k-bit MACs where d is the path
length. The per-path state comprises one lg N-bit C9°°¢ counter, one 1g 3-bit C**¢ counter, one

lg N -bit last-seen per-path SN, and one epoch symmetric key.

5.6 SSFNet-based Evaluation

In addition to analyzing the theoretical performance, we implement ShortMAC prototype on the
SSFNet simulator [6] to study the detection delay and security of Short MAC. Section 5.7 further
investigates Short MAC’s throughput and latency. These experimental results provide average-case
performance with various attack strategies to complement the theoretical results derived in the
worst case scenario (due to multiple mathematical relaxations such as Hoeffding inequality) and

constant dropping/injection rates.

3The buffering space needed for the Onion-ACK construction of r eport messages in ShortMAC is not a major
concern, as the Onion-ACK is computed only once every epoch, which can be buffered in off-chip storage.

66 CHAPTER 5. SHORTMAC

Evaluation scenario and attack pattern. Since ShortMAC provides a natural isolation across
paths due to its per-path state, our evaluation focuses on a single path. Specifically, we present
the result of a 6-hop path (routers fi, fo, f3, fa, f5 and the destination fg) since our experiment
yields the same observation with other path lengths. We simulate both an (i) independent packet
corruption pattern where a malicious node drops/injects each packet independently with a certain
drop/injection rate, and (ii) random-period packet corruption pattern where the benign (non-attack)
period T} and attack period T, (when the malicious node drops/modifies all legitimate packets)
are activated in turns. The durations for both periods are randomly generated. For both attack
patterns, we control the average packet drop/injection rates and observe that both attack patterns
yield similar observations. Hence, in the following experiment, we only show the results for the
independent packet corruption pattern. Also, we infuse natural packet loss rate p for each link to
simulate natural packet loss, which is not provided by SSFNet. As Section 5.4 elaborates ShortMAC
security against colluding attacks, we only show the representative results for a single malicious
node f3. For each simulation setting, we run the simulation 1000 times and present the average

results.

Against various dropping attacks. Figure 5.4 depicts the detection delay N and error rates
0 with per-link natural loss rate p as 0.5%, drop detection threshold Ty, as 1%, and a stealthy
malicious drop rate as 2%.

We see that: (i) even against stealthy dropping attacks with a dropping rate as low as 2%,
ShortMAC can successfully localize a faulty link in < 2000 packets with an error rate 6 < 1%,
which is orders of magnitudes faster than the worst-case theoretical bound (Lemmal4). (ii) In
addition, the FN rate is always no lower than the FP rate, because when a FP occurs (a benign
link being falsely detected) the actual faulty link must have evaded detection for the current epoch
(ShortMAC detects only one “faulty” link each epoch). (iii) When N is large, the FP and FN rates
are almost identical, because the two rates are different only when no faulty link is detected (false
positive is 0 while false negative is non-zero), which is unlikely to happen when N is large.

Figure 5.5 depicts different detection delays with different natural packet loss rates, demon-

strating that larger |Ty. — p| yields higher detection accuracy and lower detection delay.

5.6. SSFNET-BASED EVALUATION 67

o
=

0.01 |

fraction - log scale

1 10 100 1000 10000

detection delay (N) - log scale

Figure 5.4: Natural loss. The malicious drop rate is 2%, Ty, = 1%, and natural drop rate p = 0.5%.

0.1 |

0.01 ¢

0.001

100 500 2000
detection delay (N) - log scale

false negative rates (log scale)

Figure 5.5: Dropping attacks. The malicious drop rate is 2%, and Ty, = 1%.

68 CHAPTER 5. SHORTMAC

LV
ey

1 g

0.1 ¢

0.01

fn rates - log scale

0001 b—— i
1 10 100 1000

detection delay (N) - log scale

Figure 5.6: Injection attacks. The malicious injection rate is 2% using 2-bit MACs, natural loss
rate p = 0.5%, and Ty, = 1%.

Against various injection attacks. Figure 5.6 shows the results when f3 injects packets at a
2% rate (relative to the legitimate packet sending rate). It shows that the error rates stay below 1%
in a few hundred packets, indicating that even with 2-bit MACs, an adversary can only inject up
to around ten packets without being detected. We further investigate the effects of using different
lengths of k—bit MACs, and Figure 5.7 shows that the detection delay and error rate dramatically

diminish as k increases.

Against combined attacks. Figure 5.8 shows how the combinations of dropping and injection
attack strategies (in our setting, dropping/injection rates are chosen between 2% — 5%) influence
the protocol. We observe that the detection delay is mainly determined by the dropping detection
process, which is much slower than the injection detection process. This also indicates that a
malicious node cannot gain any advantage (and actually can only harm itself) by injecting bogus

packets in attempt to bias the counter values.

Variance due to different malicious node positions. To investigate the influence of the
position of the malicious node, we consider a path with 6 forwarding nodes f1, fo, ..., fg and place

the malicious node at each position (1 to 6) in turn. We limit the error rate < 1% and obtain the

5.6. SSFNET-BASED EVALUATION 69

1 F
2 [
®
3
o 0.1
o
o .
QL 0.01 }
S 5
E L

0.001 L2 " LA
1 10 100 1000

detection delay (N) - log scale

Figure 5.7: Effects of different k-bit MAC lengths on detection delay N and false negative rate 9.
The malicious injection rate is 2%, p = 0.5%, and Ty, = 1%.

0:3 1 " drop 2 injeétZ —_—
oo o —
0.2 [rg 0o RS T
0.15

0.1
0.05

0

fn rates - linear scale

100 200 300 400 500
detection delay (N) - linear scale

Figure 5.8: Combined attacks. “drop p inject ¢” denotes the use of p% dropping rate and ¢%
injection rate at fs.

70 CHAPTER 5. SHORTMAC

3000 —

fp n—
2500 | fn -
2000 N

1500
1000
500

detection delay (N)

1 2 3 4 5 6
malicious node position

Figure 5.9: Variance on detection delay N in dropping attacks. 6 < 1%, Ty, = 1%, p = 0.5%, and
both malicious dropping and injection rates set to 5%.

corresponding detection delays. Figure 5.9 shows one representative scenario where both dropping
and injection rates are 5%. We can see that (i) the dropping detection delay increases linearly when
the malicious node is farther away from the source. This is because in the ShortMAC detection
process, the source always inspects the closer links first and stops once the first “faulty” link is
detected. The FP rate thus increases when more links exist between the source and the malicious
node due to natural packet loss on each link. (ii) In contrast, the injection detection delay exhibits
little variance (cannot be seen from the figure as the detection delay is determined by the dropping

detection), which can also be theoretically proved.

Comparison with recently proposed protocols. For comparison, we simulate the full-ACK
and PAAI-1 schemes presented in Chapter 4. Recall that fulllACK is a heavy-weight fault local-
ization protocol requiring an Onion ACK packet from every forwarding node for every packet the
source sent. In contrast, PAAI-1 employs packet sampling and only requires acknowledgments for
the securely sampled packets to reduce communication overhead while retaining desired detection
delay. Since both Full-ACK and PAAI-1 only consider packet dropping attacks, we compare their
dropping detection delays along a path with 6 hops and f3 as the malicious node. Figure 5.10

5.7. LINUX PROTOTYPE AND EVALUATION 71

09\ »/""/

08 F /N » NS i

0.7 |fr A -
FUlACK ——
0.6/ PAAIL ——]
- ShortMAC -+
0.5 ' '

successful rate - linear scale

500 2000 10000 50000
detection delay (N) - log scale

Figure 5.10: Comparison with PAAI-1 and Full-ACK. The natural packet loss rate p = 0.5% and
drop detection threshold T}, = 1%.

y | ShortMAC | Full-ACK | PAAL- |

Detect. delay 20 sec 20 sec 8.3 min
Communication 0.01% 100% 5.6%

Table 5.2: Comparison of ShortMAC, Full-ACK, and PAAI-1 with a source send rate of 100 packets
per second.

shows the results when per-link natural packet loss rate p = 0.5% and drop detection threshold
Ty = 1%. To make the comparison clear, we use a metric of successful rate, which equals to 1 -
max{FP rate, FN rate}. The results show that the detection delays to achieve a successful rate
> 99% for ShortMAC, Full-ACK, and PAAI-1 are 2000, 2000, and 5 x 10%, respectively. Table 5.2
shows their detection delays in seconds/minutes and compares the extra communication overhead,

based on the results from Figure 5.10 and with § < 1%.

5.7 Linux Prototype and Evaluation

We implement ShortMAC source and destination nodes as user-space processes running on Ubuntu

10.04 32-bit Desktop OS. Even implemented in user-space on a standard desktop OS, our result

72 CHAPTER 5. SHORTMAC

shows that the cryptographic operations of Short MAC incur little communication degradation and
negligible additional latency at gigabit line rate. It has also been demonstrated that using mod-
ern hardware implementation and acceleration the speed of PRF functions can be fundamentally

improved [52].

Implementation details. Our ShortMAC processes listen to application packets via TUN/TAP
virtual interfaces and appending k-bit MACs to the packets. We also implement Short MAC routers
using the Click Modular Router [51] running on Ubuntu 10.04 32-bit Desktop OS, which verify the
k-bit MACs in each packet at each hop. To approach the realistic performance of commercial-
grade routers, we implement the above elements on off-the-shelf servers with an Intel Xeon E5640
CPU (four 2.66 GHz cores with 5.86 GT/s QuickPath Interconnect, 256 KB L1 cache, 1IMB L2
cache, 12MB L3 cache, and 25.6 GB/s memory bandwidth) and 12G DDR3 RAM. The servers are
equipped with Broadcom NetXtreme II BCM5709 Gigabit Ethernet Interface Cards.

Evaluation methodology. We evaluate ShortMAC’s effects on communication throughput and
computational overhead, especially due to the generation and verification of k-bit MAC using
PRF operations. We utilize the widely used Netperf benchmark [4] for the Short MAC throughput
evaluation, and write our own micro-benchmark for accurate latency evaluation. We evaluate
ShortMAC with varying packet sizes by configuring the interface Maximum Transmission Unit
(MTU) sizes. We evaluate the throughput of a Short MAC router and a ShortMAC source separately
to better illustrate the throughput of each component, while the end-to-end path throughput can
be easily derived by taking the minimum throughput of the two evaluation results. Then we
evaluate the end-to-end latency with different path lengths ranging from 2 to 64. We also exploit

the multi-core parallel processing at the source node via OpenMP APT [5].

Summary of evaluation results. The evaluation results of our Linux software prototype demon-
strate that both a ShortMAC router and source node can retain more than 92% of the baseline
throughput (no Short MAC operations are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds) even with a path length of 64 hops. The

results further indicate the ShortMAC scheme is fully scalable as the number of processing cores

5.7. LINUX PROTOTYPE AND EVALUATION 73

increases in a software-based implementation, while we anticipate hardware implementation of the
MAC operations in Short MAC can further boost the protocol throughput. Details of the evaluation

results are as follows.

Router throughput with different PRF implementations. We first evaluate the throughput
of a user-level ShortMAC router with different PRF implementations (i.e.,UMAC [85], HMAC-
SHA1 [53], and AES-CMAC [83]) with the support of the new Intel AES-NI instructions [45].
The ShortMAC router connects a source machine and a destination machine, with the source
sending TCP packets via Netperf as fast as possible to the destination to stress-test the router. For
comparison, we use the Linux kernel forwarding throughput without ShortMAC operations as the
base line. The ShortMAC router runs as a single user-space process without exploring parallelism,
which already matches up the base line speed as shown below.

Figure 5.11 depicts the results with packet sizes from 100 to 1500 bytes, showing that UMAC-
based PRF implementation yields the highest throughput, which retains more than 90% of the
baseline throughput (e.g., 92% with 1.5KB packet size and 96% with 1KB packet size). With a
small packet size of 100 bytes, both the baseline and ShortMAC throughput dropped substantially
(similar to other public testing results [3]), because the network drivers used in our experiments
are running under interrupt-driven mode, which hampers throughput when packet receiving rate

is high. However, UMAC-based PRF still retains %:94% of the baseline throughput.

Source node throughput. We further evaluate the throughput of a ShortMAC source node
with different path length d, where for each path length the source needs to perform d — 1 UMAC-
based PRF operations. Originally, it might seem that the ShortMAC source node represents the
throughput bottleneck as the source needs to compute multiple k-bit MACs. However by paral-
lelizing the ShortMAC operations on readily-available multi-processor systems, the throughput of
a ShortMAC source node can fully cope with the base line rate even with a path length of 8. For
comparison, we use the source node throughput without Short MAC operations as the baseline. We
evaluate two different parallelizations based on widely used OpenMP [5] APIL. Our first implemen-

tation (internal parallelism in short) uses multiple OpenMP threads to parallelize the computation

74

CHAPTER 5. SHORTMAC

throughput (Mb/s)

Throughput (Mb/s)

aseline

HMAC —x—

UMAC —e—

CMAC

100 300 8001000 1500
packet size (bytes)

Figure 5.11: Router throughput.

900 ——
—
800 ‘ |
\N%N
700 ‘ |
600 L baseline ““—
no parallel
internal —<—
500 ¢ exlternall ——

2 3 4 5 6 7 8
path length

Figure 5.12: Source throughput.

5.8. DISCUSSION AND LIMITATIONS 75

of multiple k-bit MACs per packet. Our second implementation (external parallelism in short)
assigns different packets to different OpenMP threads.

We evaluate the Short MAC source throughput with various packet sizes, and observe that in
all cases Short MAC incurs negligible throughput degradation. Hence we only show the results with
packet size set to 1500 bytes in Figure 5.12. We can see that external parallelism yields the best

performance, which matches the baseline case where the source performs no ShortMAC operations.

ShortMAC latency. We also evaluate the additional latency incurred by a ShortMAC source
node for computing the k-bit MACs with different path lengths and packet sizes; while the end-
to-end latency can be derived base on our results. This additional latency in ShortMAC includes
PRF computation, k-bit MACs appending, and TCP/IP checksum updating. We write our micro-
benchmark to derive the additional time delay for the source to send each packet compared to the
baseline case where the source does not compute any k-bit MAC nor updates the checksums.
Figure 5.13 and Table 5.3 show the results. We can see that the latency incurred by the checksum
computation is stable. It does not increase with the packet size because in our implementation
we employ incremental checksum update for the short MAC appended to the packet, instead of
recomputing the checksum over the entire packet. We do not observe sharp increase of checksum
latency with increasing path length either due to ShortMAC’s efficient k-bit MAC authentication.
In addition, the latency caused by the checksum computation is small compared to the latency
introduced by UMAC-based PRF computation. The additional latency due to UMAC computation
increases linearly to the path length under the same packet size, and also increases linearly to the
packet size with a fixed path length due to the property of the UMAC algorithm. Finally, compared
to the average end-to-end network latency which is on the order of milliseconds, the additional

latency introduced by ShortMAC is negligible.

5.8 Discussion and Limitations

Incremental deployment. Although we argue it is feasible to upgrade all routers with Short-

MAC within ISP /enterprise networks, we observe that partial deployment of ShortMAC can still

76 CHAPTER 5. SHORTMAC

90 T T T T T T T

g | MTU100 —x— ¢
MTU 500 —e— o

70 FMTU 1000 e

60 F MTU 1500 =-cbeer gt :

latency (us)

2 8 16 24 32 40 48 56 64
path length

Figure 5.13: Source latency.

UMAC (us)
Path Length | Checksum (us) 100 700 1000 1500
2 0.0374 0.1771 | 0.4760 | 0.8892 | 1.4047
3 0.0378 0.3691 | 0.9557 | 1.7635 | 3.3025
4 0.0442 0.5239 | 1.4273 | 2.6357 | 4.0944
5) 0.0415 0.7080 | 1.9018 | 3.5059 | 5.4566
6 0.0437 0.8723 | 2.3758 | 4.3839 | 6.8307
7 0.0445 1.0467 | 2.8530 | 5.2617 | 8.2019
8 0.0474 1.2206 | 3.3274 | 6.1285 | 9.5483

Table 5.3: ShortMAC source node latency breakdown (checksum updates and UMAC computation).
All the data represent the average time of processing 50000 packets.

5.8. DISCUSSION AND LIMITATIONS 77

provide benefits and thus enables incremental deployment. Specifically, the Short MAC routers form
an overlay network on top of the physical network. In the overlay network, a “logical link” consists
of the physical links between two ShortMAC routers. The fault localization protocol runs only on
the ShortMAC routers and a data delivery fault will be localized to a logical link. Although in such
settings the source node cannot exactly identify a faulty physical link, it can nevertheless localize
the fault to a network area (a set of links between two ShortMAC routers) to facilitate further
investigation. Furthermore, the more densely the ShortMAC routers are deployed, the more accu-
rate the fault localization can be, which incentivizes incrementally deploying ShortMAC. However,
one caveat for incremental deployment is that a discovery protocol for determining which routers

support ShortMAC is needed, possibly through the use of explorer packets.

Interdomain deployment. Though ShortMAC mainly targets at intra-domain networks such
as ISP and enterprise networks, ShortMAC may also be deployed in interdomain networks such as
the Internet. In the interdomain setting, each Autonomous System (AS) can represent a node in
ShortMAC; the fault localization runs at the AS level and localizes any data delivery fault between
two ASes. To make ShortMAC applicable, different ASes need to establish secret keys (e.g., via
Passport [60]), and the egress router of an AS needs to set the TTL value of each packet to the TTL
value at the ingress router minus one to enable k-bit MAC verification (Section 5.3.1). Finally,
a source AS needs to know the downstream AS path (which is readily available in BGP) which
may dynamically change in the current Internet; however, the majority of AS paths are stable
over minutes [78] thus facilitating Short MAC fault localization. If an adversary were to constantly
alter paths, it would essentially raise suspicion to itself, since path information is visible and the

adversary needs to remain on the path to remain effective.

Topology changes and short-lived flows. Fault localization protocols inevitably require at
least a threshold number of packets to be sent along the monitored path to obtain a statistically
accurate detection in the presence of natural packet loss. Hence, monitored paths need to be stable
over an epoch. Since ShortMAC incurs several orders of magnitude lower detection delay compared

to related work [97, 21], Short MAC can support topology or path changes and short-lived flows

78 CHAPTER 5. SHORTMAC

much better than previous work. For example, as long as the path remains stable for transmitting
around 2000 packets, the source can make an accurate fault localization. While path changes do
happen during an epoch (e.g., due to link failures), the source will detect the old link where the
path is switched away as faulty. At the same time, the source can also learn the routing updates
about the path change, and by correlating the detection results with routing updates, the source
may distinguish a benign path change and a malicious packet misrouting attack (in which case
no corresponding routing updates will be received). However, the fault localization accuracy of
ShortMAC decreases for dynamic paths that transmit far fewer than 2000 packets before path

changes occur.

Multipath routing. A ShortMAC router maintains different counters for different paths, and
need to know which counter to update given a certain packet (or which path the packet belongs to).
If a source uses multiple paths simultaneously to reach a destination, the source and destination IDs
alone are no longer sufficient to identify a path. Instead, the source needs to encode the path in the
packets so that the routers know which counters to update. For example, in SCION routing [96],

the source embeds the path into packet headers, which naturally supports ShortMAC.

5.9 Summary

In this chapter, we design, analyze, implement, and evaluate ShortMAC, an efficient path-based
fault localization protocol, which enables a theoretically proven guarantee on data-plane packet
delivery and substantially outperforms related protocols in the following aspects. First, Short MAC
achieves high security assurance even in the presence of strong adversaries in control of colluding
malicious routers that can drop, modify, inject, and misroute packets at the forwarding paths;
whereas a majority of existing fault localization protocols exhibit security vulnerabilities under
such a strong adversary model. Second, compared to existing secure protocols, Short MAC achieves
several orders of magnitude lower detection delay and protocol overhead, which facilitates its practi-
cal deployment. Finally, we demonstrate that ShortMAC’s efficient cryptographic operations, even

if implemented in software, have negligible effects on the communication throughput via realistic

5.9. SUMMARY 79

testing on Gigabit Ethernet links. We anticipate that Short MAC probabilistic authentication and
efficient fault localization can become a basic building blocks for the construction of highly secure
and efficient network protocols.

The high efficiency of ShortMAC facilitates its practical deployment, and enables the construc-
tion of efficient secure routing protocols. We thus anticipate that Short MAC can become a basic
building block for the construction of highly secure and efficient network protocols. Though more
efficient compared to PAAI, ShortMAC requires changes to the packet headers (for adding the
k-bit MACs) while PAAT requires no changes to the packet headers. In addition, as a path-based

protocol, Short MAC still suffers several limitations as discussed and addressed in the next chapter.

80

CHAPTER 5. SHORTMAC

Chapter 6

TrueNet

Though PAAI and ShortMAC strive to optimize the efficiency of fault localization, theoretically
proven lower bounds have shown that path-based fault localization protocols in the current network
infrastructure inevitably incur prohibitive overhead. We observe the current limits are due to a lack
of trust relationships among network nodes. This chapter demonstrates that we can achieve much
higher fault localization efficiency by leveraging trusted computing technology to design a 1-hop-
based fault localization protocol, TrueNet, with a small Trusted Computing Base (TCB). We also
intend TrueNet to serve as a case study that demonstrates trusted computing’s ability in yielding

tangible and measurable benefits for secure network protocol designs.

6.1 Introduction

Barak et al. recently proved the lower bound overhead of path-based fault localization protocols in
the current network infrastructure [21], which is impractical for large-scale ISP /enterprise/datacenter
networks. Specifically, the lower bound states that a router must share some secret (e.g., cryp-
tographic keys) with each source sending traffic traversing that router, making the key storage
overhead at an intermediate router linear in the number of end nodes. In addition, path-based
fault localization protocols run at the granularity of entire end-to-end paths, requiring each inter-
mediate router to store per-path state and the paths to be long-lived (e.g., transmitting at least 10°

packets, which would hinder agile load-balancing and traffic engineering) [21, 97]. These fundamen-

81

82 CHAPTER 6. TRUENET

tal limitations exist in traditional network infrastructure due to the lack of any trust relationships
among nodes. Hence, a source node needs to directly check or monitor all intermediate routers

(thus sharing secret keys and state) in the routing path to ensure the routers behave correctly.

Furthermore, in existing secure fault localization protocols, a node n which detects a faulty link
[can only remove [from n’s local routing table but cannot share the detection result with other
nodes, otherwise a potentially malicious n make false accusation of other benign links (slander
attacks). This retards the network-wide detection/failure recovery process, and causes inconsistent
routing tables at different nodes (faulty links excluded from the routing tables of some but not all
nodes). Inconsistent routing tables violate the requirements of certain routing protocols such as
link-state routing. The lack of trust among network nodes also inhibits the global sharing of local

detection result.

In light of the fault localization limitations in current network infrastructures, we explore how
trusted computing technology can enable a network architecture with intrinsic trust of correct data
delivery among nodes with fundamentally better performance than the proven boundaries [21] in
a traditional network architecture. Our key insight is that remote code attestation provided by
trusted computing enables a node to verify if a remote communicating node runs a trusted (or
expected) version of software/protocol via authenticated “code measurements”. Isolation further
ensures that critical code execution and data are isolated from all other code and devices on the
local system. Jointly, these properties provide transitivity of verification, i.e.: if A verifies B’s
code integrity (via attestation and isolation) and B verifies C, then A believes in C'’s code integrity
as well without needing to verify C’s code integrity, because A knows B’s code has correctly verified
C'. Transitivity of verification, when applied to secure network protocol designs, enables each node
to perform verification and monitoring only with 1-hop neighbors, building a chain of verification
over the end-to-end path with reduced overhead, i.e., only requiring per-neighbor (as opposed to
per-node or per-path) state at each router. In short, transitivity of verification eliminates the need
of establishing direct point-to-point validation between any two nodes in the network which incurs

high storage overhead and obstructs key management.

Though useful, current trusted computing technologies are by no means a panacea when directly

applied to the realm of computer networks. Although several researchers propose Trusted Platform

6.1. INTRODUCTION 83

Module (TPM)-based protocols for securing general distributed systems (e.g., BIND [82]) and
specific network applications (e.g., Not-a-Bot [40]), fundamental challenges render these approaches
ineffective in securing data delivery at the network layer: (i) existing approaches cannot “attest”
raw command-line configuration for which an expected “measurement” for remote attestation is
hard to define, (ii) the extensive network stack would swell the size of the Trusted Computing Base
(TCB) and it is challenging to abstract a small-sized, invariant “critical code”, and (iii) a large ISP
network can contain different routing instances with different implementation versions [57], which

obstructs the use of a consistent “code measurement” for attestation.

The TrueNet design answers these challenges of applying trusted computing. Instead of strictly
attesting the semantics of the huge, intertwined network stack itself, TrueNet attests the behavior
of the network stack, i.e., whether it has successfully delivered the data or not. On one hand,
the success of data delivery guarantees that all of the network-layer components have worked
correctly, regardless of their implementation variations. On the other hand, if any of the network-
layer components misbehaves, failures will arise in data delivery by which the faulty link(s) can be
detected. Correspondingly, our approach in TrueNet is to monitor I-hop data delivery behavior
(behavior of the network-layer protocol stack) with a small monitoring module as the critical code
at each hop, and attest, isolate, and protect only the particular monitoring module with trusted
computing. Thus, TrueNet requires only a small amount of critical code (the small monitoring
module) as the TCB. Such a small TCB size (i) supports different network stack implementations
and flexible protocol updates, (ii) makes the attestation of the small critical code efficient, and
(iii) enables applying formal analysis [28] on the small critical code to ensure the TCB is indeed

trustworthy.

The small TCB on each TrueNet router forms a logical protected path overlayed on the physical
machines and an untrusted network stack between a source and destination, along which data
delivery is monitored and ensured. As a result, TrueNet achieves efficient fault localization with
small router state (only per-neighbor state), support for dynamic/short-lived paths (no
requirements on the minimum number of packets transmitted along a path since monitoring is
performed only between neighbors), and global sharing of detection results while eliminating

slander attacks. As a proof of concept, we implement a TrueNet prototype in Linux using existing

84 CHAPTER 6. TRUENET

trusted computing technology and a TPM, and demonstrate that TrueNet provides high throughput
while achieving the desired security properties. We also launch real trace-based measurements to

show that the router state in TrueNet is up to five orders of magnitude less than related work [21, 97].

Contributions. We design, implement, and evaluate TrueNet, which, assuming trusted hard-
ware, achieves secure fault localization with properties (i.e., per-neighbor router state, dynamic
path support, and global sharing of fault localization results while avoiding slander or framing
attacks) that invalidate the previously proven performance boundaries in traditional networks [21].
TrueNet still provides benefits for partial adoption, enabling incremental deployment, and can be
deployed in inter-domain settings with the recently proposed SCION architecture [96]. Finally,
TrueNet explores the role trusted computing might play in securing network protocols, shows the
possibility of using trusted computing to break traditional performance boundaries, and could spark

future research.

6.2 Setting

Besides the problem formulation described in Chapter 2, we introduce additional assumptions and

definitions for this chapter below.

Definition 17. We denote by dap = {55’5‘3,51];3} the number of original packets dropped and
misrouted (6%), and the number of packets injected, modified, and reordered (5£B) on lag. A
link lop is faulty if dap is larger than a certain accusation threshold {Ty,., T;,} set by the network

administrator, i.e.:
(6.1) 84 p > Ty, or 05> Tin.

Definition 18. Aggregate fault localization is achieved iff given a routing path p, dap can be
accurately learned for each link [ap in p. Per-packet fault localization is achieved iff given the
routing path p the failure of delivering a single packet in p can be immediately localized to a specific

link in p.

6.3. FUNDAMENTAL CHALLENGES 85

Adversary Model. We follow the trusted computing literature and assume the adversary can
compromise the router OS, install ma