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Abstract:   

The indirectness of its energy band of group IV materials of Si and Ge prevents the use of these 

materials and their alloys for optical devices. In this project, direct bandgap group IV alloy of GeSn 

alloy is developed. This report covers: (a) growth techniques of GeSn alloy with various Sn 

compositions, (b) characterization of the alloy, and (c) physical properties of the alloy and identifying 

direct optical transitions. From the analysis, we show that a direct bandgap group IV alloy of GeSn 

can be obtained at a Sn composition above ~11%. 

 

Introduction:  

Sn-based �-� compound can be made to be direct bandgap for group � material. In this project, we 

focus on GeSn material system and we propose to engineer the energy bands of its optical transition of 

to establish the crossover of indirect-to-direct transition. By resolving both the indirect and direct 

optical transition, this enable us to identify the direct optical transition unambiguously which is 

desired in the application for optical emitters. 
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Experiment, Results and Discussion:  Describe the results obtained during the period of 

performance and what work may be performed in the future as follow on. 

 

This section is organized as following sub-sections: (1) growth techniques of GeSn alloy with various 

Sn compositions, (2) characterization of the alloy, and (3) physical properties of the alloy and 

identifying direct optical transitions. 

 

1. Growth techniques of GeSn alloy with various Sn compositions 

In this project, several types of Sn-based IV-IV compounds are developed. Here, we focus on the 

growth techniques of GeSn alloy with various Sn compositions. We have successfully demonstrated 

the growth of GeSn thick film without defect with Sn composition up 12% using Molecular Beam 

Epitaxy (MBE). Employing the low temperature growth technique, the two key issues in relating to 

the growth of GeSn film is resolved, namely (a) Sn segregates during the growth of GeSn film and (b) 

the misfit dislocations develop at GeSn/Ge interface as due to the large lattice mismatch between Sn 

and the Ge wafer. A series of Ge1-xSnx films with various Sn compositions up to 30% and thickness of 

30 nm was grown. A typical Cross-sectional transmission electron microscopy (XTEM) image of the 

film is plotted in Fig. 1(a). It shows that the film is defect free. To probe the Sn profile in the GeSn 

film, STEM is used instead of XTEM. The STEM image is depicted in Fig. 1(b). Dislocations are not 

observed, consistent with the XTEM measurement. Energy-dispersive X-ray spectroscopy (EDS) 

measurements were performed at various locations labeled 1–13, as marked in Fig. 1(b). The 

measured result is plotted in Fig. 1(c). The result shows that, along the in-plane direction, the Sn 

composition is ~10%. Along the growth direction, the Sn composition is also approximately ~10%. 

Taking the Sn composition from these measured points, the average Ge composition is determined to 

be 9.30.6%. This reveals that Sn is nearly uniformly distributed in the GeSn film.  
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Fig. 2. High-resolution diffraction 
patterns of two samples of N1 and N5. 
It shows that, the position of the GeSn 
line moves to lower angle as Sn 
composition increases as marked by the 
solid red arrow lines. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) XTEM imagine of GeSn grown on on Ge buffer layer, showing that the GeSn film is defect 

free. (b) STEM imagine of the GeSn film. (c) Position-dependent Sn composition of the GeSn, 

indicating Sn is uniformly distributed without segregation. 

 

(2)  Characterization of the alloy 

Various measurements have been performed to characterize these samples, including: high resolu

tion X-ray, Raman spectroscopy, etc. Typical high resolution X-ray trace is plotted in Fig. 2. For sampl

e with Sn=2%, which had the lowest Sn composition, tw

o features are resolved: (a) a sharp Ge line associated wit

h the Ge substrate and the HT-Ge/LT-Ge buffer layer and

 (b) a broad line located at the shoulder of the sharp Ge l

ine, marked by the solid arrow, which is attributed to the 

GeSn film. With increasing Sn composition, the position 

of the sharp Ge line remains unchanged for all the sampl

es, while the main position of the GeSn line moves to a l

ower angle with fringes shown in Fig. 2(b). This suggest

s that the lattice constant of the GeSn film increases with

 increasing Sn concentration. Similar behavior is also ob

served in the (202) scan. From the separation of the two 

main features, the in-plane lattice constant and the lattice
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 constant along the growth direction of the films can be deduced. Using these measured lattice consta

nts (b), the in-plane strain (ε∥) and strain along the growth direction (ε⊥) are calculated by (b – aGeSn)

/aGeSn. The results shows that these alloy are partially strained which will be use for the later discussi

on in identifying the energy bandgap. 

 

(3)  Physical properties of the alloy and identifying direct optical transitions 

 

After establishing the characteristic of the alloy, we now move to the energy band of the alloy. 

Fourier transform infrared spectroscopy (FTIR) is employed for probing both indirect and direct 

optical transitions. Here, we like to point out a technique detail on the measurement. In the 

conventional FTIR measurement, the incident light source is normal to the sample (parallel to the 

growth direction). The light penetrates through the sample and collected by detector. The collected 

signal is dominated by the signal from the wafer material as the thickness of the wafer is much thicker 

than the thickness of the film. In here, the technique of multi-reflection is developed. A schematic 

diagram of the setup is plotted in Fig. 3. The sample is polished a ~ 45 degree at the edge and the 

incident light source is focused at the edge in which the incident light propagate through the film with 

multi-reflection as indicated by the solid arrow lines. This enhances the absorption strength on the 

samples yielding a reasonable collected signal level.  

 

Fig. 3. Experimental setup for the FTIR absorption measurement. 

 

A spectrum on Ge0.98Sn0.02 film with a thickness of 30 nm is depicted in Fig. 4. Both indirect 

(located at ~ 0.55 eV, conduction X band to the valence Γ band X—) and direct optical transition 

(located at ~ 0.68 eV, conduction Γ band to the valence Γ band Γ—Γ) is resolved as marked by the 



two dotted arrow lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A typical FTIR spectrum showing both indirect and direct optical transition on 

GeSn thick film. 

 

   Taking the measured value of all the samples and plotted in Fig. 5, it shows that the indirect optial 

transition become the lowest transition for sample with Sn composition of ~ 11%. (The black solid 

line indicates the change of the direct optical energy of Γ—Γ transition while the red solid line 

indicates the change of the indirect optical energy of X— transition.) From the analysis, we can say 

that the critical Sn composition of the indirect-direct crossover occurs at a Sn composition of ~ 11% as 

indicates by dashed arrow line. 
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Fig. 5. Optical energy for both direct and indirect optical transitions. 
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