

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DETECTION AND MONITORING OF IMPROVISED
EXPLOSIVE DEVICE EDUCATION NETWORKS

THROUGH THE WORLD WIDE WEB

by

Robert T. Stinson III

June 2009

 Thesis Advisor: Weilian Su
 Second Reader: Douglas Fouts

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Detection and Monitoring of Improvised Explosive
Device Education Networks through the World Wide Web

5. FUNDING NUMBERS

6. AUTHOR(S) Robert T. Stinson III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As the information age comes to fruition, terrorist networks have moved mainstream by promoting their causes via
the World Wide Web. In addition to their standard rhetoric, these organizations provide anyone with an Internet
connection the ability to access dangerous information involving the creation and implementation of Improvised
Explosive Devices (IEDs). Unfortunately for governments combating terrorism, IED education networks can be very
difficult to find and even harder to monitor. Regular commercial search engines are not up to this task, as they have
been optimized to catalog information quickly and efficiently for user ease of access while promoting retail commerce
at the same time. This thesis presents a performance analysis of a new search engine algorithm designed to help find
IED education networks using the Nutch open-source search engine architecture. It reveals which web pages are more
important via references from other web pages regardless of domain. In addition, this thesis discusses potential
evaluation and monitoring techniques to be used in conjunction with the proposed algorithm.

14. SUBJECT TERMS Improvised Explosive Device, IED, Nutch, WebCrawler 15. NUMBER OF

PAGES
123

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DETECTION AND MONITORING OF IMPROVISED EXPLOSIVE DEVICE
EDUCATION NETWORKS THROUGH THE WORLD WIDE WEB

Robert T. Stinson III
Lieutenant, United States Navy

B.S., Maine Maritime Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2009

Author: Robert T. Stinson III

Approved by: Weilian Su
Thesis Advisor

Douglas Fouts
Second Reader

Jeffrey B. Knorr
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As the information age comes to fruition, terrorist networks have moved mainstream by

promoting their causes via the World Wide Web. In addition to their standard rhetoric,

these organizations provide anyone with an Internet connection the ability to access

dangerous information involving the creation and implementation of Improvised

Explosive Devices (IEDs). Unfortunately for governments combating terrorism, IED

education networks can be very difficult to find and even harder to monitor. Regular

commercial search engines are not up to this task, as they have been optimized to catalog

information quickly and efficiently for user ease of access while promoting retail

commerce at the same time. This thesis presents a performance analysis of a new search

engine algorithm designed to help find IED education networks using the Nutch open-

source search engine architecture. It reveals which web pages are more important via

references from other web pages regardless of domain. In addition, this thesis discusses

potential evaluation and monitoring techniques to be used in conjunction with the

proposed algorithm.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM OVERVIEW ..1
B. RESEARCH OBJECTIVES ...2
C. THESIS ORGANIZATION ..2

II. BACKGROUND ..3
A. THE IED THREAT ...3

1. Definition ..3
2. Generic IED Composition ...4
3. Brief History of Use ...5
4. Current Concerns ..6

B. INFORMATION RETRIEVAL ...6
1. Retrieval Strategies ..7

a. Vector Space Model ..7
b. Language Model ...8
c. Probabilistic Retrieval ...9
d. Inference Networks ...9
e. Extended Boolean Retrieval ...10
f. Latent Semantic Indexing ...10
g. Neural Networks ...10
h. Fuzzy Set Retrieval ..10

2. WebCrawler Algorithms ...11
a. Breadth-first ..11
b. Best-first ..12
c. Shark-search ...14
d. Info-spiders..14
e. PageRank ..16

C. PAGERANK ALGORITHM VARIATIONS ...19
1. Topic-sensitive ..19
2. Weighted ...21
3. Usage-based ..22
4. TimeRank ...24
5. DYNA-RANK ...24

III. NUTCH ...27
A. INTRODUCTION..27
B. ARCHITECTURE ...27
C. LUCENE ...28
D. ADAPTIVE OPIC ..30

IV. ALGORITHM DEVELOPMENT ...33
A. PROBLEM DEFINITION ..33
B. ASSUMPTIONS ...33

 viii

C. NEW ALGORITHM ...34

V. PERFORMANCE MEASUREMENTS ...37
A. EXPERIMENTAL SETUP ...37

1. Hardware & Operating System Configurations37
2. Simulation Configuration ..37

B. BENCHMARKING ...37
1. Low Complexity Network ...39
2. Medium Complexity Network ..45
3. High Complexity Network ..51

VI. CONCLUSIONS ..57
A. SUMMARY ..57
B. CONCLUSIONS ..57
C. FUTURE WORK ...58

APPENDIX A. NUTCH XML CONFIGURATION FILE59

APPENDIX B. LUCENE SCORING EXAMPLE ..79

APPENDIX C. SIMULATION 3 WEB LINK GRAPH ...81

LIST OF REFERENCES ..101

INITIAL DISTRIBUTION LIST ...105

 ix

LIST OF FIGURES

Figure 1. Representation of a generic Explosive Train ...4
Figure 2. Generic Improvised Explosive Device Electrical Diagram5
Figure 3. Representation of documents in a 3-dimensional vector space (From [8]).8
Figure 4. Breadth-first Crawler Outline. ...12
Figure 5. Breadth-first Crawler Tree Diagram Example. ..12
Figure 6. Best-first Crawler Outline. ...13
Figure 7. Best-first Crawler Tree Diagram Example. ...13
Figure 8. Info-Spider Architecture (From [15]). ...15
Figure 9. Simplified PageRank Calculation (From [17]). ...17
Figure 10. Loop Which Acts as a Rank Sink (From [17]). ...18
Figure 11. Nutch search engine high level design (From [25])...28
Figure 12. Typical application integration with Lucene (From [26]).29
Figure 13. Simulation 1: Low Complexity Web Link Graph..40
Figure 14. Simulation 1: Overall OPIC Scores. ..41
Figure 15. Simulation 1: Depth Level 2 OPIC Scores. ...42
Figure 16. Simulation 1: Depth Level 2 OPIC Score Variations.42
Figure 17. Simulation 1: Depth Level 2 OPIC Score % Variations.43
Figure 18. Simulation 1: Depth Level 5 OPIC Scores. ...44
Figure 19. Simulation 1: Depth Level 5 OPIC Score Variations.44
Figure 20. Simulation 1: Depth Level 5 OPIC Score % Variations.45
Figure 21. Simulation 2: Medium Complexity Web Link Graph.46
Figure 22. Simulation 2: Overall OPIC Scores. ..48
Figure 23. Simulation 2: Depth Level 5 OPIC Scores. ...49
Figure 24. Simulation 2: Depth Level 5 OPIC Score Variations.50
Figure 25. Simulation 2: Depth Level 5 OPIC Score % Variations.50
Figure 26. Simulation 3: Overall OPIC Scores. ..51
Figure 27. Simulation 3: Depth Level 3 OPIC Scores. ...52
Figure 28. Simulation 3: Depth Level 3 OPIC Score % Variations.53
Figure 29. Simulation 3: Depth Level 4 OPIC Scores. ...54
Figure 30. Simulation 3: Depth Level 4 OPIC Score % Variations.54
Figure 31. Simulation 3: Depth Level 5 OPIC Scores. ...55
Figure 32. Simulation 3: Depth Level 5 OPIC Score % Variations.55

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Small term-by-document matrix (From [8]). ...7
Table 2. PageRank Recursion Equation Calculations. ...17
Table 3. Harvest Rate of Topics (From [20]). ..20
Table 4. “scholarship” Query Results (From [21]). ...22
Table 5. Original OPIC versus New OPIC Scoring. ..35
Table 6. Probability of Creating Specific Document Links. ..38
Table 7. Simulation 1, Low Complexity Web Link Graph Data.40
Table 8. Simulation 2, Medium Complexity Web Link Graph Data.47

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

As the Global War on Terrorism has progressed, the use of Improvised Explosive

Devices (IEDs) against coalition forces, governments and civilian populations fighting

terrorism has drastically increased. One reason for this is easy access to the World Wide

Web [1]. The World Wide Web provides anyone with both a computer and Internet

connection access to a plethora of information within the touch of a button; anything

from encyclopedias to current news, pictures to movies, basic chemistry to the

construction of IEDs. In conjunction with this dangerous information being easily

accessible, the users and publishers have the potential to remain anonymous.

Complicating things further, terrorist organizations are exploiting this resource by

creating IED education networks via the World Wide Web to quickly and efficiently

propagate the information to their supporters and operatives.

One possible solution to this problem is an IED specific WebCrawler. An IED

WebCrawler has the potential to quickly locate terrorist IED education networks via the

World Wide Web. Once found, these networks can be either shutdown, monitored, or

infiltrated depending on the objectives of the government or agency employing the search

engine. By locating these networks, responsibility for particular attacks can be properly

assigned to specific terrorist networks, with particular IED countermeasures deployed to

prevent further loss of life and damage to property.

To accomplish this, the Nutch project was selected as the optimum search engine

to use. Its versatile plug-in architecture allows for the flexibility needed to design an IED

specific WebCrawler while keeping implementation costs low. To improve performance,

the original algorithm was modified to dramatically enhance the web-link scores of

documents already discovered during a search. Multiple simulations were used to test the

new algorithm variations with moderate success.

Overall, the Nutch search engine is well suited for the above task, as well as

monitoring the newly discovered networks. Under its current design, Nutch is capable of

maintaining a previously found web-link database while updating it with new documents

 xiv

and scores. Inflation issues concerning web-link scores arise depending on the number

and frequency of re-crawls conducted but is minor unless looking to discover new

networks after an initial crawl. This thesis does not address foreign language issues, robot

exclusion protocols or other security measures used to prevent search engines from

accessing a web page.

 xv

ACKNOWLEDGMENTS

First and foremost, I want to thank my family, Jamie, Elizabeth, Jacob, and Isabel

for supporting me through the numerous late nights of reading, writing and simulation.

Without their support, this thesis would never have materialized. Second, I would like to

thank my parents for all of their years of continuous support and teaching me to chase my

dreams.

My thanks to Professor Weilian Su for the numerous hours spent discussing and

helping me prepare this thesis. It has been an enlightening and life changing experience.

In addition, many thanks to Commander/Professor Alan Shaffer for taking the time to

teach me how to properly program Java.

Lastly, I wish to thank Doug Cutting and the open source community for creating

and supporting both the Lucene and Nutch projects. Without your insight, dedication to

excellence and constant improvements, this thesis would not exist.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM OVERVIEW

After the terrorist attacks of September 11, 2001, the United States of America

was forced to deal with a threat the likes of which had never been seen before. A small

network of individuals was able to effectively kill thousands of people with multiple

airborne Improvised Explosive Devices (IEDs). Following the attacks, the U.S. launched

the Global War on Terrorism; a massive anti-terrorism campaign with the goals of

bringing to justice the people responsible for the 9/11 attacks, as well as the terrorist

organization that planned it, al-Qaeda. The end state objective of the campaign is to

continue to prevent the emergence and sustainment of other terrorist organizations, while

permanently degrading the abilities of these organizations to engage in terrorism

effectively.

As the Global War on Terrorism has progressed, the use of IEDs against coalition

forces, governments and civilian populations fighting terrorism has drastically increased.

One reason for this is easy access to the World Wide Web [1]. The World Wide Web

provides anyone with both a computer and Internet connection access to a plethora of

information within the touch of a button; anything from encyclopedias to current news,

pictures to movies, basic chemistry to the construction of IEDs. In conjunction with this

dangerous information being easily accessible, the users and publishers have the potential

to remain anonymous. Complicating things further, terrorist organizations are exploiting

this resource by creating IED education networks via the World Wide Web to quickly

and efficiently propagate the information to their supporters and operatives.

One possible solution to this problem is an IED specific WebCrawler. An IED

WebCrawler has the potential to quickly locate terrorist IED education networks via the

World Wide Web. Once found, these networks can be either shutdown, monitored, or

infiltrated depending on the objectives of the government or agency employing the search

 2

engine. By locating these networks, responsibility for particular attacks can be properly

assigned to specific terrorist networks, with particular IED countermeasures deployed to

prevent further loss of life and damage to property.

B. RESEARCH OBJECTIVES

The research objectives of this thesis were to create a random network generator

capable of generating a random network to be used in testing the effectiveness of search

engine algorithms, while simultaneously developing a new search engine algorithm

aimed at identifying IED education networks accessible via the World Wide Web.

Additionally, this thesis will briefly mention how an IED WebCrawler could be modified

and used as a monitoring device, successfully tracking changes and updates to the IED

education networks.

C. THESIS ORGANIZATION

This thesis consists of six chapters. The present chapter states an overview of the

problem, objectives, and thesis organization. Chapter II contains a brief description of

IEDs, retrieval strategies and a current survey of web crawling algorithms. Chapter III

describes the Nutch open-source search engine project. Chapter IV discusses the

development of a new search engine algorithm. Chapter V presents the subjective

performance measurements, compares different algorithms and determines relative

effectiveness. Chapter VI summarizes this thesis, draws conclusions and provides future

research recommendations.

 3

II. BACKGROUND

A. THE IED THREAT

1. Definition

In 2008, the United States Department of Defense updated the definition of an

Improvised Explosive Device as:

a device placed or fabricated in an improvised manner incorporating
destructive, lethal, noxious, pyrotechnic, or incendiary chemicals and
designed to destroy, incapacitate, harass, or distract. [2]

Previously, an IED was only thought to incorporate military stores with non-

military components, but this concept is changing. Militaries around the world are

incorporating off-the-shelf commercial technology to lower production costs, blurring the

line between military and non-military components. What makes an IED special is the

fact that some part of the device, generally with regards to the triggering or delivery

mechanism, is altered from its original manufactured state to an “improvised” one.

The reason a standard IED definition is hard to agree upon is due to this fact:

IEDs are “improvised.” For example, there are over 16 commonly used acronyms within

the U.S. military to describe different IEDs, with no real consensus on how they are

specifically classified: Chemical and Biological IED (CBIED), Command Detonated IED

(CDIED), Chemical IED (CIED), Command Wire IED (CWIED), Deep Buried IED

(DBIED), Explosively Formed Penetrator (EFP), House-Borne IED (HBIED), Home

Made Explosives (HME), Improvised Anti-Armor Grenade (IAAG), Person-Borne IED

(PBIED), Radio-Controlled IED (RCIED), Suicide IED (SIED), Suicide Vehicle-Borne

IED (SVBIED), Vehicle-Borne IED (VBIED), Victim Operated IED (VOIED), Water-

Borne IED (WBIED). Other examples include “sticky” and “flying” IEDs, specifically

referencing magnetic and rocket assisted mortars. Overall, there is no easy way to

classify all of the different potential types of IEDs.

 4

2. Generic IED Composition

In general, an Improvised Explosive Device works by completing an explosive

train from start to finish. An explosive train is defined by the U.S. Department of Defense

as “a succession of initiating and igniting elements arranged to cause a charge to function

[2].” Figure 1 provides a generic line diagram of an IED explosive train. At the

beginning of the chain, a fuse is needed to initiate the reaction, with an accompanying

agent being the means of ignition. Fuse examples range greatly from a slow burning

piece of twine or cotton to a trail of black powder, etc...; but all require some type of

ignition source to start the chain reaction. Next is the primer, which is a container that

holds the explosive agent. A detonator, also known as a blasting cap, is then used to

create a small explosion which will cause the main charge to ignite. Safety relays and

arming leads are usually incorporated in the device in order to prevent early detonation.

Booster charges are optional depending on the main charge composition. If the explosive

agent being used requires a large amount of energy to ignite its chemical agent, then a

booster charge will be required. Multiple booster charges can be used to create a cascade

effect if the main charge is in need of the extra energy.

Figure 1. Representation of a generic Explosive Train

Another way to look at IEDs is from an electrical point of view, provided in

Figure 2. Initially, a power source is needed to start the reaction. Power sources for such

devices range in various sizes, from a small 9V battery to a large car or truck battery.

 5

Essentially, anything can be used as a power source, as long as it has the ability to store a

voltage potential and deliver enough current to initiate the explosive reaction. Next, an

optional arming switch can be incorporated in the device to prevent premature

detonation; otherwise a direct connection would be made. A trigger is then used to

complete the circuit, allowing the blasting cap to ignite the main charge.

Figure 2. Generic Improvised Explosive Device Electrical Diagram

3. Brief History of Use

Throughout all of mankind’s history, many different groups of people have turned

to violent means in order to further a cause; whether through formal military measures or

small pockets of resistance against a common foe. In general, small groups with minimal

amounts of money were forced to become creative in order to effectively attack their

enemies, furthering their objectives. The first prominent example of IED use came in the

20th century during the Belarus “Rail War.” In 1943, Belarusian partisans waged war

with IEDs against the German army; disrupting supply lines and destroying garrisons in

order to prevent their advance [3]. During the Vietnam War, Viet Cong soldiers used

numerous IEDs against American forces, causing approximately one third of all U.S.

casualties [4]. Since then, numerous separatists groups located worldwide have adopted

their use, including groups located in areas such as Northern Ireland, Iraq, Afghanistan,

Israel, Lebanon and Chechnya.

 6

As the war in Iraq comes to a close, and the U.S. led war in Afghanistan rages on,

it has become clear that terrorist groups’ weapon of choice is the IED. In response to the

high casualty rates in both locations, the United States created the Joint IED Defeat

Organization (JIEDDO) to combat the growing epidemic. Since its inception, JIEDDO

has effectively assisted in countering IED use; lowering the average number of IED

events Coalition forces encounter each month in Iraq and Afghanistan to approximately

900, down from a high of 2,800 in 2007 [5].

4. Current Concerns

Unfortunately, with the advent of the World Wide Web, anyone with a computer

and Internet connection can find information on how to create an IED. For example, a

well known anarchy book: The Jolly Roger’s CookBook can easily be found online

within minutes of a Google search involving terms related to IEDs: anarchy, bomb, and

explosive [6]. This detailed case-in-point illustrates just how vast the problem has

become. Terrorist networks are exploiting the Internet and creating vast IED education

networks to further their cause.

B. INFORMATION RETRIEVAL

The science of information retrieval has come to the forefront of Internet research

within the last two decades. As more and more people use search engines to find

pertinent information, the need to properly classify relevant documents continues to grow

and evolve. One success story demonstrating such importance is Google. Their search

engine took into account more factors than any other, considering not just term

frequencies, but “whether words or phrases on web pages were close together or far apart,

what their font size was, whether they were capitalized or in lowercase type [7].”

Learning to evaluate what information is important or not is the first step in developing a

successful search algorithm. Different methods classifying retrieval strategies and known

ranking algorithms are presented below.

 7

1. Retrieval Strategies

a. Vector Space Model

The vector space model is a retrieval strategy widely used in some of

today’s most successful WebCrawlers. The model works by representing each document

as a vector in multiple dimensions, with the number of dimensions dependent on the

quantity of terms entered into the query. If a term is found to be in a document, the value

of the vector for that document is non-zero. These values or similarity coefficients (SCs)

are then compared to determine which documents are the most relevant to a given input

query. Specific calculations involving similarity coefficients vary between WebCrawlers

and are usually considered proprietary information.

A simple term-by-document matrix example is presented in Table 1 with a

document in each column and corresponding term in each row. The value indicated

represents the term’s frequency within that document. In this specific case, term

frequency will be no more than one. For example, Term 3 appears in both Document 2

and Document 3 but not in the other example Documents. To further grasp this concept,

Figure 3 demonstrates what Table 1’s term-by-document matrix looks like as a vector in

3-dimensional space. If term frequencies were actually considered in this example, an

additional normalizing factor would have to be applied to the matrix.

 Document 1 Document 2 Document 3 Document 4

Term 1 1 0 1 0

Term 2 0 0 1 1

Term 3 0 1 1 0

Table 1. Small term-by-document matrix (From [8]).

 8

Figure 3. Representation of documents in a 3-dimensional vector space (From [8]).

In general, problems arise with this method due to the fact that the

frequency of terms does not always correlate to relevance, nor does the single inclusion

of a query term. The order in which terms appear does not factor in as well. Other

methods are used in conjunction with the vector space model to enhance the quality of

WebCrawler’s search results. Relevancy ranks vary among them and are solely

dependent on the ranking algorithm.

b. Language Model

The language model is defined as a “probabilistic mechanism for

‘generating’ a piece of text” [9]. In other words, it generates a distribution for all the

possible word patterns and assigns a similarity coefficient based on the likelihood of a

document generating a query. Contextual information can be used as well to generate the

distribution for more complex algorithms. The difficulty involving this method is that a

model is built for each document, making the method extremely computationally

intensive.

 9

c. Probabilistic Retrieval

Probabilistic retrieval has many variant forms but two fundamental

approaches that differ based on usage patterns and query terms. The first method involves

usage patterns to predict relevance while the other uses query information to determine

relevance. In [10], Fuhr shows that the probability of a document will be relevant given a

particular term estimate. Using a binary independence retrieval (BIR) model, he

specifically demonstrates that “optimal retrieval quality can be achieved under certain

assumptions.”

Unfortunately, probabilistic models are not very practical as they must

work around two general assumptions: parameter estimations and independence.

Parameter estimation refers to obtaining the parameter estimates through the use of

training set data. Without an accurate data set, it is very difficult to properly estimate the

parameters, which equates directly to their relevance. Independence assumptions on the

other hand cause problems as well. For example, it is clear that the presence of the term

“big” increases the probability in the English language of the presence of the term “bang”

in reference to the “big bang” theory. This assumption is normally required for the model

to work, even though the assumption many not be very realistic.

d. Inference Networks

Inference networks, also known as Bayesian networks, are networks that

take known relationships and “infer” other relationships from the information. By having

the ability to infer information from previous relationships, less computation is needed to

determine the probability that an event will occur or be relevant. The best known

example of an inference network being used to determine search engine results is

contained within Google’s PageRank algorithm and will be discussed in more detail in

section B-2-e of this chapter.

 10

e. Extended Boolean Retrieval

Conventional Boolean retrieval does not work very well when calculating

relevance rankings, due to the fact that either the document solely contains the query

term, or does not. This problem potentially allows for a lot of documents to be marked as

satisfying the input query, but not be relevant, and vice versa. Extended Boolean retrieval

adjusts this concept by applying weights to the terms entered in the query, known as term

weights. These weights allow for the creation of a vector, with the difference being

calculated out from the origin to determine relevance matching. Most modern search

engines incorporate extended Boolean retrieval within a part of their ranking algorithm

[9].

f. Latent Semantic Indexing

Latent Semantic Indexing is a method recognizing that a single concept

can be described by using many different words. Attempting to match only one or a few

words with a particular concept will produce many false results. By applying this

knowledge, Single Value Decomposition (SVD) is used to generate a similarity

coefficient; filtering out the noise and enabling documents with similar lexical semantics

to be located closer in multi-dimensional space.

g. Neural Networks

Neural Networks are a set of nodes, composed of importance values.

When calculating a value to associate with each node, all of the values from the incoming

nodes are used. A portion of or the entire node’s value is then passed on through the links

going out from it and used to calculate those nodes’ values. Training sets are needed to

properly modify the weights of the links, ensuring satisfactory importance value

calculations.

h. Fuzzy Set Retrieval

Fuzzy set retrieval is a method in which membership in a set is not solely

based on having only elements that are in the set, but rather by applying a formula to

 11

calculate the SC, or “degree of membership” [9]. Boolean retrieval, union, intersection

and complement operations are applied to determine the degree of membership. Another

application used within “fuzzy set” retrieval is a spell check function. This function

attempts to prevent false results based solely on misspelled pages, as well as allowing

misspelled pages to not be penalized within the query results when they are relevant to a

particular query.

2. WebCrawler Algorithms

Developing an algorithm to search and properly classify topics throughout the

World Wide Web is a difficult task. Early search engines classified information based

solely on lexical similarity and frequency [13]. These methods include Breadth-first,

Best-first, Shark-search and Info-spiders. With the monolithic rise of Google and

subsequent publishing of its PageRank concept, hypertext link structure analysis became

the primary tool for Web semantics [7]. Since then, multiple methods have been created

using PageRank as their basis, with a survey of such presented within the section. In

particular, Google’s current algorithm has not been published, as it is considered

proprietary information forming the basis of the company’s business.

a. Breadth-first

The Breadth-first Search (BFS) algorithm was one of the first and simplest

known crawling strategies to be used on the World Wide Web. Developed in 1994 [11], it

uses a First-in First-out (FIFO) queue method, crawling links in the order in which they

are found. This method uses a single seed, i.e., web pages, and continues crawling until

all links are exhausted. An illustration outlining the basic method is shown in Figure 4.

Figure 5 presents an example BFS tree diagram containing 15 links; the numbers

representing the order in which the web page link is found and processed.

 12

Figure 4. Breadth-first Crawler Outline.

Figure 5. Breadth-first Crawler Tree Diagram Example.

b. Best-first

The Best-first algorithm is a method that uses some type of estimation

criteria to determine which link to crawl first, given a group of links located on a web

page. The idea behind the Best-first algorithm is to efficiently navigate and download

relevant pages first, while preventing memory buffer overloads in the server conducting

the crawl. An outline of the Best-first Crawler is presented in Figure 6. According to [12],

the Uniform Resource Locator (URL) link’s name is generally considered the best

measure for estimating relevance, given that the name relates to a specific product, device

or relevant field. Figure 7 presents an example of a Best-first Tree Diagram.

 13

Figure 6. Best-first Crawler Outline.

Figure 7. Best-first Crawler Tree Diagram Example.

One example of a generic cosine SC formula used to discriminate relevant

web pages is provided below:

1

(,)
t

i qj ijj
SC Q D w d

=
= × (2.1)

where Q is a query weight vector and D is a specific document vector, both of size t ,

which is the total number of specific terms in the query. ijd is defined as the term weight

within the document. qjw is the weight assigned for each specific query term, having

 14

treated the query as a document itself. Essentially, this formula takes the anchor text

pointing to another web page as a document and compares it to the entered query. The

more frequent the terms from the entered query are found in the anchor text, the higher

the SC will become.

c. Shark-search

The Shark-search algorithm is essentially a hybrid of the Best-first

method, using a more complicated function to evaluate relevant links [14]. Scores for

links are influenced by more factors than before, including the text surrounding links,

anchor text and an inherited score derived from previous page. The value added to a

search engine by using the Shark-search algorithm is that link fetching relevance is

determined by using a continuously changing value function as opposed to a standard

binary function, allowing for a more refined search. Overall, this method saves

communication time by obtaining documents that are more likely to be relevant first,

leading to other documents that are more relevant later on. Figure 6, shown previously,

illustrates the algorithm as well.

d. Info-spiders

Info-spiders are defined as independent agents gathering information in

parallel over the World Wide Web. Generally speaking, each agent contains a list of key

words and evaluates a node or multiple nodes within a network (i.e., web pages within

the World Wide Web), looking for new nodes relative to the key words entered. These

agents “exhibit an intelligent behavior, being able to evaluate the relevance of the

document content with respect to the user’s query, and to reason autonomously about

future actions that mimic the browsing habits of human users [15].” As the “Spiders”

progress to new nodes within a network, the amount of energy, or SC is calculated.

Eventually, the value drops below a set threshold, ending the search down a particular

linked path. The cycle then repeats itself within different networks determined by the

user. An example of such a program found freely on the Internet is MySpiders [15].

 15

Figure 8 is a standard Info-Spider architecture representation, starting and

ending the process with a user. To begin, a user enters into the information environment,

inputting the key words to be searched out over the World Wide Web. Next, the program

fetches each page as a raw html document. After the document is retrieved, it is parsed

and saved in a compact format. Meanwhile, the document is weighted for the given key

words and its outgoing links processed to determine the likelihood of finding the relevant

key words within the next linked page. The process repeats until the energy or SC drops

below a set threshold, ending the search. Multiple “Spiders” or paths are taken

simultaneously in parallel to speed up the process. At the end of the process, a database

has been developed and indexed relative to the entered key words that can be accessed by

the user at his or her leisure.

Figure 8. Info-Spider Architecture (From [15]).

 16

e. PageRank

In 1998, Sergey Brin and Lawrence Page forever changed the way the

world searches for relevant web pages with the development of Google and the

subsequent implementation of the PageRank algorithm. According to [16], PageRank is

an algorithm that ranks a web page based solely on its incoming and outgoing hypertext

links. In general, pages with more incoming links are viewed as being more “important”

than those with less incoming links. The easiest way to envision the concept is as a

citation format. Each web page hypertext link is a citation or vote of approval for the web

page it points to, with the weight of the citation based on the number of votes of

“importance” the page receives. Equation 2.2 defines a slightly simplified PageRank

algorithm with R being the ranking, u a web page, Fu as a set of pages u points to and Bu

as a set of pages that point to u. The number of links from u is Nu = |Fu| and c is a factor

used to normalize all of the rankings.

()

()
uv B v

R v
R u c

N∈

= [17] (2.2)

The equation is recursive until convergence is reached. Figure 9 presents a visual

example of such a simplified calculation reaching an approximate equilibrium. Initially,

page A was given a value of 1.0 for its ranking. Having two links, this divides the value

in half so that page B and C each have 0.5 ranking. With page B and C only having one

outgoing link each, they both pass on their link’s value to pages C and A respectively. At

this point, page A has a value of 0.5, page B a value of 0.0, and page C a value of 0.5.

The Equation is applied recursively until equilibrium is reached, with the results shown in

Table 2.

 17

Figure 9. Simplified PageRank Calculation (From [17]).

Recursion # Page A Page B Page C

1 1.0000 0.0000 0.0000
2 0.0000 0.5000 0.5000
3 0.5000 0.0000 0.5000
4 0.5000 0.2500 0.2500
5 0.2500 0.2500 0.5000
6 0.5000 0.1250 0.3750
7 0.3750 0.2500 0.3750
8 0.3750 0.1875 0.4375
9 0.4375 0.1875 0.3750

10 0.3750 0.2188 0.4063
11 0.4063 0.1875 0.4063
12 0.4063 0.2031 0.3906
13 0.3906 0.2031 0.4063
14 0.4063 0.1953 0.3984
15 0.3984 0.2031 0.3984

Table 2. PageRank Recursion Equation Calculations.

Problems can arise with this particular ranking function due to a potential

issue known as “rank sink.” Simply put, if any pages are fetched and point only to each

other, an infinite loop will occur, causing the web page ranks to increase, but never be

distributed. An illustration of such an event is given in Figure 10. To solve this problem,

a ranking source vector ()E u is introduced in Equation 2.3. The ranking source vector is

 18

used as a source of rank to prevent rank sink. Intuitively, it “corresponds to the

distribution of web pages that a random surfer periodically jumps to,” with E typically

equal to 0.15 [17]. R’ therefore changes to become an assignment of PageRank to a set of

web pages.

'()

'() ()
uv B v

R v
R u c cE u

N∈

= + [17] (2.3)

Figure 10. Loop Which Acts as a Rank Sink (From [17]).

The final PageRank formula is developed by going one step further and by

replacing c with a dampening factor d in Equation 2.2:

()

'()
() (1)

v B u v

R v
PR u d d

N∈

= − + [17] (2.4)

The dampening factor shown above is a simple means of directly manipulating the

PageRank. In general, it should be thought of as the probability that a user will follow the

links and (1)d− as the scoring distribution from non-directly linked pages.

 19

One of the biggest issues mentioned by Brin and Page in their research are

“dangling links” [17]. Dangling links are defined as any link that points to a page that has

no outgoing links. Due to the fact that these links do not have an affect on the ranking,

they are removed from the system and added back in after convergence of the PageRank

algorithm. Normalization of the other links will change slightly but should not have a

large effect on the total population of web pages.

C. PAGERANK ALGORITHM VARIATIONS

Since publishing the generic PageRank algorithm, Google has moved forward to

dominate the World Wide Web Search Engine business. Microsoft Network, Yahoo!,

Ask, and others still exist and have maintained a significant amount of market share but

are nowhere close to that of Google [7]. Google’s actual algorithm and code, along with

the other companies’ mentioned above are still proprietary. Listed below are other known

algorithms that attempt to improve upon Google’s initial PageRank algorithm with their

own variant.

1. Topic-sensitive

A “topic-sensitive,” “topic-centric” or “focused” crawler is an algorithm that

returns a “local ranking based on each user’s preferences as biased by a set of pages they

trust or topics they prefer” [18]. This approach differs from PageRank by taking

advantage of personalization, tailoring information specific to the search context. It also

allows an increase in information relevance at the cost of computational resources. To

determine relevance, a similarity score is initially calculated as previously shown in

Equation 2.1. This score determines the relevance of the current page and is used as a

component to determine the final link score. Equation 2.5 calculates the link score,

()Linkscore j by adding together the URL score, ()URLscore j , with the anchor text

score, ()Anchorscore j [19]. Linkscore(j) is the score of the hypertext link j ;

()URLscore j is the similarity between the current page’s hypertext link information of

j and the topic specified; and ()Anchorscore j is the similarity between the anchor text

and the topic specified.

 20

 () () ()Linkscore j URLscore j Anchorscore j= + (2.5)

After the link score is determined, a final score for the link is calculated by

combining the current page’s similarity score with the previously calculated link score.

Equation 2.6 calculates the final score, _ _ ()Score To PR j , by adding ()TP j with

()Linkscore j [19]. _ _ ()Score To PR j is defined as the final score of the Topic-

PageRank algorithm with respect to link j ; ()TP j is the Topic Page similarity score; and

()Linkscore j is the score of the link previously calculated in Equation 2.5.

 _ _ () () ()Score To PR j TP j Linkscore j= + (2.6)

Experiments to determine the performance of the above algorithm were conducted

by Yuan, Yin, and Liu [20]. Accordingly, a metric called the “harvest ratio” was devised

to quantize performance. Equation 2.7 shows the harvest ratio as the percentage of the

number of relevant pages divided by the total number of downloaded pages. The topics

searched for in this experiment were American History, New Car, China travel and huang

shan travel, with their corresponding results are shown in Table 3. Overall, Breadth-first

had the worst ranking values with an average ranking of 0.3375 and the largest variation

in value. PageRank preformed better with an average ranking value of 0.4625 and had the

least variation in value. T-PageRank performed the best with an average ranking value of

0.6225 with only slight variations in value.

#_ _ Re _

_
#_ _ _

of levant Pages
Harvest Ratio

of Dowloaded Pages
= (2.7)

Topic Language Breadth-first PageRank T-PageRank
American History English 0.34 0.47 0.64
New Car English 0.34 0.47 0.65
China travel Chinese 0.29 0.46 0.59
huang shan travel Chinese 0.38 0.45 0.61

Table 3. Harvest Rate of Topics (From [20]).

 21

As shown in Table 3, the topic-sensitive algorithm was more effective at

providing relevant results when compared to the breadth-first and PageRank algorithms.

In a different experiment, according to [18], approximately 70 percent of the pages being

returned were the same between a topic-sensitive crawler and that of Google’s Global

PageRank. The difference between the two results is due to the fact that as more pages

are crawled, the results begin to converge. Additionally, seed URLs determine where the

search engines look next. If they are the same, the results will be similar.

2. Weighted

The Weighted PageRank (WPR) algorithm is an extension of the original

PageRank algorithm, taking into account the importance of both the in and out links by

“distributing rank scores based on the popularity of the pages” [21]. Simply put, the

algorithm assigns larger rank values to pages that are more popular instead of dividing

the rank value assigned to every page evenly among the out links. Equation 2.8 calculates

the weighted popularity of the in links as (,)
IN
v uW . This is “based on the number of in-links

of page u and the number of in-links of all reference pages of page v “ [21]. uI and pI

represent the number of in-links of pages u and p respectively. ()R v is the reference

pages list of page v .

 (,)

()

IN u
v u

pp R v

I
W

I
∈

=

 (2.8)

Accordingly, the out links are calculated in a similar way, using Equation 2.9.

(,)
OUT
v uW is the weighted popularity of the out links. This is based on the number of out-links

to the page u and the number of out-links of all reference pages of page v . uO and pO

represent the number of out-links of pages u and p respectively. ()R v is the reference

pages list of page v .

 22

 (,)

()

OUT u
v u

pp R v

O
W

O
∈

=

 (2.9)

Knowing the above information, the final PageRank formula, Equation 2.4 is then

modified to:

 (,) (,)
()

()
() (1) IN OUT

v u v u
v B u v

R v
PR u d d W W

N∈

= − + (2.10)

Testing for the Weighted PageRank Algorithm was done using the query “scholarship” in

[21]. Table 4 presents the size of the page set obtained, the number of relevant pages and

the relevancy value for the given pages. In general, WPR is shown to have higher values

for the given relevant pages found, but is still finding approximately the same number of

relevant pages as the original PageRank algorithm.

Table 4. “scholarship” Query Results (From [21]).

3. Usage-based

According to [22], Usage-based PageRank (UPR) is a modification of the original

PageRank algorithm in that it additionally ranks web pages based on the previous user’s

navigation behavior. The computation is essentially biased using the information from

 23

the previous user’s visits that are recorded in the website’s log. To do this, a transition

matrix m and personalization vector p are both defined in such a way that the pages and

paths previously visited by other users are ranked higher.

Following the properties of a Markov theory and the PageRank algorithm, the

Usage-based PageRank vector, UPR , is calculated as follows:

 (1) *UPR m UPR PERε ε= − + (2.11)

where ε is the dampening factor, with m as an N x N transition matrix whose elements

ijm equal 0 if there does not exist a link from page jp to ip . ijm is defined in Equation

2.12 with the personalization vector PER provided in Equation 2.13.

()k i

j i
ij

j k
p OUT p

w
m

w
→

→
∈

=

 (2.12)

1j

i

j
p WS

Nx

w
PER

w
∈

=

 (2.13)

The weight iw for each node represents the number of times page ip was visited and the

weight j iw → on each edge represents the number of times ip was visited after jp . These

equations, when combined, result in the final UPR equation given in Equation 2.14,

which was represented previously by Equation 2.11.

 1

()
()

() () (1)
j j

k j j

j in n i
i j

p IN p j k j
p OUT p p WS

w w
UPR p UPR p

w w
ε ε→−

∈ →
∈ ∈

= + −

 (2.14)

 24

In [22], testing for the algorithm was limited, using publically available data from

msnbc.com. Comparisons were made showing that UPR performed better than the other

two at predicting accuracy. To its advantage, the process of ranking the next possible

pages took less than 2 seconds and could be done online without delaying navigation

[22].

4. TimeRank

TimeRank is another variant of PageRank in that it uses the web page’s record of

the last visited time to determine its degree of importance [23]. Essentially, it uses a time

factor to improve upon the precision of a given ranking, basing it on the amount of time a

user stays on the website. The longer time logged, the more important the page.

TimeRank is calculated by Equation 2.15 [23]. ()TR j is the final calculated score;

_ _ ()Score To PR j is the same score calculated from Equation 2.6’s Topic-Sensitive

algorithm and ()t i is the total visiting time of a page related to a topic. ()t i is initially set

at 1 to avoid a zero ranking of a relevant topic web page.

 () _ _ ()* ()TR j Score To PR j t i= (2.15)

Unfortunately, some complications arise with the algorithm due to processing

server logs. A rule regarding the use of web proxies is applied to determine a valid source

IP. If the source IP is the same in 30 minutes, it is treated as one user, otherwise it is

discarded. Another issue not discussed is the fact that a page could be long and contain a

lot of information that the reader must sift through. If this is the case, a page may be

related to the general topic entered, but not the specific topic searched for and have a

higher score due to the ()t i factor.

5. DYNA-RANK

The final PageRank variant discussed is the DYNA-RANK algorithm. DYNA-

RANK focuses on “efficiently calculating and updating Google’s PageRank vector using

‘peer to peer’ systems” [24]. Changes in the web structure are handled incrementally

 25

amongst peers, requiring less computation time and a fewer number of iterations

compared to a centralized approach. The concept uses the fact that changes will only

affect up to a certain domain, not requiring a full recalculation of ranking vectors for

others outside the domain.

The original PageRank formula is initially used when applying the DYNA-RANK

algorithm. Equation 2.16, _ (,)new weight K L is used to calculate the out-link weights for

all of the out-link weights within the peer:

()

()
_ (,)

(()) 1
R

PEER i

P K
new weight K L

n K
=

+
 (2.16)

where _ (,)new weight K L is the new edge weight calculated; ()RP K is the PageRank

value of node K and ()()PEER in K is the number of out-links of node K on ()PEER i .

()PEER i is defined as a specific domain or peer grouping. To figure out which links

need to be updated, a relative change value, RC is calculated according to Equation 2.17:

(_ _)

(_)

abs new weight old weight
RC

new weight

−= (2.17)

where _old weight was the previously calculated _ (,)new weight K L .

Overall, DYNA-RANK performs well in reducing the time to reach relative

convergence as well as the number of iterations required [24]. Future work is needed to

evaluate this algorithm further with regards to how well it would work given a topic-

sensitive PageRank algorithm.

Having now surveyed a variety of algorithms available for use in an IED

Education Network WebCrawler, none appear to be specifically tailored or easily capable

of discovering hidden networks within the World Wide Web. In order to carry the

research forward, a specific WebCrawler must be chosen for future work and

implementations; allowing an inside look at the current algorithm being used by the

 26

WebCrawler. Criteria for choosing the WebCrawler was that it must be free, open source

software that is scalable and easily deployed. Knowing this, our choice for an IED

Education Network WebCrawler was the Nutch project.

 27

III. NUTCH

A. INTRODUCTION

The Nutch project is a Java based open-source search engine, capable of crawling

a simple intranet, subset of the Internet, or the entire World Wide Web [25]. Prior to

Nutch’s development, it was generally not possible to analyze why any random search

from a popular search engine would rank a generic web page y higher than web page x

for a given query. This was in part due to the fact that most search engine algorithms are

considered proprietary, as well as to prevent spammers from manipulating text and links

in order to specifically boost a particular website’s rank. The Nutch project attempts to

solve the algorithm dilemma by being open-source. Its purpose is two-fold, to bring

transparency and a detailed explanation of how the score for a given web page or

document is computed in a search engine while providing an alternative search engine for

people who are not fully satisfied with the limited number of commercial Internet search

engines in existence today. Additionally, Nutch observes robot exclusion protocols to

allow administrators the ability to control which parts of their host are collected in this

manner.

B. ARCHITECTURE

The Nutch project’s architecture is designed to be scalable in both search size and

speed, while implementing parallelization retrieval techniques in the process. Its

operation can be divided into three parts, a crawler, indexer and a search interface [25].

Figure 11 presents this conceptually from a high level design point of view. The crawler

is designed to search through any given file systems, intranet, or the World Wide Web.

This information is then stored via a database named WebDB and cached for future use.

In addition to storage, the crawler uses a program named Lucene to index the information

retrieved. This index is then used to retrieve the data from WebDB via a search interface.

 28

Figure 11. Nutch search engine high level design (From [25]).

The main advantage of using Nutch over other search engines is that the

architecture is scalable. Simply put, whether there is a need to index one domain or many,

even filter out others, it can handle them all. Nutch accomplishes this by using an

extensible markup language (xml) format plug-in architecture that provides the user with

the ability to make modifications over a wide range of parameters without having to

make any hard coded changes to the Java code. The Nutch default xml configuration file

is contained in Appendix A.

C. LUCENE

Lucene is at the heart of the Nutch search engine. Without it, the Nutch crawler

would only gather information, storing it into a database void of organization. According

to [26], Lucene is a mature, open-source Java program that provides indexing and

searching capabilities. It is not an application program like many think, but a Java library

that does not make assumptions about what it indexes or searches. Essentially, Lucene

can be applied to search and index any type of file that can be converted into a

recognizable text format. Figure 12 illustrates this difference between Lucene and an

external application using it. Applications using Lucene present an interface to enable the

user access Lucene’s index while gathering different types of data at the same time,

 29

completely dependent upon user input. Lucene differs from this by taking the data

obtained through an external application and bringing order to it through indexing.

Overall, it provides a means of searching the index generated in order to present the

desired information in an application.

Figure 12. Typical application integration with Lucene (From [26]).

In addition to Lucene’s ability to index documents, it has a transparent scoring

algorithm which sets it apart from other indexing programs. The formula used by Lucene

to score relevant documents d for a given query q is as follows:

2

_ _

(,) (_ _) () (. _ _) (. _ _)
t in q

score q d tf t in d idf t boost t field in d lengthNorm t field in d= ⋅ ⋅ ⋅
 (3.1)

where (_ _)tf t in d is the term frequency factor for the term t in document d , which

allows documents with a higher term frequency obtain a higher score. ()idf t is the

inverse document frequency of the term, which allows documents that contain rare search

 30

query terms to obtain a higher score. (. _ _)boost t field in d is a user biasing boost value

that can be given to a document set during indexing for a specific .t field , being the term

field in document d . Finally, (. _ _)lengthNorm t field in d is the normalization value of a

field, given the number of terms contained within the field, allowing a higher score to be

assigned to a field that is short and contains a searched query term. The field values

discussed above are provided via xml meta tag data, specifically url, anchor text, title,

host and phrase. Equation 3.1 can be expanded by multiplying the resulting score by

(,)coord q d and ()queryNorm q . (,)coord q d is a coordination factor, a score based on

how many of the query terms are found in the document while ()queryNorm q is a

normalizing factor used to make scores comparable between queries. In Nutch, the

formula changes slightly by multiplying the resulting score, (,)score q d by an

_ ()Overall Boost d value, shown in below:

_ (,) _ () (,) () (,)Overall Score q d Overall Boost d coord q d queryNorm q score q d= ⋅ ⋅ ⋅ (3.2)

where _ ()Overall Boost d is a boost factor determined by Nutch’s page ranking

algorithm for document d and _ (,)Overall Score q d is the final score of document d

for a given query q . An example calculation for Equations 3.1 and 3.2 is contained in

Appendix B.

D. ADAPTIVE OPIC

Nutch is one of the few WebCrawlers to implement the Adaptive On-Line Page

Importance Computation, better known as OPIC. Developed in 2003, the algorithm is

computed on-line during fetch sequences in order to “focus crawling to the most

interesting pages” [27]. The advantage OPIC has over other algorithms is that it does not

use a lot of CPU or other disk resources, specifically by not needing to store the actual

link matrix, like Page Rank. Essentially, this algorithm can be thought of as a “non-

iterative weighted backlink-count strategy,” where the ranking value is split evenly

among its outgoing links producing a type of greedy algorithm [28].

 31

Nutch implements OPIC by injecting the root node with a specific amount of

value or “cash” as it is commonly referred to. The value injected is normally one unless

otherwise specified. When discussing cash values within Nutch, there are two specific

types: current and historical. Current cash is the amount of cash a document receives

from incoming links before or after processing. Typically, this value is the amount of

cash value it receives from other documents’ out-links having been processed or else was

injected with to begin an initial web crawl. Historical cash is the amount of cash a

document has after processing and after a search is complete. When a document is

processed from the fetch list, the cash is split evenly among the out-going links as shown

below:

_ ()

_ _ ()
_ ()

Current Cash d
Outlink Current Cash d

Num OutLinks d
= (3.3)

where _ ()Current Cash d is the current cash value of document d being processed and

_ ()Num OutLinks d is the number of links coming out from document d . These newly

discovered out-links are then added to the web link database, as well as the fetch list

database for future processing. Within the fetch list database, the

_ _ ()Outlink Current Cash d value is also stored and used as a measure to determine

which node is processed next. In general, the search turns into a breadth-first variant

where nodes for a specific depth level are not searched in the order found, but rather by

their current cash score.

After a WebCrawler search is complete, the final value stored in historical cash is

the actual OPIC score for a document, _ ()OPIC Score d defined as:

 _ () _ () _ ()OPIC Score d Current Cash d Historical Cash d= + (3.4)

where _ ()Current Cash d is the accumulated current cash of document d at the end of a

search and _ ()Historical Cash d is the historical cash value of document d , determined

at fetch processing time. This factor affects the final score ranking of a document via the

overall boost factor found in Equation 3.2, with the _ ()Overall Boost d defined as:

 32

 _ () _ ()Overall Boost d OPIC Score d= (3.5)

Some discussions have taken place in online blogs about why the square root value of the

OPIC score is used instead of the straight score or a logarithmic value. Doug Cutting, the

creator of both Nutch and Lucene, stated in many of them that the overall boost value

was calculated this way to prevent the OPIC score from overly influencing document

ranking. Either way, a logarithmic function and a square root function are both types of

power functions and can manipulate the score in a similar fashion.

Knowing the above information, a new algorithm can now be developed

specifically for IED Education Networks based solely on influencing the OPIC score of

Nutch without affecting Lucene’s scoring factors, which are based on query terms.

 33

IV. ALGORITHM DEVELOPMENT

A. PROBLEM DEFINITION

When conducting any search over the World Wide Web, the results are only as

good as the algorithm linking the database together and the scoring equation used to filter

out unwanted documents via content. Initially, this thesis focused on changing the

weighted plug-in boost values of the five fields used to score a document, those being url,

anchor text, title, host and phrase. These values are calculated at query time and have a

mild effect on the final scoring of a document, but are ultimately shaped by the OPIC

value calculated during the fetch sequence. IED education networks can easily vary their

meta-tag data depending on how visible they would like their information to be.

The Nutch OPIC algorithm assumes that all out-going links are equal. In reality,

no link is created equal. To fix this, we chose to change the OPIC algorithm in order to

assign a higher OPIC value to the pages which are referred to more, thereby ensuring web

pages with more significant importance are ranked accordingly. This will in turn allow an

IED focused WebCrawler to appropriately weigh potential root node documents higher,

thereby making it easier to discover IED education networks.

B. ASSUMPTIONS

While attempting to develop a new algorithm, it must be assumed that the

networks being searched are truly random. IED education networks come in all shapes

and sizes and can easily range from just a single web page describing how to make one,

to hundreds of web pages with similar information passed among them. Second, all depth

levels are considered equal. The reason for this is to have a basis of comparison within a

web search. In addition, it is assumed that the education networks being sought are trying

to stay hidden within their respective domains and will not be easily located by their

domain name, such as www.HowToMakeIEDs.com.

 34

C. NEW ALGORITHM

Given the above criteria and assumptions, the new algorithm developed takes into

account the fact that there exist four types of links coming out of a document: self referral

links, external domain links, new document links within the domain and previously

discovered document links, either external or internal to the domain. Identification of

these types of links is critical in properly influencing the value of the OPIC score being

given to those documents. Knowing this, the following algorithm was developed where

the current cash value or portion a node receives, _ ()Cash Portion d is equal to:

_ ()

_ ()
() () () ()

Current Cash d
Cash Portion d

S d Swgt N d Nwgt O d Owgt E d Ewgt
=

⋅ + ⋅ + ⋅ + ⋅
 (4.1)

where _ ()Current Cash d is the current amount of cash contained within document d ,

()S d is the number of self referral links leaving the document, Swgt is the weight

assigned to self referral links, ()N d is the number of new document referrals, Nwgt is

the weight assigned to new document referrals, ()O d is the number of previously

discovered documents referrals, Owgt is the weight assigned to previously discovered

document referrals, ()E d is the number of external link referrals and Ewgt is the weight

assigned to external link referrals.

For example, a given document that had a current cash value of 0.25 was selected

to be the next document processed via the fetch list database. During processing, it is

discovered that the document has 8 out-going links: 2 of the 8 links are self referral links,

4 links are new links with one being external and the last 2 out-going links are found to

be previously discovered documents. Weights for the different types of links provided are

equal to 1, simulating the weighting effect of the original OPIC score. Given this

information and applying Equation 4.1 results in the _ ()Cash Portion d for each out-

going document link equal to 0.125.

Following the logic given above, the OPIC current cash value for each out-going

link is calculated as:

 35

 _ _ () _ () _Actual Cash Portion d Cash Portion d Assigned Wgt= ⋅ (4.2)

where _ _ ()Actual Cash Portion d is the portion of document d ‘s current OPIC cash

value being given to a specific out-going link, either ()S d , ()N d , ()O d , ()E d .

_ ()Cash Portion d is the value obtained from Equation 4.1 and _Assigned Wgt is the

weight previously assigned to the type of document link being processed, which can be

either Swgt , Nwgt , Owgt and Ewgt . Continuing the previous example, the

_ _ ()Actual Cash Portion d from Equation 4.2 would be equal to _ ()Cash Portion d

calculated from Equation 4.1 because of the weight for each going link being equal to 1.

Now, consider the same document given in the previous example with the

following weighted scores: Swgt equal to 1, Nwgt equal to 1, Owgt equal to 2 and

Ewgt equal to 1. The _ ()Cash Portion d for each of the out-going document links

decreases to equal 0.1. This is significantly less than the amount previously calculated.

The _ _ ()Actual Cash Portion d is then calculated to be 0.1 for all of the outgoing links

except for the previously discovered links, which are each now equal to 0.2. This value is

now significantly higher than the previously determined value, therefore showing that

these nodes are of greater significance within the overall web link graph, shown in Table

5.

Links Type OPIC Score New Algorithm Score Difference % Change
1 Self Referral 0.125 0.1 -0.025 0.2
2 Self Referral 0.125 0.1 -0.025 0.2
3 New 0.125 0.1 -0.025 0.2
4 New 0.125 0.1 -0.025 0.2
5 New 0.125 0.1 -0.025 0.2
6 New 0.125 0.1 -0.025 0.2
7 Old 0.125 0.2 0.075 0.6
8 Old 0.125 0.2 0.075 0.6

Table 5. Original OPIC versus New OPIC Scoring.

 36

Having now developed a new algorithm capable of ranking documents with

specific links higher than others, testing was needed to formulate a true understanding of

the algorithm’s potential and future use against IED Education Networks.

 37

V. PERFORMANCE MEASUREMENTS

The goal of the testing performed below was to establish a preliminary means of

judging the effectiveness of the new proposed algorithm’s ability to score web pages

when compared to the original OPIC algorithm, independent of Nutch. MATLAB code

was created to randomly generate networks in order to perform an analysis given three

different types of simulations. Multiple simulations were conducted with only three

examples discussed herein.

A. EXPERIMENTAL SETUP

1. Hardware and Operating System Configurations

The platform used to conduct the simulation was a single Dell XPS M1330 laptop

personal computer. This machine had an Intel Core 2 Duo CPU T9300 at 2.5 GHz, with 4

GB of RAM and a 185 GB hard disk. The operating system used was Microsoft Windows

Vista with Service Pack 1.

2. Simulation Configuration

The software used to conduct the random network simulation and algorithm

calculations was the MathWorks Matlab R2008a Windows program. Matlab is a private

distribution program and requires a license. No special toolboxes or functions outside the

original program were needed to perform the simulation. The software used to plot the

resulting data was the Microsoft Office Excel Windows program. Microsoft Excel is a

private distribution program and requires a license. No special toolboxes or functions

outside the original program were needed to plot the results.

B. BENCHMARKING

Benchmarking is the process of characterizing a system as a whole or via its

various parts in order to understand the actual or potential performance. In this particular

case, three simulations were conducted, varying the random number of potential outgoing

 38

links. The first case, simulation 1 contains a low complexity randomly generated network

with the maximum number of out-links equal to 5. The second case, simulation 2 is a

medium complexity randomly generated network with the maximum number of outgoing

links equal to 7. The final case, simulation 3 is a high complexity randomly generated

network with the maximum number of out-links equal to 10. All simulations were

generated using the following document link probabilities contained below in Table 5.

The probabilities shown in Table 6 are not based on any particular network, but were

chosen to ensure that the random networks generated will continue to propagate and have

the ability to expand. Additionally, the depth level for all simulations was selected to

equal 5 in order to visually present the results with clarity.

 Probability Type of Document
New Document Internal 0.45 1
New Document External 0.05 2
Self Referral Link 0.05 3
Previously Discovered Document 0.45 4

Table 6. Probability of Creating Specific Document Links.

All 3 simulations calculate the original Nutch 0.8.1 OPIC score and 4 variant

scores. The original Nutch OPIC is defined in Equation 4.1 as Swgt , Nwgt , Owgt and

Ewgt all equal to 1. Variant 1 is defined as Swgt , Nwgt and Ewgt equal to 1 while

Owgt is equal to 2. Variant 2 is defined as Swgt , Nwgt and Ewgt equal to 1 while

Owgt is equal to 4. Variants 3 and 4 are respectively similar to variants 1 and 2 with the

exception of Swgt being equal to 0. The reason for using the 4 different variants was to

determine if there is any benefit to becoming extremely “greedy” with the algorithm and

also to evaluate the effect of removing self referral links from the networks.

Variation for a particular document d is calculated as:

 () _ () _ _Variation d Final Cash d Level AVG Cash= − (5.1)

 39

where _ ()Final Cash d is the final cash value of document d and _ _Level AVG Cash is

the average cash value for the document’s level. Following this logic, the percentage

variation of document d is calculated as:

()

% _ ()
_ _

Variation d
Variation d

Level AVG Cash
= (5.2)

1. Low Complexity Network

The first type of random network to be looked at is one of low complexity. Low

complexity is defined here as a network with less than 20 documents in its web-link

graph. Figure 13, shown below, is a visual representation of the network’s web-link

structure. In order to construct Figure 13, Table 7 was used. Table 7 contains the data

generated in Matlab to create the network. Column 1 displays the Document Number,

which is defined as the number assigned to a document once a link to the document has

been discovered and is unrelated to processing order. Column 2 is the depth level the

document was found in. Each depth level is separated by a bold line for ease of viewing.

Column 3 is an external flag marker, with 0 equal to an internal document and 1 equal to

an external. Column 4 is the number of outgoing links. This number is determined

randomly with 5 links being the maximum number of out-links possible in this

simulation. Column 5 contains the type of out-links for the given number of out-going

links in column 4, determined using the probabilities given in Table 5. Column 6 displays

the out-link document number corresponding to the link given in column 5. Previously

discovered document numbers are randomly determined from the given number of

documents in the web-link graph at the time of discovery.

 40

Figure 13. Simulation 1: Low Complexity Web Link Graph.

Doc Num Depth Ext Flag Num Outlinks Type of Outlink Outlink Doc Num

1 1 0 3 3 1 1 0 0 1 2 3 0 0

2 2 0 3 4 4 1 0 0 3 1 4 0 0

3 2 0 4 1 4 1 1 0 5 4 6 7 0

4 3 0 2 2 2 0 0 0 8 9 0 0 0

5 3 0 2 3 4 0 0 0 5 3 0 0 0

6 3 0 5 4 4 4 4 4 1 1 3 4 5

7 3 0 1 4 0 0 0 0 2 0 0 0 0

8 4 1 3 1 1 1 0 0 10 11 12 0 0

9 4 1 2 1 4 0 0 0 13 12 0 0 0

10 5 0 3 1 1 4 0 0 14 15 14 0 0

11 5 0 2 4 1 0 0 0 14 16 0 0 0

12 5 0 0 0 0 0 0 0 0 0 0 0 0

13 5 0 2 1 2 0 0 0 17 18 0 0 0

14 6 0 0 0 0 0 0 0 0 0 0 0 0

15 6 0 0 0 0 0 0 0 0 0 0 0 0

16 6 0 0 0 0 0 0 0 0 0 0 0 0

17 6 0 0 0 0 0 0 0 0 0 0 0 0

18 6 1 0 0 0 0 0 0 0 0 0 0 0

Table 7. Simulation 1, Low Complexity Web Link Graph Data.

 41

Evaluating simulation 1 is very straight forward. Figure 14, shown below,

provides an overview of the OPIC score trend, with random spikes representing

documents with a higher importance. Depth level 2 document comparisons, contained in

Figure 15, demonstrate a significant change in the OPIC scores, but mirror changes with

respect to the original OPIC trend. Variant algorithms 3 and 4 continue the trends found

in variants 1 and 2, with the increase in score attributed to the removal of document 1’s

self referral link. Variations with respect to the average cash values within depth level 2

are presented in Figure 16, with Figure 17 showing it as a percentage of the average cash

value in the level for a given variant. Both of these figures show that the OPIC score for

document 2 drops proportionately with any gain in OPIC score by document 3. This is to

be expected as document 2 gives more cash to document 3 based on the network’s link

structure.

Figure 14. Simulation 1: Overall OPIC Scores.

 42

Figure 15. Simulation 1: Depth Level 2 OPIC Scores.

Figure 16. Simulation 1: Depth Level 2 OPIC Score Variations.

 43

Figure 17. Simulation 1: Depth Level 2 OPIC Score % Variations.

Additionally, depth level 5 also shows a significant change in OPIC scoring trend,

shown below in Figure 18; but again, this mirrors the original trend. Variant algorithms 1

and 2 follow previous trends as well, with variants 3 and 4 being in proportion to their

respective counterparts. Figures 19 and 20 provide the resulting variations with respect to

the average amount of cash within level 5 for a given variant and percentage of such. No

new information is gained from these graphs as there are no previously discovered links

coming in to any of these documents.

 44

Figure 18. Simulation 1: Depth Level 5 OPIC Scores.

Figure 19. Simulation 1: Depth Level 5 OPIC Score Variations.

 45

Figure 20. Simulation 1: Depth Level 5 OPIC Score % Variations.

2. Medium Complexity Network

The second type of random network to be looked at is one of medium complexity.

Medium complexity is defined here as a network with more than 20, but less than 50

documents in its web-link graph. Figure 21, shown below, is a visual representation of

the network’s web-link structure. In order to construct Figure 21, Table 8 was used. Table

8 contains the data generated in Matlab to create the network.

 46

Figure 21. Simulation 2: Medium Complexity Web Link Graph.

 47

Doc Num Depth Ext Flag Num Outlinks Type of Outlink Outlink Doc Num

1 1 0 3 3 1 1 0 0 0 0 1 2 3 0 0 0 0

2 2 0 6 1 4 2 1 3 4 0 4 3 5 6 2 1 0

3 2 0 1 1 0 0 0 0 0 0 7 0 0 0 0 0 0

4 3 0 5 4 1 4 1 4 0 0 6 8 1 9 9 0 0

5 3 1 1 1 0 0 0 0 0 0 10 0 0 0 0 0 0

6 3 0 2 1 1 0 0 0 0 0 11 12 0 0 0 0 0

7 3 0 3 1 1 3 0 0 0 0 13 14 7 0 0 0 0

8 4 0 1 1 0 0 0 0 0 0 15 0 0 0 0 0 0

9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 4 0 5 1 1 1 4 4 0 0 16 17 18 17 13 0 0

11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 4 0 5 1 1 4 1 4 0 0 19 20 14 21 5 0 0

13 4 0 1 1 0 0 0 0 0 0 22 0 0 0 0 0 0

14 4 0 4 1 4 1 4 0 0 0 23 19 24 22 0 0 0

15 5 0 4 1 2 1 1 0 0 0 25 26 27 28 0 0 0

16 5 0 3 4 4 1 0 0 0 0 20 22 29 0 0 0 0

17 5 0 6 4 4 1 1 4 1 0 27 21 30 31 12 32 0

18 5 0 3 4 1 1 0 0 0 0 1 33 34 0 0 0 0

19 5 0 6 4 1 4 4 4 1 0 15 35 22 23 24 36 0

20 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 5 0 2 2 4 0 0 0 0 0 37 25 0 0 0 0 0

22 5 0 1 1 0 0 0 0 0 0 38 0 0 0 0 0 0

23 5 0 6 1 4 4 3 4 1 0 39 36 8 23 20 40 0

24 5 0 1 4 0 0 0 0 0 0 7 0 0 0 0 0 0

25 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8. Simulation 2, Medium Complexity Web Link Graph Data.

 48

Due to the increasing complexity of simulation 2’s link structure, evaluating a

medium complexity simulation is a bit more difficult than the previous. Figure 22, shown

below, provides an overview of simulation 2’s OPIC scoring trend, with random spikes

representing documents suggesting a higher importance. Depth level 2 document

comparisons from Figure 22 show that document 3 is more important than document 2

for all of the variant algorithms due to its web-link structure. This is to be expected since

document 2 contains a self referral link as well as an outgoing link pointing to document

3. Depth level 4 is also shown to have a significant increase in OPIC value for documents

13 and 14. Again, this is due to the self referral link in document 7 and the incoming link

from document 12 to document 14.

Figure 22. Simulation 2: Overall OPIC Scores.

 49

Depth level 5 provides the most interesting results for the given variant

algorithms, provided below in Figure 23. Initially, the OPIC value for document 19 is on

par with other documents from within the level. Due to the removal of self referral links

and additional value of previously discovered documents pointing to it from within the

network, documents 19 significantly increases in value. This is illustrated in Figure 24 as

a measure of change from the average cash value within the level. Figure 25 further

explains this as an increase, ranging from 120 to 200%. Document 22 also significantly

increases in value due to same reasons stated above, with the increase in value ranging

from 400 to 1000% when compared to the average cash value contained within the depth

level.

Figure 23. Simulation 2: Depth Level 5 OPIC Scores.

 50

Figure 24. Simulation 2: Depth Level 5 OPIC Score Variations.

Figure 25. Simulation 2: Depth Level 5 OPIC Score % Variations.

 51

3. High Complexity Network

The final type of random network to be looked at is one of high complexity. High

complexity is defined here as a network with more than 50 documents in its web link

graph. No figure is provided due to the extreme complexity and length of the network’s

web-link structure. Appendix B contains the data generated in Matlab to create the given

network.

Evaluating a high complexity simulation is very difficult. Figure 26, shown

below, provides an overview of simulation 3’s OPIC scoring trend, with random spikes

representing documents with a higher importance. Due to the high number of documents

contained in the network, this graph is only able to show that variations exist within the

network, but will need further review within each level.

Figure 26. Simulation 3: Overall OPIC Scores.

 52

Depth level 3 document comparisons from Figure 27 show that documents 10 and

19 become significantly more important than other documents in the level for all of the

variant algorithms due to the network’s web-link structure. Figure 28 shows this variation

as a visible increase in the OPIC score for document 10, ranging between 140 to 240%.

Document 19 on the other hand is able to maintain its OPIC score while the rest of the

documents around it decrease significantly with respect to the average value, therefore

maintaining its importance.

Figure 27. Simulation 3: Depth Level 3 OPIC Scores.

 53

Figure 28. Simulation 3: Depth Level 3 OPIC Score % Variations.

Depth levels 4 and 5 provide the most interesting results for the given variant

algorithms, shown below in Figures 29 and 31. Multiple documents increase their given

OPIC scores, ranging between 10 to 650% in Figures 30 and 32. These levels

demonstrate the effectiveness of this algorithm by significantly increasing the scores of

documents 41, 55, 59, 66, 73, 74, 77, 78, 79, 89, 90, 94, 95, 102, 110, 113, 115, 119, 133,

134, 144, 150, 151, 161, 170, 177, 182, 184, 189, and 205 above the average value

threshold, while effectively lowering the scores of documents 23, 27, 28, 29, below the

average threshold value. These results match the complex link structure that is derived

from the data contained in Appendix C.

Overall, having conducted 3 random network simulations, the results clearly

indicate moderate success of our newly proposed OPIC algorithm considering results are

based solely on the web link graph structure. Comparing a document’s OPIC value to the

average value contained within the depth level also allowed a measure of comparison

regarding effectiveness.

 54

Figure 29. Simulation 3: Depth Level 4 OPIC Scores.

Figure 30. Simulation 3: Depth Level 4 OPIC Score % Variations.

 55

Figure 31. Simulation 3: Depth Level 5 OPIC Scores.

Figure 32. Simulation 3: Depth Level 5 OPIC Score % Variations.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

VI. CONCLUSIONS

A. SUMMARY

The research completed in this thesis showed that when implementing the new

OPIC algorithm variations, documents referred to more within a given web graph receive

a higher percentage of the overall OPIC cash within that level and throughout the overall

web graph, when compared to the original algorithm. This in turn means that the

document with a higher OPIC value is more relevant based solely on its link structure.

Variants 3 and 4 show the most promise with regards to changing the OPIC score

effectively by removing self referral links. We believe that applying this to the Nutch

WebCrawler will make it an effective tool in helping to discover, track and monitor IED

education networks over the World Wide Web.

B. CONCLUSIONS

Based on the experimental results given in Chapter V, the most important

documents within a web graph can be filtered out for a given level via an OPIC threshold

score. To do this, a reasonable threshold value for a given level must be set by the user.

In these experiments, the average value of a node within the depth level was used with

moderate success. Additionally, it was confirmed that the more documents found during a

given search increases the chances of another document’s OPIC score being influenced,

thereby increasing their overall score and the chance that the document will cross the set

depth level threshold value.

Overall, this research delivered a random network generator with plug-ins capable

of simulating the Nutch OPIC algorithm, as well as a new OPIC variant algorithm. In the

end, it must be remembered that no matter how great an algorithm is at ranking, the

results will only be as good as the pages indexed by the search engine. A page cannot be

ranked if it has not been retrieved. All of these issues and more must be taken into

account when attempting to find IED education networks over the World Wide Web.

 58

C. FUTURE WORK

Domain comparison is a serious issue not addressed within the scope of this

project. Domains were not separated using this search technique, implying a higher

importance to the initial domain searched and less to those found during the search. This

will pose significant problems when attempting to search across multiple domains.

Additionally, once the cash value given to a node becomes small enough, Java floating

point errors have the potential to become a problem for large web-link graphs. It is

unknown at this time how big of a web link graph would be needed to make this problem

a reality.

Implementation of this new algorithm in searching for IED education networks

using Nutch could be accomplished through many different methods. One way might be

to use a cluster of different computers with many different addresses and merge their

results. Unfortunately for this approach, the domain comparison problem previously

mentioned will pose significant challenges. Another would be to use Nutch as a cover;

actually knowing an IED education network exists for a given domain and initiating a

crawl using the known IED education network root node document to determine the

depth of the network’s existence. Currently, Nutch is optimized for this by being able to

effectively search a single domain knowing that the initial document has significant

importance.

Monitoring IED education networks found using this algorithm is the next step in

determining the true measure of the new algorithm’s effectiveness. Unfortunately, Nutch

has inherent flaws implementing OPIC in that the historical cash in the system builds

very early and decays slowly over time. This will cause scoring problems for later

searches that attempt to monitor changes in OPIC scores concerning sites of interest.

Later versions of Nutch have neutralized this problem by resetting the historical cash

equal to zero upon re-crawl. Again, this causes another problem in that documents of

significant importance are not given any weight for having been previously found to be

important. Overall, these problems and concerns will need considerable research

conducted to achieve a more effective IED education network web crawler.

 59

APPENDIX A. NUTCH XML CONFIGURATION FILE

The following text file given below is the standard default Nutch XML

configuration file:

<?xml version=“1.0”?>
<?xml-stylesheet type=“text/xsl” href=“configuration.xsl”?>

<!-- Do not modify this file directly. Instead, copy entries that you -
->
<!-- wish to modify from this file into nutch-site.xml and change them
-->
<!-- there. If nutch-site.xml does not already exist, create it. -
->

<configuration>

<!-- file properties -->

<property>
 <name>file.content.limit</name>
 <value>65536</value>
 <description>The length limit for downloaded content, in bytes.
 If this value is nonnegative (>=0), content longer than it will be
 truncated; otherwise, no truncation at all.
 </description>
</property>

<property>
 <name>file.content.ignored</name>
 <value>true</value>
 <description>If true, no file content will be saved during fetch.
 And it is probably what we want to set most of time, since file://
 URLs are meant to be local and we can always use them directly at
 Parsing and indexing stages. Otherwise file contents will be saved.
 !! NO IMPLEMENTED YET !!
 </description>
</property>

<!-- HTTP properties -->

<property>
 <name>http.agent.name</name>
 <value></value>
 <description>HTTP ‘User-Agent’ request header. MUST NOT be empty -
 please set this to a single word uniquely related to your
 organization.

 NOTE: You should also check other related properties:

 60

 http.robots.agents
 http.agent.description
 http.agent.url
 http.agent.e-mail
 http.agent.version

 and set their values appropriately.

 </description>
</property>

<property>
 <name>http.robots.agents</name>
 <value>*</value>
 <description>The agent strings we’ll look for in robots.txt files,
 comma-separated, in decreasing order of precedence. You should
 put the value of http.agent.name as the first agent name, and keep
 the default * at the end of the list. E.g.: BlurflDev,Blurfl,*
 </description>
</property>

<property>
 <name>http.robots.403.allow</name>
 <value>true</value>
 <description>Some servers return HTTP status 403 (Forbidden) if
 /robots.txt doesn’t exist. This should probably mean that we are
 allowed to crawl the site nonetheless. If this is set to false,
 then such sites will be treated as forbidden.
 </description>
</property>

<property>
 <name>http.agent.description</name>
 <value></value>
 <description>Further description of our bot- this text is used in
 the User-Agent header. It appears in parenthesis after the agent
 name.
 </description>
</property>

<property>
 <name>http.agent.url</name>
 <value></value>
 <description>A URL to advertise in the User-Agent header. This will
 appear in parenthesis after the agent name. Custom dictates that
 this should be a URL of a page explaining the purpose and behavior
 of this crawler.
 </description>
</property>

<property>
 <name>http.agent.e-mail</name>
 <value></value>
 <description>An e-mail address to advertise in the HTTP ‘From’
request

 61

 header and User-Agent header. A good practice is to mangle this
 address (e.g. ‘info at example dot com’) to avoid spamming.
 </description>
</property>

<property>
 <name>http.agent.version</name>
 <value>Nutch-0.8.1</value>
 <description>A version string to advertise in the User-Agent
 header.
 </description>
</property>

<property>
 <name>http.timeout</name>
 <value>10000</value>
 <description>The default network timeout, in
 milliseconds.
 </description>
</property>

<property>
 <name>http.max.delays</name>
 <value>100</value>
 <description>The number of times a thread will delay when trying to
 fetch a page. Each time it finds that a host is busy, it will wait
 fetcher.server.delay. After http.max.delays attepts, it will give
 up on the page for now.
 </description>
</property>

<property>
 <name>http.content.limit</name>
 <value>65536</value>
 <description>The length limit for downloaded content, in bytes.
 If this value is nonnegative (>=0), content longer than it will be
 truncated; otherwise, no truncation at all.
 </description>
</property>

<property>
 <name>http.proxy.host</name>
 <value></value>
 <description>The proxy hostname. If empty, no proxy is
 used.
 </description>
</property>

<property>
 <name>http.proxy.port</name>
 <value></value>
 <description>The proxy port.
 </description>
</property>

 62

<property>
 <name>http.verbose</name>
 <value>false</value>
 <description>If true, HTTP will log more verbosely.
 </description>
</property>

<property>
 <name>http.redirect.max</name>
 <value>3</value>
 <description>The maximum number of redirects the fetcher will follow
 when trying to fetch a page.
 </description>
</property>

<property>
 <name>http.useHttp11</name>
 <value>false</value>
 <description>NOTE: at the moment this works only for protocol-
 Httpclient. If true, use HTTP 1.1, if false use HTTP 1.0 .
 </description>
</property>

<!-- FTP properties -->

<property>
 <name>ftp.username</name>
 <value>anonymous</value>
 <description>ftp login username.
 </description>
</property>

<property>
 <name>ftp.password</name>
 <value>anonymous@example.com</value>
 <description>ftp login password.
 </description>
</property>

<property>
 <name>ftp.content.limit</name>
 <value>65536</value>
 <description>The length limit for downloaded content, in bytes.
 If this value is nonnegative (>=0), content longer than it will be
 truncated; otherwise, no truncation at all. Caution: classical ftp
 RFCs never defines partial transfer and, in fact, some ftp servers
 out there do not handle client side forced close-down very well. Our
 implementation tries its best to handle such situations smoothly.
 </description>
</property>

<property>
 <name>ftp.timeout</name>
 <value>60000</value>
 <description>Default timeout for ftp client socket, in millisec.

 63

 Please also see ftp.keep.connection below.
 </description>
</property>

<property>
 <name>ftp.server.timeout</name>
 <value>100000</value>
 <description>An estimation of ftp server idle time, in millisec.
 Typically it is 120000 millisec for many ftp servers out there.
 Better be conservative here. Together with ftp.timeout, it is used
 to decide if we need to delete (annihilate) current ftp.client
 instance and force to start another ftp.client instance anew. This
 is necessary because a fetcher thread may not be able to obtain next
 request from queue in time (due to idleness) before our ftp client
 times out or remote server disconnects. Used only when
 ftp.keep.connection is true (please see below).
 </description>
</property>

<property>
 <name>ftp.keep.connection</name>
 <value>false</value>
 <description>Whether to keep ftp connection. Useful if crawling same
 host again and again. When set to true, it avoids connection, login
 and dir list parser setup for subsequent urls. If it is set to true,
 however, you must make sure (roughly):
 (1) ftp.timeout is less than ftp.server.timeout
 (2) ftp.timeout is larger than (fetcher.threads.fetch *
 fetcher.server.delay)
 Otherwise there will be too many “delete client because idled too
 long” messages in thread logs.
 </description>
</property>

<property>
 <name>ftp.follow.talk</name>
 <value>false</value>
 <description>Whether to log dialogue between our client and remote
 server. Useful for debugging.
 </description>
</property>

<!-- web db properties -->

<property>
 <name>db.default.fetch.interval</name>
 <value>30</value>
 <description>The default number of days between re-fetches of a page.
 </description>
</property>

<property>
 <name>db.ignore.internal.links</name>
 <value>true</value>
 <description>If true, when adding new links to a page, links from

 64

 the same host are ignored. This is an effective way to limit the
 size of the link database, keeping only the highest quality
 links.
 </description>
</property>

<property>
 <name>db.ignore.external.links</name>
 <value>false</value>
 <description>If true, outlinks leading from a page to external hosts
 will be ignored. This is an effective way to limit the crawl to
 include only initially injected hosts, without creating complex
 URLFilters.
 </description>
</property>

<property>
 <name>db.score.injected</name>
 <value>1.0</value>
 <description>The score of new pages added by the injector.
 </description>
</property>

<property>
 <name>db.score.link.external</name>
 <value>1.0</value>
 <description>The score factor for new pages added due to a link from
 another host relative to the referencing page’s score. Scoring
 plugins may use this value to affect initial scores of external
 links.
 </description>
</property>

<property>
 <name>db.score.link.internal</name>
 <value>1.0</value>
 <description>The score factor for pages added due to a link from the
 same host, relative to the referencing page’s score. Scoring plugins
 may use this value to affect initial scores of internal links.
 </description>
</property>

<property>
 <name>db.score.count.filtered</name>
 <value>false</value>
 <description>The score value passed to newly discovered pages is
 calculated as a fraction of the original page score divided by the
 number of outlinks. If this option is false, only the outlinks that
 passed URLFilters will count, if it’s true then all outlinks will
 count.
 </description>
</property>

<property>
 <name>db.max.inlinks</name>

 65

 <value>10000</value>
 <description>Maximum number of Inlinks per URL to be kept in LinkDb.
 If “invertlinks” finds more inlinks than this number, only the first
 N inlinks will be stored, and the rest will be discarded.
 </description>
</property>

<property>
 <name>db.max.outlinks.per.page</name>
 <value>100</value>
 <description>The maximum number of outlinks that we’ll process for a
 page. If this value is nonnegative (>=0), at most
 db.max.outlinks.per.page outlinks will be processed for a page;
 otherwise, all outlinks will be processed.
 </description>
</property>

<property>
 <name>db.max.anchor.length</name>
 <value>100</value>
 <description>The maximum number of characters permitted in an anchor.
 </description>
</property>

<property>
 <name>db.fetch.retry.max</name>
 <value>3</value>
 <description>The maximum number of times a url that has encountered
 recoverable errors is generated for fetch.
 </description>
</property>

<property>
 <name>db.signature.class</name>
 <value>org.apache.nutch.crawl.MD5Signature</value>
 <description>The default implementation of a page signature.
 Signatures created with this implementation will be used for
 duplicate detection and removal.
 </description>
</property>

<property>
 <name>db.signature.text_profile.min_token_len</name>
 <value>2</value>
 <description>Minimum token length to be included in the signature.
 </description>
</property>

<property>
 <name>db.signature.text_profile.quant_rate</name>
 <value>0.01</value>
 <description>Profile frequencies will be rounded down to a multiple
 of QUANT = (int)(QUANT_RATE * maxFreq), where maxFreq is a maximum
 token frequency. If maxFreq > 1 then QUANT will be at least 2, which
 means that for longer texts tokens with frequency 1 will always be

 66

 discarded.
 </description>
</property>

<!-- generate properties -->

<property>
 <name>generate.max.per.host</name>
 <value>-1</value>
 <description>The maximum number of urls per host in a single
 fetchlist. -1 if unlimited.
 </description>
</property>

<property>
 <name>generate.max.per.host.by.ip</name>
 <value>false</value>
 <description>If false, same host names are counted. If true,
 hosts’ IP addresses are resolved and the same IP-s are counted.

 -+-+-+- WARNING !!! -+-+-+-
 When set to true, Generator will create a lot of DNS lookup
 requests, rapidly. This may cause a DOS attack on
 remote DNS servers, not to mention increased external traffic
 and latency. For these reasons when using this option it is
 required that a local caching DNS be used.
 </description>
</property>

<!-- fetcher properties -->

<property>
 <name>fetcher.server.delay</name>
 <value>5.0</value>
 <description>The number of seconds the fetcher will delay between
 successive requests to the same server.
 </description>
</property>

<property>
 <name>fetcher.max.crawl.delay</name>
 <value>30</value>
 <description>
 If the Crawl-Delay in robots.txt is set to greater than this value
 (in seconds) then the fetcher will skip this page, generating an
 error report. If set to -1 the fetcher will never skip such pages and
 will wait the amount of time retrieved from robots.txt Crawl-Delay,
 however long that might be.
 </description>
</property>

<property>
 <name>fetcher.threads.fetch</name>
 <value>10</value>
 <description>The number of FetcherThreads the fetcher should use.

 67

 This is also determines the maximum number of requests that are
 made at once (each FetcherThread handles one connection).
 </description>
</property>

<property>
 <name>fetcher.threads.per.host</name>
 <value>1</value>
 <description>This number is the maximum number of threads that
 should be allowed to access a host at one time.
 </description>
</property>

<property>
 <name>fetcher.threads.per.host.by.ip</name>
 <value>true</value>
 <description>If true, then fetcher will count threads by IP address,
 to which the URL’s host name resolves. If false, only host name will
 be used. NOTE: this should be set to the same value as
 “generate.max.per.host.by.ip” - default settings are different only
 for reasons of backward-compatibility.
 </description>
</property>

<property>
 <name>fetcher.verbose</name>
 <value>false</value>
 <description>If true, fetcher will log more verbosely.
 </description>
</property>

<property>
 <name>fetcher.parse</name>
 <value>true</value>
 <description>If true, fetcher will parse content.
 </description>
</property>

<property>
 <name>fetcher.store.content</name>
 <value>true</value>
 <description>If true, fetcher will store content.
 </description>
</property>

<!-- indexer properties -->

<property>
 <name>indexer.score.power</name>
 <value>0.5</value>
 <description>Determines the power of link analyis scores. Each
 pages’s boost is set to <i>score^{scorePower}</i> where
 <i>score</i> is its link analysis score and <i>scorePower</i> is the
 value of this parameter. This is compiled into indexes, so, when
 this is changed, pages must be re-indexed for it to take

 68

 effect.
 </description>
</property>

<property>
 <name>indexer.max.title.length</name>
 <value>100</value>
 <description>The maximum number of characters of a title that are
 indexed.
 </description>
</property>

<property>
 <name>indexer.max.tokens</name>
 <value>10000</value>
 <description>
 The maximum number of tokens that will be indexed for a single field
 in a document. This limits the amount of memory required for
 indexing, so that collections with very large files will not crash
 the indexing process by running out of memory.

 Note that this effectively truncates large documents, excluding
 from the index tokens that occur further in the document. If you
 know your source documents are large, be sure to set this value
 high enough to accomodate the expected size. If you set it to
 Integer.MAX_VALUE, then the only limit is your memory, but you
 should anticipate an OutOfMemoryError.
 </description>
</property>

<property>
 <name>indexer.mergeFactor</name>
 <value>50</value>
 <description>The factor that determines the frequency of Lucene
 segment merges. This must not be less than 2, higher values increase
 indexing speed but lead to increased RAM usage, and increase the
 number of open file handles (which may lead to “Too many open files”
 errors). NOTE: the “segments” here have nothing to do with Nutch
 segments, they are a low-level data unit used by Lucene.
 </description>
</property>

<property>
 <name>indexer.minMergeDocs</name>
 <value>50</value>
 <description>This number determines the minimum number of Lucene
 Documents buffered in memory between Lucene segment merges. Larger
 values increase indexing speed and increase RAM usage.
 </description>
</property>

<property>
 <name>indexer.maxMergeDocs</name>
 <value>2147483647</value>
 <description>This number determines the maximum number of Lucene

 69

 Documents to be merged into a new Lucene segment. Larger values
 increase batch indexing speed and reduce the number of Lucene
 segments, which reduces the number of open file handles; however,
 this also decreases incremental indexing performance.
 </description>
</property>

<property>
 <name>indexer.termIndexInterval</name>
 <value>128</value>
 <description>Determines the fraction of terms which Lucene keeps in
 RAM when searching, to facilitate random-access. Smaller values use
 more memory but make searches somewhat faster. Larger values use
 less memory but make searches somewhat slower.
 </description>
</property>

<!-- analysis properties -->

<property>
 <name>analysis.common.terms.file</name>
 <value>common-terms.utf8</value>
 <description>The name of a file containing a list of common terms
 that should be indexed in n-grams.
 </description>
</property>

<!-- searcher properties -->

<property>
 <name>searcher.dir</name>
 <value>crawl</value>
 <description>
 Path to root of crawl. This directory is searched (in
 order) for either the file search-servers.txt, containing a list of
 distributed search servers, or the directory “index” containing
 merged indexes, or the directory “segments” containing segment
 indexes.
 </description>
</property>

<property>
 <name>searcher.filter.cache.size</name>
 <value>16</value>
 <description>
 Maximum number of filters to cache. Filters can accelerate certain
 field-based queries, like language, document format, etc. Each
 filter requires one bit of RAM per page. So, with a 10 million page
 index, a cache size of 16 consumes two bytes per page, or 20MB.
 </description>
</property>

<property>
 <name>searcher.filter.cache.threshold</name>

 70

 <value>0.05</value>
 <description>
 Filters are cached when their term is matched by more than this
 fraction of pages. For example, with a threshold of 0.05, and 10
 million pages, the term must match more than 1/20, or 50,000 pages.
 So, if out of 10 million pages, 50% of pages are in English, and 2%
 are in Finnish, then, with a threshold of 0.05, searches for
 “lang:en” will use a cached filter, while searches for “lang:fi”
 will score all 20,000 finnish documents.
 </description>
</property>

<property>
 <name>searcher.hostgrouping.rawhits.factor</name>
 <value>2.0</value>
 <description>
 A factor that is used to determine the number of raw hits
 initially fetched, before host grouping is done.
 </description>
</property>

<property>
 <name>searcher.summary.context</name>
 <value>5</value>
 <description>
 The number of context terms to display preceding and following
 matching terms in a hit summary.
 </description>
</property>

<property>
 <name>searcher.summary.length</name>
 <value>20</value>
 <description>
 The total number of terms to display in a hit summary.
 </description>
</property>

<property>
 <name>searcher.max.hits</name>
 <value>-1</value>
 <description>If positive, search stops after this many hits are
 found. Setting this to small, positive values (e.g., 1000) can make
 searches much faster. With a sorted index, the quality of the hits
 suffers little.
 </description>
</property>

<property>
 <name>searcher.max.time.tick_count</name>
 <value>-1</value>
 <description>If positive value is defined here, limit search time for
 every request to this number of elapsed ticks (see the tick_length
 property below). The total maximum time for any search request will
 be then limited to tick_count * tick_length milliseconds. When

 71

 search time is exceeded, partial results will be returned, and the
 total number of hits will be estimated.
 </description>
</property>

<property>
 <name>searcher.max.time.tick_length</name>
 <value>200</value>
 <description>The number of milliseconds between ticks. Larger values
 reduce the timer granularity (precision). Smaller values bring more
 overhead.
 </description>
</property>

<!-- URL normalizer properties -->

<property>
 <name>urlnormalizer.class</name>
 <value>org.apache.nutch.net.BasicUrlNormalizer</value>
 <description>Name of the class used to normalize URLs.
 </description>
</property>

<property>
 <name>urlnormalizer.regex.file</name>
 <value>regex-normalize.xml</value>
 <description>Name of the config file used by the RegexUrlNormalizer
 class.
 </description>
</property>

<!-- mime properties -->

<property>
 <name>mime.types.file</name>
 <value>mime-types.xml</value>
 <description>Name of file in CLASSPATH containing filename extension
 and magic sequence to mime types mapping information
 </description>
</property>

<property>
 <name>mime.type.magic</name>
 <value>true</value>
 <description>Defines if the mime content type detector uses magic
 resolution.
 </description>
</property>

<!-- plugin properties -->

<property>
 <name>plugin.folders</name>
 <value>plugins</value>
 <description>Directories where nutch plugins are located. Each

 72

 element may be a relative or absolute path. If absolute, it is used
 as is. If relative, it is searched for on the
 classpath.</description>
</property>

<property>
 <name>plugin.auto-activation</name>
 <value>true</value>
 <description>Defines if some plugins that are not activated regarding
 the plugin.includes and plugin.excludes properties must be
 automaticaly activated if they are needed by some actived plugins.
 </description>
</property>

<property>
 <name>plugin.includes</name>
 <value>protocol-http|urlfilter-regex|parse-(text|html|js)|index-
 basic|query-(basic|site|url)|summary-basic|scoring-opic</value>
 <description>Regular expression naming plugin directory names to
 include. Any plugin not matching this expression is excluded.
 In any case you need at least include the nutch-extensionpoints
 plugin. By default Nutch includes crawling just HTML and plain text
 via HTTP, and basic indexing and search plugins.
 </description>
</property>

<property>
 <name>plugin.excludes</name>
 <value></value>
 <description>Regular expression naming plugin directory names to
 exclude.
 </description>
</property>

<!-- parser properties -->

<property>
 <name>parse.plugin.file</name>
 <value>parse-plugins.xml</value>
 <description>The name of the file that defines the associations
 between content-types and parsers.
 </description>
</property>

<property>
 <name>parser.character.encoding.default</name>
 <value>windows-1252</value>
 <description>The character encoding to fall back to when no other
 information is available
 </description>
</property>

<property>
 <name>parser.html.impl</name>
 <value>neko</value>

 73

 <description>HTML Parser implementation. Currently the following
 keywords are recognized: “neko” uses NekoHTML, “tagsoup” uses
 TagSoup.
 </description>
</property>

<property>
 <name>parser.html.form.use_action</name>
 <value>false</value>
 <description>If true, HTML parser will collect URLs from form action
 attributes. This may lead to undesirable behavior (submitting empty
 forms during next fetch cycle). If false, form action attribute will
 be ignored.
 </description>
</property>

<!-- urlfilter plugin properties -->

<property>
 <name>urlfilter.regex.file</name>
 <value>regex-urlfilter.txt</value>
 <description>Name of file on CLASSPATH containing regular expressions
 used by urlfilter-regex (RegexURLFilter) plugin.
 </description>
</property>

<property>
 <name>urlfilter.automaton.file</name>
 <value>automaton-urlfilter.txt</value>
 <description>Name of file on CLASSPATH containing regular expressions
 used by urlfilter-automaton (AutomatonURLFilter) plugin.
 </description>
</property>

<property>
 <name>urlfilter.prefix.file</name>
 <value>prefix-urlfilter.txt</value>
 <description>Name of file on CLASSPATH containing url prefixes
 used by urlfilter-prefix (PrefixURLFilter) plugin.</description>
</property>

<property>
 <name>urlfilter.suffix.file</name>
 <value>suffix-urlfilter.txt</value>
 <description>Name of file on CLASSPATH containing url suffixes
 used by urlfilter-suffix (SuffixURLFilter) plugin.</description>
</property>

<property>
 <name>urlfilter.order</name>
 <value></value>
 <description>The order by which url filters are applied.
 If empty, all available url filters (as dictated by properties
 plugin-includes and plugin-excludes above) are loaded and applied in

 74

 system defined order. If not empty, only named filters are loaded
 and applied in given order. For example, if this property has value:
 org.apache.nutch.net.RegexURLFilter
 org.apache.nutch.net.PrefixURLFilter
 then RegexURLFilter is applied first, and PrefixURLFilter second.
 Since all filters are AND’ed, filter ordering does not have impact
 on end result, but it may have performance implication, depending
 on relative expensiveness of filters.
 </description>
</property>

<!-- scoring filters properties -->

<property>
 <name>scoring.filter.order</name>
 <value></value>
 <description>The order in which scoring filters are applied.
 This may be left empty (in which case all available scoring
 filters will be applied in the order defined in plugin-includes
 and plugin-excludes), or a space separated list of implementation
 classes.
 </description>
</property>

<!-- clustering extension properties -->

<property>
 <name>extension.clustering.hits-to-cluster</name>
 <value>100</value>
 <description>Number of snippets retrieved for the clustering
 extension if clustering extension is available and user requested
 results to be clustered.
 </description>
</property>

<property>
 <name>extension.clustering.extension-name</name>
 <value></value>
 <description>Use the specified online clustering extension. If empty,
 the first available extension will be used. The “name” here refers
 to an ‘id’ attribute of the ‘implementation’ element in the plugin
 descriptor XML file.
 </description>
</property>

<!-- ontology extension properties -->

<property>
 <name>extension.ontology.extension-name</name>
 <value></value>
 <description>Use the specified online ontology extension. If empty,
 the first available extension will be used. The “name” here refers
 to an ‘id’ attribute of the ‘implementation’ element in the plugin
 descriptor XML file.
 </description>

 75

</property>
<property>
 <name>extension.ontology.urls</name>
 <value>
 </value>
 <description>Urls of owl files, separated by spaces, such as
 http://www.example.com/ontology/time.owl
 http://www.example.com/ontology/space.owl
 http://www.example.com/ontology/wine.owl
 Or
 file:/ontology/time.owl
 file:/ontology/space.owl
 file:/ontology/wine.owl
 You have to make sure each url is valid.
 By default, there is no owl file, so query refinement based on
 ontology is silently ignored.
 </description>
</property>

<!-- query-basic plugin properties -->

<property>
 <name>query.url.boost</name>
 <value>4.0</value>
 <description> Used as a boost for url field in Lucene query.
 </description>
</property>

<property>
 <name>query.anchor.boost</name>
 <value>2.0</value>
 <description> Used as a boost for anchor field in Lucene query.
 </description>
</property>

<property>
 <name>query.title.boost</name>
 <value>1.5</value>
 <description> Used as a boost for title field in Lucene query.
 </description>
</property>

<property>
 <name>query.host.boost</name>
 <value>2.0</value>
 <description> Used as a boost for host field in Lucene query.
 </description>
</property>

<property>
 <name>query.phrase.boost</name>
 <value>1.0</value>
 <description> Used as a boost for phrase in Lucene query.
 Multiplied by boost for field phrase is matched in.
 </description>

 76

</property>
<!-- creative-commons plugin properties -->

<property>
 <name>query.cc.boost</name>
 <value>0.0</value>
 <description> Used as a boost for cc field in Lucene query.
 </description>
</property>

<!-- query-more plugin properties -->

<property>
 <name>query.type.boost</name>
 <value>0.0</value>
 <description> Used as a boost for type field in Lucene query.
 </description>
</property>

<!-- query-site plugin properties -->

<property>
 <name>query.site.boost</name>
 <value>0.0</value>
 <description> Used as a boost for site field in Lucene query.
 </description>
</property>

<!-- microformats-reltag plugin properties -->

<property>
 <name>query.tag.boost</name>
 <value>1.0</value>
 <description> Used as a boost for tag field in Lucene query.
 </description>
</property>

<!-- language-identifier plugin properties -->

<property>
 <name>lang.ngram.min.length</name>
 <value>1</value>
 <description> The minimum size of ngrams to uses to identify
 language (must be between 1 and lang.ngram.max.length).
 The larger is the range between lang.ngram.min.length and
 lang.ngram.max.length, the better is the identification, but
 the slowest it is.
 </description>
</property>

<property>
 <name>lang.ngram.max.length</name>
 <value>4</value>
 <description> The maximum size of ngrams to uses to identify
 language (must be between lang.ngram.min.length and 4).

 77

 The larger is the range between lang.ngram.min.length and
 lang.ngram.max.length, the better is the identification, but
 the slowest it is.
 </description>
</property>

<property>
 <name>lang.analyze.max.length</name>
 <value>2048</value>
 <description> The maximum bytes of data to uses to indentify
 the language (0 means full content analysis).
 The larger is this value, the better is the analysis, but the
 slowest it is.
 </description>
</property>

<property>
 <name>query.lang.boost</name>
 <value>0.0</value>
 <description> Used as a boost for lang field in Lucene query.
 </description>
</property>

</configuration>

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX B. LUCENE SCORING EXAMPLE

The example provided below calculates an _ (,)Overall Score q d from Equation

3.2 given the following information:

A hypothetical query for the phrase “big bang” is conducted and document D1

was selected for analysis. For the word “big,” D1 has a term frequency (_ _)tf t in d

equal to 3, an inverse document frequency ()idf t equal to 2, a boost value

(. _ _)boost t field in d equal to 1 (i.e. no boost), and a length normalization value

(. _ _)lengthNorm t field in d equal to 5. For the word “bang,” D1 has a term frequency

(_ _)tf t in d equal to 2, an inverse document frequency ()idf t equal to 1.5, a boost value

(. _ _)boost t field in d equal to 1 (i.e. no boost), and a length normalization value

(. _ _)lengthNorm t field in d equal to 5. Applying Equation 3.1, the score value

(,)score q d for the query “big bang” in document D1 is equal to 82.5.

Taking this one step further, an overall score value _ (,)Overall Score q d is

calculated using an overall boost value _ ()Overall Boost d equal to 0.12, a coordination

factor (,)coord q d equal to 0.25 and a query normalization value ()queryNorm q equal to

0.15. Document D1 is then calculated to have an overall score of 0.37125.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX C. SIMULATION 3 WEB LINK GRAPH

The following data is the high complexity random network generated in simulation 3 for Chapter V.

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

1 1 0 10 1 3 1 1 3 3 1 1 1 3 2 1 3 4 1 1 5 6 7 1

2 2 0 10 3 1 4 4 4 4 1 4 4 4 2 8 6 1 8 5 9 8 4 4

3 2 0 6 4 4 1 1 4 1 0 0 0 0 2 7 10 11 7 12 0 0 0 0

4 2 0 2 4 4 0 0 0 0 0 0 0 0 9 11 0 0 0 0 0 0 0 0

5 2 0 9 3 1 1 4 4 4 1 4 1 0 5 13 14 4 4 3 15 13 16 0

6 2 0 5 1 4 4 3 1 0 0 0 0 0 17 3 10 6 18 0 0 0 0 0

7 2 0 6 1 1 1 3 4 1 0 0 0 0 19 20 21 7 10 22 0 0 0 0

8 3 0 8 4 1 1 1 4 4 2 4 0 0 3 23 24 25 19 12 26 6 0 0

9 3 0 5 1 4 2 4 4 0 0 0 0 0 27 26 28 7 14 0 0 0 0 0

10 3 0 5 1 4 1 1 1 0 0 0 0 0 29 5 30 31 32 0 0 0 0 0

11 3 0 7 1 1 1 4 1 4 1 0 0 0 33 34 35 8 36 1 37 0 0 0

12 3 0 5 3 1 4 4 1 0 0 0 0 0 12 38 6 24 39 0 0 0 0 0

13 3 0 8 1 1 4 4 4 1 1 1 0 0 40 41 32 29 4 42 43 44 0 0

14 3 0 4 4 1 4 2 0 0 0 0 0 0 7 45 37 46 0 0 0 0 0 0

15 3 0 7 4 1 4 4 1 4 1 0 0 0 17 47 16 8 48 18 49 0 0 0

16 3 0 6 1 1 4 1 4 4 0 0 0 0 50 51 8 52 1 21 0 0 0 0

17 3 0 3 4 4 4 0 0 0 0 0 0 0 40 35 15 0 0 0 0 0 0 0

18 3 0 10 1 4 2 2 1 1 4 4 3 1 53 11 54 55 56 57 43 19 18 58

19 3 0 5 1 4 1 2 1 0 0 0 0 0 59 40 60 61 62 0 0 0 0 0

20 3 0 7 1 4 1 4 1 4 3 0 0 0 63 40 64 36 65 59 20 0 0 0

21 3 0 8 1 3 4 4 1 4 3 1 0 0 66 21 33 48 67 32 21 68 0 0

 82

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

22 3 0 9 4 4 1 4 1 4 1 4 1 0 9 7 69 23 70 52 71 29 72 0

23 4 0 9 4 3 1 1 2 1 1 1 2 0 55 23 73 74 75 76 77 78 79 0

24 4 0 1 4 0 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0

25 4 0 7 1 4 1 4 3 1 4 0 0 0 80 74 81 33 25 82 61 0 0 0

26 4 1 4 4 4 1 1 0 0 0 0 0 0 15 81 83 84 0 0 0 0 0 0

27 4 0 7 1 4 1 1 4 3 1 0 0 0 85 18 86 87 86 27 88 0 0 0

28 4 1 3 4 4 4 0 0 0 0 0 0 0 8 19 41 0 0 0 0 0 0 0

29 4 0 8 4 4 1 1 4 1 4 1 0 0 58 38 89 90 84 91 68 92 0 0

30 4 0 4 1 4 3 1 0 0 0 0 0 0 93 4 30 94 0 0 0 0 0 0

31 4 0 9 3 1 4 1 1 1 1 4 4 0 31 95 60 96 97 98 99 34 24 0

32 4 0 10 1 4 4 4 4 1 1 1 1 4 100 73 67 11 95 101 102 103 104 50

33 4 0 6 4 1 1 1 1 4 0 0 0 0 100 105 106 107 108 82 0 0 0 0

34 4 0

35 4 0 9 4 3 4 1 4 4 4 1 4 0 2 35 105 109 7 75 100 110 81 0

36 4 0 8 4 4 1 1 4 4 1 4 0 0 35 97 111 112 108 103 113 40 0 0

37 4 0 1 1 0 0 0 0 0 0 0 0 0 114 0 0 0 0 0 0 0 0 0

38 4 0 9 1 4 4 1 1 4 4 4 3 0 115 45 19 116 117 34 78 103 38 0

39 4 0 1 1 0 0 0 0 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0

40 4 0 9 1 1 4 1 4 1 4 4 4 0 119 120 116 121 66 122 84 62 7 0

41 4 0 3 1 1 4 0 0 0 0 0 0 0 123 124 55 0 0 0 0 0 0 0

42 4 0 5 4 1 4 1 4 0 0 0 0 0 68 125 2 126 95 0 0 0 0 0

43 4 0 4 1 4 4 1 0 0 0 0 0 0 127 55 75 128 0 0 0 0 0 0

44 4 0 3 1 1 1 0 0 0 0 0 0 0 129 130 131 0 0 0 0 0 0 0

45 4 0 10 1 1 1 1 4 4 3 1 4 4 132 133 134 135 128 82 45 136 33 78

46 4 1 7 4 4 2 1 1 2 4 0 0 0 62 119 137 138 139 140 53 0 0 0

47 4 0 7 2 1 2 1 1 2 1 0 0 0 141 142 143 144 145 146 147 0 0 0

48 4 0 4 1 1 2 4 0 0 0 0 0 0 148 149 150 62 0 0 0 0 0 0

49 4 0 5 4 3 4 1 4 0 0 0 0 0 6 49 77 151 90 0 0 0 0 0

50 4 0

 83

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

51 4 0 1 4 0 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 0 0

52 4 0 2 3 1 0 0 0 0 0 0 0 0 52 152 0 0 0 0 0 0 0 0

53 4 0 10 4 2 1 4 4 4 1 4 4 2 79 153 154 113 100 106 155 57 110 156

54 4 1 6 1 4 4 1 4 4 0 0 0 0 157 57 59 158 85 10 0 0 0 0

55 4 1 6 1 4 1 4 4 1 0 0 0 0 159 14 160 133 10 161 0 0 0 0

56 4 0 6 4 1 4 1 4 4 0 0 0 0 35 162 61 163 95 40 0 0 0 0

57 4 0 9 1 1 1 1 1 4 4 4 4 0 164 165 166 167 168 154 140 45 153 0

58 4 0 8 1 1 2 2 4 2 1 4 0 0 169 170 171 172 62 173 174 48 0 0

59 4 0 5 4 4 4 4 1 0 0 0 0 0 170 115 72 30 175 0 0 0 0 0

60 4 0 5 4 4 4 4 4 0 0 0 0 0 55 22 117 137 68 0 0 0 0 0

61 4 1 4 4 4 4 4 0 0 0 0 0 0 5 107 128 167 0 0 0 0 0 0

62 4 0 6 1 4 4 4 4 3 0 0 0 0 176 93 89 86 150 62 0 0 0 0

63 4 0 9 4 1 4 1 4 4 2 4 4 0 93 177 123 178 131 114 179 138 40 0

64 4 0 4 1 4 1 4 0 0 0 0 0 0 180 152 181 63 0 0 0 0 0 0

65 4 0 9 1 4 1 1 4 4 1 1 1 0 182 48 183 184 60 180 185 186 187 0

66 4 0 2 4 4 0 0 0 0 0 0 0 0 22 49 0 0 0 0 0 0 0 0

67 4 0 6 2 1 4 3 4 1 0 0 0 0 188 189 97 67 152 190 0 0 0 0

68 4 0 9 1 4 1 4 4 1 1 4 1 0 191 161 192 74 118 193 194 99 195 0

69 4 0 4 1 1 1 4 0 0 0 0 0 0 196 197 198 98 0 0 0 0 0 0

70 4 0 7 4 4 1 4 4 1 1 0 0 0 39 112 199 189 192 200 201 0 0 0

71 4 0 8 4 2 4 1 4 4 4 4 0 0 33 202 185 203 98 81 106 186 0 0

72 4 0 7 2 1 4 4 4 4 4 0 0 0 204 205 38 53 16 6 99 0 0 0

73 5 0 4 1 1 4 4 0 0 0 0 0 0 206 207 67 46 0 0 0 0 0 0

74 5 0 7 1 1 4 4 2 4 4 0 0 0 208 209 147 78 210 161 122 0 0 0

75 5 1 3 4 2 1 0 0 0 0 0 0 0 184 211 212 0 0 0 0 0 0 0

76 5 0 10 1 1 4 4 1 4 4 1 1 3 213 214 1 91 215 25 24 216 217 76

77 5 0 6 1 4 4 1 1 1 0 0 0 0 218 209 145 219 220 221 0 0 0 0

78 5 0 8 1 1 2 3 1 4 4 1 0 0 222 223 224 78 225 41 165 226 0 0

79 5 1 8 4 4 1 1 4 1 4 4 0 0 213 174 227 228 225 229 124 159 0 0

 84

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

80 5 0 5 1 4 1 4 1 0 0 0 0 0 230 58 231 154 232 0 0 0 0 0

81 5 0 5 1 4 4 1 1 0 0 0 0 0 233 43 225 234 235 0 0 0 0 0

82 5 0 9 1 1 1 1 1 4 1 4 1 0 236 237 238 239 240 205 241 66 242 0

83 5 0 5 4 4 4 4 4 0 0 0 0 0 49 163 44 155 106 0 0 0 0 0

84 5 0 7 4 4 1 4 1 1 4 0 0 0 151 86 243 228 244 245 34 0 0 0

85 5 0 3 1 1 4 0 0 0 0 0 0 0 246 247 164 0 0 0 0 0 0 0

86 5 0 10 1 1 4 1 1 1 4 4 4 4 248 249 24 250 251 252 57 164 119 177

87 5 0 1 1 0 0 0 0 0 0 0 0 0 253 0 0 0 0 0 0 0 0 0

88 5 0 3 1 4 4 0 0 0 0 0 0 0 254 79 103 0 0 0 0 0 0 0

89 5 0 8 1 2 4 1 4 4 1 1 0 0 255 256 155 257 111 112 258 259 0 0

90 5 0 1 1 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0

91 5 0 2 1 1 0 0 0 0 0 0 0 0 261 262 0 0 0 0 0 0 0 0

92 5 0 5 1 1 3 1 4 0 0 0 0 0 263 264 92 265 261 0 0 0 0 0

93 5 0 7 1 3 1 4 4 1 1 0 0 0 266 93 267 216 189 268 269 0 0 0

94 5 0 3 1 4 4 0 0 0 0 0 0 0 270 51 100 0 0 0 0 0 0 0

95 5 0 4 1 1 1 1 0 0 0 0 0 0 271 272 273 274 0 0 0 0 0 0

96 5 0 8 1 4 1 4 4 1 1 4 0 0 275 187 276 62 59 277 278 191 0 0

97 5 0 9 1 1 4 4 1 1 4 3 4 0 279 280 264 180 281 282 134 97 222 0

98 5 0

99 5 0 1 4 0 0 0 0 0 0 0 0 0 154 0 0 0 0 0 0 0 0 0

100 5 0 5 1 1 2 1 4 0 0 0 0 0 283 284 285 286 144 0 0 0 0 0

101 5 0 9 1 1 4 4 4 4 1 4 4 0 287 288 98 73 248 160 289 280 268 0

102 5 0 4 2 1 1 4 0 0 0 0 0 0 290 291 292 255 0 0 0 0 0 0

103 5 0 7 4 3 4 1 1 4 4 0 0 0 291 103 66 293 294 281 49 0 0 0

104 5 0 7 1 1 1 1 4 4 4 0 0 0 295 296 297 298 187 73 129 0 0 0

105 5 0 4 4 4 4 2 0 0 0 0 0 0 116 182 232 299 0 0 0 0 0 0

106 5 0 3 4 4 1 0 0 0 0 0 0 0 264 244 300 0 0 0 0 0 0 0

107 5 0 6 4 2 4 1 2 4 0 0 0 0 200 301 260 302 303 131 0 0 0 0

108 5 0 3 1 4 1 0 0 0 0 0 0 0 304 93 305 0 0 0 0 0 0 0

 85

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

109 5 0 2 1 1 0 0 0 0 0 0 0 0 306 307 0 0 0 0 0 0 0 0

110 5 0

111 5 0 3 3 4 1 0 0 0 0 0 0 0 111 206 308 0 0 0 0 0 0 0

112 5 0 1 1 0 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0

113 5 0 8 2 1 1 2 1 4 4 1 0 0 310 311 312 313 314 278 125 315 0 0

114 5 0 1 4 0 0 0 0 0 0 0 0 0 82 0 0 0 0 0 0 0 0 0

115 5 0 7 1 1 1 4 1 1 4 0 0 0 316 317 318 104 319 320 57 0 0 0

116 5 0 5 4 1 3 2 1 0 0 0 0 0 102 321 116 322 323 0 0 0 0 0

117 5 0 5 4 1 4 1 3 0 0 0 0 0 198 324 80 325 117 0 0 0 0 0

118 5 0 4 1 1 4 1 0 0 0 0 0 0 326 327 44 328 0 0 0 0 0 0

119 5 0 1 4 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0

120 5 0 10 1 4 2 1 1 2 1 3 1 4 329 83 330 331 332 333 334 120 335 135

121 5 0 1 1 0 0 0 0 0 0 0 0 0 336 0 0 0 0 0 0 0 0 0

122 5 0 7 3 1 4 1 1 1 1 0 0 0 122 337 266 338 339 340 341 0 0 0

123 5 0

124 5 0 3 1 1 1 0 0 0 0 0 0 0 342 343 344 0 0 0 0 0 0 0

125 5 0 1 4 0 0 0 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0

126 5 0 5 1 4 4 4 4 0 0 0 0 0 345 30 105 158 188 0 0 0 0 0

127 5 0 4 1 1 2 1 0 0 0 0 0 0 346 347 348 349 0 0 0 0 0 0

128 5 0 1 4 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0

129 5 0 9 1 1 4 4 4 1 1 1 4 0 350 351 105 170 140 352 353 354 134 0

130 5 0 5 4 4 1 4 1 0 0 0 0 0 25 211 355 226 356 0 0 0 0 0

131 5 0 3 1 1 1 0 0 0 0 0 0 0 357 358 359 0 0 0 0 0 0 0

132 5 0 7 1 4 1 1 1 4 1 0 0 0 360 281 361 362 363 258 364 0 0 0

133 5 0 8 1 1 4 1 1 1 1 1 0 0 365 366 200 367 368 369 370 371 0 0

134 5 0 9 4 1 3 4 4 1 1 1 1 0 60 372 134 290 361 373 374 375 376 0

135 5 0 4 4 4 1 4 0 0 0 0 0 0 290 103 377 368 0 0 0 0 0 0

136 5 0 5 1 1 1 4 1 0 0 0 0 0 378 379 380 273 381 0 0 0 0 0

137 5 1 5 1 1 1 4 1 0 0 0 0 0 382 383 384 156 385 0 0 0 0 0

 86

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

138 5 0 9 4 4 4 1 4 1 4 1 2 0 221 174 184 386 284 387 227 388 389 0

139 5 0 7 1 4 1 1 4 1 4 0 0 0 390 33 391 392 300 393 306 0 0 0

140 5 1 8 4 1 1 1 4 1 1 4 0 0 230 394 395 396 124 397 398 81 0 0

141 5 1 6 1 1 1 4 4 1 0 0 0 0 399 400 401 306 225 402 0 0 0 0

142 5 0 1 4 0 0 0 0 0 0 0 0 0 172 0 0 0 0 0 0 0 0 0

143 5 1 1 1 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0

144 5 0 6 4 1 1 4 1 4 0 0 0 0 146 404 405 192 406 182 0 0 0 0

145 5 0 7 4 2 4 1 4 4 4 0 0 0 374 407 50 408 309 181 362 0 0 0

146 5 1 8 4 4 4 4 1 3 4 3 0 0 148 356 210 240 409 146 287 146 0 0

147 5 0 9 1 4 1 4 4 2 1 1 4 0 410 43 411 212 173 412 413 414 324 0

148 5 0 9 4 4 1 1 1 1 1 4 1 0 312 383 415 416 417 418 419 45 420 0

149 5 0 6 3 1 1 4 1 1 0 0 0 0 149 421 422 355 423 424 0 0 0 0

150 5 1 5 4 1 2 4 2 0 0 0 0 0 184 425 426 334 427 0 0 0 0 0

151 5 0 2 1 4 0 0 0 0 0 0 0 0 428 342 0 0 0 0 0 0 0 0

152 5 0 7 4 4 1 4 1 1 4 0 0 0 171 408 429 366 430 431 168 0 0 0

153 5 1 7 1 1 4 1 4 2 1 0 0 0 432 433 89 434 373 435 436 0 0 0

154 5 0 1 4 0 0 0 0 0 0 0 0 0 217 0 0 0 0 0 0 0 0 0

155 5 0 9 4 4 4 1 1 4 1 1 4 0 154 37 177 437 438 203 439 440 98 0

156 5 1 1 4 0 0 0 0 0 0 0 0 0 131 0 0 0 0 0 0 0 0 0

157 5 0 6 4 1 4 1 3 1 0 0 0 0 378 441 174 442 157 443 0 0 0 0

158 5 0 7 4 4 1 1 4 4 1 0 0 0 356 266 444 445 190 139 446 0 0 0

159 5 0 3 4 4 1 0 0 0 0 0 0 0 279 27 447 0 0 0 0 0 0 0

160 5 0 10 4 4 1 4 4 3 4 1 4 4 184 241 448 129 305 160 182 449 60 261

161 5 0 1 4 0 0 0 0 0 0 0 0 0 324 0 0 0 0 0 0 0 0 0

162 5 0 8 1 4 3 4 1 1 4 4 0 0 450 258 162 206 451 452 200 39 0 0

163 5 0

164 5 0 8 4 1 4 1 1 1 4 4 0 0 93 453 327 454 455 456 167 253 0 0

165 5 0 6 4 1 1 1 4 1 0 0 0 0 383 457 458 459 98 460 0 0 0 0

166 5 0 7 4 4 1 4 1 2 4 0 0 0 43 372 461 125 462 463 318 0 0 0

 87

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

167 5 0 9 1 4 4 4 4 1 1 1 1 0 464 445 92 229 41 465 466 467 468 0

168 5 0 8 3 4 1 4 1 1 4 1 0 0 168 12 469 158 470 471 319 472 0 0

169 5 0 10 1 1 4 1 4 4 4 4 1 1 473 474 198 475 72 386 46 415 476 477

170 5 0 5 1 1 1 4 1 0 0 0 0 0 478 479 480 23 481 0 0 0 0 0

171 5 1 8 4 4 4 4 2 1 4 1 0 0 97 94 410 332 482 483 183 484 0 0

172 5 1 2 1 4 0 0 0 0 0 0 0 0 485 41 0 0 0 0 0 0 0 0

173 5 1 3 1 1 4 0 0 0 0 0 0 0 486 487 262 0 0 0 0 0 0 0

174 5 0 8 1 2 1 2 4 4 1 4 0 0 488 489 490 491 130 85 492 250 0 0

175 5 0 6 1 1 4 4 4 1 0 0 0 0 493 494 430 466 53 495 0 0 0 0

176 5 0 5 1 4 4 2 1 0 0 0 0 0 496 79 189 497 498 0 0 0 0 0

177 5 0 4 4 1 2 1 0 0 0 0 0 0 387 499 500 501 0 0 0 0 0 0

178 5 0 10 1 1 4 4 4 4 4 4 4 1 502 503 87 379 38 37 128 78 96 504

179 5 1 6 3 3 4 3 4 1 0 0 0 0 179 179 462 179 352 505 0 0 0 0

180 5 0 9 4 4 1 4 1 4 1 1 1 0 39 471 506 4 507 64 508 509 510 0

181 5 0 10 1 1 4 2 1 4 2 4 4 3 511 512 486 513 514 25 515 489 99 181

182 5 0 2 1 1 0 0 0 0 0 0 0 0 516 517 0 0 0 0 0 0 0 0

183 5 0 2 3 4 0 0 0 0 0 0 0 0 183 30 0 0 0 0 0 0 0 0

184 5 0 6 1 1 1 4 1 1 0 0 0 0 518 519 520 256 521 522 0 0 0 0

185 5 0 2 4 4 0 0 0 0 0 0 0 0 179 240 0 0 0 0 0 0 0 0

186 5 0 1 1 0 0 0 0 0 0 0 0 0 523 0 0 0 0 0 0 0 0 0

187 5 0 1 4 0 0 0 0 0 0 0 0 0 77 0 0 0 0 0 0 0 0 0

188 5 1 4 4 4 1 1 0 0 0 0 0 0 293 503 524 525 0 0 0 0 0 0

189 5 0 5 1 4 1 4 4 0 0 0 0 0 526 493 527 470 177 0 0 0 0 0

190 5 0 6 1 4 4 1 1 4 0 0 0 0 528 326 43 529 530 141 0 0 0 0

191 5 0 6 4 1 1 2 2 2 0 0 0 0 75 531 532 533 534 535 0 0 0 0

192 5 0 3 1 1 4 0 0 0 0 0 0 0 536 537 289 0 0 0 0 0 0 0

193 5 0

194 5 0 5 4 4 1 4 1 0 0 0 0 0 138 505 538 214 539 0 0 0 0 0

195 5 0 4 4 4 3 4 0 0 0 0 0 0 237 59 195 45 0 0 0 0 0 0

 88

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

196 5 0 6 1 1 4 1 4 4 0 0 0 0 540 541 471 542 529 335 0 0 0 0

197 5 0 3 2 4 4 0 0 0 0 0 0 0 543 508 123 0 0 0 0 0 0 0

198 5 0 2 4 4 0 0 0 0 0 0 0 0 260 442 0 0 0 0 0 0 0 0

199 5 0 4 1 2 1 4 0 0 0 0 0 0 544 545 546 413 0 0 0 0 0 0

200 5 0 8 4 4 4 4 4 1 1 4 0 0 24 439 372 450 72 547 548 30 0 0

201 5 0 8 4 1 1 1 4 4 1 1 0 0 489 549 550 551 165 64 552 553 0 0

202 5 1 1 4 0 0 0 0 0 0 0 0 0 347 0 0 0 0 0 0 0 0 0

203 5 0 1 4 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0

204 5 1 9 1 4 2 1 4 1 4 4 1 0 554 364 555 556 290 557 23 377 558 0

205 5 0 3 1 4 3 0 0 0 0 0 0 0 559 516 205 0 0 0 0 0 0 0

206 6 0

207 6 0

208 6 0

209 6 0

210 6 1 0

211 6 1 0

212 6 0

213 6 0

214 6 0

215 6 0

216 6 0

217 6 0

218 6 0

219 6 0

220 6 0

221 6 0

222 6 0

223 6 0

224 6 1 0

 89

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

225 6 0

226 6 0

227 6 0

228 6 0

229 6 0

230 6 0

231 6 0

232 6 0

233 6 0

234 6 0

235 6 0

236 6 0

237 6 0

238 6 0

239 6 0

240 6 0

241 6 0

242 6 0

243 6 0

244 6 0

245 6 0

246 6 0

247 6 0

248 6 0

249 6 0

250 6 0

251 6 0

252 6 0

253 6 0

 90

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

254 6 0

255 6 0

256 6 1 0

257 6 0

258 6 0

259 6 0

260 6 0

261 6 0

262 6 0

263 6 0

264 6 0

265 6 0

266 6 0

267 6 0

268 6 0

269 6 0

270 6 0

271 6 0

272 6 0

273 6 0

274 6 0

275 6 0

276 6 0

277 6 0

278 6 0

279 6 0

280 6 0

281 6 0

282 6 0

 91

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

283 6 0

284 6 0

285 6 1 0

286 6 0

287 6 0

288 6 0

289 6 0

290 6 1 0

291 6 0

292 6 0

293 6 0

294 6 0

295 6 0

296 6 0

297 6 0

298 6 0

299 6 1 0

300 6 0

301 6 1 0

302 6 0

303 6 1 0

304 6 0

305 6 0

306 6 0

307 6 0

308 6 0

309 6 0

310 6 1 0

311 6 0

 92

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

312 6 0

313 6 1 0

314 6 0

315 6 0

316 6 0

317 6 0

318 6 0

319 6 0

320 6 0

321 6 0

322 6 1 0

323 6 0

324 6 0

325 6 0

326 6 0

327 6 0

328 6 0

329 6 0

330 6 1 0

331 6 0

332 6 0

333 6 1 0

334 6 0

335 6 0

336 6 0

337 6 0

338 6 0

339 6 0

340 6 0

 93

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

341 6 0

342 6 0

343 6 0

344 6 0

345 6 0

346 6 0

347 6 0

348 6 1 0

349 6 0

350 6 0

351 6 0

352 6 0

353 6 0

354 6 0

355 6 0

356 6 0

357 6 0

358 6 0

359 6 0

360 6 0

361 6 0

362 6 0

363 6 0

364 6 0

365 6 0

366 6 0

367 6 0

368 6 0

369 6 0

 94

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

370 6 0

371 6 0

372 6 0

373 6 0

374 6 0

375 6 0

376 6 0

377 6 0

378 6 0

379 6 0

380 6 0

381 6 0

382 6 0

383 6 0

384 6 0

385 6 0

386 6 0

387 6 0

388 6 0

389 6 1 0

390 6 0

391 6 0

392 6 0

393 6 0

394 6 0

395 6 0

396 6 0

397 6 0

398 6 0

 95

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

399 6 0

400 6 0

401 6 0

402 6 0

403 6 0

404 6 0

405 6 0

406 6 0

407 6 1 0

408 6 0

409 6 0

410 6 0

411 6 0

412 6 1 0

413 6 0

414 6 0

415 6 0

416 6 0

417 6 0

418 6 0

419 6 0

420 6 0

421 6 0

422 6 0

423 6 0

424 6 0

425 6 0

426 6 1 0

427 6 1 0

 96

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

428 6 0

429 6 0

430 6 0

431 6 0

432 6 0

433 6 0

434 6 0

435 6 1 0

436 6 0

437 6 0

438 6 0

439 6 0

440 6 0

441 6 0

442 6 0

443 6 0

444 6 0

445 6 0

446 6 0

447 6 0

448 6 0

449 6 0

450 6 0

451 6 0

452 6 0

453 6 0

454 6 0

455 6 0

456 6 0

 97

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

457 6 0

458 6 0

459 6 0

460 6 0

461 6 0

462 6 0

463 6 1 0

464 6 0

465 6 0

466 6 0

467 6 0

468 6 0

469 6 0

470 6 0

471 6 0

472 6 0

473 6 0

474 6 0

475 6 0

476 6 0

477 6 0

478 6 0

479 6 0

480 6 0

481 6 0

482 6 1 0

483 6 0

484 6 0

485 6 0

 98

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

486 6 0

487 6 0

488 6 0

489 6 1 0

490 6 0

491 6 1 0

492 6 0

493 6 0

494 6 0

495 6 0

496 6 0

497 6 1 0

498 6 0

499 6 0

500 6 1 0

501 6 0

502 6 0

503 6 0

504 6 0

505 6 0

506 6 0

507 6 0

508 6 0

509 6 0

510 6 0

511 6 0

512 6 0

513 6 1 0

514 6 0

 99

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

515 6 1 0

516 6 0

517 6 0

518 6 0

519 6 0

520 6 0

521 6 0

522 6 0

523 6 0

524 6 0

525 6 0

526 6 0

527 6 0

528 6 0

529 6 0

530 6 0

531 6 0

532 6 0

533 6 1 0

534 6 1 0

535 6 1 0

536 6 0

537 6 0

538 6 0

539 6 0

540 6 0

541 6 0

542 6 0

543 6 1 0

 100

Doc Num Depth Ext Flag
Num

Outlinks Type of Outlink Outlink Doc Num

544 6 0

545 6 1 0

546 6 0

547 6 0

548 6 0

549 6 0

550 6 0

551 6 0

552 6 0

553 6 0

554 6 0

555 6 1 0

556 6 0

557 6 0

558 6 0

559 6 0

 101

LIST OF REFERENCES

[1] National Science Foundation, Scientists Use the “Dark Web” to Snag Extremists
and Terrorists Online. Retrieved January 9, 2009 from
http://www.nsf.gov/news/news_summ.jsp?cntn_id=110040

[2] Department of Defense, Joint Publication 1–02: Department of Defense
 Dictionary of Military and Associated Terms, October 2008.

[3] Belarus During the Great Patriotic War. Retrieved January 9, 2009 from
 http://www.belarus.by/en/belarus/history/11/index3.php

[4] IEDs: the insurgent’s deadliest weapon. Retrieved January 9, 2009 from
 http://www.thefirstpost.co.uk/46075,features,ieds-the-insurgents-deadliest-
 weapons

[5] G. Grant, 900 IED Attacks a Month in Iraq and Afghanistan: Metz. Retrieved
 December 16, 2008 from http://www.dodbuzz.com/2008/12/12/900-ied-attacks-a-
 month-in-iraq-and-afghanistan-metz/

[6] The Jolly Roger’s Cookbook III. Retrieved January 9, 2009 from
 http://www.textfiles.com/anarchy/JOLLYRODGER

[7] D. Vise and M. Malseed, The Google Story, New York: Bantam Dell,
 November 2005.

[8] M. Berry and M. Brown, Understanding Search Engines: Mathematical
 Modeling and Text Retrieval, Ed. 2, p.5, Philadelphia: Society for Industrial and
 Applied Mathematics, 2005.

[9] D. Grossman and O. Frieder, Information Retrieval: Algorithms and Heuristics,
 Ed. 2, pp. 9–92, Netherlands: Springer, 2004.

[10] N. Fuhr, Probabilistic Models in Information Retrieval. The Computer Journal,
 35(3): 243–255, 1992.

[11] B. Pinkerton, Finding What People Want: Experiences with the WebCrawler.
 Retrieved November 15, 2008 from http://thinkpink.com/bp/WebCrawler/
 WWW94.html.

[12] J. Cho, H. Garcia-Molina and L. Page, Efficient Crawling Through URL
 Ordering. Retrieved November 11, 2008 from http://infolab.stanford.edu/pub/
 papers/efficient-crawling.ps

 102

[13] F. Menczer, G. Pant and P. Srinivasan, Topical Web Crawlers: Evaluating
 Adaptive Algorithms. ACM Transactions on Internet Technology, 4(4): 378–419,
 2004.

[14] M. Hersovici, M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim and S. Ur, The
 shark-search algorithm. “An application: tailored Website mapping.” Computer
 Networks and ISDN Systems, vol. 30, pp. 317–326, 1998.

[15] M. Degeratu and F. Menczer, Complementing Search Engines with Online Web
 Mining Agents. July 26, 2000. Retrieved February 3, 2009 from http://dollar.biz.
 uiowa.edu/~fil/Papers/dm-dss.pdf

[16] S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web Search
 Engine. Retrieved March 5, 2009 from http://ilpubs.stanford.edu:8090/422/1/
 1999–66.pdf

[17] S. Brin and L. Page, The PageRank Citation Ranking: Bringing Order to the Web.
 January 29, 1998. Retrieved March 5, 2009 from http://infolab.stanford.
 edu/~backrub/pageranksub.ps

[18] S. Al-Saffar and G. Heileman, “Experimental Bounds on the Usefulness of
 Personalized and Topic-Sensitive PageRank,” in ACM International Conference
 on Web Intelligence, 2007, pp. 671–675.

[19] Y. Zhang, C. Yin and F. Yuan, “An Application of Improved PageRank in
 Focused Crawler,” in Fourth International Conference on Fuzzy Systems and
 Knowledge Discovery, 2007.

[20] F. Yuan, C. Yin and J. Liu, “Improvement of PageRank for Focused Crawler,” in
 Eighth ACIS International Conference on Software Engineering, Artificial
 Intelligence, Networking, and Parallel/Distributed Computing, 2007, pp.797–802.

[21] W. Xing and A. Ghorbani, “Weighted PageRank Algorithm,” in Proceedings of
 the Second Annual Conference on Communication Networks and Services
 Research, 2004.

[22] M. Eirinaki and M. Vazirgiannis, “Usage-based PageRank for Web
 Personalization,” in Proceedings of the Fifth IEEE International Conference on
 Data Mining, 2005.

[23] H. Jiang, Y. GE, D. Zuo and B. Han, “TimeRank: A Method of Improving
 Ranking Scores by Visited Time,” in Proceedings of the Seventh International
 Conference on Machine Learning and Cybernetics, 2008.

[24] M. Kale and P. Thilagam, “DYNA-RANK: Efficient calculation and updation of
 PageRank,” in International Conference on Computer Science and Information
 Technology, 2008.

 103

[25] M. Konchady, Building Search Applications: Lucene, LingPipe, and Gate, p 321-
 336, Oakton: Mustru Publishing, 2008.

[26] O. Gospodnetic and E. Hatcher, Lucene In Action, Greenwich: Manning
 Publications Co., 2005.

[27] S. Abiteboul, M. Preda and G. Cobena, “Adaptive On-Line Page Importance
 Computation” WWW2003 Conference, 2003.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

