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Abstract 
The aim of this project is to evaluate a High Performance Computing (HPC) environment for running 
simulations involving a large number of intelligent agents.  Simulations may benefit from separating the 
environment from the intelligent agents.  This could allow for larger scale simulations, and different 
environments may alter the results of the simulation.  A simulation environment was developed for agents 
to interact within.  This environment and agents were tested using a standard computer server, and an 
attempt was made to use cluster computing resources to run the environment and agents on a larger scale.  
Difficulties in the account setup process, and technological limitations of the existing cluster environment 
lead to an unsuccessful test on the cluster.  The communication method chosen (sockets) for the client-
server interactions was not available on the cluster.  However, tests in two single-server environments 
were successful.  The outcome of this scenario suggests that more development is needed to address the 
portability of the communication model used for the client and server.  Additionally, account creation 
procedures for the HPC environment may benefit from a streamlined process that addresses the rapid 
academic lifecycle of student researchers. 
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1 Introduction 

Many simulations involving intelligent agents are carried out with a single agent, or multiple 
agents working independently of one another.  The environment that the agents work within is 
entirely self-contained inside the agent framework, and mostly conceptual rather than actually 
defined.  For larger scale simulations involving multiple agents interacting, the usage of an 
environment that is separate from the agents themselves may increase the accuracy of the 
simulation, while additionally providing a platform for agent interactions, allowing the simulation 
to scale and support a much greater number of agents.   

The goal of this project is to determine the impact of decoupling agents from their environment 
and provide information regarding the scaling capabilities of simulations in a High Performance 
Computing (HPC) environment. 

2 Method 

2.1 Experimental Overview 

A series of three experiments (EX1-EX3) was designed, using different client/server setups, and 
combination of agent types.  They were created to allow us to transition from a local development 
environment to a cluster environment, while maintaining asynchronous development of different 
systems.  EX1 was a prototype environment, designed to simply evaluate the load capacity of the 
simulation environment and detect any initial design flaws.  EX2 was a test-type environment, 
designed to emulate a cluster environment on a single machine to assist in development prior to 
getting access to the cluster.  EX3 attempted to use the actual cluster environment, using systems 
and software developed during EX2. 

2.2 Environment and Agent Setup 

2.2.1 Simulation Environment – A-VIPER 

Rather than code an entire simulation environment from scratch, a framework, NakedMUD, was 
chosen to provide a base which could be modified to suit our needs(Hollis, 2009).  The choice of 
this framework was for two reasons.  Firstly, a primary design decision of NakedMUD is that it 
provides only the framework itself, and does not define any complex environment properties or 
objects, which means that no code had to be removed to begin development.  Secondly, 
NakedMUD is easy to extend, as it includes a scripting language (Python) interpreter embedded 
as part of the server code.   Both of these factors are important, as the lifecycle of academic 
projects can be incredibly short, and rapid development is a necessity.  

Alterations and additions were made to NakedMUD to accommodate agent interactions.  These 
included a few additional commands, and the development of a virtual area for the agents to 
interact within.  The area created was shaped as a simple ring, allowing an agent to move in a 
circular path and end up back where they started.  Within the environment, an area consists of 
several rooms, which are discrete locations, connected to each other by exits, given in the cardinal 
and intercardinal directions (N,E,S,W;NE,SE,SW,NW).  This implementation with modifications 
is being actively developed by Jeremiah Hiam, and is called the Agent-based Virtual 
Implementation of Plural Environment Representations (A-VIPER).   
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One important command that was added was a log command that creates a named log file and 
writes all actions taken by agents in A-VIPER to a time stamped log file.  This allows us to track 
the agents’ actions and interactions over time, separately from the cognitive functions that drive 
them. 

In a cluster environment, the network IP Address that a given process runs on will not be known 
until the process is executing.  Because of this, agents cannot be setup prior to execution with a 
specified IP Address.  Additionally, jobs are generally heterogeneous in nature – that is they only 
run a single executable across multiple compute nodes. 

To facilitate this, the MPI- A-VIPER -Runner was developed.  This process runs via MPI 
(Message Passing Interface), which is a common system used on clusters.  MPI runs multiple 
copies of the same executable, but orders the processes in a rank (from 0 to N) that is accessible 
inside the program.  Using this rank, it is possible to make different executing copies of the same 
process provide different behavior.   

The MPI- A-VIPER -Runner was setup to run A-VIPER as the Rank 0 process, and ACT-R 
agents as Ranks 1-N.  MPI, as the name implies, also provides a communication system between 
the distributed processes.  This was used to communicate the IP Address of A-VIPER to the agent 
processes, to allow for TCP/IP connections to be established properly.  This is further detailed in 
Section 2.2.2.2, EX2 and EX3 Agents - ACT-R. 

2.2.2.1 EX1 Agents-Shell Scripts 

To test the basic functionality and scalability of A-VIPER on commodity server hardware, a 
prototype series of “agents” were created.   These agents were generated simply as a list of 
commands to be sent to the server.  They did not contain any ability to interact with the server 
beyond sending simple commands, or parse the response text they received.   Each agent was run 
from a separately generated and unique script, containing five-thousand commands. 

While these agents were not intelligent, they did exhibit two distinct sets of behaviors, which may 
be used in data analysis at a later time.  The commands were generated randomly, but according 
to a set of simple probabilities.  Since the commands were produced without any awareness of the 
environment, they include commands that may not be available during certain agent states (such 
as an agent attempting to move north, when no path north is available). 

2.2.2.2 EX2 and EX3 Agents - ACT-R 

A simple agent was developed by Jaehyon Paik using the LISP-based ACT-R cognitive 
framework.  Unlike the EX1 prototype agents, the ACT-R agents were able to parse the response 
data from the server.  For this reason, they were able to choose randomly from directions 
available in any particular room, rather than picking from a complete list of potential directions, 
which may not be available (such as with the EX1 agents).  However, beyond picking appropriate 
directional exit movements, these agents were not given any further cognitive abilities.   These 
agents were used for both EX2 and EX3. 

The ACT-R agent required two major changes from the initial software model provided by Paik 
to facilitate working in an HPC environment with MPI.  Firstly, since the IP Address of the server 
could potentially change for every experiment run, and would be unknown until runtime, each 
agent needed the IP Address of the A-VIPER server to be provided dynamically during runtime 
to the agent.  Secondly, the user-login for the server had to be unique for each agent, or A-VIPER 
would detect each subsequent connection as a “reconnect”, disconnecting the current user, and 
connecting the new one to the same account. 
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Both of these issues were overcome by generating pieces of the agent LISP code during runtime.  
During startup, the processes allocated to run agents (process ranks 1-N)) would wait for the  
A-VIPER process to communicate its IP Address via MPI.  They would take this information, 
together with their process rank, and generate pieces of the agent’s script files (agent_serverN.lisp 
and agent_rankN.lisp), and a file that loaded the pieces in the correct order, agent_runN.lisp (see 
Figure 1, arrows indicate file inclusion), and then proceed to execute this script. 

 

 
Figure 1 – Model of Dynamic Agent Construction. 

 

2.3 Experiment Environment Setup 

Each experiment required a different client/server environment setup.  These are detailed in the 
following sections, and presented in Figure 2.  In Figure 2, conceptual isolated environments are 
represented as dashed lines.  These are generally separate machines, but in the case of EX3, also 
represent the cluster environment itself.  Arrows indicate communication pathways between the 
different software and systems. 

[Generated By MPI-A-VIPER-Runner] 

[Generated By MPI-A-VIPER-Runner] 

Generated By MPI-A-VIPER-Runner 
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Figure 2. Environment Configurations by Experiment.   

2.3.1 Experiment 1 (EX1) Setup 

EX1 was run using two different computers.  The first, Expresso, was responsible for running  
A-VIPER.  Expresso is an Apple Power Macintosh G5, running Apple OS-X Leopard with two 
G5 2.0 Ghz PowerPC 970 processors and 1GB of RAM.  Access to this machine was provided by 
the Applied Cognitive Science Lab at The Pennsylvania State University. 

The second system, Fenrir, was a VMWare Workstation Virtual Machine (VM) running the 
Redhat Fedora Core 14 Linux distribution.  The VM was allocated the resources of 8 logical 
processor cores and 6GB of RAM.  The VM host system (Heimdall) is a custom built computer 
with an Intel Core i7 930 processor running at 2.8 GHz.  This is a quad-core processor, with 
Hyper Threading, enabling 8 logical processor cores.  Additionally, it utilizes Intel’s VT 
Extension technology, enabling virtual machines to make better use of the available hardware.  
Only half of the available 12 GB of RAM was allocated to the VM, to prevent starvation of 
resources to the host system.  Fenrir was used to run the EX1 agents. 

Expresso and Fenrir were connected over the open Internet, with a packet latency that fluctuated 
between 25ms and 35ms.  Expresso was connected through Penn State, and Fenrir utilized a 
consumer-grade broadband connection of 25Mb downstream, 5Mb upstream.  For the 
communications between these two servers, bandwidth would not have been a bottleneck. 

2.3.2 Experiment 2 (EX2) Setup 

EX2 represents a prototype “cluster” environment running on a single local machine.  The Fenrir 
VM was used to host the environment.  Versions of MPI (MPICH2), and LISP (Clozure LISP) 
that are available on the cluster were installed on Fenrir in an attempt to mirror the software 
environment of the cluster in a single-server setup.  The MPI-A-VIPER-Runner was then used to 
execute A-VIPER and the ACT-R agents, in a similar method as they would execute on the actual 
cluster.  The main difference in this case would be that rather than processes each running on a 
separate node, they shared processor cores on a single node. 

A-VIPER 

A-VIPER 

A-VIPER 
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2.3.3 Experiment 3 (EX3) Setup 

The high performance computing resources were provided by the Arctic Region Supercomputing 
Center (ARSC), which is a joint project between the University of Alaska and the Department of 
Defense (DoD).   They were made available for this project as part of the Defense Threat 
Reduction Agency (DTRA) group’s ongoing efforts to provide defense-related simulations.  
ARSC provided us with access to Pingo, a Cray XT-5 cluster with 3456 compute cores across 
432 individual nodes. 

The operating system on Pingo is called the Cray Linux Environment, which is a heavily 
modified version of the SuSE Linux distribution.   It provides several frameworks and packages 
critical to the usage of the cluster environment.  However, it does not provide an implementation 
of LISP, which is required to run ACT-R agents.  This was quickly installed during the account 
setup process as our requirements were reviewed, through some communication with the support 
staff regarding the implementations of LISP that are capable of running ACT-R. 

Because of the nature of the ARSC resources, being provided in part by the DoD, the process for 
receiving an access account requires several steps and confirmation to ensure security.  
Additionally, it required certificate confirmation of several security training lessons provided by 
the DoD. 

3 Results 

3.1 Experiment 1 (EX1) 

Initial runs of EX1 yielded a critical problem with A-VIPER and the agents.  It was not capable 
of accepting multiple connections simultaneously, and rather than queue additional connections, 
they were rejected, causing the remaining agent instructions to fail.  This was adjusted for by 
inserting a delay between each agent connection, allowing A-VIPER to accept connections one at 
a time. 

This solution introduced a few additional problems.  Firstly, there was no way to guarantee that 
all the agents would be running at any given time during the experiment.  Secondly, if all the 
agents started in the same room, several movements at once would be sent to all the other agents 
in a large block of text, which would not accurately indicate the load of many agents moving 
across the area.   To handle this, all of the agents would execute 200 random movements 
immediately after connecting.  Then, all of the agents except the last one (1 to N-1) would await a 
synchronization command from A-VIPER sent from the final agent (N).  While no exact time was 
recorded, this initialization and synchronization took less than a minute for 20 agents and was not 
included as part of the total running time of the simulation. 

This synchronization command was written to the log file, so that the log file could be parsed to 
exclude all activity before the simulation was synchronized.  The simulation took 20 agents 4 
minutes and 37 seconds to complete, generating a total of 115,596 successful commands, 
corresponding to processing roughly 418 commands per second.   

Increasing the number of agents resulted in noticeably slower speeds, and tests that were not run 
through to completion.  It was not clear if the speed reduction was due to processing limitations 
on Expresso, or latency caused by the network connection.  However, both of these 
considerations would not be issues during EX2.  While the speed was reduced, A-VIPER kept 
accepting connections, and processing commands, indicating that it was stable enough to support 
a large number of agents interacting. 
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3.2 Experiment 2 (EX2) 

Unfortunately, time did not allow synchronization and random initialization to be added to the 
ACT-R agents prior to EX2.  However, with longer runtimes, and appropriate delays, it was still 
possible to roughly estimate the load on the server, since the delay time was caused primarily by 
loading the LISP interpreter and ACT-R.   

With a higher processing capacity available on Fenrir, and no network latency issues, it was 
possible to run many more agents.  For EX2, 80 ACT-R agents were connected to A-VIPER.  
They ran for a total of 1 minute and 58 seconds, after being set to run for an ACT-R modal time 
of 2 minutes.  In total, they executed 120,456 commands, for an average of 1,021 commands per 
second.   

In comparison to EX1, this was 4 times the number of agents, executing commands more than 
twice as fast.  A run of 120 agents was attempted, but several of the agents failed to execute 
properly due to an error with MPI that indicated resource limitations of the machine (Fenrir).  
This seems to indicate that A-VIPER is limited primarily by the computing resources available 
and network latency, and should scale quite well to the HPC environment. 

One problem that occurred during this experiment was that logging was not automatically 
activated when A-VIPER was run.  To overcome this, a delay was inserted between A-VIPER 
being started, and the agents executed.  During this delay, a user logged into A-VIPER and 
manually turned on the logging function.  This is a temporary solution, as users will not have 
access to A-VIPER in a real HPC environment during a simulation.  A better solution would 
probably to start the A-VIPER server with logging turned on by default. 

3.3 Experiment 3 (EX3) 

3.3.1 Account Setup 

The account setup and creation process is designed to provide a single point of contact, the 
Service/Agency Approval Authority (S/AAA), for all communications during account setup.  The 
S/AAA assists potential users in understanding the process, and guidance in providing the 
appropriate information on required forms.  In practice, the S/AAA may employ an assistant to 
handle many of the basic inquiries and process. 

In our case, email communications with our support were often unanswered, and telephone 
conversations seemed to indicate that individuals involved were handling many tasks 
simultaneously, and only recently been given the job of handling setup of HPC accounts.  This 
led to confusion regarding a particular form, “Section III”.  The purpose of this form is to 
acknowledge receipt of RSA SecurID cards, and other credentials, so that a user’s account can be 
activated, allowing them to login to the cluster.   This is a useful step in a secure process, and 
potentially stops individuals from intercepting credentials for an active account.  Our support 
contact informed us that we must fill out the Section III to receive our credentials.  This created a 
Catch-22 situation where we were required to sign a form to get the credentials that we required 
to acknowledge having prior to signing the form. 

It seems that this problem stemmed from a process that is designed around a user being on-site 
when filling out the application.  In this case, they would be handed their SecurID card, and 
credentials, and immediately fill out the Section III, acknowledging this receipt.  In our case, 
since we were not on-site, our credentials would have to be mailed to us. 
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The ARSC was aware of this problem, and provided an alternate Section III form, which was 
identical except for the omission of acknowledging credential receipt.  However, our point of 
contact was not aware of this, and our group spent considerable time trying to explain the 
problem, before contacting the ARSC directly, which solved the problem quickly. 

3.3.2 Project Setup 

Because the environment (A-VIPER) utilized a cross-platform framework, and was developed in 
a BSD1 environment, completing a basic compile of the source code on Pingo was relatively 
simple.  However, compiling it in a way appropriate to run on cluster compute nodes was quite a 
bit more complex.   

Generally, when compiling a C program from source code, a user can choose one of two methods 
to link in shared library resources.  They can be linked statically, where the shared resources are 
included in the final compiled binary executable, or dynamically, where they are linked to the 
executable during run-time.  The first method (static) creates a larger executable, which may not 
reflect changes in the system libraries as they are updated.  The second method (dynamic, or often 
shared), creates a smaller executable that requires access to the shared library at runtime, and will 
load the version of the library on the system that may have been updated. 

Dynamic linking is generally preferred for most binary executables in a Linux environment, as it 
keeps all of the executables using a shared library up to date with the same version of that library 
system-wide.  Additionally, it requires considerably less disk space, and allows for sharing of 
memory resources within the library. 

However, this is not generally appropriate for a cluster environment.  Most programs designed to 
run on a cluster use a single copy of an executable, running concurrently dozens or hundreds of 
times with a different part of the dataset.  Running hundreds of copies of the same executable 
with dynamic linking would cause each copy of that executable to request the shared resources at 
nearly the exact same time, generally over some kind of network connection, rather than locally.  
This could be a massive performance drain to any other tasks running on the cluster, and because 
of the network communication involved, could even affect tasks if they were running on different 
nodes.  Additionally, compute nodes generally do not have a very feature-rich environment, and 
do not include many of the shared libraries available to the system.   

Initial builds of A-VIPER using dynamic linking compiled acceptably on the Pingo login nodes, 
but failed to execute on compute nodes because the shared libraries were not available.  With 
some minor adjustments to the build process, the project compiled using static linking without 
errors and was available to begin running test jobs.  However, the embedded Python used by  
A-VIPER would not run correctly when included as a static library.  If our case, we were 
fortunate that the ARSC/CCAC Helpdesk was able to provide a work around (copying the shared 
libraries to a work directory that was available to the compute nodes). 

With this fix, it was possible to run A-VIPER on the compute nodes.  However, connecting to  
A-VIPER remained an issue.  To connect to A-VIPER, we needed to know the IP Address of the 
compute node that was currently running it.  A simple test program was setup to collect the 
network information of the executing node and display it.  This lead to the discovery that the 
compute nodes did not have normal network interfaces, and TCP/IP connections would not be 
possible.  The ARSC/CCAC helpdesk informed us that this should be possible on the new cluster, 
                                                        
1 BSD – Berkley Software Distribution is a type of UNIX operating system, similar to Linux.  In 
this case, we were using the Darwin derivative, which is the underlying architecture of Apple OS-
X. 
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Chugach, but due to the time available, we were not able to move the project to Chugach and test 
prior to this report.  

4 Discussion and Conclusions 

4.1 HPC 

4.1.1 Programming Language Availability 

In our case, LISP, required to run ACT-R, was not already installed on ARSC’s Pingo cluster.  
Fortunately, ARSC was able to accommodate installation of LISP for us.  This was not without 
problems.  In general, they are only allowed to install certain GNU2 approved software packages 
in the environment.  The first LISP they found (GNU GCL) was not capable of running ACT-R. 

While the second LISP (Clozure LISP) functioned acceptably, the process did raise some 
interesting concerns.   Table 1 represents a brief, abbreviated list of many of the available 
cognitive architectures, and the programming language they are implemented in (Samsonovich, 
2010) ("Comparative Table of Cognitive Architectures,").  Where more than on language is 
listed, the sources did not always indicate if they were separate implementations, or if parts of the 
architecture were written in different languages. 

Immediately, it is noticeable that many of the cognitive architectures are implemented in LISP or 
Java.  Java may be available in many cases, but was not in ours (ARSC did have it installed on a 
separate Sun cluster), but is not a guaranteed resource on different clusters.  LISP, however, is 
generally not available, and would require installation on nearly any HPC cluster.  While ARSC 
was willing to work with us towards the installation of LISP, this may not always be the case in 
other HPC environments. 

While LISP implementations are generally noted that they are compatible with Common LISP, 
they may not implement all of Common Lisp, as we found with GNU GCL.  Depending on the 
features of Common LISP used by the cognitive architecture, this could lead to an architecture 
being incompatible on certain LISP implementations.  Additionally, there are many features 
implemented as core technologies, or library functions in languages such as Java or C++, which 
are not specified by Common Lisp.  For instance, different implementations of LISP have 
different methods (or no methods) for handling command line arguments, and network 
communications.  This introduces an additional risk that major components written in an 
architecture may have to be rewritten for a different version of LISP in an HPC environment. 

A partial solution can be found in Common LISP libraries that are developed independently of a 
specific LISP implementation.   However, for the more advanced libraries, installation can be 
non-trivial at best, requiring a user to track down several dependency chains of libraries required 
to run the library they wish to use.  Package managers exist, but often favor a specific 
implementation of LISP, and also would be another component that would require installation in 
the HPC environment.  Furthermore, some features, by their nature, cannot, or are not 
implemented in libraries (such as using command line arguments). 

                                                        
2 GNU – Recursive acronym for GNU’s Not Unix.  In this context, GNU Projects, which 
implement free versions of several tools supported by the Free Software Foundation (FSF). 
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Table 1 – Abbreviated list of Cognitive Architectures by Programming 
Language("Comparative Table of Cognitive Architectures").   

Architecture Programming Language 

3D/RCS C++ 

ACT-R LISP 

BECCA Java/MATLAB 

CERA-CRANIUM Java 

CogPrime C++/Java 

EPIC LISP/C++(EPIC-X) 

FORR LISP/C++ 

GLAIR LISP 

GMU BICA Matlab/Python/LISP/Java 

HTM NuPIC 

Leabra C++ 

NARS Java/Prolog 

NEXTING C++/Java/Perl/Prolog 

POLYSCHEME Java 

Recommendation Architecture (RA) SmallTalk 

REM LISP/Java 

Soar C/Java 

4.1.2 A-VIPER Ease-Of-Use Features 

A-VIPER was developed as a means to quickly and effectively implement features in an 
environment required for different kinds of agents to interact.  However, many of the features that 
made this platform attractive also made it difficult to work with in an HPC environment.   The 
inclusion of Python embedded into the server requires that Python be available in the HPC 
environment.  Fortunately, Python is typically used for HPC, and is readily available.  That said, 
the workaround that we used to enable embedded python using dynamic linking may not be an 
option on other HPC clusters. 

The use of sockets over TCP/IP granted us a relatively easy way to allow communication 
between the environment and agents.  However, on many clusters, Ethernet is not used for the 
communication topology; instead the network is usually implemented with faster interconnection 
methods, such as Infiniband, which do not utilize TCP/IP.  The general solution to this problem is 
to use a system such as MPI to manage communications, which is covered in section 4.1.3, The 
Need for Decoupled Communication. 
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4.1.3 The Need for Decoupled Communication 

As evidenced by our difficulties utilizing TCP/IP on Pingo, the communication method is a major 
risk factor for any project intended to run in an HPC setup.   Sockets provide a perfect example of 
a coupled communication method.  Sockets require IP Addresses for connections over TCP/IP, 
and make very few, if any, intelligent decisions about how the connection should be setup3. 

This is one of the reasons that MPI was developed.  MPI provides an interface and 
communication system that allows the programmer to concentrate on building the messages, 
while not needing to be very considerate to the method of communication.  MPI can make 
connections using TCP/IP, Infiniband, shared memory, or other methods, depending what is 
available on the executing system.    

MPI works using a model where a single executable is used to perform different pieces of a task 
based on the process rank that the executable has while running multiple copies.   Communication 
is available between the different copies of the executable that are running.  This is generally an 
excellent way to divide up a computationally heavy task among many worker processes. 

In our case, MPI is not an appropriate solution to implement our server and agents for a few 
reasons.  Firstly, A-VIPER and the ACT-R agents are written in different programming languages 
and it would not be possible to implement them both in a single executable.  Secondly, even if 
they were in the same language (which might be the case for some simulations), the simulation 
environment, and agent architecture are generally performing very different, and resource 
intensive tasks.  Implementing them both in the same executable could lead to a considerable 
waste in resources, and unnecessary complexity for development. 

In EX2, we utilized MPI in a way that allowed us to run a light-weight MPI executable  
(MPI-A-VIPER-Runner), to execute both A-VIPER and the agents.  This method results in MPI 
being unavailable as a communication method to the child processes, since MPI requires a very 
specific system and compilation to function.  As a result of this, and because our agents and 
server are different programing languages, we are still in need of a system that serves the same 
function as MPI, but provides the features using a different method. 

One common system for this, used in enterprise applications, is Common Object Request Broker 
Architecture (CORBA).  CORBA provides methods for programming language and platform 
independent communication between applications("CORBA FAQ,").  CORBA works by 
allowing developers to specify an object using a standardized Interface Definition Language 
(IDL), and mapping the IDL to data types available in each language that implements a CORBA 
library.  This is similar in nature to how the Simple Object Access Protocol (SOAP) works 
utilizing XML with web services.   

The key differences are that SOAP generally only works via RPC and HTTP (both protocols are 
built on top of TCP/IP), and that SOAP provides connections directly between a client and a 
server.  With CORBA, communication may take place using TCP/IP, but architectures can 
specify other communication protocols, and rather than being a direct connection between client 
and server, CORBA utilizes an Object Request Broker (ORB) that facilitates communicating 
between different services and components. 

                                                        
3 The operating system may provide some slightly intelligent behavior, such as short-circuiting a 
request that should be sent to a router when it finds that the requested IP Address is local to the 
machine. 
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While potentially communication protocol independent, the additional inclusion of the ORB 
makes CORBA inappropriate for HPC usage.  This introduces an entirely new service that must 
be run fulltime on the cluster, rather than just a library or protocol, which makes it much more 
unlikely that CORBA would be installed for any given project.  Built for enterprise business 
scenarios, CORBA is also not very light-weight.  Setting up a service and client to use CORBA 
can take extensive time, and does not facilitate the rapid development that is often necessary in an 
academic environment. 

Finally, there is the High Level Architecture (HLA) utilizing a Run Time Infrastructure 
(RTI)(Dahmann, Fujimoto, & Weatherly, 1997).  HLA was developed specifically for 
simulations, communication between simulation components, and communication between 
interactive users and the simulation.  It was developed by the Department of Defense for the 
purpose of providing a framework for defense simulations.  For this reason, HLA and the RTI are 
very strictly defined, and require a certain methodology to implement in a simulation 
environment.  In order for a simulation to make use of HLA, the environment and agents must be 
designed around utilizing it, and the objects it provides. 

Generally, this means that many currently complete, or in development cognitive agents would 
not be able to make use of HLA without intense development and refactoring.  Furthermore, it 
may be the case that the structure of HLA either does not provide a component needed by the 
agent to communicate properly, or changes the nature of the communication, altering the 
simulation results. 

4.1.4 Rapid deployment and testing 

While large-scale HPC resources are a welcome addition to agent-based modeling, the process of 
gaining access to the resources, and time required to configure the environment, may not always 
be fast enough to match the rapid lifecycle of an academic project – in some cases, only lasting a 
few months.  For this reason, there is a need for more promptly available resources.  One optimal 
solution would be to streamline the account creation process for the HPC environment, but this 
may not be a viable option. 

A more likely option would be to make use of available computers already installed in the 
academic environment.   The Bootable Cluster CD (BCCD) allows a lab of computers to be 
turned into a cluster by booting from a Linux-based CD, with some minor configuration.  BCCD 
provides many of the same facilities available on larger scale HPC environments, such as MPI 
and multiple compute nodes.  Initial setup can take some time, as there are certain configuration 
issues that must be addressed (such as if a computer’s Ethernet MAC address is tied to a 
particular static IP address, or not).  However, the CD can be customized to automatically 
populate some of this data, resulting in a cluster environment that can be running in the time it 
takes to insert a CD into each machine, and boot them.   

There are other options that do not require commandeering the entire resources of each computer.  
Condor Clusters make computer resources available only while the computer is not in use.  
Software is installed on the machine that is capable of running scheduled tasks.  When the 
computer is not in use by a normal user, the node is available as a compute node.  There are a few 
drawbacks of using Condor.  Firstly, programs must be specifically designed to work on a Condor 
Cluster.  Secondly, because of the nature of how the cluster works, a job divided among different 
nodes may not execute each node process at the same time, and therefore jobs that require 
communication between processes are not possible. 

A final suggestion would be to install a communication protocol, such as MPI directly on the 
computers.  By itself, this would not be a viable option, as MPI cannot detect if a user is using a 
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machine.  However, with a custom monitoring process, and a specialized scheduler, these 
resources could be allocated appropriately.  The caveat being that a computer would have to be 
locked from allowing user logins while running an MPI job, to facilitate proper performance.  
The risk to users could be minimized by the job scheduler only running jobs during non-peak 
usage hours (such as during the middle of the night).  While this does limit the availability of the 
cluster, it would make considerable use of otherwise unused resources.  It would also allow the 
flexibility of not requiring the individual running the experiment to be present (such as would be 
required with BCCD), and still allow node-to-node communication (which is not possible on 
Condor). 

4.2 Insights 

4.2.1 Local Testing Versus HPC Testing 
Local testing allowed us to uncover many potential problems implementing the 

simulation and agents.  However, it was not possible to immediately foresee all of the potential 
issues with running on Pingo.  While we were able to setup many of the same conditions that 
were similar to the cluster, it was hardly a substitute for actually having the cluster available for 
testing.  Some of the problems we observed were mitigated by available documentation (such as 
noticing that LISP was not available on the software list for Pingo).  However, others, like the 
lack of TCP/IP could not easily have been discovered until we had access to the machines, or 
without prior experience dealing directly with these kinds of environments. 

4.2.2 Complexity of Project 

With each component required to run both A-VIPER and the agents, the project became more 
difficult to implement in the HPC environment.  For example, for each separate programming 
language used, the likelihood of not being able to run the project increased.  This also includes 
the libraries used by each component.  A-VIPER requires several system libraries available to 
run, include libraries for compression, encryption, math functions, python functions, and others. 

Each of these introduces an additional risk that the resource may not be available in any particular 
HPC environment, and that A-VIPER or ACT-R may not be possible to run.  Even if the 
resources are available, or partially available, it may take considerable development to make use 
of them on a compute node, reducing the amount of time available to run meaningful simulations 
and increasing the risk that a particular experiment may not be completed in the time allotted.  

4.3 Future Work 

4.3.1 A-VIPER Refactor 

To decrease the risks mentioned in sections 4.1.2 and 4.2.2, A-VIPER should undergo some 
refactoring.   Many of the libraries used may not be required.  For instance, encryption is used 
primarily for encrypting account passwords, which is not needed for a simulation running on a 
private server.  Likewise, compression is used to compress the data stream between A-VIPER and 
the agents.  However, the bandwidth available will generally be much greater than the amount of 
communication required by A-VIPER, and the compression requires proper implementation of 
the Telnet protocol to activate, which the agents do not implement.  For this reason, it may be 
possible to completely remove the Telnet implementation within A-VIPER for a performance 
gain. 
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4.3.2 Flexible Solution to Communication 

To reduce the risk associated with using sockets, a flexible middleware solution should be 
implemented that decouples the communication method used between the simulation and the 
agents.  This implementation would be similar in spirit to MPI, but allow for processes that are 
not run from the same executable, enabling task of a more heterogonous nature to be run using 
multiple nodes.  Primarily, it should allow different communication models to be implemented in 
an underlying architecture that is separate from the data that needs to be communicated. 

CORBA (with IDL) and SOAP (with WSDL), provide models for constructing communication 
channels that can provide type-safe, structured communication between different processes.  As 
an improvement over SOAP specifically, it would be necessary to allow both the client, and 
server, to have fulltime two-way communication.  Utilizing a variant of service contracts like IDL 
and WSDL, interfaces could be automatically generated in a variety of programming languages, 
keeping the programmer from having to spend time to implement the data parsing and 
communication method.   

However, unlike CORBA, this solution should be implemented as accessible as programming 
language libraries, and set of multiplatform applications with limited dependencies, rather than 
require extensive middleware.  This would enable the communication to be rapidly integrated into 
the server and agents, while not requiring the design of the agents and server to be heavily 
modified to meet the needs of the communication method. 

4.3.3 Future Agent Simulations 

We were unable to perform any complex modeling during these experiments, leaving 
considerable questions unanswered.  The purpose of providing an environment for agent 
interactions is not solely to allow the simulation to scale to support large number of agents, but 
also to determine how having an environment affects what, and how the agents learn. 

The nature of having a predefined area dictates that the area have a specific shape, with different 
movement options available at different locations internal to the area.  One path of future research 
should look at how the shape of the area affects the interactions of the agents, and how they learn 
in the environment.  For instance, how do interactions differ in a circular area to those in a 
complex area that includes dead-ends?  Are different kinds of agents, or those that have different 
knowledge able to navigate one type of area better than the other? 

In fact, the interactions of different types of agents could result in a separate line of research.  
Take, for example, the notion of three kinds of agents, with different movement behaviors.  The 
first moves randomly, choosing from the directions available to it at each room.  The second 
marches back and forth along a predefined set of rooms.  The third follows a distinct path, but 
only in one direction.   Each of these agents will have a different probability of experiencing 
different events within the area.  This will affect the memories they acquire, and knowledge they 
obtain, which will subsequently affect the actions that they take in the future. 

4.4 Conclusion 

While EX3 was never successfully run, the process of running EX1 and EX2, and the preparation 
for EX3 lead to many useful insights and directions for future work.  When dealing with an HPC 
situation, there are several risk factors that should be considered, which may limit an 
experimenter’s ability to operate in a timely manner.  Likewise, the design of the simulation may 
need to take into account the possibility of having HPC resources available, during the initial 
setup phase.  The provided suggestions should help minimize these risks in the future, and give 



 16 

examples where future work could help improve the design and flexibility of implemented 
solutions. 
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