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Abstract 

 

Material permittivity and permeability parameters dictate how a given material 

will react when subjected to electromagnetic fields.  Simple media have been studied in 

great depth, and describe how linear, homogenous, and isotropic materials behave.  

Complex materials, those of which deviate from simple media in linearity, homogeneity, 

and isotropy, can react to electromagnetic fields in ways that differ greatly from simple 

media.   

Due to this fact, research is done to better understand these types of materials.  

The research in this study focuses on one aspect of complex media: inhomogeneity.  The 

purpose is to develop an algorithm that finds the inhomogeneous permittivity profile of a 

material along its z-axis using rectangular waveguide measurements.  This is 

accomplished by obtaining scattering parameters in the laboratory and using a 

Levenberg-Marquardt root search algorithm to extract the material’s inhomogeneous 

permittivity profile. 

The inhomogeneous problem is approached in two unique ways.  The first method 

employs a discrete approach in which the material is assumed to be comprised of piece-

wise constant permittivity sections.  This allows the use of simpler homogeneous wave 

equations.  The second method is a continuous approach which uses inhomogeneous 

wave equations to find a linear permittivity profile.   
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ELECTROMAGNETIC CHARACTERIZATION OF INHOMOGENEOUS MEDIA 
 

I.  Introduction 

 

A material’s permittivity and permeability characteristics affect scattering of 

applied electromagnetic waves.  These constitutive parameters influence the material’s 

behavior, whether it will act as a dielectric, magnetized material, or conductor.  The 

following paragraphs provide the reader with a brief description of background concepts 

pertaining to this discussion.  For a more detailed study the reader is referred to [2].   

Simple materials are linear, homogeneous, and isotropic.  These descriptions 

illustrate how the permittivity and permeability parameters behave within the material.  A 

linear media is one in which the constitutive parameters are not functions of the fields, 

meaning regardless of the applied field strength, the parameters will remain unchanged.  

Homogeneity describes constitutive parameters that are constant with respect to their 

position within the material.  Finally, an isotropic media is one in which the parameters 

are not dependent on field orientation.  

Complex materials on the other hand, can be nonlinear, inhomogeneous, non-

isotropic, or a combination of these.  Nonlinear materials have functional dependence on 

field strength, inhomogeneous profiles have varying constitutive parameters with respect 

to position, and non-isotropic characteristics define permittivities and permeabilities that 

are functions of field direction.   
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A constant dielectric profile is not always possible due to manufacturing 

inconsistencies in the material fabrication process.  For this reason, a media that was 

intended to be homogeneous may instead be inhomogeneous.  Averaging occurs when 

using homogeneous methods to characterize these inhomogeneous materials.  This leads 

to an incorrect model when studying electromagnetic scattering and absorption.  Due to 

this fact, research is necessary to enable the correct characterization of inhomogeneous 

materials.  This study focuses on developing a characterization algorithm to extract the 

profile of a material that is inhomogeneous in one dimension.  

1.1 Assumptions & Scope 

 Although the procedures used in this analysis could easily be extended to include 

permeability and permittivity, this research focuses only on determining the permittivity 

profile of a non-magnetic inhomogeneous material.  The study also assumes that the 

material is only inhomogeneous, and does not contain any other complex behavior.   

The problem is approached using discrete and continuous methods shown in 

Figure 1.1.  In the continuous case the material with a given thickness, d is assumed to 

have a linear permittivity profile with a slope mε, and intercept εr1.  In the discrete case 

the material is described using a piecewise constant model where each section has a 

particular permittivity εn, and a total of N permittivity sections are calculated 

simultaneously.  
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Figure 1.1: Characterization of inhomogeneous material with unknown profile 

1.2 Materials & Equipment 

A number of resources were necessary to accomplish this research.  The Agilent 

Technologies network analyzer was used to measure scattering parameters used in the 

profile extraction codes.  Various test materials were also needed including Plexiglas, 

mica, and laminate for algorithm testing.  A sample holder and a WR-90 waveguide were 

used to obtain data in the X-band frequency range of 8.2-12.4 GHz.  The discrete method 

research required additional parts including a short and shim plates which were machined 

at the AFIT fabrication shop.  Finally, this study required the use of facilities such as the 

microwave laboratory for taking necessary measurements.  
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1.3 Literary Foundation 

There is considerable work on constitutive parameter extraction for homogeneous 

materials.  These methods typically rely on the reflection and transmission coefficients 

and offer a basis for this work.  Additionally, methods have been developed to determine 

profiles of stratified media in which a single layer has unknown constitutive parameters. 

A TEM fixture was used in [9] to find the relative permittivity and permeability of 

a material.  An analytical formulation of the scattering parameters was developed and 

used for this method.  These scattering parameters are functionally dependent on 

frequency and time delay of the transmitted and reflected waves through a medium.  This 

development provided a means for constitutive parameter extraction. 

With the advent of more powerful computers, new methods for solving these 

parameters were discovered which utilized root search algorithms [12].  This involves the 

use of scattering parameters as done before, except the material’s constitutive parameters 

are analytically difficult to solve.  The root search alleviates this issue by using a 

theoretical development and experimental data to extract the desired parameters. 

The field was further developed when a direct method for parameter extraction 

was discovered [8].  This method was used to find the constitutive parameters of media 

between two known materials. This also approach was also based on a root search, and 

used an A matrix development which is closely related to the scattering parameters 

measured experimentally.  This multi-layered approach provides a significant basis for 

this work, since the discrete approach in this document uses a stratified like model for 

inhomogeneous material characterization.    
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1.4 Thesis Overview 

A discrete theoretical development is formulated in Chapter 2.  This theoretical 

formulation is developed for use in a discrete root search algorithm.  This algorithm 

numerically extracts the discrete permittivity profile of an inhomogeneous material using 

laboratory measurements.   

Chapter 3 describes the theoretical background for the continuous approach.  

Much like the discrete theory, this continuous theoretical framework was implemented in 

code, and a root search algorithm was used to extract the continuous permittivity profile.   

Chapter 4 contains the experimental set-up, an error analysis description, results 

found from each algorithm, and the accuracy of the two approaches.  Conclusions and 

recommendations for future research are provided in Chapter 5.   
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II. Discrete Characterization 

 

The purpose of this chapter is to describe the methodology used to develop a 

discrete permittivity extraction algorithm for an inhomogeneous non-magnetic material.  

This was accomplished by modeling the material as if it were comprised of piece-wise 

constant permittivity sections.  Figure 2.1 shows how this model works.  If one were 

characterizing a linearly increasing profile, the discrete algorithm would produce a step-

like permittivity profile description.  The formulation relies on the development presented 

by Chew [4], Balanis [2], and Havrilla [7]. 

The basic theory behind the approach is first discussed using a simple two media 

interface example.  The two media example is generalized to represent a stratified media 

with an arbitrary number of layers.  This stratified media example is the foundation for 

the discrete inhomogeneous approach.  This framework is subsequently used to calculate 

theoretical S11 parameters in the permittivity profile algorithm. 

Solving for the constitutive parameters algebraically is impossible due to the 

complexity of the problem.  Therefore a root search method is used to solve for the 

desired permittivities of each section. The root search works by comparing theoretical S11 

parameters to experimental S11 parameters found in the laboratory using the Levenberg-

Marquardt numerical method.  This is numerical method is used calculate the unknown 

permittivities of each section within the material, n  using   

2 2exp
11, 1 11,

1

| ( , ,..., ) ( ) | .
L

thy
l N l n

l

S S     


          
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Figure 2.1: Piece-wise constant permittivity profile characterization 

In order to find each layers permittivity in this manner, a sufficient number of 

equations, L, are necessary to create a system of equations that has a greater or equal 

number of independent solutions for the number of unknowns, N.  The approach used to 

obtain these equations is discussed, including the necessary hardware needed for this 

purpose.  The algorithm is implemented within MatLab code to iteratively calculate the 

permittivity of each layer so that the difference between the theoretical and experimental 

values of every S11 parameter is minimized to a given tolerance, δ.  The Matlab default 

tolerance was used for this algorithm (10-9).   

The discrete approach is advantageous because the underlying theory relies on a 

much simpler piecewise homogeneous treatment.  However, since each layer’s 

permittivity is solved as if it were a distinct media, this requires a large number of 

independent data points.  Despite this drawback, the discrete approach is significantly 

easier to implement and therefore remains one approach investigated in this study. 
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2.1 Discrete Theory Development 

A single-interface geometry is first discussed before investigating a multi-layered 

system.  In this example two semi-infinite layers are sandwiched together and are placed 

within a WR-90 waveguide as shown in Figure 2.2.   

The first layer is free space with permittivity and permeability of ε0 and μ0	

respectively, and extends from zero to negative infinity.  The second layer has unknown 

constitutive parameters of ε1 and μ1, and extends from zero to positive infinity. An 

electromagnetic wave is incident upon the material interface at z = 0.  An artificial 

boundary denoted by a dotted line exists at z = d1.  This will be used to illustrate phase 

delay as the incident wave passes through the material.  At the interface between the two 

materials, the energy of the wave is partially transmitted through the interface ( 1T ), or 

partially reflected by the interface ( 1R ).  Likewise a wave originating from z=d1 would be 

partially reflected ( 2R ) and partially transmitted ( 2T  ) through z = 0. 

The goal of the formulation is to represent the waves b2 and c2 at z=d1 in terms of 

the reflection and transmission of the waves b1 and c1 at z=0 in a way that allows material 

property extraction.  After manipulation, the waves will be represented in terms of those 

found at the front and back interfaces of the material.  Note that 2c  and 2b   are simply the 

waves 2c  and 2b  with a phase shift, 
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Figure 2.2 Reflection and transmission of waves through a single interface 

 

1 1
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
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
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 

 (2.1) 

where, k1z is the propagation constant through material one in the z direction, kx is the 

propagation constant in the x direction, and k1 is the propagation constant through the 

unknown material.  Note also that a waveguide geometry is used with a width of a, and 

that the wave is a TE10 mode since this will be the wave excited in the laboratory.     

It can be seen from Figure 2.2 that wave 1b , is the sum of the reflection of 1c  and 

the transmission of 2b  .  It also can be seen that 2c  is the sum of the reflection of 2b   and 
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the transmission of 1c .  Using these wave relationships, two equations are written that 

explicitly define the incoming and outgoing waves at z=0 

 1 1 1 2 2

2 2 2 1 1.

b R c T b

c R b T c

  
   

 (2.2) 

Rewriting these equations in a more useful form an expression is obtained  

 

2
1 2 2

1 1

1 1 2
1 2 2 2

1 1

1

( )

R
c c b

T T

R R R
b c T b

T T


  

   
 (2.3) 

relating the waves on either side of the boundary. 

The reflection coefficients are related to the wave impedances of each layer 

sharing an interface.  In this case layer zero has an impedance of Z0 and layer one has an 

impedance of Z1.  The transmission coefficient and reflection coefficients can be written  

 

1 0
1 2

1 0

1 1

2 2

,

1 ,

1 .

Z Z
R R

Z Z

T R

T R

  


 

  

 (2.4) 

Using (2.3) and (2.4) the relations are manipulated to form a matrix equation 

 1 1 2

1 1 21

11
.

1

c R c

b R bT

     
          

 (2.5) 

Inserting the relations for 2c  and 2b  from (2.1) into the matrix equation in (2.5), the 

equation evolves to 

 
1 1 1 1

1 1 1 1

1 2 11 12 21

1 2 21 22 21 1

1
.

z z

z z

jk d jk d

jk d jk d

c c A A ce R e

b b A A bT R e e





        
         

        
 (2.6) 
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Here the A matrix is introduced.  Its elements are simplified versions of the matrix 

on the left of the equation by distributing the transmission term to each element. The A 

matrix describes the material characteristics of layer one.  This can be seen by looking 

back to the definition of the propagation constant in (2.1) and recognizing that it is related 

to the materials permittivity and permeability.  Thus a formulation has been found to 

represent the waves b2 and c2 at z=d1 in terms of the reflected and transmitted waves b1 

and c1 at z=0 using the properties of the material.   

Now that a simple way of characterizing a single unknown layer has been 

described, the discussion moves to a development in which there are N arbitrary layers 

within a material, each with a respective unknown permittivity and permeability.  This 

development is the foundation of the discrete method.  Suppose that instead of a two-

layer system as in Figure 2.2, there were a multi-layer system as shown in Figure 2.3.   

 

Figure 2.3 Reflection and transmission of waves in a multi-layer system 
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From this figure a pattern quickly emerges.  The problem is generalized with any 

given layer n with a thickness of dn, permittivity and permeability of εn and μn 

respectively, and applicable waves traveling inside and outside of its left and right 

interfaces.  Also, shown in this figure is the last layer of the material (N), and free space 

just to the right of the material (N+1). 

In the previous example a single interface was investigated to develop an A 

matrix that described the waves traveling into and out of an interface containing the 

desired constitutive parameters.  The multi-layer example differs from the single layer 

example in that now there are A matrices for each interface.  To find the behavior of the 

entire system one simply needs to take the product of each A matrix to create an A matrix 

for the entire system.  This is written as 

 
1

1 11 11 12

1 1 11 21 22

1
.

n n n n

n n n n

jk d jk d sys sysN
N Nn

jk d jk d sys sys
n N Nn n

c cc A Ae R e

b bb T A AR e e


 


  

       
        

       
  (2.7) 

Referring to Figure 2.3 it can be seen that the nth layer has a respective reflection 

coefficient Rn.  The generalized value for this coefficient is  

 1

1

, 1 .n n
n n n

n n

Z Z
R T R

Z Z





  


 (2.8) 

This coefficient is related to the wave impedance through the layer Zn .  Also shown in 

(2.8) is the relationship between the transmission and reflection coefficients at the nth 

layer. 

The wave impedance can be related to the material impedance and propagation 

constants as seen in  



 

13 

 .n n
n

zn

k
Z

k


  (2.9) 

The material impedance and the propagation constants are then related to the 

material parameters  

 2

.

n
n

n

zn n n x

n n n

k k

k




  

  



 



 (2.10) 

The material parameters in these equations allow extraction using a numerical method. 

2.2 Constitutive Parameter Extraction 

 Thus far a characteristic A matrix for each layer within the material has been 

developed.  This matrix contains a description of how an incident wave will propagate 

through it.  Also shown, was how to combine these A matrices to produce an A matrix for 

the entire system.  These descriptions contain the permittivity, permeability and the 

thickness of each layer.  From these relationships the constitutive parameters can be 

found through a numerical algorithm. 

Before this step, the A matrix for the system must be converted into an S matrix.  

This conversion relies on the relationship found in [6] 

 11 12 21 11 21 21 12

21 22 1211

1
.

1

S S A A A A A

S S AA

   
      

 (2.11) 

This equation allows the conversion from theoretical A parameters to theoretical S 

parameters.  This step is required since S parameters are measured directly using a 

network analyzer.  With the theoretical S parameters and the S parameters measured in 
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the microwave laboratory, there now exists a means to use numerical methods for 

constitutive parameter extraction.   

 In order to continue in this manner, there must be sufficient number of 

independent data points measured in the laboratory.  This is accomplished by taking a 

series of measurements with a short located various distances away from the material.  

This allows the development of a set of at least N linearly independent solutions for N 

number of unknowns.   

Figure 2.4 illustrates this measurement approach within a waveguide.  The 

inhomogeneous material is located at z = 0, and has a thickness of z=dN.  As stated earlier 

it’s assumed the material is non-magnetic for the purposes of this thesis.   

A fixed short is located a distance l1 through ln away from the material depending 

on the distance measurement.  The different distance measurements are achievable by 

inserting a waveguide shim in between the sample holder and the short.  This creates an 

additional waveguide spacing between the sample and the short, providing a different 

data point.  The hashed lines on the right of Figure 2.4 depict a PEC short which is offset 

from the sample holder by a given shim length ln.  When calculating the system A matrix 

for each length measurement, one needs only to update the thickness for the N+1 free 

space layer by adding the applicable shim length ln.  This allows for the creation of an A 

matrix for each measurement, which is used to create an S parameter equation for each 

measurement.  From this point, a series of equations each corresponding to a particular 

shim length is developed to find each layers permittivity.   
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Figure 2.4 Sliding short measurements 

These shim lengths were calculated based on the mid-band wavelength.  This 

calculation starts with the relationship between the wavelength and the propagation 

constant in the z direction  

 
2

.z
zk

   (2.12) 

The propagation constant within the waveguide in the z direction is related to the 

propagation constant in free-space and the waveguide width. 

 
2

0zk k
a

    
 

 (2.13) 

The propagation constant of free-space is related to the frequency and speed of light by 

the below relation 

 0

2
.

f
k

c


  (2.14) 
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 Since the frequency at mid-band, the speed of light in free-space, and the width of 

the waveguide are known, the wavelength in the z direction can be found.  To maintain 

generality in this discussion, the symbol for this wavelength is kept.   

 A complete wavelength cycles through a phase of 360 degrees.  It is not necessary 

to include shims through the full cycle.  Any measurement beyond a half of a wavelength 

will not be independent from previous shim measurements.  Therefore the shim lengths 

begin at a phase of zero and up to 180 degrees. 

The network analyzer typically needs at least five degrees of phase spacing in 

order to discern between successive measurements.  So to have a confidence in the ability 

to discern independent measurements, ten degree phase spacing was used in order to 

calculate the thickness for each shim.  The following formula was developed to calculate 

each shim thickness   

 
0

0

10

360
n

z

ln


  (2.15) 

where nl is the nth shim thickness, n is the shim number, and λz is the mid-band 

wavelength within the waveguide. 

In this way the shim thicknesses were calculated from ten to 180 degrees.  A 

“shim” of zero degrees is not necessary since it would be of zero thickness.  A total of 

eighteen shims were machined.  Eighteen shims plus the zero offset produced a total of 

nineteen possible measurements.   

 The laboratory data obtained using these shims, and the theoretical formulation 

found earlier was coded into a root search algorithm using MatLab.  The algorithm first 
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estimates a value for the permittivity of each layer (relative permeability is assumed to be 

one).  These estimates are combined with each layers thickness, dn, and used to calculate 

the theoretical A matrix for each respective layer using the theoretical relations developed 

earlier.  The last layer is of free space and is produced using a respective shim offset.  

The product of these A matrices provides a representation for the entire system and 

represents a particular shim measurement.  This procedure is performed in order to 

produce a system A matrix for all shim length measurements 

    
1

1

, , .
N

thy
n n n sys n

n

d A A A




      (2.16) 

The theoretical A parameters are then converted into theoretical S parameters as shown in 

(2.11) 

 .thy thy
sys sysA S        (2.17) 

 With the measurement data found in the laboratory, a series of equations are 

developed using the theoretical S parameters and the experimental S parameters for each 

shim.  These equations are solved simultaneously to find the permittivity of each layer.  

Since the measurement construct relies on a short, only S11 parameters are measured.  

Each equation in this simultaneous computation takes the form of (2.18).  Here l 

represents the equation created from the corresponding lth shim measurement.  Also seen 

in this equation minimization between the theoretical S11 parameter and the experimental 

S11 parameter to a value determined by the tolerance δ  

 
2 2exp

11, 1 11,
1

| ( , ,..., ) ( ) | .
L

thy
l N l n

l

S S     


         . (2.18) 
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This numerical computation is accomplished using the Levenberg-Marquardt root 

search method.  The details of this algorithm will not be discussed since it would detract 

from the overall discussion.  However, a description of this method can be found in [3].  

This root search method is a cross between the Newton method, and the method of 

steepest descent.  First steepest descent is used to refine the estimate to obtain an 

adequate tolerance, and when sufficient accuracy is acquired the algorithm converges 

precisely to the solution using the Newton Method.   

MatLab has a built-in function that accomplishes this root search called nlinfit.  A 

brief description of this function is found in the Matlab help file.  Below is a line of code 

that represents how nlinfit is used 

beta = nlinfit(X,y,fun,beta0) 

where, beta is the permittivity solution to the root search, nlinfit is the Levenberg-

Marquardt root search function, X contains the inputs necessary for the function fun that 

are particular to the problem such as frequency and material thickness, y is the solution to 

the theoretical formulation found in the laboratory data, fun is the code that contains the 

theatrical formulation of S11, and beta0 is the initial constitutive parameter estimate. 

 An example code using nlinfit to calculate constitutive parameters of a single 

material from two port measurements can be found in Appendix A.  First, the constants of 

the geometry are assigned, these are put into the X vector. Then the laboratory data is 

read-in from a text file, this is y in the nlinfit function and represents the experimental S 

parameters.  An initial guess of the permittivity is provided to the Levenberg-Marquardt 

algorithm using beta0.  Finally, the algorithm uses fun (Appendix B) to calculate the 
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theoretical S parameters and compare those to the S parameters measured in lab to extract 

the actual permittivity (beta).   

2.3 Summary 

This chapter discussed a way to characterize layers within a material with 

theoretical A matrices.  This A matrix is related to the theoretical S parameters.  In turn, 

these theoretical S parameters are used with experimental S parameters to solve a series 

of simultaneous equations using the Levenberg-Marquardt algorithm.  This allowed the 

extraction of the permittivity of each layer within the material.  In this way a step-like 

permittivity profile estimate is found for the inhomogeneous material.  Before proceeding 

to the results obtained using this approach, the continuous method is discussed next. 
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III. Continuous Characterization 

 

This chapter discusses the continuous approach for solving the inhomogeneous 

permittivity profile.  Instead of representing the material as a series of piece-wise 

constant permittivity layers, this chapter assumes the material to be a continuous linear 

inhomogeneous profile.  Not all profiles of inhomogeneous materials are linear; however, 

for sufficiently thin materials a linear profile provides a good approximation.  This linear 

approximation also makes it a valid approach for Radar Absorbent Material applications 

since these are typically thin.  A linear profile can be seen from a Taylor series.  

( ) 2

0

( ) ( )( )
( ) ( ) ( ) ( )( ) ...

! 2

n
n

n

c c z c
z z c c c z c

n

   




         

If one were to approximate the function ε(z) by only using the first and second terms 

within the series.  These two terms would then represent a linear function for an 

approximate representation of ε(z) at point c. 

Figure 3.1 shows the inhomogeneous material of length d0 whose profile is solved 

in this chapter.  The graph on the left of the figure shows an incident wave traveling 

through a free space medium (0), through the material with a linear permittivity profile 

containing a z-intercept and slope (2), and finally through another region of free space 

(1).  This graph describes the geometry used to calculate S11 and S21 parameters and for 

convenience, this geometry will be referred to periodically as the forward measurement.  

This geometry is investigated first.  Next S22 and S12 parameters are solved using the 

geometry on the right of Figure 3.1 and are associated with the reverse measurement.   
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Figure 3.1: Linear inhomogeneous profile with forward and reverse incident waves 

This graph shows an incident wave traveling through free space (1), then through the 

inhomogeneous material (2), and finally through additional free space (0).   

These theoretical S parameters are formulated in this chapter and compared to 

those measured in the laboratory for permittivity extraction.   This extraction is done with 

the Levenberg-Marquardt algorithm similar to its use in the discrete case.  This 

formulation closely follows the free space development found in [11], except that a wave 

is propagating within a WR-90 waveguide environment.   

3.1 Forward Measurement Field Descriptions  

 This discussion assumes an incident wave originating from the –z direction.  The 

forward transmission and reflection coefficients will contain a subscript f to distinguish 

them from the reverse coefficients developed later in this chapter.   

The electric and magnetic fields must be found before constructing theoretical 

transmission and reflection coefficients.  First a formulation for the electric field within 

region zero is developed.    The y component of the electric field is a function of the 

position x and z.  The field’s dependence on z is denoted by the psi function as shown 

below 

 ( , ) sin( ) ( ),y xE x z k x z  (3.1) 



 

22 

where, xk
a


 . 

The electric field in region zero is written directly by inspection.  From the figure, 

forward and reverse traveling waves are expected within the region since there are both 

incident and reflected waves.  For this reason,  

 0 ,z zjk z jk z
fR e e    (3.2) 

where, 0 represents the electric field’s z dependence for region zero, and kz is the 

propagation constant in the z direction.  This propagation constant is defined as  

2 2
0

0 0 0 ,

z xk k k

k   

 


 

where, kx is the x-directed wavenumber, k0 is the free space wavenumber, and a denotes 

waveguide width. 

There is only a transmitted wave 1  in region one.  So this is also written by 

inspection 

 0( )
1 .zjk d z

fT e   (3.3) 

Now that the electric fields for region zero and one are solved, the magnetic fields 

are found easily from Faraday’s Law 

 0
0

0

( , ) sin( ) .x x

dj
H x z k x

dz




  (3.4)  

Although there is also a z component of the magnetic field, it is not needed for 

enforcement of boundary conditions, and therefore only the x component of the magnetic 

is used.  The magnetic field for region zero simplifies to 
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 0
0

( , ) sin( ) .z zjk z jk zz
x x f

k
H x z k x e R e


     (3.5) 

Using this same procedure the x component of the magnetic field for region one is 

 0( )
1

0

( , ) sin( ) .zjk d zz
x x f

k
H x z k x T e


   (3.6) 

The process to find the electric and magnetic fields for region two is more 

involved since the region is inhomogeneous.  A differential equation is derived from 

Maxwell’s equations in order to describe the electric fields in region two.   

Faraday’s law shows that the electric field will circulate around a magnetic field, 

and Ampere’s Law shows that a magnetic field will circulate around an electric field   

 
.

E j H

H j E





  

 

 
   

(3.7)
 

In these equations E


 represents the electric field, H


 the magnetic field,   and   the 

permittivity and permeability, and   represents the angular frequency of the wave. 

Expanding the curl operator and recognizing y invariance since the material 

properties do not change in the y direction, Faraday’s law yields 

 ˆ ˆ ˆ ˆˆ ˆ( ).y yx z
x y z

E EE E
x y z j xH yH zH

z z x x


                   
 (3.8)   

By equating the vector components a set of three equations results 

 

                , : TE

     , , : TM

.             , : TE

y z
x y x

zxz
y z x x

y z
z y z

E
j H E H

z
EE

j H E E H
x z

E
j H E H

x













 
 


 


 (3.9)  
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Ampere’s law results in a similar formulation  

  ˆ ˆ ˆ ˆˆ ˆ( ).y yx z
x y z

H HH H
x y z j xE yE zE

z z x x


                  
 (3.10)  

Again, a set of three equations is found by equating the vector components from (3.10) 

 

                 , : TM

     , , : TE

.                  , : TM

y z
x x y

zxz
y y x z

y z
z z y

H
j E E H

z
HH

j E E H H
x z

H
j E E H

x








 




  
 





 (3.11) 

 These results make physical sense because in the TEz case the magnetic field 

circulates around the electric field, and in the TMz case the electric field circulates around 

the magnetic field.   

The problem geometry dictates y invariance.  This means that the equations are 

decoupled, and a TEz excitation will not couple into a TMz field set.  This simplifies the 

problem considerably because the TEz field excited in lab will not generate TMz fields. 

As a result only TEz waves are required in this analysis.  

In particular the problem will consist of the 10
zTE  mode, since this specific mode 

will be used within the waveguide. Figure 3.2 shows the expected waves within the 

guide. 
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Figure 3.2: TE10 modes in WR-90 waveguide 

 

 Solving the TEz equations from (3.9) in terms of Hx and Hz, and inserting them 

into the second equation in (3.11), a partial differential equation in terms of the electric 

field is derived  

 
2 2

2
2 2

( ) 0.y y
y

E E
k z E

x z

 
  

 
 (3.12) 

 This is a homogeneous partial differential equation that represents the electric 

field in the inhomogeneous material.  Note that electric field Ey is a function of x and z 

for region two and is written 

 2( , ) sin( ) ( ).y xE x z k x z  (3.13) 

By assuming separation of variables (3.12) is reduced to simple derivatives  

 
2

2 2
2

( ) 0.y
x y y

d E
k E k z E

dz
     (3.14) 

Note that the partial double derivative of Ey with respect to x is just -kx
2Ey since there are 

only standing waves in the waveguide along the x-axis. 
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This result simplifies further using  

 2 2 2
x zk k k   (3.15) 

to obtain  

 
2

2
2

( ) 0.y
z y

d E
k z E

dz
   (3.16) 

Where, kz is functionally dependent on position z because the material is inhomogeneous 

in this direction, and ky is zero since the material is y invariant. 

There is no general analytic solution to this differential equation so a particular 

profile is assumed.  For sufficiently thin materials a linear profile can be assumed without 

losing significant accuracy.  This assumption dictates a linear propagation constant  

 2 2 2 2 2
0 0( ) ( ) ( )z x r xk z k z k z k        (3.17) 

This simplifies further into a more useful representation 

 
2

2 2 2
0 0 1 2

0

( ) ( ).x
r x r

k
k z k k m z

k      (3.18) 

 From (3.18) the permittivity profile is much easier to discern.  By factoring out 

the propagation constant of free space the equation is left with the relative permittivity 

intercept εr1 and the relative permittivity slope mε	of the inhomogeneous profile.		If the 

slope were to go to zero, the resulting equation would be exactly equal to that for a 

homogeneous material.  Substituting (3.18) into the propagation term in (3.16) yields  
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2
0 1 22 2

0

[ ] ( ) 0x
r

kd
k m z z

dz k 
 

    
 

 (3.19) 

where, the notation used for the electric field in region two is Ψ2. 



 

27 

The differential equation in (3.19) is in a complicated form.  A change of 

variables is used to simplify the problem 

 
2/3 2

0
1 2

0

,x
r

k k
m z

m k


 
   

     
   

 (3.20)  

or equivalently, 

 
2/3 2

1 2
0 0

1
.x

r

m k
z

m k k




 
    
      
     

 (3.21) 

One could substitute the double derivative with respect to z with the double 

derivative with respect to η by knowing 

 2 2( ) ( )
,

d z d d

dz d dz

   


  (3.22) 

and  

 
2

2 2
2

( ) ( )
.

d z d zd d

dz d dz dz

  

    

 (3.23) 

The derivative of η with respect to z is 

 1/3 2/3
0 ,

d
m k

dz 

  (3.24) 

so that (3.19) becomes 

 
2/3 2 22

21/3 2/3 2
0 0 1 1 22 2 2

0 0 0

1
[ ] ( ) 0.x x

r r

m k kd
m k k m

d m k k k


 


    


                           
 (3.25) 

Simplifying this expression results in the differential equation 

 
2

22
( ) 0.

d

d
  


 

  
 

 (3.26) 
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The solution to this differential equation is found using the Frobenius method.  

One will find the solution to be the scaled sum of two fractional-order Bessel functions as 

seen in [10] 

  1/3
2 1/3 1/3( ) ( ) ( ) ,w w AJ w BY w    (3.27) 

where, A and B are constants, and an additional change of variables was made  

3/2

2
3/20

1 2
0

2
,

3

2
( ) .

3
x

r

w

k k
w m z

m k








 
   

 

  

Bessel functions make physical sense, since the waves traveling forward and 

backward should appear sinusoidal.  Also, one would expect the waves to diminish in 

amplitude and decrease in wavelength as they travel through the material to account for 

loss and changing permittivity within the material.  This phenomenon can be seen from 

the relationship 

,
v c

f f



   

where v and f are the velocity and frequency of the wave respectively, and c is the speed 

of light in free space.  As permittivity increases the wavelength would naturally decrease.   

Since these relationships intuitively represent what is expected in the problem, the 

solution in (3.27) is reasonable and the formulation continuous to finding the magnetic 

field in region two.   
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The magnetic field can be found as previously accomplished using Faraday’s 

Law.  In this case, a change of variables was introduced, and therefore the derivative of w 

with respect to z must be added to the equation 

 

2
2

0

( , ) sin( ) .x x

dj dw
H x z k x

dw dz




  (3.28) 

Using the property of Bessel functions below, taking the derivative of the electric field 

becomes quite simple 

 1( ) ( ).
d

z z z z
dz

 
         

This holds true for any Bessel function ( )z .  Using this equation the derivative of the 

electric field is  

  1/32
2/3 2/3( ) ( ) .

d
w AJ w BY w

dw


    (3.29) 

The derivative of w with respect to z is 

 
1/22

0 1 2
0

) .x
r

kdw
k m z

dz k 
 

   
 

 (3.30) 

Using (3.29) and (3.30) the magnetic field for region two becomes  

  
1/22

1/3
2 0 1 2/3 2/32

0 0

( , ) sin( ) ( ) ( ) .x
x x r

kj
H x z k x k w m z AJ w BY w

k 
  

 
    

 
 (3.31) 

Now that both the electric and magnetic fields in all regions are known, boundary 

conditions are applied to find the forward measurement’s reflection and transmission 

coefficients. 



 

30 

3.2 Forward Measurement Transmission & Reflection Coefficients 

 Since the tangential electric field components are continuous across the boundary 

at z=0, the electric field in region zero and region two must be equal 

 0 2(0) (0).   (3.32) 

 Note that the electric fields x dependence cancels and only the z dependent term 

remains.  This cancelation will occur when applying all boundary conditions including 

those for the magnetic fields. Using the equations for the electric fields in regions zero 

and two, and evaluating at z=0, results in 

 
 

0

1/3
2 0 1/3 0 1/3 0

(0) 1

(0) ( ) ( ) .

fR

w AJ w BY w





 

 
 (3.33) 

Equating these two fields at the boundary yields 

  1/3
0 1/3 0 1/3 01 ( ) ( ) ,fR w AJ w BY w    (3.34) 

where, 

3/22
0

0 1 2
0

2
.

3
x

r

k k
w

m k


  

   
  

 

The next boundary is z = d0 in which the electric fields are equal in regions one 

and two 

 1 0 2 0( ) ( ).d d   (3.35) 

At this boundary the electric fields for both regions are 

 
 

1 0

1/3
2 0 1 1/3 1 1/3 1

( )

( ) ( ) ( ) ,

fd T

d w AJ w BY w







 
 (3.36) 
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where, 

3/22
0

1 0 1 2
0

2

3
x

r

k k
w m d

m k



  

    
    

Equating these tangential electric field values according to (3.35) yields 

  1/3
1 1/3 1 1/3 1( ) ( ) .fT w AJ w BY w   (3.37) 

 Next the boundary conditions for the magnetic fields are applied, starting with the 

continuity of tangential magnetic fields across regions zero and two using z = 0 

 0 2(0) (0).x xH H  (3.38) 

Equating the two formulations at this boundary the following equation results 

  
1/21/3 2

0 0
1 2/3 0 2/3 02

0

1 ( ) ( ) .x
f r

z

jk w k
R AJ w BY w

k k
  

 
    

 
 (3.39) 

Finally, the continuity of the magnetic field across regions one and two at z = d0 is 

applied 

 1 0 2 0( ) ( ).x xH d H d  (3.40) 

Using this boundary condition and the equation for the magnetic field in region two 

developed earlier (3.30) the last of the four boundary value equations for the forward case 

is found  

  
1/21/3 2

0 1
0 1 2/3 1 2/3 12

0

( ) ( ) .x
f r

z

jk w k
T m d AJ w BY w

k k   

 
    

 
 (3.41) 

At this point four equations have been developed from the boundary conditions.  

These equations define the reflection and transmission coefficients for the forward case.  
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Note that the constants A and B must be removed by solving these equations 

simultaneously 

 

 
 
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 

  
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 (3.42) 

where, 
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 Transmission and reflection coefficient equations are found by solving the set of 

relations in (3.42).  The coefficients are again labeled with a subscript f to emphasize that 

they are for the forward measurement; those taken by an incident wave originating from 

the –z direction 

 
1/3

1 21

0 1 2 3 4

2 ,f f
f

f f f f

N Nw
T

w D D D D

  
        

 (3.43) 
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where, 
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Fortunately the solution for the transmission coefficient can be reduced using the 

relationship for any Bessel function ,   

   1( ) ( ) ( ),
d v

z z z
dz z           (3.45) 

and the identity, 

 
2

( ) ( ) ( ) ( ) ,v v v vJ z Y z Y z J z
z

    (3.46) 

which is also known as the Wronskian.  This allows the transmission coefficient to 

reduce  
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 (3.47) 

There were no such simplifications that could be made for the denominator term or for 

the numerator for the reflection coefficient and therefore the form shown in (3.44) 

remains. 
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The transmission and reflection coefficients are related to S parameters as shown 

below 

 
11 1 1
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 (3.48) 

Next the theoretical S parameters for the reverse measurement are developed. 

3.3 Reverse Measurement Field Descriptions 

 The development in this section closely follows the approach used in section 3.1.  

In this section however, the wave originates in the z direction, as shown in Figure 3.3.  

The reflection and transmission coefficients belong to the reverse measurement set and 

are denoted with a subscript r.  These coefficients are directly related to the S22 and S12 

scattering parameters.   

 The formulation begins with finding the electric field within region zero.  Using 

the same convention for the electric field, 0  can be written by inspection as  

 0 .zjk z
rT e   (3.49) 

A reflected wave and an incident wave will be present in region one so that 1  is 

 0 0( ) ( )
1 .z zjk d z jk d z

re R e      (3.50) 

Now that the electric fields are known for regions zero and one, the magnetic 

fields are found from Faraday’s law 

 0
0

0

( , ) sin( ) .x x

dj
H x z k x

dz




  (3.51) 

Therefore the magnetic field for region zero is 
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 0
0

( , ) sin( ) .zjk zz
x x r

k
H x z k x T e




  (3.52) 

In a similar fashion the magnetic field for region one is 

 0 0( ) ( )
1

0

( , ) sin( ) .z zjk d z jk d zz
x x r

k
H x z k x R e e


       (3.53) 

 At this point the electric fields and magnetic fields have been found for region 

zero and one.  For region two, no additional formulation is needed since the wave within 

this region will behave similarly whether the incident wave originates from the –z or z 

direction.  For this reason, (3.27) and (3.31) can be also used in the reverse development. 

3.4 Reverse Measurement Transmission & Reflection Coefficients 

 The tangential electric field is continuous across the boundary z=0.  Because of 

this, the electric field in region zero is equal to the electric field in region two as noted in 

(3.32).  At this boundary the z dependence of the electric fields for region zero and region 

two are  
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 (3.54) 

Note that w0 is equivalent to that introduced for the forward case.  Equating these two 

electric fields results in  

  1/3
0 1/3 0 1/3 0( ) ( ) .rT w AJ w BY w   (3.55) 

 Next, the boundary condition for z=d0 is applied.  Here the tangential electric 

fields are equal for regions one and two.  The fields for the two regions are shown below  
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Note again that w1 was defined earlier in (3.36).  Equating these two electric fields results 

in the relation  

  1/3
1 1/3 1 1/3 11 ( ) ( ) .rR w AJ w BY w    (3.57) 

 Next boundary conditions are used to find two additional equations from the 

continuity of tangential magnetic fields.  This development starts with the magnetic fields 

across regions zero and two at z = 0.  At this boundary the magnetic fields are  
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 (3.58) 

Equating these two magnetic fields across the boundary a third equation results  
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Finally, the magnetic fields across the boundary z=d0 are also equal. These 

magnetic fields are  
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 (3.60) 

This results in the last equation  

  
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 (3.61) 

 The four equations describing the transmission and reflection coefficients for the 

reverse measurement are written as  
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where, 
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 With some algebra the constants A and B drop out and relations for the 

transmission and reflection coefficients are 
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where, 
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As done for the forward case, the transmission coefficient can be further simplified using 

(3.45) and (3.46) to yield 
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Now that the reflection and transmission coefficients are found for the reverse 

measurement, the associated theoretical S parameters are simply 
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 (3.66) 

3.5 Numerical Computations of Slope and Intercept 

To summarize, the four transmission and reflection coefficients are related 

directly to S parameters as shown below 
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Before continuing, a quick check is done to see if the mathematical representation 

of scattering parameters reflects physically expected results.  This allows a check on the 

accuracy of the formulations.  Unfortunately, allowing the slope mε to go to zero to verify 

the solution reduces to a homogeneous relationship does not result in a useful test.  This 

is because as mε approaches zero, fields would become infinite within the inhomogeneous 

region.  Even taking the Bessel functions to their asymptotic approximations did not 

allow for a testable result.  

However, some other checks can be made.  Since the inhomogeneous profile is 

asymmetric, the equations for the forward and reverse reflection coefficients should not 

be equal.  Referring back to (3.44) and (3.46) it is apparent that these coefficients indeed 
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differ.  The theorem applying to linear and isotropic materials can be used. For both 

homogeneous and inhomogeneous materials reciprocity signifies that the forward and 

reverse transmission coefficients should be equal.  Referring back to (3.47) and (3.65) it 

is seen after inserting the values for C1f, C2f, C1r, C2r, w0, and w1, that these transmission 

coefficients are indeed equal.  This provides reasonable confidence that these scattering 

parameter formulations are accurate.   

The four scattering parameter equations are solved using the Levenberg-

Marquardt algorithm to find the relative permittivity z-intercept and slope within the 

inhomogeneous material 

 
2 2exp

1 1| ( , , ) ( ) | , ,thy
i r i r
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S m S m               (3.67) 

where the scattering parameters are indicted using i=21,11,12, and 22. 

3.6 Summary 

In this chapter theoretical scattering parameters were solved allowing a linear 

permittivity profile extraction.  This was accomplished by splitting the geometry up into 

three regions: zero and one of homogeneous free-space, and the second of an 

inhomogeneous material.  From this point, boundary conditions were applied to solve for 

the forward and reverse incident wave’s reflection and transmission coefficients.  These 

coefficients were directly related to the scattering parameters.   

Finally, as done in the discrete case, an algorithm was developed via MatLab to 

numerically solve for the linear profile using the Levenberg-Marquardt algorithm with 

experimentally captured scattering parameters. 
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IV. Analysis & Results 

 

 This chapter discusses the steps taken in the laboratory to capture data, and the 

results from the discrete and continuous permittivity profile algorithms.  A short error 

analysis section shows how permittivity profile uncertainty was calculated.  All results 

are presented using Matlab plots to clearly show the accuracy of each algorithm in 

various testing scenarios.  Also included in this chapter is a comparison between both 

approaches and a discussion of advantages and disadvantages of each.    

 A description of the equipment used, the materials tested, and the measurements 

taken are included for completeness of the discussion.  The discrete algorithm required a 

significant number of measurements, and so details on data gathering are included for this 

approach. The continuous approach required only one measurement, and so only a brief 

description is required.   

This chapter begins with the experimental set up, the calibration and measurement 

procedures, error sources, algorithm results, and concludes with a summary.  

4.1 Experimental Set Up  

The scattering parameters were measured using the Agilent Technologies 

Network Analyzer shown in Figure 4.1.  Shown is the S Parameter measurement screen, 

the two ports that connect to the waveguide, and the keypad. 

Several waveguide parts were needed to collect the necessary data.  Shown in 

Figure 4.2 are the short (A), the sample holder (B), and material samples, including 

Plexiglas (C) and Mica (D). 



 

41 

Figure 4.3 shows a picture of the shims displaying their thicknesses, which were 

calculated earlier.  Starting from top to bottom, and going from left to right, the shims get 

progressively smaller.  The last shim shows the face of each offset.  In table 4.1 the 

specific thicknesses of each shim is listed. 

Finally, Figure 4.4 and Figure 4.5 show the experimental set up for the discrete 

and continuous measurements, respectively.  Figure 4.4 shows the coaxial cable (A) that 

connects the network analyzer to the waveguide (B), the sample holder (C), the shim used 

for the applicable measurement (D), and the short (E).  Note also in this figure that only 

measurements were taken in the discrete case using one port (S11).  Figure 4.5 shows a 

slightly different set up.  In this figure measurements were taken using two ports (S11, S21, 

S12, S22), both labeled A, where the left was port one, and the right was port two.  The 

waveguide is also shown (B) along with the sample holder (C).  

Table 4.1: Shim thickness measurements 

Shim A B C D E F G H I 
Thickness (mm) 19.87 18.76 17.60 16.54 15.43 14.34 13.23 12.10 11.02
Shim J K L M N O P Q R 
Thickness (mm) 9.96 8.79 7.71 6.61 5.52 4.40 3.31 2.19 1.10 
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Figure 4.1: Network analyzer 

 

Figure 4.2: Short, sample holder, and materials 
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Figure 4.3: Shim offsets 

 

Figure 4.4: Single port measurements for the discrete approach 
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Figure 4.5: Two port measurement for the continuous approach 

4.2 Calibration and Measurements 

For both discrete and continuous measurement data sets, TRL calibration was 

used to ensure data accuracy.  A brief description of TRL calibration theory is found in 

[6].  The network analyzer’s built in TRL calibration kit was used prior to data collection. 

A total of thirty eight measurements were taken for the discrete case when testing 

on a stratified material.  This was done to find additional data points, and can only be 

accomplished for media that are sufficiently thinner than the sample holder to make these 

measurements possible.  The stratified configuration is the only material that was tested 

in this way.   

The first nineteen measurements were taken with the sample to the left of the 

sample holder.  The next nineteen measurements were taken with the sample to the right 

of the sample holder.  Figure 4.6 shows the two different measurement configurations.  
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The left side of the figure shows the sample to the left of the sample holder, and the right 

side of the figure shows the sample to the right of the sample holder.  The figure also 

shows the waveguide (B), sample holder (C), shim (D), and short (E).  In each set of 

measurements the short immediately followed the sample holder.    

The first measurement was taken with no shim, and then measurements continued 

with the smallest shim (R in Figure 4.3).  Each subsequent measurement was taken with 

an increasingly larger shim.  The last measurement being the final shim (A in Figure 4.3).  

The first test of the discrete algorithm was using a stratified media with these thirty-eight 

measurements.  This stratified media was comprised of a thin sample of Plexiglas, 

laminate material, and mica. At the end of taking all discrete measurements there were a 

total of thirty-eight data files, each containing the S11 scattering parameters associated 

with a given frequency.  For the pseudo continuous inhomogeneous material, only 

nineteen measurements were possible since the material was too thick to create a right 

justified measurement set. 

For the continuous case one two-port measurement was needed.  In that instance 

the shims were not used.  For these measurements an inhomogeneous material was 

constructed to collect the data as well as a homogeneous material for initial testing.  In 

this instance, one file was created with S11, S21, S12, and S22 scattering parameters 

associated with a given frequency. 
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Figure 4.6: Left justified and right justified sample measurements 

4.3 Error Analysis 

The error analysis used in this section is similar the differential treatment in [5]. 

There are numerous sources of error when using these algorithms because they rely on 

experimental data for conducting the root search.  This can be seen by revisiting the 

extraction formulae for the continuous case   
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and the discrete case  
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Not all errors are included in this discussion since many of them are difficult to 

measure and present minimal uncertainties.  Examples of such errors include excessive 

movement of the coaxial cables, misalignment of the measuring constructs shown in 
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Figures (4.4) and (4.5), and uncertainties internal to the network analyzer.  These are not 

investigated in this analysis.   

Other errors can be approximated more easily and contribute more to the overall 

results and are used in the analysis.  These include inaccuracies in material thickness 

measurements, placement of the material within the sample holder, and the uncertainty in 

the shim lengths for the discrete algorithm.  The difference between the discrete and 

continuous case is that the continuous algorithm doesn’t rely on shims and therefore has 

fewer sources of error in comparison.     

Since the discrete case presents more error possibilities it is described in detail. 

The continuous case would follow a similar treatment without the shim measurement 

uncertainty.   

The complex permittivity profile of the material can be written functionally as 

 ( , , ) ( , , ).m p l j m p l      (4.3) 

This permittivity is comprised of a real component   and an imaginary component   .  

These are both functions of the material thickness m, the position of the material within 

the sample holder p, and the length of each shim l.  There is uncertainty in each of these 

measurements leading to a perturbation from the actual permittivity profile  

 0 0 0 0 0 0( , , ) ( , , ).m m p p l l j m m p p l l              (4.4) 

This equation shows that the uncertainty of the permittivity is a function of the 

actual measurements for the material, placement, and shim length denoted with the 

subscript 0, and the uncertainty of these same measurements shown by m , p , and l .   
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The real permittivity could be written using a Taylor series as  
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 (4.5) 

This is also true for the imaginary permittivity; however, to simplify the discussion only 

the real permittivity will be discussed.  The imaginary permittivity uncertainty follows a 

similar process.   

 If the error is small, the higher order terms can be ignored in the Taylor series  
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 (4.6) 

The partial derivatives can also be approximated if the errors are sufficiently small 
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The magnitude of each uncertainty is found and combined to find the total uncertainty in 

the resulting permittivity   extracted by the algorithm 

 0 0 0 0 0 0| | | ( , , ) ( , , ) | | | | | | | .m p lm m p p l l m p l                          (4.10) 

The absolute values are used so that the errors associated with each uncertainty do not 

cancel with each other.  This results in a total permittivity error that presents a worst case 

scenario regarding measurement errors. 
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The uncertainties m , p , and l can be positive or negative.  For small 

uncertainties the resulting permittivity perturbations will be symmetric about

0 0 0( , , )m p l  .  As the uncertainties increase the positive and negative errors can become 

significantly different from each other, and need to be calculated separately.  It is 

assumed in this analysis that this difference is sufficiently small and does not warrant 

separate calculations.  In this manner the uncertainties were calculated for the real and 

imaginary permittivity profiles for the discrete and continuous cases.   

In the discrete case l  was calculated by finding the standard deviation from the 

shim measurements, and using this uncertainty per shim during permittivity extraction.  

The material measurement errors ( m ), for the discrete and continuous cases were 

calculated using the standard deviation among material measurements, and depended on 

what material was being tested.  The material placement error within the sample holder (

p ) was set to two tenths of mm for the calculations.  These uncertainties will be seen on 

the graphs with the use of error bars. 

4.4 Algorithm Results 

This discussion starts with the results from the discrete case.  These first graphs 

compare a material as measured within the stratified configuration (thin Plexiglas, 

laminate, and mica) with the inhomogeneous algorithm (red) and compare them with the 

same material that is measured individually using a homogeneous algorithm (blue) with a 

two-port scheme.  Also note that each graph contains error bars for both the 

inhomogeneous and homogeneous algorithms using their respective color.  
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In Figure 4.7, Figure 4.8, and Figure 4.9 we see two graphs per figure.  The first 

plots the real part of the relative permittivity versus frequency for both the 

inhomogeneous and homogeneous algorithms.  The second plots the imaginary relative 

permittivity versus frequency for both the inhomogeneous and homogeneous algorithms. 

The figures are displayed in the order in which the materials are configured within the 

sample holder in the stratified configuration.   

The first material encountered in the stratified media is Plexiglas.  The real 

relative permittivity for Plexiglas is close to the actual value, but does differ at higher 

frequencies.  The imaginary relative permittivity produced by the algorithm is strongly 

consistent with the actual imaginary relative permittivity.  Immediately one can see the 

result error can play in the permittivity extraction using the discrete algorithm. 

The second material in the stratified media was laminate.  In the corresponding 

figure, a strong agreement with the imaginary results is seen, however again a slight 

divergence between the real permittivity in the inhomogeneous algorithm and the real 

permittivity in the homogeneous algorithm is seen.   

 

Figure 4.7: Real and imaginary results for Plexiglas 
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Figure 4.8: Real and imaginary results for laminate 

 

Figure 4.9: Real and imaginary results for mica 

Finally, the third material encountered in the stratified sample is mica.  There is 

again a slight divergence in the real permittivity results, and strong correlation in 

imaginary permittivity results.  

Since there are over thirty-eight measurements in the discrete case, the cumulative 

effect of all uncertainties begins to increase the amount of error possible in the results.  

This can be easily seen when comparing the error bars between the inhomogeneous and 

homogeneous results.  For this reason, great care must be taken when measuring the 

scattering parameters for the discrete case.  This complex measurement environment is 
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believed to be the cause of the inaccuracies in the discrete algorithm.  The smaller error 

seen in the imaginary calculations is believed to be caused by the fact that the material 

has relatively low loss.  If the material has greater loss, it is likely the error bars would be 

just as large in the imaginary calculations as they are in the real calculations.   

Next the results for the continuous case are discussed.  This algorithm was tested 

with a homogeneous Plexiglas material and later with an inhomogeneous material created 

using layers of blue heavy-weight paper and yellow plastic.   

The first test was a Plexiglas material to get a sense of accuracy with the 

algorithm.  Since the material in region zero has a relative permittivity of one (free space) 

the z-intercept was assumed one, and only the slope was computed.  For this comparison, 

the inhomogeneous slope was calculated with the continuous inhomogeneous algorithm 

and was plotted against the rise over run permittivity of the Plexiglas (calculated using 

homogeneous code). Figure 4.10 shows these results.  Note that the slope is represented 

in these graphs as relative permittivity divided by distance in mm.   

It can be seen from this figure that the real relative slope is fairly accurate, with a 

slight divergence above 11.5 GHz, and for the imaginary relative slope there is a smaller 

divergence.  Since the mathematical solution of the differential equation in region two 

has an instability when slope is zero, a completely homogeneous material could not be 

used to test the algorithm to find both intercept and slope.  Instead an inhomogeneous 

material was made for further testing. 
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Figure 4.10: Real and imaginary relative slopes for Plexiglas 

 Next the continuous algorithm was tested with a pseudo continuous permittivity 

profile by interspersing layers of paper and plastic.  For an adequate comparison paper 

and plastic were tested first as homogeneous materials.  Figure 4.11 shows the real and 

imaginary permittivity results for paper, and Figure 4.12 shows the real and imaginary 

permittivity results for plastic.  These figures show that paper has a larger permittivity 

and higher loss than plastic.  By interspersing layers of paper and plastic an 

inhomogeneous material was constructed.   

  

 

Figure 4.11: Real and imaginary results for blue paper 
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Figure 4.12: Real and imaginary results for yellow plastic 

 The inhomogeneous material was fashioned using five sub-layers, each with an 

increasingly larger number of paper layers until the last sub-layer contained only paper.  

Thus a material with an initial permittivity intercept and an increasing permittivity profile 

was created.  Figure 4.13 shows the construction of the inhomogeneous material. 

The material was fashioned so that it would fit securely inside the sample holder 

in the x and y directions.  It was also clamped overnight to ensure that the layers were 

sandwiched tightly and the material’s thickness in the z direction nearly uniform.   

The material was tested so that the yellow plastic portion of the material began at 

the z=0 interface.  And the material progressively increased in permittivity in the positive 

z direction (contains more and more blue paper layers).  Figure 4.14 shows the results for 

the z-intercept.  The extracted z-intercept from the inhomogeneous algorithm 

 

Figure 4.13: Plastic and paper inhomogeneous material construction 
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is shown in red and is compared to the permittivity of yellow plastic when calculated 

alone using the homogenous algorithm in blue.  Both the real and imaginary parts of the 

relative intercept calculated by the inhomogeneous algorithm are fairly accurate.  

However, measurement error does not account for the discrepancy in the imaginary part 

of the permittivity intercept.  One also sees that error plays a smaller role in the 

continuous algorithm when compared to the discrete algorithm.   

Figure 4.15 shows the relative slope calculated by the inhomogeneous algorithm 

in red compared to the rise over run slope calculated from the homogeneous algorithms.  

Again, a strong consistency is seen between the inhomogeneous algorithm and the actual 

inhomogeneous permittivity of the material for both real and imaginary parts.  It is also 

seen that the algorithm will converge with a material with a relatively small slope.  The 

measurement errors again do not account for the slight divergence from the actual profile.  

These errors could be cause from inconsistencies during the fabrication process, since 

each thin slice of plastic or paper is not perfectly uniform.   

 

Figure 4.14: Continuous algorithm relative intercept results 
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Figure 4.15: Continuous algorithm relative slope results 

4.4 Discrete and Continuous Algorithm Comparison 

Figures (4.16) and (4.17) show the continuous and discrete algorithm profiles 

compared to the actual profile described in Figure 4.13.  In both graphs, the 

inhomogeneous algorithm profile is shown in red, and the actual profile in blue.  The left 

graph in Figure 4.16 shows the real part of er(z) versus z in mm, and the right graph 

shows the imaginary part of er(z) versus z in mm.  All plots are done using the mid-band 

frequency of 10 GHz.  The results of the continuous algorithm on the real graph show 

strong agreement at z=0, but the algorithm starts to diverge from the actual profile as 

z→d0.  The results in the imaginary graph are most accurate in the center of the material, 

but the algorithm diverges from the actual profile as z→0 or z→d0. 

Figure 4.17 shows the accuracy of the discrete algorithm.   For this material only 

left justified measurements were taken since the material was too thick to also do right 

justified measurements.  The discrete algorithm closely follows the actual profile, except 

that at the edges of each step it becomes less accurate.  The large uncertainty possibilities 

are also seen in this figure, especially for the ε2 section. 
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Figure 4.16: Continuous algorithm profile results 

 

Figure 4.17: Discrete algorithm profile results 

If one were to use a homogeneous algorithm to find the profile of this same 

inhomogeneous material the results would be similar to what is shown in Figure 4.18 and 

Figure 4.19.  These show the permittivity as a function of frequency.  In Figure 4.20 and 

Figure 4.21 the permittivity is plotted versus position z within the material at the mid-

band frequency of 10 GHz. 

 Despite some of the inaccuracies associated with the discrete and continuous 

profiles, they still better articulate the changing profile within the material. 
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Figure 4.18: Inhomogeneous material characterized with homogeneous algorithm 

 

Figure 4.18: Inhomogeneous material profiled with homogeneous algorithm  

The discrete and continuous algorithms have their own benefits and drawbacks.  

The discrete algorithm’s advantages include its ability to characterize a material with a 

simpler theoretical foundation since it relies on homogeneous wave equations.  It also 

becomes advantageous if one were to characterize a material that is not linear, since it 

would likely provide a more accurate result in comparison to the continuous profile 

because it splits up the material into sections.  This approach also lends itself easily to 

characterizing layered stack material configurations such as a Jaumann absorber. 
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 A major disadvantage of the discrete algorithm is the resulting profile averages 

across sections within the material.  This produces inaccuracies at each permittivity 

section’s right and left boundaries.  Also, the discrete algorithm is more error prone as 

can be seen by the error bars.   

One could potentially change the discrete code so that it produces a finer 

characterization with additional sections, but it was discovered during testing that as the 

section numbers were increased the accuracy of the algorithm began to sharply diminish.  

This could be caused by an inability of the network analyzer to distinguish between the 

phase differences from each shim.  A more precise measuring device or additional data 

points would allow for a greater set of independent equations for the Levenberg-

Marquardt root search. It is also possible that an alternative root search method other than 

Levenberg-Marquardt could provide better results.  The convergence of the algorithm 

becomes increasingly temperamental with additional root search dimensions. 

The continuous approach is advantageous over the discrete approach in some 

ways including the fact that it produces a smoother profile characterization.  It also 

requires only one measurement, so that it takes less effort and time to collect the 

algorithm’s necessary data points.  Also, with one measurement there is a lower 

likelihood of error creeping into the resulting profile. 

A disadvantage of this approach in comparison to the discrete method is that it 

requires a more complex theoretical foundation as seen in Chapter 3.  Additionally, this 

approach would do a poorer job than the discrete approach when characterizing a non-

linear inhomogeneous profile.  Another disadvantage of the continuous algorithm is that 
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the theoretical development produced equations with an instability as mε→0 as seen from 

(3.19) or (3.20).  When characterizing materials with very low slopes a check is 

necessary within the algorithm to ensure that the equations do not become too large and 

lead to an erroneous profile characterization. 

The continuous approach will not scale well with thick materials since it was 

assumed from the beginning of the development that the material was thin.  To 

characterize thicker material’s more complex theoretical profiles need to be assumed 

instead of the linear profile used in (3.15). 

4.5 Summary  

This chapter discussed the equipment used for data collection and the results from 

the discrete and continuous algorithms using several testing scenarios.  Both the discrete 

and continuous algorithms produced adequate profile characterizations of the test 

materials.  However, in some regions within the material they produced slight 

inaccuracies in comparison to the actual permittivity profile. 

The discrete and continuous algorithms have advantages and disadvantages 

depending on how they are implemented and what materials are being characterized.  

Some basic understanding of the material being investigated is beneficial in selecting the 

best method to use.  In the next chapter the entire study will be summarized.    
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V. Conclusion 

 

 This document discussed the theoretical formulation for developing a discrete and 

continuous algorithm to find inhomogeneous permittivity profiles.  It revealed the 

algorithms’ results when testing on various materials and the pros and cons of each.   

 The discrete approach offered a theoretically simpler framework since it relied on 

homogeneous wave equations in a piece-wise constant permittivity approach.  However, 

there was a significant downside to this approach since it required numerous 

measurements to implement.  This can lead to gross error in the results if measurements 

are not taken accurately.   

 The continuous approach offered a way of creating a smooth permittivity profile 

using inhomogeneous wave equations.  This required only one measurement, but relies 

on a more complex development and a thin material assumption.  Unfortunately, this 

continuous algorithm may give misleading results for thicker materials.  

 Despite some of the drawbacks associated with either technique, they still offer a 

reasonable solution to inhomogeneous permittivity characterization.  Depending on the 

material, one may choose one method or the other.  

5.1 Future Research 

  Improvements can be made to each approach presented in this study.  For the 

discrete case one could improve the precision of the permittivity profile solutions.  This 

could be done by using additional measurement data, a one port calibration technique to 

reduce noise, or an alternative root search method.  During the shim calculations a ten 
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degrees phase was used for each shim thickness.  If it is possible to use a smaller phase 

spacing with a device capable of distinguishing these phase differences, more 

independent measurements can be included in the algorithm for a more detailed profile 

result.   

 The continuous case can also be improved.  In this study the material was 

assumed to be thin, and the profile approximated as a linear function.  Work could be 

done to investigate permittivity profiles of thicker materials, or ones that have parabolic, 

sinusoidal, or more complicated permittivity profiles.   

 Additionally, both approaches found only inhomogeneous permittivity profiles.  

These developments could be expanded to include permeability inhomogeneity as well.  

These approaches could also be combined in the future to produce an algorithm that 

would solve for a piece-wise linear profile.  This would allow the characterization of 

more complicated profiles. 
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Appendix A: Constitutive parameter extraction main code example 

 

%Written by: Capt Marcus A Sitterly 
%Date: 19 July 11 
%Sample Code for constitutive parameter extraction for one material 
  
%CONSTANTS USED IN CALCULATIONS 
epsilonnot = (10^-9)/(36*pi);       %F/m 
munot = 4*pi*10^-7;                 %H/m 
a = 2.286*10^-2;                    %'a' dimension in m for WR90 
length1 = 6.64*10^-3;               %length of sample of thick 
Plexiglas  
  
%DATA MANIPULATION BEFORE INPUT TO LEVENBERG-MARQUAD ALGORITHM 
  
%Read in laboratory data from text file with custom function 
[ frequency S11exp S21exp S12exp S22exp ] = 
dataextract('plexi_thick.txt'); 
  
omega = 2*pi*frequency;             %Angular Frequency 
k0 = omega*sqrt(epsilonnot*munot);  %Propogation constant k 
kz0 = sqrt((k0.^2)-(pi/a)^2);       %Propogation constant kz 
  
  
%Measurements derived from lab with phase shift 
S11exp = S11exp; 
S12exp = S12exp.*exp(-j.*kz0.*length1); 
S21exp = S21exp.*exp(-j.*kz0.*length1); 
S22exp = S22exp.*exp(-2.*j.*kz0.*length1); 
  
%Allocate space for epsilonrel1 and murel1 vectors 
epsilonrel1 = zeros(length(frequency),1); 
murel1 = zeros(length(frequency),1); 
  
%CALCULATE EPSILON RELATIVE AND MU RELATIVE FOR GIVEN FREQUENCY 
for t=1:length(frequency) 
     
%Experimental values derived from lab [S11 S12 S21 S22] for Plexiglas  
y =[S11exp(t) S12exp(t) S21exp(t) S22exp(t)]; 
  
%Vector that contains frequency and length measurement for algorithm 
x=[omega(t) length1]; 
  
%Initial guess [epsilonrel1 murel1] 
betanot= [3,1]; 
  
%Use NLFIT to obtain epsilon/mu 
beta=nlinfit(x,y,@onematerial,betanot);  
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%Assign epsilon and mu values from numerical calculation 
epsilonrel1(t)=beta(1); 
murel1(t)=beta(2); 
  
end 
  
%PLOT RESULTS 
  
%Plot real(e) vs frequency 
figure(1); 
plot((10^-9)*frequency,(real(epsilonrel1)));  
axis([min((10^-9)*frequency) max((10^-9)*frequency) 0 3]); % axis([xmin 
xmax ymin ymax]) 
title('FREQUENCY VS. REAL \epsilon_r', 'fontsize', 12) 
xlabel('Frequency (GHz)', 'fontsize', 12);  
ylabel('Re(\epsilon_r)', 'fontsize', 12); 
  
%Plot imag(e) vs frequency 
figure(2); 
plot((10^-9)*frequency,(imag(epsilonrel1)));  
axis([min((10^-9)*frequency) max((10^-9)*frequency) -1 1]); % 
axis([xmin xmax ymin ymax]) 
title('FREQUENCY VS. IMAGINARY \epsilon_r', 'fontsize', 12) 
xlabel('Frequency (GHz)', 'fontsize', 12);  
ylabel('Im(\epsilon_r)', 'fontsize', 12); 
  
%Plot real(mu) vs frequency 
figure(3); 
plot((10^-9)*frequency,(real(murel1)));  
axis([min((10^-9)*frequency) max((10^-9)*frequency) 0 2]); % axis([xmin 
xmax ymin ymax]) 
title('FREQUENCY VS. REAL \mu_r', 'fontsize', 12) 
xlabel('Frequency (GHz)', 'fontsize', 12);  
ylabel('Re(\mu_r)', 'fontsize', 12); 
  
%Plot imag(mu) vs frequency 
figure(4); 
plot((10^-9)*frequency,(imag(murel1)));  
axis([min((10^-9)*frequency) max((10^-9)*frequency) -1 1]); % 
axis([xmin xmax ymin ymax]) 
title('FREQUENCY VS. IMAGINARY \mu_r', 'fontsize', 12) 
xlabel('Frequency (GHz)', 'fontsize', 12);  
ylabel('Im(\mu_r)', 'fontsize', 12); 
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Appendix B: Code for nlinfit function 

 

function y=onematerial(betanot,x) 
  
a = 2.286*10^-2;                %'a' dimension in m for  WR-90 
omega = x(1);                   %Angular Frequency 
epsilonnot = (10^-9)/(36*pi);   %F/m 
munot = 4*pi*10^-7;             %H/m 
  
% MATERIAL SLICES PARAMETERS 
  
%Material 
epsilonrel1 = betanot(1);       %betanot(1) is algorithms value for 
epsilon 
murel1 = betanot(2);            %betanot(2) is algorithms value for mu  
length1 = x(2); 
  
%Last interface (free space) 
epsilonrel2 = 1; 
murel2 = 1; 
lengthend = 0; 
  
  
%PROPOGATION CONSTANT CALCULATIONS 
%Propagation constant k 
k0 = omega*sqrt(epsilonnot*munot); 
k1 = omega*sqrt(epsilonrel1*epsilonnot*murel1*munot); 
k2 = omega*sqrt(epsilonrel2*epsilonnot*murel2*munot); 
  
%Propagation constant kz 
kz0 = sqrt((k0^2)-(pi/a)^2); 
kz1 = sqrt((k1^2)-(pi/a)^2); 
kz2 = sqrt((k2^2)-(pi/a)^2); 
  
%IMPEDANCE CALCULATIONS 
%Material impedance calculations 
eta0 = sqrt(munot/epsilonnot); 
eta1 = sqrt((murel1*munot)/(epsilonrel1*epsilonnot)); 
eta2 = sqrt((murel2*munot)/(epsilonrel2*epsilonnot)); 
  
%Wave impedance calculations 
waveimpedence0 = (eta0*k0)/kz0; 
waveimpedence1 = (eta1*k1)/kz1; 
waveimpedence2 = (eta2*k2)/kz2; 
  
R1 = (waveimpedence1 - waveimpedence0)/(waveimpedence1 + 
waveimpedence0); 
R2 = (waveimpedence2 - waveimpedence1)/(waveimpedence2 + 
waveimpedence1); 
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P1 = exp(-j*kz1*length1); 
P2 = exp(-j*kz2*lengthend); 
  
%A MATRIX CALCULATIONS 
A1 = (1/(P1*(1+R1)))*[1 (R1*P1^2);R1 P1^2]; 
A2 = (1/(P2*(1+R2)))*[1 (R2*P2^2);R2 P2^2]; 
  
%Find A Matrix for the system 
ASys = A1*A2; 
A11 = ASys(1,1); 
A12 = ASys(1,2); 
A21 = ASys(2,1); 
A22 = ASys(2,2); 
  
%Find the S matrix from the A matrix 
SSys = (1/A11)*[A21 (A11*A22-A21*A12);1 -A12]; 
S11 = SSys(1,1); 
S12 = SSys(1,2); 
S21 = SSys(2,1); 
S22 = SSys(2,2); 
  
%Compare to labratory data 
y = [S11 S12 S21 S22]; 
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