
HIGH PERFORMANCE, MISSION CRIT ICAL APPLICATIONS
FOR THE WAR-F IGHTER

To enable agile, robust, dependable information,
it must be available when it is needed at speeds
that enable it to matter. With Net-Centric
systems, the network is the database. To avoid
having the network become the problem, data
must be delivered so as to meet these goals.
Recently accessed data should be available even if
the network is off-line. Data should be as current
as the network allows.

Information is a force multiplier. Accurate and
timely information is a bigger force multiplier.
With the advent of GIG-BE, war-fi ghters have
come to expect fast and reliable access to
information in garrison and command centers.
Unfortunately, network access erodes as war-
fi ghters move to more mobile environments,
ships, mobile command centers, special-forces
with sat radio, etc. Mobile environments have
signifi cantly degraded capabilities to deliver
information affecting timely information access.
It can be frustrating and lethal not to be able
to access information that was available only
minutes before when a network connection
vanishes. The ability to subscribe to and receive
continuous updates at a fi ne grained level to key
information can enable planners and operators
to get the details that can cause them to change
their minds as the situation changes. With
today’s much more fl uid combat environments,
high level commanders need access to more
tactical details than ever before. And they need
those details immediately.

If it was only possible to hang onto information
that was being looked at minutes before, or
to browse information in garrison or on the
network and have it travel with the war-fi ghter
as they deployed. If only it was possible for
that information to be automatically updated
whenever that person was on the network. If
only it was possible to subscribe at a fi ne grained
level to key information and get alerted as data
that affected an operation changed, operators

could be aware of the details that planners
depended on changed. And if only it was possible
to take tactical real-time feeds, to aggregate them
and roll them up to high levels, yet have ability
to drill down to the detailed information if
necessary.

The simplest use case is to maintain access to
critical data in the face of network outages. For
applications such as the NCES Mediation Service
or the IA Security service applications, simple
data caching can enable access to data that they
have been working on even though the network
connection is down. Services would only look
in the data cache if they were unable to reach
the source data over the network. This could be
because the network is down or the service is
down or the data source is down.

The next level of capability is to reduce the
latency and network bandwidth usage. Simple
caching is insuffi cient to solve this issue for
data that has high rates of change or for which
changes have serious impact to the application,
because the cache may be out of sync with the
actual data source. However, if a service or data
source actively send changes to the cache(s)
(real-time updates when network is available and
guaranteed sequential delivery of data change
events after a network outage) then it is possible
to:

• Get data in face of network outages
• Reduce network band usage
• Speed data access

If the cache supports notifi cation of data changes
back to the application, then it is also possible
for applications to be aware of data changes to
the data they have previously retrieved (i.e. do
automatic view maintenance). Most applications
today are not written to expect this level of
service. But it can have a signifi cant benefi t to be
aware that data in the application is stale.

High Performance, Mission Critical
Applications for the war-fi ghter:
Solutions to network challenges and today’s fl uid combat environment

There are key challenges in building
mission critical applications that
must work in the face of the
following conditions:

• Data access when data sources
(especially multiple) are not
collocated with or near the
application (increasing latency)

• Times/situations when the
network or data sources or both
are unavailable

• Low bandwidth and/or
unreliable networks

• Data that is changing at high
rates and these changes need
to be made visible to multiple
applications rapidly

• Automatic data synchronization
between applications and data
sources when the application is
cut off from the network and
then returns to the network

• Hardware, software, network
failures

• Combine data from multiple
data sources and create effi cient
data placement

o move data by interest
o rollup data from multiple

sources
o drill down to details on as

needed

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
High Performance, Mission Critical Applications for the war-fighter:
Solutions to network challenges and today’s fluid combat environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GemStone,1260 NW Waterhouse Ave., Suite 200,Beaverton,OR,97006

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

43

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

HIGH PERFORMANCE, MISSION CRIT ICAL APPLICATIONS
FOR THE WAR-F IGHTER

Pg. 2

This still doesn’t solve the issues of low bandwidth network and
high data change rates. So the next level of capability would be
a caching technology that supports those capabilities necessary
to only send data of interest to applications, so that unnecessary
bandwidth is not spent sending data that is not yet of import
to the user. For example, the GCCS-J TMS application is able to
manage 100,000 tracks with a 1 minute update rate (which works
out to approximately 1,650 update per second of 1k objects or 1
MB per second). With thousands of concurrent users that totals
Gigabytes per second. Most users can only look at thousands of
object of interest (and zoom down to even less when analyzing a
situation such as air defense cover of the straits of Tehran). So by
being able to fi lter the data and detect the delta, bandwidth usage
can be reduced an order of magnitude or more. Additionally, if
many application users sit at a location, then the ability to tier
software so that local server caches can be shared by many local
user caches can also signifi cantly reduce bandwidth usage. In this
case it can also reduce latency for the 2nd, 3rd and nth local user
of that data. For example, in the case of a carrier at sea, sending
the same video clip, or thumbnail image to multiple users, results
in that data traveling over a very fi nite pipe more times than is
necessary. Ideally, a solution that handled these issues would
allow for multiple expressions of fi ne grained interest, so that if
users were interested in multiple subsets of data that had different
characteristics they could get them all. e.g. Enemy air tracks and
friendly air defense units. Any solution to handle these issues
must be capable of scaling to handle any arbitrary rate of data
change (so long as the necessary network to send the data is
available).

Interest in data should be able to last for as long as necessary and
should not actually require a human being sitting at a screen.
Imagine a mission planning system that retrieves data from
a number of sources such as tracks, order of battle, and battle
damage assessment. In the course of planning the mission, new
information could arise, a target gets destroyed, a new enemy
SAM unit shows up, which would cause different decisions during
planning. Even after the mission started, knowledge of changes
to the underlying data could be distributed to participants that
needed it. Once data from multiple sources with fi ne grained
detail can be pulled into an application, new questions can be
asked of the data not anticipated by the designer of either source.
For example, merge MIDB with ‘contains’ information about
equipment with track data and ask for all current tracks of EW
capable aircraft.

Next are the issues of synchronization when applications that
were cut off from the network and are reconnected at a later
time. Data synchronization falls into two categories, easy (in
that it does not have to know about application context), and
hard (application context matters because of potential confl icting
updates when the application was off-line). Although the

“easy” data synchronization problems involve lots of complex
technology to automate the synchronization process, they do
not require any work from application developers and are thus
deemed easy. The “hard” data problems require only a little
technology, but require a lot of domain knowledge and work from
application developers, and are thus deemed hard. (At least for the
people actually building an application).

Where multiple users can not update the same data in a
distributed environment, the servers need to queue data changes
to individual clients based on their interests. This may seem a
simple challenge but for fast changing data this can create a queue
of signifi cant size that exceeds the client’s and network’s ability
to ever have the client catch up. In that case a mechanism that
confl ates changes so that the client only sees the most recent
update to each piece of data would minimize the overall size
of the queue and maximize the chance of success. If message
ordering is to be preserved for all clients, then queuing of
messages is also necessary for client applications that fall behind
in their ability to process incoming data because they are too
busy. If a client “never” recovers for any of the above reasons,
then it may be desirable for performance reasons to be able to
automatically remove their queues and data interests until they
reemerge. By “never”, we really mean that a client falls more than
some confi gurable amount of time or number of messages behind
the overall system.

Where multiple users can update the same data, the caching
mechanism must have a pluggable way of resolving confl icts.
Since a simple last one to update the data “wins” does not work
for most applications, application specifi c code that checks
originators, timestamps, version numbers, or other application
specifi c data, must be able to be applied to incoming data to apply
correct changes and deny incorrect changes to data. Notifi cation
of failed updates because of data confl icts must be propagated
back to the original application instance that tried to update the
data. A mechanism that validates incoming data can also be used
to merge, roll up, or otherwise combine multiple data instances in
the data fabric into a single element. This too would depend on
application specifi c code that is invoked as data arrives.

Because this paper is focused on describing potential solutions
to challenges for mission critical applications, it is important
to consider failure conditions. So far all of the potential failures
described have been network issues or edge client issues.
Preventing data loss and assuring continuity of operations in
the event of server hardware loss is also critical. To assure data
integrity across multiple instances of the same application,
messages to clients must be delivered even in the event of a server
loss. To keep up with data rates for high speed data, this often
must be done without committing data to disk. It is critical to
replicate ‘in memory’ the server caches and queues of messages

HIGH PERFORMANCE, MISSION CRIT ICAL APPLICATIONS
FOR THE WAR-F IGHTER

Pg. 3

waiting to be sent to clients that have fallen behind or are off the
network. This data should be able to be replicated on N nodes,
(where N is the number needed for the application to reach the
desired level of redundancy to assure continuous operation).
Having done this, it is possible to have client applications fail-over
seamlessly from one server to another in the event of server loss.
Such a mechanism can even accommodate site failure, although
depending on data rates, clients may need to resynchronize with
the servers. The ability to fail-back as servers become available is
also critical to maintain load balanced and guarantee SLAs.
If distributed caching is used to manage the current operational
data. Some high bandwidth locations, the Command HQ’s, the
Pentagon, etc, could combine data from multiple servers and roll
that data up into a larger operational picture. Only the higher
level rolled-up data need be sent up the command chain. Since
the details still exist at each of the individual servers where the
data came from, and since the data can be queried in such a way
that deltas are continuously streamed back to an application,
then the larger, more coarse grained operational picture has the
ability to enable commanders to drill down for live details when
they need them. This enables a virtual total picture to be available
without saturating the available bandwidth.

In order to have the ability to solve the challenges of high data
rate mission critical applications that must work in the face of
various network issues, be able to fi lter data, allow for occasionally
connected applications, handle synchronization, be tolerant
of hardware failures, and scale up or down as needed, a new
class of software infrastructure is needed. This software must be
able to provide for all of the capabilities described in this paper
including dynamic data fi ltering, high data rates, handling slow
receivers, handling disconnected users, managing network or
hardware loss, preventing data loss, have mechanisms to ensure
data integrity and the ability to scale to data rates as needed, in
massively distributed environments. Such a type of software,
a “Data Fabric” is available today from GemStone Systems. It is
being used by 7 of the top ten Wall Street investment banks for
program and algorithmic trading, risk and data analysis, global
order book management (across WAN connections), global market
and reference data distribution of original and derived data to
applications and user around the globe. It has been put into a
next generation GCCS-J/COP prototype.

GemFire is a high performance, distributed data management
infrastructure. It provides distributed in-memory data caching,
application level notifi cation of data changes, confi gurable
ACID properties, query, and enterprise scale. It supports multiple
topologies including tiered servers, with edge clients. It supports
fault tolerance for hardware and network failures at either the
server or client level. This enables support for disconnected
operations. Its memory management abilities enable it to be
confi gured to replicate data for high concurrent loads, and for

high availability. Data in memory can be grouped into separate
Regions to support data placement and to support separating data
from multiple applications. The distributed memory management
also provides for methods to gracefully expand capacity to meet
scalability and performance goals. GemFire has been benchmarked
at over 100,000 1k inserts per second while distributing data
to 1,000 client VMs. In general it is limited only by network
bandwidth and available hardware. In order to provide for the
ability to maximize performance and also support the level of
concurrency needed for individual distributed applications,
GemFire supports both high coherence and loose coherence
across the distributed memory space. This included support for
distributed transactions in a peer-to-peer environment.

The ability of applications to register interest in data with fi ne-
grained queries, using OQL, a superset of SQL 92, from the Object
Data Management Group (ODMG), enables applications and users
to dynamically have the data they need move to clients from
one or more servers. Applications receive a result set from the
query. Then applications continue to receive notifi cation as data
changes on the server change the query results. Updates, deletes,
and inserts are sent to the client result set to provide automatic
view maintenance. Client applications receive a call-back and
can take appropriate actions in response to the data changes.
This ability like all of the data delivery mechanisms in GemFire
is fault tolerant. Servers have the ability to automatically queue
data for clients that are slow receiving data or are currently off
the network. Data and queues can be replicated across multiple
servers. If a server dies, clients seamlessly switch to an alternate
server and continue receiving data from where they left off.

GemFire also provides for the ability to run regular queries that
do not continue to send data changes to the application. Regular
queries can be written to bring back less than the full object. For
large objects, such as Air Tasking Orders, which can exceed 40
MB, this ability can signifi cantly increase performance and reduce
network bandwidth, when users are only interested in a small
subset of the data.

GemFire provides for data persistence. This combined with
the continuous query capabilities enable the easy creation of
client applications that can be shutdown, moved, restarted, and
periodically brought on the network to send or receive data
changes. For the issues of confl ict resolution that emerges when
data can be updated at multiple locations GemFire provides
multiple mechanisms to plug in application defi ned code to
handle confl ict resolution. There are two major ways to handle
this issue. The fi rst is to have updates travel via a separate GemFire
Region to a process that is used to scrub data inserts. For the
GCCS-J TMS-E application prototype, this method is used as all
user changes, pass back into the correlation engine. The other
methods is to have server-side plug-ins, called cache-writers,

HIGH PERFORMANCE, MISSION CRIT ICAL APPLICATIONS
FOR THE WAR-F IGHTER

04/08

Corporate Headquarters:
1260 NW Waterhouse Ave., Suite 200 Beaverton, OR 97006 | Phone: 503.533.3000 | Fax: 503.629.8556 | info@gemstone.com | www.gemstone.com

Regional Sales Offi ces:
New York | 5 Penn Plaza, 23rd Floor New York, NY 10001 | Phone: 646.530.8458
Washington D.C. | Phone: 301.564.0550

Copyright© 2008 by GemStone Systems, Inc. All rights reserved. GemStone®, GemFire™, and the GemStone logo are trademarks or registered
trademarks of GemStone Systems, Inc. Information in this document is subject to change without notice.

compare the input data to the current state of the data, and then
decide which data state is correct, using time-stamps, authoritative
source, version numbers, or other application specifi c data. If
this method needs additional reference data to make the correct
decision, this data could easily be stored inside GemFire in
another Region. Since client application block when inserting
data into GemFire, changes that are rejected are immediately
visible to end-users. Note, this method only works when users
are on-line. For off-line changes, data must fl ow to an alternate
region where data can be examined using the fi rst method.

GemFire also provides the enterprise scale management
capabilities needed deploy large groups of distributed caches.
It is highly instrumented. Its capabilities include distributed
management, monitoring, alerting, and administration of the
distributed system. All of these capabilities are exposed through
the industry standard management API’s JMX. It also provides for
retrospective analysis of performance. It is highly confi gurable and
tunable over with over 100 confi guration parameters.

Given NCES’s vision statement to “enable the secure, agile,
robust, dependable, interoperable data-sharing environment
for DOD where war fi ghter, business, and intelligence users
share knowledge on a global network”, a distributed caching
capability that provides for disconnected operations, high speed
data distribution, notifi cation of data changes, and enterprise
level fault tolerance and management could provide signifi cant
capabilities to further this vision.

Enterprise Data Fabrics (EDF)

Michael Lazar, Federal Technology Director
Mike Sinisgalli, Director Public Sector

Copyright © 2006, GemStone Systems Inc. All Rights Reserved.

Agenda

• Key Trends• Key Trends
• The Challenge
• Enterprise Data Fabrics
• Use Cases• Use Cases

Exponential growth

• Data on network
• Data to process
• Computer speed• Computer speed

– CPU
Bus– Bus

– Disk

Decrease in:

• Decision time
• Time to build/deploy systems
• Time to adapt systems

Operational challenges…at the edge.

• Power• Power
• Space
• Bandwidth
• Reliability• Reliability
• Availability
• Scalability

Agenda

• Key Trends• Key Trends
• The Challenge
• Enterprise Data Fabrics
• Use Cases• Use Cases

Demands on IT

• Systems that keep pace with events & data y p p
• Elasticity

Scale up/out to meet throughput and user– Scale up/out to meet throughput and user
demand as it changes
S f– Scale down to reach war-fighter at the tactical
edge

• Systems that present desired information
and can see across stovepipesand can see across stovepipes

• Keep power, space, and related costs down

Current mission challenges and technical
pressures require new approachesp q pp

Deployed Data management technologies are not
k i ithkeeping pace with

– data volumes,
i f d i i i d d– compression of decision windows, and

– extension of the edge...

WHY?
RDBMS are based on 1970’s architecture based
S f S SSpeed of Light vs Speed Sound
Data synchronization is not addressed by core technology
A ti / li i ti d t l i ll d i d tActive / live in motion data vs. sleeping - poll driven data

Scale-Out Software Strategies
From Tier-Based Architectures to Partitioned Data Fabrics…

Partitioned data
fabrics collocate
the data and
processing

Server-centric
tier-based
architecturesarchitectures
separate the Data
and the Processing

Traditional tier-based data strategies limit concurrency (and throughput)
b ti t ti h d l t ff t

© 2010 The MITRE Corporation. All rights reserved.Public Release: 10-0861. Distribution Unlimited'

by creating contention, coherency, and latency effects

Public Release: 10-0861. Distribution Unlimited
Page 9

Current Mission Challenges and Technical
Pressures require new approachesq pp

Currently messaging needs are met by technologyCurrently messaging needs are met by technology
that is orthogonal to the "database“ -

Requires fat pipesRequires fat pipes
Separate processes
Not dynamic
Doesn’t know anything about the data y g
Relies on disk...

Agenda

• Key Trends• Key Trends
• The Challenge
• Enterprise Data Fabrics
• Use Cases• Use Cases

So what is the ideal solution

• 'speed of light' infinitely scalable data management
with no bottle necks or single points of failurewith no bottle necks or single points of failure

• Distributed (WAN/LAN) with data synch
support for disconnected operations and low bandwidth– support for disconnected operations and low bandwidth
environments

• Dynamic Membership (systems come and go)Dynamic Membership (systems come and go)
• Built-in in-process messaging
• Query (like a database)• Query (like a database)
• Subscribe to Changes using Query

P h i t th d t (M R d• Push processing to the data (Map-Reduce,
Scatter-Gather)
S• Secure

• Easy to insert into a system

What is an Enterprise Data Fabric (EDF)?

• Storage
Database

• High Availability

Distributed Cache +
• In Memory • Storage

• Persistence
• Transactions
• Queries

• High Availability
• Load Balancing
• Data Replication
• L1 Caching

y
• Distributed across a Cluster or Grid
• Synchronized

• Controlled Data Placement

D t T f ti
• System Integration

+ Low Latency Service Bus
• Data Distribution

+ Messaging System

• Service Loose Coupling
• Data Transformation

• Guaranteed Delivery
• Event Propagation

• Frame work for Real-time Analysis
• Fine Grained Event Detection

+ Complex Event Processor

• Distributed Task Assignment
• Task Decomposition

+ Grid Controller

• Enables Event Driven Architectures• Map-Reduce, Scatter-Gather

• Result Summarization

An EDF uses select features from all of these products and combines
them into a low-latency, linearly scalable, memory-based data fabric

Why YAPOM ? Yet Another Piece of Middleware?

• Execution Excellence
– Make your applications run 4 to 40 times fastery pp
– Ingest / Digest / Distribute vast amounts of data with extremely low

latency

• Higher ROI of IT investments & Lower Cost Per
Transaction
– A 4x Performance Increase is like getting 3 free computers that takeA 4x Performance Increase is like getting 3 free computers that take

no space or electricity

• Enables applications to survive network outages and• Enables applications to survive network outages and
distressed networks

• Data Awareness – especially across applications/systems

• Supports High Availability, Fault Tolerance, and Site Failover with pp g y, ,
zero additional design/development costs

Agenda

• Key Trends• Key Trends
• The Challenge
• Enterprise Data Fabrics
• Use Cases• Use Cases

Use Cases

• Multistage Data Processing
– Increase performance, reduce costs

• Common Data Backbone
– Scale economically and incrementally, reduce costs
– Break data stovepipes (not process),

Detection and propagation of events simple and reliable– Detection and propagation of events, simple and reliable
• Barrier Event Detection

– Performance, Data Awareness

• Multisite Data Management• Multisite Data Management
– Share data globally, built-in COOP and HA

• Real Time Situational Awareness
– Fine grained data subscriptions event detection DIL/disconnected opsFine grained data subscriptions, event detection, DIL/disconnected ops

• Data Awareness
– High Performance SOA, Break data stovepipes, Data driven eventing

• Joint Space Operations Center Prototype (and Wall Street Risk Management)p p yp (g)
– High Speed Data Ingest

• US Intelligence Agency Detection & Alerting Solution
– Low Latency Service Busy

Customer Use:
Sequential Transaction Processingq g

1 2 3 N Today’s “traditional”
multi-stage transaction

Server NServer 1 Server 2 Server 3
g

processing architecture
Using RDBMS’s

Message Buses
Or Both

Database w/ Storage

Or Both

g

1 2 3 N
Customers such as
JPMC, UBS, Nomura,

Server 1

1 2 3 N
Server 2 Server 3 Server N

, , ,
Merrill, have seen a 4 to 40
times processing speed up
& reduced end to end latency

Process more data
Reduce hardware
Add more calculations

Optional GemFire Server

Data Management Solution - Common Data Backbone

Shared Resources
Predictable Latency

Compute NodeDesktop Node
Desktop Node

Consistent Data Models

Reports Reconcile

Predictable Latency

Scalable

Compute Node
Compute NodeCompute Node

Desktop Node

p

Common Functions/Code

Real Time

Events Propagated

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Asynchronous,

Conflated

Archival, OLAP &
Regulatory RDBMSWhen the Data Fabric Holds objects:

O-R Mapping Churn is avoided (saving CPU & I/O)

Database Node

Conflated,

Batched Updates

pp g (g)

Common Java code can execute in the fabric

When the Data Fabric Holds Relational Tables:
Existing SQL Applications can plug in more easily

Storage Device

g Q pp p g y

Use Distributed Functions for common code

Common Data Backbone

Counterparty Descriptions

Compute NodeDesktop Node
Desktop Node

Counterparty Descriptions

Settlement Instructions

Netting Agreements

Instrument Data

Compute Node
Compute NodeCompute Node

Desktop Node

Instrument Data

Rating Information

Replicated Regions
Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Asynchronous,

Conflated

Archival, OLAP &
Regulatory RDBMS

Database Node

Conflated,

Batched Updates

Storage Device

Common Data Backbone

Position Data

Compute NodeDesktop Node
Desktop Node

Position Data

Trade Data

Market Data

Compute Node
Compute NodeCompute Node

Desktop Node
Active Data

Partitioned Regions

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Asynchronous,

Conflated

Archival, OLAP &
Regulatory RDBMS

Database Node

Conflated,

Batched Updates

Storage Device

Common Backbone = Information as a Service

Shared Infrastructure

real-life use case: Common Application Backbone

Shared Infrastructure
Multiple business critical functions can share common
infrastructure, common data, common calculations
Reduces data-center cost/complexityp y

Continuous availability
All data is always available as and when needed.
No single point of failureg p
Obviates the need for third party H/A clustering software

Common analytics for all calculations
Intra day trader risk and end of day Flash P&L, and close-of-y y
day risk batch all use the exact same inputs and calculations
so results are more precise and easier to reconcile

Compute Grids Deployed with GemFire

real life use case: Major Bank

Barrier Event Detection

Trade
Buy 10000 COKE@46.67

Archival, OLAP &
Regulatory RDBMS

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Database Node

Storage Device

Barrier Event Detection

Cache Event ListenerCache Event Listener

Market Tick
COKE 46.69

Archival, OLAP &
Regulatory RDBMS

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Database Node

Storage Device

Barrier Event Detection

Barrier Event Detected

Trade
Buy 27500 COKE@46.69

Analytic Results

Archival, OLAP &
Regulatory RDBMS

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Real-time data
Results

Database NodeHistorical data

Storage Device

Analytics Grid

Barrier Event Detection

real-life use case: Event-driven Risk and Pricingreal-life use case: Event-driven Risk and Pricing

Batch processing delays were costing money

Running Pricing and Risk calculations in batch mode required
special applications to be written that created a ‘buffer’ to

and limiting opportunities

special applications to be written that created a buffer to
ensure that regulatory obligations were not violated.

R l i d i i i i f d
With GemFire:
Real-time event detection, easier integration of new products,
and control workflow to minimize business risk and meet all
regulatory requirements

8 CPUs re-price 6000 complex and exotic instruments in under
3 minutes

No longer need to tie up so much of our working capital to “runNo longer need to tie up so much of our working capital to run
the bank”

Global Book

Archival, OLAP &
Regulatory RDBMS

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

Database Node

Storage Device

Global Book

New York

Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

New York

London

Data Fabric Node Data Fabric Node Data Fabric Node

Archival, OLAP &
Regulatory RDBMS

Database NodeTokyo

Storage Device
Data Fabric Node Data Fabric Node Data Fabric Node Data Fabric Node

GCCS-J and GemFire
Agile Client

User Interface with

Continuously updated

Client w/
G Fi

Client w/
GemFire

y p

Fused Operational Picture

GemFire GemFire

Continuous QueriesContinuous Queries

Client Initiated, Server Side Filter

Correlation

S

TMS-S

S

TMS-S

S

Site 1

Servers

Site 2

Servers

Site N

Servers

…

70+ data feeds

Extending Real-time Data Analysis

Continuous Analytics that fuse multiple data sources

Client w/

Local Query and Analysis

ServerClient w/
GemFire

Server
GemFire

BDA MIDB TMS-S

Servers Servers Servers

…

GCCS-J: JOPES SSE, SORTS SSE
and Critical Global Sites

Total 655 World Wide Sites
• Comb Cdrs to Components

JOPES SSE
SORTS SSE
NMCC
HQDA
CNO
HQAF

JOPES SSE
USTRANSCOM

AMC

• US Army - - 200+ sites
• US Navy - - Ashore/Afloat
• USAF - - MAJCOM & Bases
• USMC - - 25 Remotes

JOPES SSE
USEUCOM

NAVEUR

HQAF
MTMC • Combat Support Agencies

USEUCOM
USAFE
USAREUR

USSTRATCOM SITE R

USFJ

USFK

USNORTHCOM
NORAD
AFSPC

ARSTRAT

USSTRATCOM
ARCENT CFLCC FWD

SITE R

HQMC
JFCOM
ACC
MARFORLANT
LANTFLT
NAVSPECWARCOM (E t)

JOPES SSE
USPACOM
PACFLT
PACAF
USARPAC

JSOC
USASOC

NAVSPECWARCOM
(West)

NAVSPECWARCOM (East)
FORSCOM
ARCENT CFLCC

USARPAC
MARFORPAC

USCENTCOM
USSOUTHCOM

USSOCOM JOPES SSE => 4 Enclaves

NORTHROP GRUMMAN PROPRIETARY LEVEL I
31

SOCCENT
AFSOC SORTS SSE => 2 Enclaves

Global-J Global => Many Sites

Application Collaboration Today

1. Mission planning starts to
- Destroy enemy SAM position
- Gets data from other sources

-- BDA, MIDB, etc

3 Mission planner syncs with sources before
Mission PlanningMission Planning

3. Mission planner syncs with sources before
finishing mission plan; sees changes
Reworks mission to target 2

5. Mission executer deals with changes at
run-time.

Battle Damage Battle Damage
AssessmentAssessment 2. BDA update - SAM position is destroyed

Mission planner does NOT see this !
4. BDA update – target 2 destroyed

Mission planner does NOT see this !

Application Collaboration Tomorrow

1. Mission planning starts to
- Destroy enemy SAM position

Mi i Pl iMi i Pl i

- Gets data from other sources
-- BDA, MIDB, etc

3 Mission planner sees changeMission PlanningMission Planning

GemFireGemFire

3. Mission planner sees change
Reworks mission to target 2

GemFireGemFire
5. Mission executer is notified on way to

target and is sent an alternate target

Battle DamageBattle Damage

GemFireGemFire 2. BDA update - SAM position is destroyed
Mission planner gets change notification

Battle Damage Battle Damage
AssessmentAssessment 4. BDA update after mission is started–

target 2 destroyed
Mission planner’s application is notified

Risk Management

Risk Calc
1

Risk Calc
2

Risk Calc
3

Risk Calc
N

Pull GemFire
DB2 +

Mainframe

R t

Pull

P h

Enterprise

Region

Region

Region

Region

Report
DB

Push

Live Feeds

Bloomberg, Reuters Triarch
Region

Region

Region

RegionRegion

Reference
Data

Pull
RegionReference,

Market Data,
Theoretical

Values

Portfolio
Processing

ETL Data

Monitor
(SNMP)

Business
Management

Trading
System

Alert Audit Trader
(GUI)(SNMP) Management System (GUI)

Applications

JSPOC

Space Catalog

C l i 2

Space Catalog

Calc Engine 3
Space Catalog

C l E i N
Space Catalog

C l i 1 Calc engine 2 Calc Engine 3 Calc Engine NCalc engine 1

Live

Region Region Region Region Region Space Catalog Data
P h

Live
Feeds

Push

Push

Region ReferenceDataRegion

Push
Push

Push

Monitor Business AppAlert Audit AppMonitor
(SNMP)

Business
Management

ppAlert Audit pp

(GUI)

Applications

EDF as High Speed SOA
Space Catalog

Monitor Applicaton Alert App NMonitor pp Alert App N

Applications

Region Region Region Region Region JSPOC Data

RegionRegion

Large App 1 Large App N

Detection & Alerting Solution Overview

Standing Query Results & Generation,
Alerting Query Results, Local Caching

(High Throughput)Network -
Enterprise

Web Service Systems/
(Low Speed Data Access)

Enterprise
Bus

A S
Knowledge

Data Caching, Standing Queries, Messaging, Distribution

App Server or
Other Web Service InterfaceBases

G i l S E D i

Data Caching, Standing Queries, Messaging, Distribution
GemFire Enterprise (GemStone Systems)

Geospatial Stream Event Detection
SpatialRules (ObjectFX)

Non-Geospatial Stream Event Detection
Event Processing Platform (StreamBase)

Data Transformation/Tagging
GUPI (ECI)

Historical Sources Input Sources

GemStone Systems
Some Strategic CustomersSome Strategic Customers

• 24 years in 24x7x365 global support of highly mission-critical systems.
• Over 200 Global Customers• Over 200 Global Customers
• Over 50,000+ computers running GemFire … !

Why YAPOM ? Yet Another Piece of Middleware?

• Execution Excellence
– Make your applications run 4 to 40 times fasterMake your applications run 4 to 40 times faster
– Ingest / Digest / Distribute vast amounts of data with extremely low

latency

• Higher ROI of IT investments & Lower Cost Per
Transaction

A 4x Performance Increase is like getting 3 free computers that take– A 4x Performance Increase is like getting 3 free computers that take
no space or electricity

• Enables applications to survive network outages and• Enables applications to survive network outages and
distressed networks

• Data Awareness – especially across applications/systems

• Supports High Availability, Fault Tolerance, and Site Failover withSupports High Availability, Fault Tolerance, and Site Failover with
zero additional design/development costs

