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ABSTRACT 
For reliability-based design optimization (RBDO), 

generating an input statistical model with confidence level has 
been recently proposed to offset the inaccurate estimation of 
the input statistical model with Gaussian distributions. For this, 
the confidence intervals of mean and standard deviation are 
calculated using the Gaussian distributions of input random 
variables. However, if the input random variables are non-
Gaussian, the use of the Gaussian distributions of input 
variables will provide inaccurate confidence intervals, and 
thus, yield undesirable confidence level of the reliability-based 
optimum design meeting the target reliability t . In this paper, 

the RBDO method using the bootstrap method, which does not 
use the Gaussian distributions of input variables to calculate 
the confidence intervals of mean and standard deviation, are 
proposed to obtain the desirable confidence level of output 
performance for non-Gaussian distributions. 

  
KEYWORDS 
Reliability-based design optimization, input statistical model, 
confidence level, non-Gaussian distribution, bootstrap method 
 
1. INTRODUCTION 

Obtaining an accurate input statistical model, which 
includes marginal distributions and a joint distribution of input 
random variables, is crucial to obtain an accurate reliability-
based optimum design. However, for many input random 
variables such as loading, material properties, and 
manufacturing geometric variability, only limited data are 

available due to expensive testing costs. If the input statistical 
model is obtained from insufficient data, it could yield 
unreliable design. To offset the inaccurate estimation of the 
input model, generating an input model with the confidence 
level has been recently proposed by using adjusted standard 
deviations and a correlation coefficient that include the effect 
of inaccurate estimation of mean value and correlation 
coefficient [1].  

The adjusted standard deviation and correlation 
coefficient are obtained from the confidence intervals of input 
distribution parameters such as the mean, standard deviation, 
and correlation coefficient. The confidence intervals of mean 
and standard deviation are usually calculated using the 
Gaussian distributions of input variables [2]. If the input 
variables have marginal Gaussian distributions, the confidence 
intervals of mean and standard deviation can be explicitly 
calculated, which are exact for the Gaussian distribution. 
However, if the input variables have marginal non-Gaussian 
distributions, the estimated confidence intervals using the 
assumption of the Gaussian distributions of input variables 
will be inaccurate. Thus, the bootstrap method [3-5], which 
does not require the Gaussian distribution of input variables, is 
used for non-Gaussian distributions.   

To validate whether use of the adjusted standard deviation 
and correlation coefficient obtained using the bootstrap 
method provides the desirable confidence level of the input 
model, the confidence level of the input model with adjusted 
parameters is assessed through simulation tests. The t -



 
contour, for the given target reliability index t , is used to 

measure the confidence level of the input model.  A 
mathematical example and an M1A1 Abrams tank roadarm 
problem with non-Gaussian correlated variables are used to 
illustrate how the input model with a target confidence level 
using the bootstrap method provides a more desirable output 
confidence level compared to the one without using the 
proposed method for correlated input distributions. 
 
2. ESTIMATION OF INPUT STATISTICAL MODEL  

The input statistical model, which consists of marginal 
and joint distributions, needs to be identified. If the input 
random variables are independent, the joint distribution is 
obtained by multiplication of the marginal distributions, so 
that only marginal distributions and their associated 
parameters need to be obtained. However, if the input random 
variables are correlated, the joint distribution is required. 
Since only limited data is available in practical engineering 
applications, it is difficult to obtain the joint distribution 
directly from limited data. Thus, a copula, which is a function 
of marginal distributions and correlation parameters, is used to 
model the input joint distribution. The marginal distributions, 
copulas, and their associated parameters need to be identified 
and quantified for the correlated input variables. 

 
2.1 Quantification of Input Model 

The two-parameter marginal distributions, which are used 
in many engineering applications, have their own parameters 
a and b , which determine the distribution shape. In some 
distributions, a  determines the location of the distributions, 
while, in other distributions,  a  determines the scale of the 
distributions. Thus, it is difficult to choose which parameter 
needs to be used to enlarge the t -contour, which is used to 

obtain the RBDO result. On the other hand, for many 
distributions, these parameters ( a  and b ) can be expressed in 
terms of mean and standard deviation (   and  ). Since the 

mean and standard deviation determine the location and 
variability of the distributions, the standard deviation can be 
used to enlarge the t -contour for these types of distribution. 

Accordingly, once the mean and standard deviation are 
calculated from given data, the parameters a and b  can be 
calculated using the explicit functions, which are presented for 
various marginal distributions in Ref. 6.  

 According to Sklar’s theorem [7], a joint cumulative 
distribution function (CDF)  

1 1, ,
nX X nF x x   of random 

variables iX  can be expressed in terms of marginal CDFs 

 
iX iF x  of iX  for 1, ,i n   and copula function C  as  

  

      
1 1,..., 1 1, ..., , ...,

n nX X n X X nF x x C F x F x θ            (1) 

 
where θ  is the matrix of correlation parameters between 

1,..., nX X . Most copula applications consider bivariate data 

because only few copula families have n-dimensional 
generalization. It has been observed that two input variables 
are correlated in many cases [8-11], so that only bivariate 
copulas are considered in this paper.  

Since copula functions have their own correlation 
parameters, it is necessary to use a common correlation 
coefficient. The Kendall’s tau, which is a widely used 
correlation coefficient, is used in Ref. 6 and, accordingly, in 
this paper. The population version of Kendall’s tau is 
expressed as  

                       2
4 , , 1

I
C u v dC u v                          (2) 

 
where  

1 1Xu F x  and  
2 2Xv F x , and the unit square 2I  

is the product    0,1 0,1I I    of the domain of marginal 

CDFs of 1X  and 2X . The sample version of Kendall’s tau is 

 
c d

t
c d





                                          (3) 

 
where c and  d are the number of concordant and discordant 
pairs, and ns is the number of samples. Once the Kendall’s tau 
is obtained from samples using Eq. (3), the correlation 
parameter   can be obtained using Eq. (2) or explicit 
formulations presented in Ref. 6. 

 
2.2 Identification of Input Model 

The joint distribution can be identified by a one-step 
procedure, which directly tests all candidate joint distributions, 
or by a two-step procedure, which first identifies marginal 
distributions and then a copula [6,12-15]. The two-step 
approach is more efficient and accurate than the one-step 
approach [16]. For example, if the seven candidate marginal 
distributions of 1X  and 2X  and nine candidate copulas are 

used to identify a joint distribution, the one-step approach 
requires to test 7 7 9 441    cases, whereas the two-step 
approach requires to test 7 7 9 23    cases. It is more 
challenging to identify a correct joint distribution from 441 
candidates compared to 23 candidates, so the two-step 
approach is more preferred. According to the measure of 
identification, the weight-based method [6] and MCMC-based 
method [17] can be used. However, the MCMC-based method 
uses random samples of the posterior distribution, which 
causes randomness of identification results. Thus, in this 
paper, the two-step weight-based Bayesian method is used to 
identify the input model. More detailed information on the 
two-step weight-based method is presented in Ref. 6. 

 
3. CALCULATION OF CONFIDENCE INTERVALS OF 

INPUT PARAMETERS USING BOOTSTRAP 
METHOD 
If the input random variables have Gaussian distribution, 

the confidence intervals of mean and standard deviation can be 
explicitly and exactly obtained. However, if not, there are no 
explicit functions for calculation of the confidence intervals of 
mean and standard deviation for non-Gaussian distribution, so 
the bootstrap method needs to be introduced to obtain accurate 
confidence interval of the standard deviation for non-Gaussian 
distributions. Because the confidence interval of the mean can 
be accurately estimated even for the non-Gaussian distribution 
[18,19], only the confidence interval of the standard deviation 
is tested. Section 3.1 illustrates how to calculate confidence 
intervals of input parameters using the bootstrap method. To 



 
test performance of the bootstrap method, percentage that the 
confidence interval of standard deviation includes the true 
standard deviation (confidence level of standard deviation) 
should be equivalent to the target confidence level. Thus, in 
Section 3.2, the confidence level of standard deviation is 
assessed through simulation tests for non-Gaussian 
distributions. The confidence interval of the correlation 
parameter is presented in Section 3.3. 

 
3.1 Quantification of Input Model 

If the input variables follow Gaussian distribution with   

and standard deviation  , the lower and upper bounds of the 

confidence interval of the mean ( L  and  U ) can be 

obtained as, [1,2] 
 

/ 2, 1 / 2, 1andL U
ns nst t

ns ns
 

        
           (4) 

 
where ns is the number of samples,   and   are the sample 

mean and sample standard deviation, respectively, and /2, 1nst   

is the value of student’s t-distribution with (ns-1) degree of 
freedom at two-sided confidence level,   100 1 / 2  . 

Using a similar procedure of calculating the confidence 
interval of the mean, the lower and upper bounds of the 
confidence interval for the standard deviation, L  and U , 
respectively, are calculated as [1,2] 

 

   2 2

1 /2, 1 /2, 1

1 1
andL U

ns ns

ns ns

c c 

 
 

  

 
 

 
               (5) 

 
where /2, 1nsc   and 1 / 2, 1nsc    

are the critical values of the chi-

square distribution evaluated at two-sided confidence level 
 100 / 2  and  100 1 / 2 

 
with (ns1) degrees of 

freedom, respectively.  
If input variables follow Gaussian distribution, Eqs. (4) 

and (5) are exact. However, if not, the estimated confidence 
intervals are not correct. Thus, the bootstrap method, which 
does not use the Gaussian distribution of input variables to 
calculate the confidence interval of the mean and standard 
deviation, needs to be used.  

The bootstrap method calculates the confidence interval 
of estimated standard deviation   by constructing a 
distribution of the standard deviation using the frequency 
distribution of *  obtained from randomly generated 
bootstrap samples based on the given data. Table 1 shows how 
to calculate the confidence interval of the standard deviation 
using the bootstrap method.  

The first step is to construct an empirical distribution 

 nsF x  or a parametric distribution  ,F a bx  from given 

samples,  1 2, , , nsx x xx  . In the second step, bootstrap 

samples are generated from an empirical distribution or 
parametric distribution. If a random sample of size ns with 
replacement is drawn from the empirical distribution  nsF x , 

then this is called a non-parametric approach. If the resample 

is drawn from the specified model  ,F a bx  determined from 

the given samples, this is called a parametric approach. In this 
study, the distribution type of the parametric model is used for 
the two-step weight-based Bayesian method. The third step is 
to calculate   from the resample, drawn from either 

empirical or parametric distribution, yielding *
bs . In the 

fourth step, the second and third steps are repeated B times 
(e.g., B=1000). Then, the fifth step is to construct a probability 
distribution from * * *

1 2, , , B     . This distribution is the 

bootstrap sampling distribution of  ,  * *G   , which is used 

to calculate the confidence interval of  . To obtain the 
bootstrap sampling distribution of  , the normal 
approximation, percentile, bias corrected (BC), percentile-t, or 
bias corrected accelerated (BCa) methods can be used. 

 
Table 1. Bootstrap Procedures 

Bootstrap Procedures 

Step 1 

From given samples  1 2, , , nsx x xx  , construct an 

empirical distribution  nsF x  for the non-parametric 

approach; or parametric distribution  ,F a bx
 
for 

the parametric approach. 

Step 2 
Generate bootstrap samples * * * *

1 2, , , nsx x x   x   

from the constructed distribution in Step 1. 

Step 3 
Calculate a statistic of interest   from bootstrap 

samples, yielding *
bs , 1, ,bs B   

Step 4 Repeat Step 2 and 3 B times (e.g., B=1000). 

Step 5 

Construct a probability distribution  * *G    from
* * *
1 2, , , B     , and then calculate confidence interval 

for estimated parameter,   using  * *G   . 

 
 

3.1.1 Normal Approximation Method 
The normal approximation method assumes that the 

distribution of   is a Gaussian distribution. Using the 
assumption, the confidence interval for   is obtained as 
[1,20] 

 
* *

/ 2 / 2z z                                      (6) 

 

where  
2

* * *

1

/ 1
B

bs
bs

B  


       , * *

1

/
B

bs
bs

B 


   , and 

/2z  is the value of standard Gaussian distribution CDF at 

/ 2 . 
 
3.1.2 Percentile Method 

The percentile method calculates the confidence interval 
for the parameter based on the bootstrap sampling distribution 

 * *G  
 
approximating the population distribution  G  . 

The basic idea of this method is that the confidence interval 
for  1   level includes all the values of *  between the 



 

 / 2 100  th and  1 / 2 100  th percentiles of  * *G   . 

The sorting vector of *
bs

 
is obtained from each bootstrap 

sample for 1, ,bs B   and the values of *
bs  evaluated at the 

 / 2 100  th and  1 / 2 100  th percentiles of  * *G    

are used as the lower and upper bounds of  ,  
 

* *
/ 2 1 /2                                        (7) 

 
Since the percentile method does not assume that the 

bootstrap sampling distribution follows a Gaussian 
distribution like the normal approximation method, it allows 

 * *G  
 
confirming to any shape that the data follow. For this 

reason, it is the most widely used bootstrap technique among 
applied statisticians [21]. However, when the number of 

samples is small,  * *G  
 
might be a biased estimator of 

 G  , i.e., *  is a biased estimator of  . In that case, the 

percentile method can be inaccurate. 
 

3.1.3 Bias Corrected Method 
The bias corrected (BC) method corrects the bias term by 

introducing an adjusted parameter 0z . Suppose that there exist 

some monotonic transformations of *  and  , say,   . 

Instead of assuming that *    is centered on zero, the BC 

method assumes that    *
0z z        follows a 

standard Gaussian distribution. Since   and   are monotonic 

functions, it holds that [3]. Accordingly, 0z  is calculated using 

[20]  
 

  1 *
0 Prz                                  (8) 

 
where 0z  is a biasing constant that compensates for the bias 

between *
 
and  . Since  * *G    is invariant to 

transformation, the transformation does not need to be known. 
Using 0z , the confidence interval for   is obtained as 

 

   0 /2 0 1 /2

* *
2 2z z z z 

  
                               (9) 

 

 0 /2

*
2z z

 
  is the value of *  evaluated at the 

 0 / 22 100z z   th percentile and  0 1 /2

*
2z z 


 

  is the value of 

*  evaluated at the   0 1 / 22 100z z     th percentile. The 

BC method corrects the bias term, but it still requires the 
parametric assumption that there exist monotonic 
transformations of *  and  . 
 
3.1.4 Bias Corrected and Accelerated Method 

The bias corrected and accelerated (BCa) method 
generalizes the BC method. The BC method only corrects the 
bias, whereas the BCa method corrects both the bias and the 
skewness. The BCa method assumes that for certain monotone 

transformations,   and  , certain bias constant 0z  and 

acceleration constant A  result in [4] 
 

   2
0~ , , 1h h hN z Ah



 
  




  



   (10) 

 
where    is the constant standard error of  . The 

acceleration A  is defined as 
 

 
  

  

3

1
3/ 2

2

1

6

ns

i
i

ns

i
i

A
 

 








  
 





 

 
                          (11) 

 
where  i is the estimated parameter of 

   1 1 1, , , , ,i i nsi x x x x x  
 
without the ith point ix  and 

 
1

/
ns

i
i

ns 


   . Using Eq. (10), the BCa confidence interval 

is defined as 
 

1 2

* *
                                       (12) 

 

where 
 
0 / 2

1 0
0 /21

z z
z

A z z





 

      
, 

 
0 1 /2

2 0
0 1 / 21

z z
z

A z z




 



 
      

, and   1 *
0 Prz      .  

However, since the BCa method highly depends on the 
acceleration A, if it is not accurate, the BCa also is inaccurate. 

 
3.1.5 Percentile-t Method 

The percentile-t method uses the distribution of a 
standardized estimator to calculate the confidence interval. 
The percentile-t interval is expected to be accurate to the 
extent that standardizing depends less on the boot sampling 
estimator, * , than the percentile method. The standardized 

parameter *
bst  can be defined as [21]   

 

  *

* * /
bs

bs bst


    
                                (13) 

 
where *

bs  is the estimated parameter from each re-sampled 

data, * * * *
1 2, , ,bs bs bs nsbsx x x   x   for 1, ,bs B  .    is the 

estimated parameter from the original data, 

1 2, , , nsx x x   x  . *
bs

 
  is the standard deviation of   

obtained from a double bootstrap, which is another level of re-
sampling. That is, the double bootstrap sample 

* ** ** **
1 2, , ,d d d nsdx x x   x   for 1, ,d D   is re-sampled from the 

bootstrap samples, * * * *
1 2, , ,bs bs bs nsbsx x x   x   for 1, ,bs B  . 

Thus, the percentile-t method requires a large number of 



 
bootstrap samples ( ).D B Using double bootstrap samples, 

*
bs

 
  is obtained as 

 

*

2** **

1

1bs

D

d
d

D

 
 

  







 
                          (14) 

 

where ** **

1

/
D

d
d

D 


   .  

The confidence interval of the sample standard deviation 
  is obtained as 

 
* *

/ 2 1 / 2t t                                     (15) 

 
where *

/2t  and *
1 /2t   are the values of *t  evaluated at 

/ 2 100  th and  1 / 2 100   th percentiles. In Eq. (15), 

   is the population standard deviation, which is calculated as 

 2* *

1

/ 1
D

d
d

D  


        , where *
d  is the estimator 

obtained from re-sampled data,  * * * *
1 2, , , Dx x x   x  , 

randomly generated from the original data.  
 
3.2 Confidence Levels of Standard Deviation 

To test the performance of the bootstrap methods, a 
lognormal marginal distribution is considered as the true 
model with 5.0  and 5.0  . The confidence level of the 

standard deviation is assessed by calculating the probability 
that the upper bound of the confidence interval of the standard 
deviation is larger than the true standard deviation over 1000 
data sets with ns=30, 100, 300 samples generated from the 
true model. In this paper, for 95% of the two-sided target 
confidence level, the target confidence level is 97.5% for the 
upper side of the confidence interval. Thus, if the estimated 
confidence level is close to the target confidence level, it is the 
most desirable. Even if the estimated confidence level is close 
to the target confidence level, the unnecessarily large upper 
bound for standard deviation is not desirable because it yields 
unnecessarily conservative RBDO design. Therefore, the most 
desirable confidence interval should just include the true 
standard deviation with the target confidence level. 

Table 2 shows the obtained confidence levels using the 
five bootstrap methods where the bootstrap distribution is 
obtained from the empirical distribution (nonparametric 
approach) and the parametric distribution (parametric 
approach). For the parametric approach, the true marginal and 
identified CDFs are used. Since the distribution of the 
standard deviation is highly skewed due to the lognormal 
distribution with large coefficient of variation (COV), which is 
the ratio of standard deviation to mean, all methods have poor 
confidence levels, especially for ns=30. As the number of 
samples increases, the obtained confidence levels are mostly 
closer to the target confidence level, whereas the method using 
the Gaussian distribution of input variable in Eq. (5) provides 
nearly only 65% regardless of the number of samples. The 
parametric approach using the true marginal CDF has the best 

performance, and the parametric approach with identified 
CDF is not as good as the one with true CDF due to the 
identification and quantification error. However, it is better 
than the nonparametric approach because it yields more 
desirable confidence level than the nonparametric approach 
when the identified CDFs are correct.  

As shown in Table 2, when the nonparametric approach is 
used, the percentile-t has the highest confidence level, 
followed by the BCa method among five bootstrap methods. 
For the parametric approach using identified CDF, the 
percentile-t method is the best for ns=30 and 100, and the 
percentile method is the best for ns=300. When the parametric 
approach using the true CDF is used, the percentile method 
has the best performance for ns=30, 100, and 300.  

  
Table 2. Estimated Confidence Levels of Standard Deviation  

ns Approach 
Nor. 

Approx. 
Percentile BC BCa Percentile-t

30 
Nonpar. 64.9 61.3 64.8 70.4 83.7 

Par. (Iden.) 74.9 79.0 85.0 88.9 89.6 
Par. (True) 89.3 95.2 88.3 92.4 88.3 

100
Nonpar. 76.0 75.1 78.1 83.1 88.8 

Par. (Iden.) 87.2 87.5 87.4 89.9 92.0 
Par. (True) 95.2 97.7 86.9 89.9 87.1 

300
Nonpar. 82.3 82.7 84.5 87.9 91.3 

Par. (Iden.) 95.9 97.5 86.8 88.4 85.7 
Par. (True) 96.7 99.0 86.3 88.2 85.3 

* Method using Gaussian distribution of input variable yields 65.8% 
for ns=30, 66.0% for ns=100, and 65.0% for ns=300 

 
Even though the percentile-t method provides more 

desirable confidence levels than other methods for the 
nonparametric approach, it provides unnecessarily large upper 
bounds of standard deviation. For example, the mean value of 
the upper bound of standard deviation using the nonparametric 
percentile-t method is 20.01 as shown in Table 3, which is 
significantly larger than true standard deviation 5.0. In 
addition, it has a large standard deviation, 32.78, of the upper 
bounds of confidence intervals of standard deviation as shown 
in Table 4. That is, the upper bounds of confidence intervals of 
the standard deviation are overestimated and widely spread 
over the wide range of the standard deviation. As the number 
of samples increases, the upper bound of the standard 
deviation approaches the true standard deviation and its 
variation is reduced, but it converges very slowly to the true 
standard deviation compared to other methods. Thus, the BCa 
method, which has second highest confidence level and 
adequate value of upper bound, is preferred for the 
nonparametric approach.  

Likewise, for the parametric approach, the percentile 
method yields a desirable confidence level, and has adequate 
values of upper bounds for standard deviation and small 
variations as shown in Table 3 and 4.  

Figure 1 shows the histograms of the upper bounds of 
confidence interval of the standard deviation using the 
parametric percentile bootstrap method with identified CDF. 
The estimated upper bounds of standard deviations mostly 
centered at the true standard deviation (5.0) even for ns=30. 
As the number of samples increases, a large amount of the 
upper bounds of standard deviation tends to be very close to 
the true standard deviation with a small variation.  

 



 
Table 3. Mean Values of Upper Bound of Confidence Interval 

of Standard Deviation  

ns Approach 
Nor. 

Approx. 
Percentile BC BCa Percentile-t 

30 
Nonpar. 6.900 6.458 6.803 7.379 20.01 

Par. (Iden.) 7.830 8.396 12.72 15.22 16.62 
Par. (True) 8.742 9.998 12.57 15.83 16.04 

100 
Nonpar. 6.482 6.367 6.604 7.144 10.78 

Par. (Iden.) 7.167 7.596 9.204 10.43 10.83 
Par. (True) 7.367 7.978 9.342 10.60 10.77 

300 
Nonpar. 6.088 6.078 6.219 6.571 7.810 

Par. (Iden.) 6.416 6.763 7.324 7.877 7.642 
Par. (True) 6.491 6.824 8.034 7.422 7.984 

* Method using Gaussian distribution of input variable yields 6.451 
for ns=30, 5.708 for ns=100, and 5.401 for ns=300 

 
Table 4. Standard Deviations of Upper Bound of Confidence 

Interval of Standard Deviation  

ns Approach 
Nor. 

Approx. 
Percentile BC BCa Percentile-t

30 
Nonpar. 3.629 3.130 3.491 3.990 32.78 

Par. (Iden.) 3.873 4.316 11.62 12.96 20.66 
Par. (True) 3.587 3.958 10.18 11.81 21.21 

100 
Nonpar. 2.272 2.132 2.365 2.813 11.71 

Par. (Iden.) 1.977 2.019 4.725 5.373 12.34 
Par. (True) 1.917 1.663 4.790 5.520 12.77 

300 
Nonpar. 1.219 1.200 1.308 1.594 3.930 

Par. (Iden.) 0.971 0.873 2.728 2.978 4.692 
Par. (True) 0.929 0.815 2.598 2.946 4.695 

* Method using Gaussian distribution of input variable yields 2.484 
for ns=30, 1.488 for ns=100, and 0.834 for ns=300 

 

 
(a) ns=10                 (b) ns=100               (c) ns=300 

Figure 1. Histograms of Upper Bound of Confidence Interval 
of Standard Deviation 

 
In summary, when the distribution is not Gaussian and 

COV is relatively small, e.g., COV<0.2, the performances of 
five bootstrap methods are quite identical to each other and are 
very good. However, when COV is large as shown in the 
above example, the parametric percentile method has the best 
performance among five bootstrap methods. Even though the 
bootstrap methods do not achieve the target confidence level 
for a small number of samples, as the number of samples 
increases, the obtained confidence levels tend to converge to 
the target confidence level while the method using Gaussian 
distribution of input variable does not.   

When the input variable has the Gaussian distribution, the 
method using Gaussian distribution of the input variable needs 
to be used because it has an exact formulation of calculating 
the confidence interval of the standard deviation. The 
bootstrap method can be used, but it might not be as accurate 
as the method using the Gaussian distribution of input variable 
because of the randomness of the bootstrap samples. The 
bootstrap method can be applied to any types of distribution, 

and the test results for various types of distributions are 
presented in Ref. 19.  

The upper bound of the confidence interval calculated 
from the method using the Gaussian distribution of input 
variable and the bootstrap method will be used to calculate the 
adjusted standard deviation, which is introduced in Section 4.  

 
3.3 Confidence Interval of Correlation Coefficient 

It is known that as ns goes to infinity, the sample 
correlation parameter follows a Gaussian distribution [22] as 
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or 2 2j ix x ( 1ix  and 2ix are ith sample point for 1X  and 2X ), 

then 1ijI  , otherwise, 0ijI  . Thus, the confidence interval 

for the correlation parameter for  100 1    of the 

confidence level is obtained as 
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where /2z is the CDF value of Gaussian distribution 

evaluated at / 2  and 
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Using the lower and upper bounds of the confidence 
interval for the correlation parameter  , the upper and lower 
bounds of the confidence interval for the correlation 
coefficient   are calculated from  g   using Eq. (2) or 

explicit functions in Ref. 6. The confidence interval of 
correlation parameter is accurately estimated regardless of 
copula function types; the bootstrap method is not necessary to 
obtain the confidence interval of the correlation parameter in 
this paper. 

 
4. ASSESSMENT OF CONFIDENCE LEVEL OF 

INPUT MODEL 
When an input model is estimated from given limited 

data, we are concerned how much confidence level of output 
performance the estimated input model provides. However, it 
is difficult to predict the accurate confidence level of output 
performance of the RBDO result because the confidence level 
of output performance can be different for different RBDO 
problems according to the location of most probable point 
(MPP) on the t -contour at the optimum design even though 

the same input model is used. Thus, the confidence level of the 
input model needs to be first estimated before stepping into 
the estimation of the confidence of output performance. Even 
though the confidence level of the input model is not 
necessarily equivalent to the output confidence level, if a 
conservative measure for estimating the input confidence 



 
level, i.e., a t -contour is used, then it can be assured that the 

confidence level of output performance is at least larger than 
the confidence level of input model. Section 4.1 explains the 

t -contour as a measure of input confidence level.  

To have an input model with a target confidence level, 
confidence intervals of the input parameters need to be used to 
offset the prediction error of the estimated input parameters. 
However, neither the upper nor lower bounds of the 
confidence intervals of mean and correlation yield reliable 
design. In Section 4.2, the adjusted parameters obtained from 
the confidence intervals of the input parameters are 
introduced. Section 4.3 shows simulation test results for the 
confidence levels of input models obtained using the proposed 
method.   

 
4.1 Measure of Input Confidence Model 

The reliability t -contour acts as a safety barrier that 

locates the optimum design point away from constraint 
boundary with the target probability of failure. That is, the 
MPP search is carried out on the t -contour for the inverse 

reliability analysis. Therefore, if the t -contour is large 

enough for the optimum design point to be away from the 
constraint boundary with the target probability of failure, it 
means that the obtained optimum design is reliable.  

Suppose 1X  and 2X  have marginal distributions, 

 
1 1Xu F x  and  

2 2Xv F x  correlated with the Frank 

copula. The t -contour in the standard normal space can be 

obtained as 
 

2 2 2
1 2 tu u                                     (18) 

 
where 1u  and 2u  are the independent standard normal 

variables, and t  is the target reliability index, 2.0t 
 
for 2-

σ design. 
Once the joint distribution is obtained from the marginal 

distributions and the copula, 1u  and 2u  can be transformed to 

the original space using the Rosenblatt transformation [23] as 
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where the marginal distributions,  

1 1Xu F x  and 

 
2 2Xv F x , involve the mean and standard deviations of 1X  

and 2X . Substituting Eq. (19) into Eq. (18), the t -contour 

for the Frank copula can be obtained. Once the explicit copula 
function is available, the t -contour can be obtained for any 

type of copulas using Eq. (18). 
To observe how the input parameters affect the t -

contour shape, the t -contour using the lower and upper 

bound of confidence intervals of input parameters and true 
parameters are drawn as a dashed line, dash dotted line, and 
solid line, respectively. It is assumed that the distribution types 
are correctly identified. As shown in Figs. 2 (a) and (c), 
neither the lower nor upper bounds of confidence intervals of 
the mean and correlation coefficient fully cover the true t -

contour, which means that the t -contour may or may not 

yield reliable design. On the other hand, the upper bound of 
the confidence interval of the standard deviation fully covers 
the t -contour, and thus, it can be readily used to obtain the 

t -contour covering the true t -contour, which will lead to 

the reliable optimum design.  
However, the prediction errors in the mean and 

correlation coefficient still exist in RBDO problems when the 
available data is insufficient. Therefore, instead of using the 
estimated mean and correlation coefficient, adjusted 
parameters using the confidence intervals of the mean and 
correlation coefficient are proposed to ensure that the 
estimated t -contour with the adjusted parameters covers the 

true t -contour, which will lead to a desirable confidence 

level of the input model.  
 

   
      (a) Mean               (b) Standard          (c) Correlation  

                                               Deviation               Coefficient 
Figure 2. t -contours Using True, Lower and Upper bound of 

Each Parameter [1] 
 
4.2 Adjusted Parameters Using Confidence Intervals 

of Input parameters 
Since the confidence interval of the mean cannot be used 

to enlarge t -contour, the change in the sample standard 

deviation (   ) caused by the change in the sample mean     

is added to the confidence interval of the standard deviation 
U  to obtain the adjusted standard deviation A  as 

 

A U U     


     
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

                    (20) 

 

where it is assumed that 
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, and 

U L              since the sample mean is the middle 

point of the confidence interval for the Gaussian distribution. 
In Eq. (20), the COV ( /   ) functions as a scale factor such 

that the effect of the confidence interval of the mean on the 
adjusted standard deviation is proportional to COV. Using the 
estimated mean and the adjusted standard deviation, 
parameters a and b of the identified distribution can be 
estimated using explicit functions, which are expressed as 
mean and standard deviation in Ref. 6. 



 
Like the mean, the t -contours for the lower and upper 

bounds of the correlation coefficient do not yield reliable 
design when the sample standard deviation is not large enough 
to cover the true contour. To resolve this problem, the adjusted 
correlation coefficient is used. As shown in Fig. 2, neither the 
lower nor upper bounds of the confidence interval of 
correlation coefficient cover the true t -contour. However, 

when the lower bound of the correlation coefficient with the 
adjusted standard deviation is used, it yields more reliable 
design than when the upper bound with the adjusted standard 
deviation is used. Thus, when the true correlation coefficient is 
small, the adjusted correlation coefficient needs to be close to 
the estimated one. Otherwise, the adjusted correlation 
coefficient needs to be underestimated. Thus, the adjusted 
correlation coefficient is proposed as 

 

 max ,A U L                  (21) 

 
such that it can be applied to both small and large correlation 
coefficients. As the number of samples increases, the adjusted 
correlation coefficient converges to the true correlation 
coefficient. 

 
4.3 Confidence Levels of Input Model 

Let 1X  have a lognormal distribution with 
1

5.0X   and 

1
5.0X   (COV=1.0); 2X  have a Gaussian distribution with 

2
5.0X   and 

2
1.0X  (COV=0.2). 1X  and 2X  are 

correlated with the Frank copula. From the true input model, a 
different number of samples, ns=30, 100, and 300, are 
randomly generated for a sufficient number of trials, 300. 
Using the generated samples, the marginal distributions and 
copulas are identified and their parameters are quantified. If 
the marginal Gaussian distributions are identified as correct 
ones, the method using Gaussian distribution of input variable 
is used to calculate the confidence interval of the standard 
deviation. If not, the bootstrap method is used.  Once the 
marginal distributions and copulas are obtained, the t -

contour can be obtained. The input confidence level is 
assessed by calculating the probability that the obtained t -

contour is larger than the true t -contour over 300 trials. The 

target confidence level is 97.5%. 
Table 5 shows the obtained input confidence levels using 

the identified marginal distributions and copulas. Since the 
bootstrap more accurately calculates the upper bound of the 
confidence interval of standard deviation for a non-Gaussian 
distribution, it yields a more desirable confidence level than 
the method using the Gaussian distribution of input variable. 
Likewise, when the true marginal distribution types are used, 
the input confidence levels using the bootstrap method are 
more accurate than the method using the Gaussian distribution 
of input variable as shown in Table 6. When the distribution 
types are correct, the performance of the bootstrap method is 
improved, so that the results using the true CDFs are better 
than those using the identified CDFs as shown in Tables 5 and 
6. 

 

Table 5. Input Confidence Levels Using Identified CDF Types 

ns 
0.2  0.5   0.8 

Norm. Bootstrap Norm. Bootstrap Norm. Bootstrap
30 83 87 78 84 77 83 
100 85 90 85 89 83 87 
300 93 96 89 93 90 92 

 
Table 6. Input Confidence Levels Using True CDF Types 

ns 
0.2  0.5   0.8 

Norm. Bootstrap Norm. Bootstrap Norm. Bootstrap
30 86 92 82 90 82 89 
100 88 96 90 96 86 92 
300 94 97 92 97 92 94 

 
 

5. NUMERICAL EXAMPLES 
In this section, a mathematical example and an M1A1 

tank roadarm with correlated non-Gaussian input variables are 
used to show how the bootstrap method yields more reliable 
design than the method using the Gaussian distribution of 
input variable. To carry out RBDO, the MPP-based DRM [24] 
is used to more accurately calculate the probability of failure 
than the FORM. 
 
5.1 Mathematical Example  

Let 1X  and 2X  have lognormal and Gaussian 

distributions,   2
1 ~ 3,1.5X LN  and  2

2 ~ 3,0.3X N , which 

are correlated with the Frank copula and 0.7  . For the 
comparison study, three types of input models – one model 
with estimated parameters, another model with adjusted 
parameters obtained from the method using the Gaussian 
distribution of input variable, and the other model with 
adjusted parameters obtained from the bootstrap method – are 
tested. The output confidence levels are assessed using 100 
data sets with ns=30, 100, and 300, which are randomly 
generated from the true input model. The marginal 
distribution, the copula type, and their parameters are 
determined from each data set. Using the estimated input 
models from 100 data sets, the RBDO is carried out. The 
target probability of failure is given as 2.275%.  

An RBDO problem is formulated to 
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  (22) 

 
Table 7 shows the minimum, mean, and maximum values 

of the probabilities of failure 
1FP  and 

2FP  for two active 

constraints evaluated at the optimum designs using the Monte 
Carlo simulation (MCS).  The output confidence levels are 



 
estimated by calculating the probability that the obtained 
probability of failure is smaller than the target probability of 
failure. As shown in Table 7, when the input model with the 
estimated parameters is used for ns=30, the mean value of 

1FP  

(4.313%) is larger than the target probability of failure, 
2.275%. The maximum value of 

1FP   (20.842%) is not even 

close to 2.275% due to the wrong identification and 
quantification of the input model. This means that even if the 
mean values of the probability of failure using the estimated 
parameters are closer to the true target probability of failure, it 
is not desirable to trust the RBDO results due to the lack of 
statistical information. Thus, the output confidence level 
(54%) is significantly smaller than the target confidence level 
of 97.5%.  

On the other hand, when the input model with the 
adjusted parameters is used, the mean values of 

1FP  and 
2FP  

are smaller than 2.275%, which gives us more confidence than 
the case of estimated parameter. Accordingly, the obtained 
output confidence levels using the adjusted parameters 
become much closer to the target confidence level, 97.5%. 
When the number of samples is small, e.g., ns=30, the 
estimated output confidence levels using the bootstrap method 
are still smaller than the target confidence level due to the 
incorrect identification of marginal distribution and the 
copula. However, as the number of samples increases, the 
output confidence levels using the bootstrap method are closer 
to the target confidence level.  

 
Table 7.  Probabilities of Failure and Output Confidence 

Levels  

ns Par. 
Estimated Adjusted (Bootstrap) 

1FP  
2FP  

1FP  
2FP  

30 

Min 0.079 0.317 0.000 0.050 
Mean 4.313 2.127 0.600 0.995 
Max 20.842 9.577 10.633 6.176 
Conf. 54 73 94 93 

100 

Min 0.190 0.454 0.004 0.394 
Mean 2.668 1.725 0.562 1.467 
Max 16.71 4.833 8.277 3.727 
Conf. 48 82 97 93 

300 

Min 0.700 0.684 0.067 0.865 
Mean 2.393 1.695 0.707 1.675 
Max 4.647 3.275 2.300 2.960 
Conf. 49 91 99 96 

*Optimum design using true input model is (3.623, 1.770) ;

1FP = 2.250%,
2FP =1.922% 

 
5.2 M1A1 Abrams Tank Roadarm  

The roadarm in the M1A1 tank is modeled using 1572 
eight-node isoparametric finite elements (SOLID45) and four 
beam elements (BEAM44) of a commercial program, ANSYS 
[25], as shown in Fig. 3. The material of the roadarm is S4340 
steel with Young’s modulus E=3.0×107 psi and Poisson’s ratio 
ν=0.3. The durability analysis of the roadarm is carried out to 
obtain the fatigue life contour using Durability and Reliability 
Analysis Workspace (DRAW) [26,27]. The fatigue lives at the 
13 critical nodes are selected for design constraints of the 
RBDO in Fig. 4. 

 

 
Figure 3. Finite Element Model of Roadarm 

 
 

 
Figure 4. Fatigue Life Contour and Critical Nodes of Roadarm 
 

In Fig. 5, the widths (x1-direction) of the cross-sectional 
shapes are defined as design variables, d1, d3, d5, and d7, at 
intersections 1, 2, 3, and 4, respectively, and the heights (x3-
direction) of the cross-sectional shapes are defined as design 
variables, d2, d4, d6, and d8. Table 8 shows the initial design 
point, the lower and upper bounds of eight design variables 
with their standard deviations and distribution types, and the 
four material parameters with their means and standard 
deviations. 

  
 

 
Figure 5. Shape Design Variables for Roadarm 

 
Table 8. Random Variables and Fatigue Material Properties 
Random 
Variables

Lower 
Bound

Initial 
Design 

Upper 
Bound 

Standard 
Deviation

Distribution
Type 



 
Ld  0d  Ud  

d1 1.3500 1.7500 2.1500 0.0875 Gaussian 
d2 2.6496 3.2496 3.7496 0.1625 Gaussian 
d3 1.3500 1.7500 2.1500 0.0875 Gaussian 
d4 2.5703 3.1703 3.6703 0.1585 Gaussian 
d5 1.3563 1.7563 2.1563 0.0878 Gaussian 
d6 2.4377 3.0377 3.5377 0.1519 Gaussian 
d7 1.3517 1.7517 2.1517 0.0876 Gaussian 
d8 2.5085 2.9085 3.4085 0.1454 Gaussian 

Fatigue Material Properties 

Non-design Uncertainties Mean 
Standard 
Deviation 

Distribution
Type 

Fatigue Strength  
Coefficient, f   177000 44250 Lognormal

Fatigue Strength 
Exponent, b 

-0.0730 0.018 Gaussian 

Fatigue Ductility  
Coefficient, f   0.4100 0.205 Lognormal

Fatigue Ductility 
Exponent, c 

-0.6000 0.150 Gaussian 

 
To test the input model with the confidence level, 

experimental data need to be used to obtain the adjusted 
standard deviation and correlation coefficient. However, the 
experimental data of S4340, which is used in the roadarm, is 
not available. Thus, in this paper, 30 paired data are generated 
from an assumed true input model.  

First, it is assumed that Frank copula ( 0.683   ) for 

f   and b, and the Gaussian copula ( 0.906   ) for f   and 

c, respectively, are the true copulas. As the two copulas well 
describe the experimental data of SAE 950X [8] as shown in 
Fig. 6, it seems to be reasonable to select these two copulas to 
model the joint CDFs of the four correlated random 
parameters of S4340. The marginal distribution types of 
S4340 are assumed to be the same as those of SAE 950X. 
  

 
(a) f   and b                           (b) f   and c 

Figure 6. Joint PDF Contours of Gaussian and Frank Copula 
Identified from 29 Paired Data of 950X Steel 

 
Second, once the copula and marginal distribution types 

are obtained, the mean and standard deviation of S4340 need 
to be determined. The mean values of four fatigue material 
properties of S4340 are known, but the standard deviations are 
unknown. Therefore, the standard deviations are assumed 
using COV of SAE 950X. The coefficient of variation of SAE 
950X is 115% for f   and 25% for other material properties 

[8]. Since S4340 is a stronger material than SAE 950X, in this 

paper, it is assumed that the COV of S4340 is 50% for f   and 

25% for other material properties to estimate the standard 
deviation as shown in Table 8. 

Assuming that a true input model has the above statistical 
information on S4340, 30 paired data are randomly generated, 
and RBDO is carried out using the estimated input model with 
and without confidence level. Table 9 shows the estimated and 
adjusted parameters, and the target confidence level is 
specified as 95% in this roadarm example. 
 

Table 9. Estimated and Adjusted Parameters 

 f   b f   c 

  176738 0.073 0.395 0.594  
 35141 0.015     0.143 0.110  

A  45356 0.020 0.223 0.155 
 –0.701 –0.921 

A –0.596 –0.866 
Copula Gaussian Frank 

 
The RBDO is formulated to 
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Table 10 shows a comparison of RBDO results for 

various input models where the true input model is assumed to 
have Frank and Gaussian copulas with the fatigue material 
properties in Table 9. First, the RBDO results are compared 
for the independent and correlated input fatigue material 
properties. As shown in the table, when the correlation 
between material properties is considered, the optimized 
weight of the roadarm is significantly reduced from 592.22 to 
514.02 for the same target reliability. This is because the 
material properties are highly and negatively correlated. Thus, 
it is very important to correctly model the correlation between 
material properties to carry out the RBDO.  

 
Table 10. RBDO Comparison 

 Initial Independent 
Correlated 

True Estimated Adjusted

d1 1.750 2.194 1.928 1.954 2.052 
d2 3.250 2.650 2.650 2.650 2.650 
d3 1.750 2.602 2.067 2.030 2.038 
d4 3.170 3.010 2.577 2.623 2.702 
d5 1.756 2.656 1.776 1.684 1.804 
d6 3.038 2.538 3.535 3.538 3.500 
d7 1.752 2.422 2.075 2.025 2.152 
d8 2.908 2.895 2.512 2.508 2.754 

Cost 515.09 592.22 514.02 509.44 531.64 



 
 
Second, when the input model with the estimated standard 

deviation is used, the underestimated standard deviations (see 
Tables 8 and 9) yield an unreliable optimum design with an 
optimum cost that is smaller than the optimum cost obtained 
using the true input model (509.44 vs. 514.02). Since the MCS 
cannot be used for the benchmark test for this problem due to 
computational cost, the comparison of optimum costs is used 
as a measure to check whether the obtained optimum design is 
reliable or not. On the other hand, when the input model with 
the adjusted parameters is used, the obtained optimum cost is 
higher than the optimum cost obtained from the true input 
model (531.64 vs. 514.02), which indicates the obtained 
optimum design is reliable. Even though the optimum cost 
using the estimated input model is closer to the true optimum 
cost than the one using the adjusted parameters, the estimated 
input model does not provide the confidence level of output 
performance whereas the input model with the adjusted 
parameters does. Accordingly, the input model with the 
adjusted standard deviation and correlation coefficient is 
indeed necessary to obtain a reliable optimum design. 

 
6. CONCLUSIONS 

In many engineering applications, only insufficient test 
data are available for input variables, and thus, the input 
statistical model obtained from the insufficient data could be 
inaccurate. Thus, the RBDO with confidence level is proposed 
to offset the inaccurate estimation of the input model by using 
the adjusted standard deviation and correlation coefficient. 
The adjusted standard deviation is obtained from the 
confidence intervals of mean and standard deviation. If the 
input variables have a Gaussian distribution, the method using 
the Gaussian distribution of input variables is exact. If not, it 
yields an inaccurate estimation of the confidence interval of 
standard deviation. Thus, in this paper, the bootstrap method is 
proposed to be used to calculate the confidence interval of 
standard deviation and, thus, the adjusted standard deviation. 
The input model with the adjusted parameters obtained from 
the bootstrap method is used to assess the input and output 
confidence levels for non-Gaussian distributions. Numerical 
test shows that the percentile method has the most desirable 
performance out of 5 candidate bootstrap methods for the 
parametric approach. Numerical examples also show that the 
input model using the parametric percentile bootstrap method 
yields more reliable design than the one using other method 
for non-Gaussian distributions.  
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