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1. Abstract  
In sampling-based reliability-based design optimization of practical complex engineering applications, the Monte 
Carlo simulation (MCS) for stochastic sensitivity analysis and probability of failure calculation is based on the 
prediction from the surrogate model for the performance functions. When the number of samples used to construct 
the surrogate model is small, the prediction from the surrogate model becomes inaccurate and thus MCS becomes 
inaccurate as well. Therefore, to count in the prediction error from the surrogate model and assure the obtained 
optimum design from sampling-based RBDO does satisfy the probabilistic constraints, a conservative surrogate 
model is needed. In this paper, a conservative surrogate model is constructed using the weighted Kriging variance 
where the weight is determined by the relative change in the corrected Akaike information criterion (AICc) of the 
dynamic Kriging model. The proposed conservative surrogate model performs better than the traditional Kriging 
prediction interval approach because it does not generate unnecessary local optimum; and it performs better than 
the constant safety margin approach because it adaptively counts in the uncertainty of the surrogate model in the 
place that the samples are sparse.  Numerical examples show that using the proposed conservative surrogate model 
for sampling-based RBDO is necessary to assure the optimum design satisfies the probabilistic constraints when 
the number of samples is limited. 
 
2. Keywords: conservative surrogate model, dynamic Kriging method, weighted Kriging variance, corrected 
Akaike information criterion (AICc). 
 
3. Introduction 
In sampling-based RBDO, Monte Carlo simulation (MCS) is used to carry out both the probability of failure and 
the stochastic sensitivity analysis [1, 2].  To carry out MCS efficiently in complex engineering applications, a 
surrogate model is used to predict the performance function at the MCS samples.  Zhao et al. [3] developed a 
dynamic Kriging method to accurately construct the prediction of the performance function for the MCS by using 
the genetic algorithm for the basis function selection and the generalized pattern search for the correlation 
parameter estimation.  When the surrogate model is not accurate enough, new samples are sequentially inserted to 
improve the prediction accuracy [3].  However, inserting a large number of new samples sequentially may not be 
applicable when the samples are from the physical experiments or when the computational resource for simulation 
is limited.  Therefore, the improvement of the surrogate model cannot be from the increase of the sample numbers. 
When applying the surrogate model for reliability-based design optimization when the number of samples is small, 
to assure the obtained optimum design can satisfy the probabilistic constraints, a conservative surrogate model is 
needed.   
Picheny [4] used both safety margin and safety factor approaches to construct the conservative surrogate model 
and concluded that when the Kriging method is used, both methods provide similar performance in terms of the 
conservativeness and the accuracy.  Hertog et al. [5] and Luna and Young [6] used the bootstrapping method to 
estimate the Kriging prediction interval to construct the conservative surrogate model.  The bootstrapping variance 
is larger than the traditional Kriging prediction variance by considering the uncertainty from the correlation 
parameter in the Kriging method.  However, the bootstrapping procedure is time-consuming and not applicable for 
high-dimensional problems.  Viana et al. [7] used cross-validation to estimate the safety margin for the 



 
 

conservative surrogate model.  While the cross-validation error is widely used to estimate the prediction error, this 
constant safety margin approach does not distinguish the prediction error at different sample locations and will 
yield an over-conservative surrogate model where the samples are aggregated around; and an under-conservative 
surrogate model where the samples are sparse.  
In this paper, a weighted Kriging variance is considered to construct a more accurate conservative surrogate model 
based the sample locations.  To evaluate the importance from each sample and determine the weight for it, an 
accuracy measure of the surrogate model is needed first.  Under the Kriging framework, the Akaike information 
criterion (AIC) [8] is a reliable indicator to assess the accuracy of the surrogate model.  Hurvich and Tsai [9] 
proposed a corrected AIC (AICc) to correct the bias in AIC when the number of samples is small.  Burnham and 
Anderson [10] recommended using AICc rather than AIC when the sample size is small and showed that the AICc 
converges to AIC as the number of samples increases.  Martin and Simpson [11] compared the performance of the 
corrected AIC assessment with other methods and concluded that AICc provides the best accuracy assessment for 
surrogate model accuracy.  In this paper, the AICc is used to assess the accuracy changes in the surrogate model 
during the cross-validation process, and an importance function value is assigned to each sample according to the 
relative changes in AICc of the surrogate model and the weight is also assigned to each sample according to the 
importance function values.  Then a weighted Kriging variance is calculated based on the weight values for each 
sample. By applying this weighted Kriging variance, one can construct the conservative surrogate model for 
dynamic Kriging and use it for sampling-based RBDO to assure the obtained optimum design can satisfy the 
probabilistic constraint.  
The remainder of this paper is organized in four sections.  First, the backgrounds of the dynamic Kriging method, 
sampling-based RBDO, and the AICc are briefly summarized.  Then, the weighted Kriging variance using the 
weight from the relative change in AICc is introduced to construct the conservative surrogate model.  Third, the 
conservative surrogate model is applied to sampling-based RBDO and the optimum design is verified for the 
probabilistic constraint using numerical examples and compared with the results using the constant safety margin 
approach. 

 
4. Background of the Dynamic Kriging Method, Sampling-based RBDO, and AICc 
 
4.1 Dynamic Kriging Method 
First consider a universal Kriging method. The outcomes are considered as a realization of a stochastic process, 
and the predicted values are derived by applying the stochastic process theory. Consider n sample points

T
1 2[ , ,..., ]nX x x x with nd

i x R , and n responses T
1 2[ ( ), ( ),..., ( )]ny y yY x x x  with ( )iy x R .  In the Kriging 

method, the responses at samples are considered as a summation of two parts as  
 Y Fβ e                                              (1) 

The first part of the right-hand side of Eq. (1), ,Fβ is considered as the mean structure of the response, where 

=[ ( ), 1,..., ]i i nF f x  is a ( )n K design matrix, and  ( ) ( ), 1,...,kx f k K f x  represents the user-defined basis 

functions, which are usually in a simple polynomial form, such as 21, , ,...x x .  The second part of the right hand side 

in Eq. (1), T
1 2[ ( ), ( ),..., ( )]ne e ee x x x , is a realization of the stochastic process ( )e x  that is assumed to have zero 

mean and covariance structure 2[ ( ) ( )] ( , , )i j i je e RE x x θ x x , where 2 is the process variance and θ is the 

process correlation parameter. The optimal choice of θ is defined as the maximum likelihood estimator (MLE), 
which is the maximizer of the likelihood function L, expressed as 

  
1

2 T 12 2
2

1
2 exp ( ) ( )

2

n

L 


        
R Y Fβ R Y Fβ  (2) 

where R is the symmetric correlation matrix with i-jth component ( , , ), , 1,..., ,ij i jR R i j n θ x x and 

2 T 11
( ) ( )

n
   Y Fβ R Y Fβ and   1T 1 T 1 β F R F F R Y  are obtained from the generalized least square 

regression. 
Under the general decomposition of Eq. (1), the objective is to predict the noise-free unbiased response at a new 
point of interest x, expressed as 
 T T 1( ) ( )krigy   x f β r R Y Fβ  (3) 

where  T

1( ),..., ( ) .nR Rr θ, x , x θ, x , x  The prediction variance can be also obtained as 

 2 2 T T 1 1 T 1( ) (1 ( ) )p      x u F R F u r R r  (4) 

where T 1 u F R r f . 



 
 

In the dynamic Kriging method, the basis function set ( )xf  is no longer fixed. Instead, the optimal basis function 

set is decided by the given samples.  First, a number of polynomial functions are considered as the candidate 

function.  The highest order P of the polynomial is decided by   1P
nd P n   .  A genetic algorithm is used to find 

the optimal subset of the basis function by minimizing the process variance 2 .  Second, a generalized pattern 
search algorithm is used to solve the problem that is maximizing Eq. (2). With these two steps carried out, the 
dynamic Kriging can generate a more accurate surrogate model than the traditional universal Kriging [3]. 
 
4.2 Sampling-based RBDO 
The mathematical formulation of a general RBDO problem is expressed as 
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where T{ } , 1 ~id i nd  rvd μ(X )  is the design vector, which is the mean value of the nd-dimensional random 

variable vector T
1 2={ ,  , ,  }ndX X XrvX  ; T={ , }rv rpX X X  where rvX  and rpX  stand for the random design 

variable and random parameter components of the random input X , respectively; Tar

jFP  is the target probability of 

failure for the jth constraint; and nc, nd, and nr are the number of probabilistic constraints, design variables, and 
random variables plus parameters, respectively.   
A reliability analysis for both the component and system levels involves calculation of the probability of failure, 
denoted by PF, which is defined using a multi-dimensional integral as 
 ( ) [ ] ( ) ( ; ) ( )

nr F FF FP P I f d E I        XR
ψ X x x ψ x X  (6) 

where ψ  is a vector of distribution parameters, which usually includes the mean (µ) and/or standard deviation (σ) 

of the random input  T

1, , nrX XX  ;  P   represents a probability measure; F  is the failure set; ( ; )fX x ψ  is 

a joint probability density function (PDF) of X; and  E   represents the expectation operator. The failure set is 

defined as  : ( ) 0
jF jG  x x  for component reliability analysis of the jth constraint function Gj(x), and 
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  x x  for the series system and parallel system reliability 

analysis of nc performance functions, respectively. ( )
F

I x  in Eq. (6) is called an indicator function and defined as 
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In this paper, since the mean of X,  T

1, , nd μ   is used as a design vector, the vector of distribution 

parameters ψ  is simply replaced with µ for the computation of the probability of failure in Eq. (6).  Taking the 

partial derivative of probability of failure in Eq. (6) with respect to the ith design variable i  yields 
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and the differential and integral operators can be interchanged using the Leibniz’s rule, giving 
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since ( )
F

I x  is not a function of i . The partial derivative of the log function of the joint PDF in Eq. (8) with 

respect to i  is known as the first-order score function for i  and is denoted as 

 (1) ln ( ; )
( ; ) .

i

i

f
s 





X x μ

x μ  (10) 

To compute the probability of failure in Eq. (5) and the sensitivity of probability of failure in Eq. (8), statistical 
sampling such as the Monte Carlo simulation (MCS) at a given design needs to be applied to true responses, which 
is computationally very expensive and almost prohibited. Hence, instead of using true responses, which are usually 



 
 

obtained from computer simulations, surrogate models are used be implemented for the calculation of the 
probability of failure. To generate accurate surrogate models, this paper uses the dynamic Kriging method, which 
is discussed in the previous section. 

Denote the surrogate model obtained by the dynamic Kriging method for the constraint function Gj(X) as ˆ ( )jG X . 

Then, by carrying out the MCS using the conservative surrogate model ˆ ( )jG X , the probabilistic constraints in Eq. 

(5) can be approximated as 

 ( ) Tar
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1

1
[ ( ) 0] ( )

j jFj

M
m

F j F
m

P P G I P
M 



   X x  (11) 

where M is the MCS sample size, ( )mx  is the mth realization of X, and the failure set ˆ
jF  for the surrogate model is 

defined as  ˆˆ : ( ) 0
jF jG  x x . Sensitivity of the probabilistic constraint in Eq. (8) is obtained as 
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ˆ

1

1
( ) ( ; )j

iF j

M
F m m

mi

P
I s

M  





  x x μ  (12) 

where (1) ( )( ; )
i

ms x μ  is obtained using Eq. (9).  

 
4.3 Corrected Akaike information criterion (AICc) 
AIC is originally proposed to evaluate the quality of a model in statistics based on the log-likelihood function [10].  
It is a measure of the relative goodness of fit of a statistical model, and in general expressed as 
 2 2ln( )AIC k L   (13) 
where k is the number of parameters in the statistical model and L is the maximized value of the likelihood function 
for the estimated model. In the Kriging framework discussed in Section 4.1, the k is the number of dimension of X, 
which is nd, and L is the likelihood function as shown in Eq. (2).  When the sample size is small, i.e., n/k < 40 (n is 
the number of sample), which is often the case in engineering problems, the corrected AIC (AICc) is used instead 
to provide an unbiased estimation, which is expressed as 

 2 ( 1)

1

k k
AICc AIC

n k


 

 
 (14) 

 
5 Sampling-based RBDO Using Conservative Surrogate Model 
 
5.1 Weighted Kriging Prediction Variance for Conservative Surrogate Model 
In Eq. (4), the Kriging prediction variance 2

p is calculated, and the C% upper bound of the prediction interval is 

 1
var krig 100 p

C
y y      

 
 (15) 

where  1  is the inverse CDF of the standard normal random variable. This prediction upper bound is usually 

used as the C% level conservative surrogate model for the Kriging method, and often it is considered as a variable 
safety margin approach for constructing the conservative surrogate model. Since the Kriging method is an 
interpolation method, the prediction variance 2

p becomes zero at the sample point. As a result, the conservative 

surrogate model vary is the same as the krigy  at the sample points. This interpolation property of the Kriging 

method causes trouble when the conservative surrogate model is used for an optimization problem. Consider a 1-D 
example, 
 2min (6 2) sin(12 4) [0,1]y x x x      (16) 
The function plot and the Kriging prediction using seven points are shown in Fig. 1. 



 
 

wrong figure!! 
 

Figure 1: 1-D problem with 7 samples 
 

When the upper bound is used as the conservative surrogate model and for optimization, the optimum x could be 
easily converged to the sample points, which are the local minima of vary . Therefore, this upper bound of the 

Kriging prediction interval is not applicable for optimization.  Another constant safety margin approach is also 
often used for the conservative surrogate model [7], where the safety margin is decided based on the empirical 
CDF of the cross-validation error. In this constant safety margin approach, the conservative surrogate model is 
obtained by shifting the Kriging prediction to a certain amount and is often expressed as 
 xv krig ,%XV Cy y e   (17) 
where ,%XV Ce  is the C percentile of the cross-validation error.  This conservative surrogate model has the same 

discrepancy from the Kriging prediction regardless of the sample position. This raises the problem that the 
conservative surrogate model cannot count in the different uncertainty of the discrepancy due to different sample 
locations. Therefore, this constant safety margin approach may become over-conservative if the samples are dense 
and under-conservative if the samples are sparse. Consider the same example shown in Fig.1.  If there is no sample 
at x = 0.76, the safety margin Eq. (17) is s = 1.454 and the conservative surrogate model is shown in Fig. 2. The 
conservative surrogate model is over-conservative in the region of [0, 0.55] and under-conservative in the region of 
[0.55, 1]. 

 
 

Figure 2: 1-D problem with 6 samples 



 
 

 
According to the two examples discussed above, one can see that when a conservative surrogate model from the 
Kriging method is used for an optimization problem, a variable safety margin approach that has zero margin at the 
sample points is not desirable because it generates unnecessary local optima regions; whereas a constant safety 
margin may not be desirable because it does not count in the effect from the sample position.  What is needed is a 
conservative surrogate model that uses a variable safety margin that does not generate local optima and counts in 
the effect from the sample position. 
In this paper, a new conservative surrogate model that combines the variable safety factor approach from Eq. (15) 
and the constant safety margin approach from Eq. (17) is proposed.  First, to count in the effect from the sample 
position, an importance measure for each sample is needed. In this paper, the AICc is chosen to quantify how 
important a sample is for the Kriging prediction. The importance function for sample xi is defined as 

 
( )

Im( ) , 1,...,
i

i

AICc AICc
x i n

AICc


   (18) 

where AICc is calculated using all n samples and ( )iAICc  is calculated by omitting xi. From Eq. (18), it shows that 
the larger Im( )ix is, the more important xi is. Consider the same example discussed above. Figs. 3(a)-(g) show the 

Kriging predictions when one of the samples is omitted, and the associated importance function values are shown 
in Fig. 3(h) as well. The sample point 6 at x = 0.76 is indeed around the highly nonlinear region, and its importance 
function value is the largest among all 7 samples.  Therefore, this importance function by the relative change in 
AICc values can characterize how important one sample is for the Kriging prediction accuracy. 
 

 
(a) Kriging prediction w/o sample #2    (b) Kriging prediction w/o sample #3 

 
 

(c) Kriging prediction w/o sample #4    (f) Kriging prediction w/o sample #5 



 
 

  
 
 

(g) Kriging prediction w/o sample #6    (h) Im(x) function values at each sample 
 

Figure 3: Leave-one-out Kriging prediction 
 
After the importance for each sample is calculated, to construct a weighted Kriging variance, a leave-one-out 

Kriging variance  ( )2 i

p


is calculated where the ith sample xi is omitted using Eq. (4), and then the weighted 

Kriging variance is expressed as 

  ( )2 2
,

1

( )
n i

p weighted i p
i

w x 




  (19) 

where the weight function is defined as 
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The weight function decides how much the leave-one-out Kriging variance  ( )2 i

p


 contributes to the total 

Kriging variance when xi is missing according to the importance function value.  Finally, the conservative 
surrogate model based on the weighted Kriging variance is 

 1
,100con krig p weighted

C
y y      

 
 (21) 

According to Eq. (19), one can see that when xi is omitted, the leave-one-out Kriging variance  ( )2 i

p


 would not 

become zero at xi, and therefore the total Kriging variance would not be zero at xi and indeed smoothes the 

conservative surrogate model eventually. On the other hand, since  ( )2 i

p


 will be larger at the place where no 

sample is nearby, it will make the total weighted Kriging variance become variable among the entire domain. 
Consider the same example shown in Figs. 4 and 5. In Fig. 4, the lines labeled as Y_true ,  Y_krig , Y_xv , ,

Y_var and Y_con are the true response, the Kriging response, the conservative surrogate model using constant 

safety margin, the upper bound of Kriging prediction interval, and the conservative surrogate model using the 
weighted Kriging variance, respectively.  
When all seven samples are used and the conservativeness is set to be 90%, the conservative surrogate model using 
the weighted Kriging variance is smoother than the upper bound of the Kriging prediction interval and closer to the 
true response than the conservative surrogate model using the safety margin. Moreover, if one important sample 
(i.e., x = 0.76 in this case) is missing, the conservative surrogate model using the weighted Kriging variance would 
have a larger discrepancy than the conservative surrogate model using the constant safety margin approach in the 
region of [0.55, 1] and a smaller discrepancy in the region of [0, 0.55], as shown in Fig. 5. These two cases indicate 
that the conservative surrogate model using the weighted Kriging variance can adaptively identify the 
conservativeness according to sample locations and provide a smooth surrogate model that does not change the 
optimum region of the original response function. 



 
 

 
 

Figure 4: Conservative surrogate model using weighted Kriging variance (7 samples) 
 

 
Figure 5: Conservative surrogate model using weighted Kriging variance (6 samples) 

 
5.2. Sampling-based RBDO using the conservative surrogate model 
When a limited number of samples is used to generate the surrogate model for MCS in sampling-based RBDO, to 
assure the optimal design can satisfied the probabilistic constraints, the surrogate models in Eqs. (11) and (12) need 
to be replaced by the conservative surrogate model. Therefore, the conservative surrogate model using the 
weighted Kriging variance from Eq. (21) is used to represent the original performance function. The formulation of 
sampling-based RBDO becomes 
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where ˆ ( )c
jG X is the conservative surrogate model for representing performance function ( )G X . 

 
6. Numerical Example 
 
6.1 2-D RBDO Problem with Highly Nonlinear Constraint Functions 
Consider a 2-D RBDO problem with three probabilistic constraints, expressed as 
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where three constraints functions are 
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where 1

2

0.9063 0.4226

0.4226 0.9063

XY

Z X

    
         

 and are drawn in Fig. 6.  The distribution and design domain for each 

variable are shown in Table 1.  The initial design point is d0 = [5 5]. 
 

Table 1: Properties of Random Variables 
 

Random 
Variables 

Distribution dL d0 dU 
Standard 
Deviation 

X1 Normal 0.0 5.0 10.0 0.3 
X2 Normal 0.0 5.0 10.0 0.3 

 

 
 

Figure 6: Cost and constraint functions plot 
 
It is worth mentioning that there is no need to construct the conservative surrogate model from the initial design 
point. In the proposed RBDO process, the deterministic design optimization is carried out first. The RBDO process 
starts from the deterministic optimum thereafter. The conservative surrogate model will be constructed for the 
RBDO process only. In this example, the deterministic optimum is x = [5.19, 0.74] (which is the magenta cross in 
Fig. 7), and the number of samples in the local window is fixed to 10 samples from the Latin hypercube sampling 
method. Since 10 samples may not be enough to construct the accurate surrogate models, the conservative 
surrogate models using the proposed weighted Kriging variance from Eq. (21) are generated for two active 
constraints G1 and G2. For comparison study, the conservative surrogate models using the constant safety margin 
from Eq. (17) are also generated. The sampling-based RBDO is carried out using these two different conservative 
surrogate models, and the optimum designs are compared in Table 2 and plotted in Fig. 7. The C% level is set to be 
90% in this example. 
In Fig. 7, it can be seen that the surrogate model from the dynamic Kriging model itself, which is the blue line, 



 
 

underestimates the true response and results in danger for the obtained optimum design d = [4.7432, 1.5391] (blue 
cross in Fig. 7) as the probability of failure for G2 is 2.4992%, which is larger than the target probability of failure 
2.275%, as shown in Table 2.  Therefore the conservative surrogate model is indeed necessary for counting in the 
uncertainty from the surrogate model and assuring that the optimum design can satisfy the probabilistic constraints. 
By using the weighted Kriging variance for the conservative surrogate model, which is the red line in Fig.7, the 
obtained RBDO optimum design is d = [4.7020, 1.5801], which is the red cross in Fig. 7, and the cost function 
value, the probability of failure for G1, and the probability of failure for G2 are -1.8956, 2.0654%, and 1.6313%, 
respectively. As a comparison, the constant safety margin approach gives a more conservative optimum design d = 
[4.6510, 1.6205] (the green cross in Fig. 7) where the probability of failure for G1 and G2 are 1.8354% and 
0.9455%, respectively; and the cost function value is -1.8783. From the results in Table 2, one can see that the 
conservative surrogate model using the weighted Kriging variance can assure the optimum design satisfying the 
probabilistic constraints and has a better optimum design in terms of cost function compared to the conservative 
surrogate model using the constant safety margin approach.  
 

 
Figure 7: Different conservative surrogate models and optimum designs 

 
Table 2: Optimum designs from different surrogate models and the probability of failure at the optimum 

 

Methods Cost Optimum Design 
MCS (5M) 

1FP , % 
2FP , % 

Surrogate 
Model 

Dynamic Kriging -1.9136 4.7432, 1.5391 2.3256 2.4992 
Constant Safety Margin -1.8783 4.6510, 1.6205 1.8354 0.9455 

Weighted Kriging Variance -1.8956 4.7020, 1.5801 2.0654 1.6313 
Analytical  -1.9079 4.7351, 1.5518 2.2715 2.2633 

 
When using the surrogate model for sampling-based RBDO, the sample profile may affect the result as well. A 
good sample profile for dynamic Kriging may end up having a better surrogate model. Therefore, to investigate 
whether the proposed weighted Kriging variance for the conservative surrogate model has a stable performance, a 
statistical study is carried out. In this statistical study, 50 sets of 10-LHS samples are generated. For each sample 
set, the sampling-based RBDO is carried out using both the weighted Kriging variance approach and the constant 
safety margin approach. The comparison for cost function value and the probability of failure at the optimum are 
shown in Table. 3.  
 

Table: 3 Cost function and probability of failure at optimum design (50 trials) 
 

Methods 
Cost 

 (Median) 
1FP , % 

(Median) 
2FP , % 

(Median) 

# of Violation 
G1 

# of Violation 
 G2 

Dynamic Kriging -1.9164 2.2982 2.3232 1 28 
Constant Safety Margin -1.8809 1.9002 0.9519 0 1 



 
 

Weighted Kriging Variance -1.8981 2.1352 1.6287 0 3 
 
In Table 3, when using the dynamic Kriging method itself, the optimum designs violate the probabilistic constraint 
G2 28 times out of 50 trials. It shows that the dynamic Kriging prediction either underestimates the true response or 
overestimates the true response at a rough 50% chance for each way. By using the weighted Kriging variance for 
the conservative surrogate model, the obtained optimum designs violate the probabilistic constraint G2 three times. 
As a comparison, if the constant safety margin is used for the conservative surrogate model, the number of 
violations for G2 is 1 time out of 50 trials. Constraint G1 is not violated in both conservative surrogate modeling 
cases due to its linearity. The median cost function value at the optimum (which is -1.8809) using the constant 
safety margin is larger than the one by using the weighted Kriging variance, which is (-1.8981). It is worth 
mentioning that since the conservativeness level in this example is set to be 90%, both the constant safety margin 
approach and the weighted Kriging variance approach satisfy the conservativeness. However, the weighted 
Kriging variance approach provides a better optimum in terms of the cost function value. 
 
7. Conclusion 
When applying the surrogate model for optimization problems, the conservative surrogate model using the upper 
bound of the Kriging prediction interval is not desirable because it generates multiple local optimums at the sample 
points. The conservative surrogate model using the constant safety margin does not distinguish the uncertainty of 
the surrogate model at different sample locations, and often the obtained optimum becomes over-conservative 
where samples are dense and under-conservative where samples are sparse. A weighted Kriging variance using the 
changes in AICc of the Kriging model to quantify the importance from each sample point is proposed to construct 
a conservative surrogate model that does not generate unnecessary local optimum and distinguishes the uncertainty 
of the surrogate model at different sample locations. By applying the weighted Kriging variance for the 
conservative surrogate model in the sampling-based RBDO problem, the obtained optimum satisfies the 
probabilistic constraints at the conservativeness level and achieves a better optimum in terms of cost function value 
compared with the optimum using the constant safety margin. 
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