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INTRODUCTION: 
 

A tracked free-hand ultrasound system is ideal for guiding many radiotherapy 

procedures, as it can be performed in the treatment room. In partial breast irradiation, 

the lumpectomy cavity should be localized during the treatment course. While many 

structures in the breast look similar to the lumpectomy cavity in ultrasonography, the 

scar tissue around the cavity is hard and can be visualized by ultrasound 

elastography. To be clinically successful, the elastography method needs to be robust 

to the sources of decorrelation between ultrasound images, specifically fluid motions 

inside the cavity, change of the appearance of speckles caused by compression and 

physiologic motions, and out-of-plane motion of the probe. We presented a novel 

elastography technique that was based on Dynamic Programming (DP) and analytic 

minimization of a regularized cost function. The cost function incorporates similarity 

of RF data intensity and displacement continuity, making the method robust to 

decorrelation noise present throughout the image. We exploited techniques from 

robust statistics to make the method resistant to large decorrelations caused by 

sources such as fluid motion. The analytic displacement estimation worked in real-

time. We further used the tracked data, used for targeting the irradiation, for 

discarding frames with excessive out-of-plane motion. In this method, we introduced 

an “optimal frame selection function” which selected the best frames –using the 

tracking data- to generate high quality elasticity images. In addition, we have 

extended the 1D method to 2D, meaning that we can calculate tissue displacements 

more completely. The 2D method follows the path of the 1D method in optimizing 

regularized cost functions and is also real-time. And finally, we have developed a 3D 

elasticity imaging technique based on DP and analytic minimization of a cost 

function for volumetric imaging of the elasticity.  

 

We also introduced Kalman filtering for calculating strain images. The Kalman filter 

allows estimating low variance strain images, while it doesn’t eliminate boundaries 

by over-smoothing the strain images. A major contribution has also been made in 

utilizing multiple ultrasound images to calculate the elasticity image. Displacement 

estimation is an essential step for ultrasound elastography and numerous techniques 

have been proposed to improve its quality using two frames of ultrasound RF data. 

We introduced a technique for calculating a displacement field from three  (or 

multiple) frames of ultrasound RF data. To calculate a displacement field using three 

images, we first derive constraints on variations of the displacement field with time 

using mechanics of materials. These constraints are then used to generate a 

regularized cost function that incorporates amplitude similarity of three ultrasound 

images and displacement continuity. We optimize the cost function in an expectation 

maximization (EM) framework. Iteratively reweighted least squares (IRLS) is used 

to minimize the effect of outliers. We show that, compared to using two images, the 

new algorithm reduces the noise and eliminates ambiguities in displacement 

estimation. The displacement field is used to generate strain images for quasi-static 

elastography. 
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BODY: 
 

We are very excited to report the novel achievements of this research effort. The 

detailed Statement of Work tasks and a description below each task is provided next. 

The SOW tasks are in blue. A description of the research effort follows each SOW 

item in black. 

 

 

1. Obtain ultrasound (US), US elastography (USE) and CT scans before the 

start of the radiotherapy. 

a. Develop a tracked US system for data collection (month 1). We will 

use Polaris optical tracker, already available in the ERC-CISST for tracking. Polaris 

markers will be attached to the US probe and the US probe will be calibrated with 

respect to the trackers. 

 

Polaris optical tracker gives very accurate displacement measurements. However, 

they require line of sight (as they are optical) and also they take longer time to set up 

in a CT imaging room. Because of the time constraints (we had a short amount of 

time to set up the tracking device in the CT room before the patient shows up), we 

instead used magnetic trackers. Magnetic trackers are not as accurate as Polaris and 

suffer from distortion of magnetic field due to presence of metals. However, they do 

not require line of sight and also easier to set up and also are inexpensive. We started 

by using a Polaris camera to collect position data. However, setting up the camera 

was cumbersome and the limited time that we had in the CT room did not allow the 

required preparations. Therefore, we opted for a magnetic tracker and continued data 

collection using a magnetic tracker. 

 

 

b. Collect US data from patient before the PBI treatment at the same 

time that CT is collected (months 2-14). 

 

We have collected data from 16 patients so far. All data was acquired in the CT 

room while the patient was lying down on the CT bed. The patient did not move 

after ultrasound data was acquired until her CT scan was finished. We have acquired 

both 3D ultrasound data (freehand data, no 3D probe is used) and palpation data (for 

elastography). More details of the system are in the attached paper (MICCAI 

conference, 34% acceptance rate, MedLine and ISI indexed and listed). I received 

travel award from MICCAI (only 7 students received this award) to present this 

work. 

 

Our approach introduces minimal divergence from the original workflow of PBI 

treatment. We have an approved institutional review board (IRB) protocol to obtain 

B-mode and strain images from patients who undergo lumpectomy. We acquire the 

ultrasound data when the patients return for the CT scan four weeks after the 

surgery. The data includes tracked B-mode images scanned over the lumpectomy 

bed, tracked real-time strain images, and RF dara synchronized with the tracking 
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information for o!-line processing. We have devised a data collection system for 

this purpose shown in Figure 1. 

 

Before acquiring the CT scan, four CT-compatible fiducials are placed around the 

scar of the surgery on patient’s breast. These fiducials are additional to the ones that 

are commonly placed on patient’s chest and the resting foam bed. The foam bed, 

shown in Figure 1 maintains the configuration of patient’s body during the 

treatment. The extra fiducials are used to locally align the CT and ultrasound data, 

and the regular ones are used for targeting at the time of irradiation.  

 

 

 
 

Figure 1. The Polaris camera (NDI, Waterloo, Canada) tracks the 3D orientation of 

the ultrasound probe by detecting the 4 bright spheres attached to the ultrasound 

transducer.  

 

 

 

The patient remains in the same resting position after the CT scan. As the first step, 

the sonographer digitizes the location of the fiducials with a calibrated stylus by 

simply touching each of the four fiducials with the stylus in a certain order 

prescribed in our protocol. Afterwards, the sonographer sweeps the ultrasound 

transducer over the lumpectomy bed collecting at least 500 B-mode images. Then 

within a few seconds, the program constructs the ultrasound volume from the 

collected images. Next, the sonograhper obtains individual tracked strain images 

from the areas of interest by gently moving the ultrasound transducer up and down. 

The visualization program demonstrates the flying strain image over the ultrasound 

volume (Figure 2). Depending on each case, we acquire a minimum of 200 strain 

images. Lastly, we record sequences of RF signals as the sonographer compresses 
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and decompresses the tissue. The RF data synchronized with the tracking 

information facilitates more elaborate strain imaging techniques.  

 

 

 
Figure 2. The visualization software shows 3D ultrasound and strain images. 

 

 

To generate 3D ultrasound, we have developed a novel method that uses the 

ultrasound scatterers to create a high quality 3D volume. Out-of-plane motion in 

freehand 3D ultrasound can be estimated using the correlation of corresponding 

patches, leading to sensorless freehand 3D ultrasound systems. The correlation 

between two images is related to their distance by calibrating the ultrasound probe: 

the probe is moved with an accurate stage (or with a robot in this work) and images 

of a phantom are collected, such that the position of each image is known. Since 

parts of the calibration curve with higher derivative gives lower displacement 

estimation error, previous work limits displacement estimation to parts with 

maximum derivative. In this paper, we first propose a novel method for exploiting 

the entire calibration curve by using a maximum likelihood estimator (MLE). We 

then propose for the first time  using constrains inside the image to enhance the 

accuracy of out-of-plane motion estimation. We specifically use continuity 

constraint of a needle to reduce the variance of the estimated out-of-plane motion. 

Simulation and real tissue experimental results are presented. The published paper 

attached at the end of the report titled “Novel Reconstruction and Feature 

Exploitation Techniques for Sensorless Freehand 3D Ultrasound” thoroughly 

explains this technique. 
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c. Register US to the CT (months 2-14).  

 

We advanced significantly and proposed exciting new avenues for further work in 

developing novel techniques for elastography, which is the major contribution of this 

research proposal. Therefore, we have not had enough time to focus on this task. 

However, we have performed registration of US and CT using the tracking 

information (obtained from the Polaris camera). The registration is included in the 

data acquisition software, which enabled fast and smooth data collection and 

visualization. The application interfaces with the ultrasound machine and the tracker 

(optical or magnetic), synchronizes, records, and visualizes the data. It is 

implemented in C++ with a multi-threaded scheme for better performance. We have 

also developed a simple and intuitive graphical user interface (GUI). 

 

B-mode images and transducer locations are continuously stored in two circular 

buffers in separate threads with the highest rate possible. A time-stamp with 

microsecond accuracy is also recorded along with the captured data. A constant 

delay calculated off-line is applied to synchronize the stream of data. Acquisition of 

B-mode images is fast, and the region of interest can be scanned within a few 

seconds. The maximum rate of storing data is bounded with the minimum of frame 

rate of the B-mode images and the tracker. However, the user can set the rate of data 

storage to a lower rate through the GUI if needed. Due to the high data rate and large 

frame sizes captured per second (typically 10 to 30 frames per second), immediate 

saving to the hard drive may result in unexpected delays or loss of frames. 

Therefore, the data is first stored in the random access memory (RAM) of the 

computer and stored in hard disk only when the data collection is stopped. 

 

Once the B-mode scan is acquired, the program constructs a 3D-US volume. The 

volume is presented as three orthogonal slices that can be freely translated and 

rotated in space as shown in Figure 2. VTK (Kiteware Inc.) is mainly used for the 

visualization and reslicing tasks (Figure 3). The real-time strain images are captured 

in the same manner except that the strain plane is overlaid on 3D-US. In addition, 

the program can sends commands to ultrasound machine for capturing sequences of 

RF data. When the ultrasound machine receives the command, captures and saves 

one sequence of RF frames, while our program records the tracking information. 
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Figure 3. Registration of CT and ultrasound. (a) Shows a CT image, sliced in 3D 

(using interpolation) to match the ultrasound image, whose orientation is known 

from the tracking information. In (b), the square region of (a) is magnified. (c) shows 

the corresponding ultrasound image. 

 

In addition, we performed some efforts to improve the tracking-based registration 

results of Figure 3 by generating a pseudo-ultrasound image from the CT volume 

and registering the CT and ultrasound through the pseudo-ultrasound, but the 

preliminary results were not satisfactory, and we decided to use the tracking-based 

registration results of Figure 3. 

 

 

 

d. Compare different combination of US, USE and CT for 

delineation (months 3-18).  

 

We have done preliminary studies on comparing the performance of the operator 

with different imaging modalities. While it is intuitive that adding ultrasound and 

elastography enhance the delineation of the lumpectomy bed, we have not achieved 

a conclusive result yet. 

 

 

e. Optimize USE code for using the human data (months 3-24). I have 

developed a novel USE technology and software under a Breast Cancer Research 

Foundation research. The work thus far has been extremely promising: a manuscript 

has already been accepted for publication in the IEEE Trans. Med. Imag. I will be 

further improving my USE implementation to enhance visualization of the 

lumpectomy bed and ductal tissue. 
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Extremely promising results have been obtained in this area. We have developed 

new elastography techniques that generate superb images from the human data. In J1 

(cited below and attached to the report), we introduced a 2D strain imaging 

technique based on minimizing a cost function using dynamic programming (DP). 

The cost function incorporates similarity of echo amplitudes and displacement 

continuity. Since tissue deformations are smooth, the incorporation of the 

smoothness into the cost function results in reduced decorrelation noise. As a result, 

the method generates high quality strain images of freehand palpation elastography 

with up to 10% compression, showing that the method is more robust to signal 

decorrelation (caused by scatterer motion in high axial compression and non-axial 

motions of the probe) in comparison to the standard correlation techniques.  The 

method operates in less than 1 second and is thus also potentially suitable for real 

time elastography. In J2 (cited below and attached to the report), we further 

proposed an analytic minimization technique for strain estimation that generates 

smooth strain images from the DP USE images. In C1 (cited below and attached to 

the report), we proposed to exploit tracking information to select the best frames for 

USE, and showed that optimal frame selection enhances the USE quality. In C2 

(cited below and attached to the report), we introduce a technique for calculating a 

displacement field from three frames of ultrasound RF data. To this end, we first 

introduced constraints on variations of the displacement field with time using 

mechanics of materials. These constraints are then used to generate a regularized 

cost function that incorporates amplitude similarity of three ultrasound images and 

displacement continuity. We optimize the cost function in an expectation 

maximization (EM) framework. Iteratively reweighted least squares (IRLS) is used 

to minimize the effect of outliers.  We show that, compared to using two images, the 

new algorithm reduces the noise of the displacement estimation. The displacement 

field is used to generate strain images for quasi-static elastography.  

 

 

C1. Rivaz, H., Foroughi, P., Fleming, I., Zellars, R., Boctor, E., Hager, G., Tracked 

Regularized Ultrasound Elastography for Targeting Breast Radiotherapy, Medical 

Image Computing and Computer Assisted Intervention, MICCAI, London, UK, 

Sept. 2009, pp 507-515 [acceptance rate: 33%] Conference listed in PubMed and 

papers treated and cited similar to high-impact factor journal papers. 

 

C2. Rivaz, H., Boctor, E., Choti, M., Hager, G., “Ultrasound Elastography Using 

Multiple Images”, IEEE Trans. Medical Imaging [acceptance rate: 30%]. Conference 

listed in PubMed and papers treated and cited similar to high-impact factor journal 

papers. 

 

J1. Rivaz, H., Boctor, E., Foroughi, P., Zellars, R., Fichtinger, G., Hager, G., 

Ultrasound Elastography: a Dynamic Programming Approach, IEEE Trans. Medical 

Imaging, Oct. 2008, vol. 27 pp 1373-1377 

 

J2. Rivaz, H., Boctor, E., Choti, M., Hager, G., Real-Time Regularized Ultrasound 

Elastography, IEEE Trans. Medical Imaging April 2011, vol. 30 pp 928-945.  
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f. Performance optimization and refinements of subsystems (months 

18-36). 

 

The ultrasound elastography subsystem is almost finalized. We have made the code 

also available to the public
1
, so that groups who work in different applications of 

ultrasound elastography can exploit our novel and high-quality elastography 

estimation technique. We could confidently say that the method can be implemented 

commercially with small modifications.  

 

 

 

2. Obtain tracked US and USE scans of the patients weekly during the 

radiotherapy (months 2-14). This data will be acquired from the same patients 

from whom US and USE data were acquired in step 1.b. 

 

As mentioned in the 1b Section, elastography and ultrasound images are both 

acquired from patients. 

 

 

 

3. Develop US to US registration (month 25-27). This task is partly solved in 

task 1.c. (US to CT registration). As mentioned, US to US registration is one of the 

steps required in US to CT registration. I will optimize this step to work with breast 

images, as opposed to simulation images in task 1.c. 

 

As mentioned before, registration of the pseudo-ultrasound to the ultrasound images 

are required to perform CT to ultrasound registration. Please refer to the task 1.c for 

more details. 

 

 

KEY RESEARCH ACCOMPLISHMENTS: 
 

• Development of a novel, real-time, robust and high quality elastography 

techniques 

• Development of a tracked ultrasound system using magnetic trackers 

• Development of a technique for 3D volumetric ultrasound imaging using US 

image data 

• Study of ultrasound images of lumpectomy cavity 

• Study of elastography images of lumpectomy cavity 

• Data acquisition from more than 15 patients 

• Developed the 2D AM method which calculates high quality 2D strain images 

in real-time 

                                                
1
 Available online at www.cs.jhu.edu/~rivaz/Ultrasound_Elastography  
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• Introduced ElastMI (Elastography using Multiple Images), a novel method 

which generates high quality strain images by utilizing multiple ultrasound images. 

 

 

 

 

REPORTABLE OUTCOMES: 
 

C1. Rivaz, H., Foroughi, P., Fleming, I., Zellars, R., Boctor, E., Hager, G., Tracked 

Regularized Ultrasound Elastography for Targeting Breast Radiotherapy, Medical 

Image Computing and Computer Assisted Intervention, MICCAI, London, UK, 

Sept. 2009, pp 507-515 [acceptance rate: 33%] Conference listed in PubMed and 

papers treated and cited similar to high-impact factor journal papers. 

 

C2. Rivaz, H., Boctor, E., Choti, M., Hager, G., “Ultrasound Elastography Using 

Multiple Images”, IEEE Trans. Medical Imaging [acceptance rate: 30%]. Conference 

listed in PubMed and papers treated and cited similar to high-impact factor journal 

papers. 

 

C3. Rivaz, H., Fleming, I., Assumpcao, L., Fichtinger, G., Hamper, U., Choti, M., 

Hager, G., Boctor, E., Ablation Monitoring with Elastography: 2D In-vivo and 3D 

Ex-vivo Studies, Medical Image Computing and Computer Assisted Intervention, 

MICCAI, New York, NY, Sept. 2008, pp 458-466 [acceptance rate: 33%]. 

 

C4. Foroughi, P., Rivaz, H., Fleming, I., Hager, G., Boctor,  E.  “Tracked 

Ultrasound  Elastography (TrUE)”,  Medical Image Computing and Computer 

Assisted Intervention, MICCAI, Beijing, China, Sept. 2010, pp 9-16 [Acceptance 

rate: 32%] 

 

C5. Rivaz, H., Kang, H., Stolka, P., G. Hager, Boctor, E. “Novel reconstruction and 

feature exploitation techniques for sensorless freehand 3D ultrasound”, SPIE Med. 

Imag., 2010, pp 76291D1-76291D9 

 

J1. Rivaz, H., Boctor, E., Foroughi, P., Zellars, R., Fichtinger, G., Hager, G., 

Ultrasound Elastography: a Dynamic Programming Approach, IEEE Trans. Medical 

Imaging, Oct. 2008, vol. 27 pp 1373-1377 

 

J2. Rivaz, H., Boctor, E., Choti, M., Hager, G., Real-Time Regularized Ultrasound 

Elastography, IEEE Trans. Medical Imaging April 2011, vol. 30 pp 928-945.  
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Training: 

 
The training obtained during the year of 2010 was mainly in the following forms: 

• Reading papers related to partial breast radiation therapy techniques 

• Helping in preparation of Institutional Review Boards (IRB) for patient trials 

• Meetings with radiation oncologists on the problems of current breast 

radiotherapy workflow 

• Analyzing and enhancing the CT, ultrasound and strain images obtained from 

the lumpectomy 

• Setting up the image acquisition setup for imaging lumpectomy patients and 

helping in CT and ultrasound data collection. 

 

 

 

CONCLUSION:  
 

Data acquisition from lumpectomy patients went smoothly. We acquired the 

ultrasound data few minutes before the CT scan was acquired. This means that we 

did not alter the current medical work-flow. Ultrasound data acquisition took only 

few minutes, minimizing the cost and patient discomfort. Magnetic tracking 

provided ease of use and enough reliability for registration of ultrasound to CT 

images and for reconstructing 3D volumes from 2D data. The novel ultrasound 

elastography technique has many advantages compared to the previous methods. We 

chose the novel application of the lumpectomy cavity localization as the hard scar 

tissue around the lumpectomy is relatively thin and demands a high resolution 

elastography method. Also, incoherent fluid motions in the cavity causes large 

decorrelations, requiring a robust method. Due to the hard and noisy ultrasound 

images acquired from lumpectomy patients, we developed robust image analysis 

techniques, namely the Dynamic Programming (DP) elastography method as 

explained before, the Analytic Minimization (AM), Kalman filtering  and Iteratively 

Reweighted Least Squares (IRLS) USE methods as explained before, the 

Elastography Using Multiple Images (ElastMI) framework for exploiting multiple 

images to enhance USE quality, and the Expectation Maximization (EM) method for 

3D volumetric ultrasound generation using the ultrasound scatterer information. We 

also believe that USE is useful also for imaging breast tumors to reduce the number 

of biopsy referrals, as USE is an extremely more convenient and less expensive 

option.  
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Ultrasound Elastography: A Dynamic
Programming Approach

Hassan Rivaz*, Emad Boctor, Pezhman Foroughi, Richard Zellars, Gabor Fichtinger, and Gregory Hager

Abstract—This paper introduces a 2-D strain imaging technique
based on minimizing a cost function using dynamic programming
(DP). The cost function incorporates similarity of echo ampli-
tudes and displacement continuity. Since tissue deformations are
smooth, the incorporation of the smoothness into the cost function
results in reduced decorrelation noise. As a result, the method
generates high-quality strain images of freehand palpation elas-
tography with up to 10% compression, showing that the method
is more robust to signal decorrelation (caused by scatterer motion
in high axial compression and nonaxial motions of the probe) in
comparison to the standard correlation techniques. The method
operates in less than 1 s and is thus also potentially suitable for
real time elastography.

Index Terms—Dynamic programming, freehand ultrasound
(US), real time strain imaging, regularization, ultrasound elastog-
raphy.

I. INTRODUCTION

E LASTOGRAPHY, the computation of the spatial varia-
tion of the elastic modulus of tissue, is an emerging med-

ical imaging method with medical applications such as tumor
detection [1]. This paper focuses on static elastography, a well-
known technique that applies quasi-static compression of tissue
and simultaneously images it with ultrasound. Through analysis
of the ultrasound images, a tissue displacement map can be ob-
tained [2], [3]. A least squares technique is then typically used
to generate a low noise strain estimate from the displacement
map [2].

Despite having numerous potential clinical applications, sev-
eral practical challenges have hindered wide application of static
elastography. First, signal decorrelation between the precom-
pression and postcompression images induces significant noise
in the obtained displacement map and is one of the major lim-
iting factors in elastography [4]. Major sources of signal decor-
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relation are scatterer motion in high axial compression, nonaxial
motions of the probe, and physiologic motion. Most elastog-
raphy techniques estimate local displacements of tissue based
on correlation analysis of radio-frequency (RF) echoes [2], [3].
Large windows are required to reduce the variance (i.e., noise)
of the estimated displacement and to avoid ambiguity in time
delay estimation, especially when tracking a motion that ex-
ceeds one wavelength. At the same time, signal decorrelation
within large windows limits the tolerable level of compression
[2]–[4]. To reduce signal decorrelation, stretching methods have
been proposed [5], [6], which are computationally expensive
and are not suitable for real-time elastography. Moreover, large
errors due to false peaks and smaller errors due to jitter [7] limit
the performance of correlation techniques.

Second, in many methods, the compression is applied by a
mechanical actuator in order to generate an excitation that mini-
mizes signal decorrelation [1], [8] or because accurate motion is
otherwise required by the particular elastography technique [9].
Freehand palpation elastography is a much more attractive alter-
native, as it requires no extra hardware and provides ease of use.
It has attracted increasing interest in recent years [8], [10]–[13],
however it introduces additional sources of signal decorrelation
caused by operator’s hand unwanted motion.

Third, elastography is computationally expensive, making it
challenging to display elastograms in real time. Real-time elas-
tography provides the feedback to the operator to best capture
the region of interest in the elastogram and is required for image
guided surgical operations that can potentially use elastograms.
Combined autocorrelation method [14] and phase zero estima-
tion [15] are the first work that generate real-time elastograms.
Hall et al. [12] have presented a real-time elastography system
where tissue compression is performed by freehand palpation
based on a 2-D block matching algorithm. Dynamic program-
ming is used for one A-line of the image for guiding the block
matching algorithm [16]. While these methods use the displace-
ment of each window to confine the search range for the neigh-
boring windows, the displacement of each window is calculated
independently and hence are sensitive to signal decorrelation.

In work closely related to this paper, Pellot-Barakat et al. [17]
have proposed minimizing an energy function that combines
constraints of conservation of echo amplitude and displacement
continuity. Since data alone can be insufficient to solve ambi-
guities due to signal decorrelation, the physical priors of tissue
motion continuity increases the robustness of the technique. The
RF data is first upsampled by a factor of four in the axial direc-
tion. The image is then subdivided into four parts and a coarse
displacement map is calculated for each part iteratively. Each
part is subsequently divided into four parts and the displace-
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ment of each part is calculated by the same iterative technique
using the displacement of the parent grid as an initial guess. The
method is shown to generate accurate low noise displacement
fields. However, the computation time is reported to be more
than 1 min for a strain image that is less than half of the number
of pixels in the strain images generated in this paper. Hence, the
method is not immediately suitable for real time elastography.

The contribution of this paper is the demonstration of the
feasibility of an elastography technique based on dynamic pro-
gramming (DP) for image matching [18]. Compared to other
optimization techniques, DP is an efficient noniterative method
of global optimization [19], [20]. However, it can only be used
to optimize causal cost functions (Section II).

II. ONE-DIMENSIONAL DISPLACEMENT ESTIMATION USING DP

Devising a DP algorithm for optimization involves the fol-
lowing.

1) Breaking the total optimization cost into a sum of indi-
vidual costs, such that each cost corresponds to a discrete
decision. The decisions should follow each other sequen-
tially and the cost corresponding to each decision should
only depend on the previous and not the future decisions
(causality).

2) Determining what decisions are possible at each stage.
3) Writing a recursion on the optimal cost from the first stage

to the final stage.
We first consider the problem of 1-D strain estimation with

1-D smoothness regularization. Consider two echo signals
and corresponding to two A-lines acquired before and after
compression (Fig. 1, left), each signal sampled at .
The difference between the two signals can be quantified
using sum of absolute differences (SAD), which is computation-
ally inexpensive to compute and has been shown to have good
robustness against outliers [21], [20]

(1)

where is the displacement at the sample
(Fig. 1, left) and and specify the allowed displace-
ment. Gains of RF data can be changed in ultrasound machines
to improve visualization. To reduce the effect of these changes
on , both precompression and postcompression ultrasound im-
ages are divided by the maximum value of one of the images.
The smoothness of the displacements is

(2)

where is the displacement at the sample and is the
displacement at the sample of the . To avoid large
jumps in the displacement, should be strictly convex

(3)

i.e., a small jump and a large jump (left-hand side) are penalized
more than two medium jumps (right-hand side). This holds for
even , we choose : for larger jumps are more
heavily penalized which adversely affects contrast to noise ratio.

Fig. 1. In the left, values of and corresponding to precompression
and postcompression RF data are compared. Right shows the cost function
of (4) (white and black represent low and high cost values, respectively).

The cost function at a point and associated displacement
is defined as a recursive function

(4)
where is a regularization weight which governs smooth-
ness. The study of its effect on the estimated displacement is
postponed to the discussion of 2-D displacement estimation
in Section III-A. The values of the function are stored in a

matrix (Fig. 1, right).
Generally, the optimum value of should be sought in the

entire range. However, since the strain value is low
in elastography, it is expected and desired that at each sample of
RF data, the change between the displacement of a sample and
its previous sample is not more than 1. Therefore, the search
range of optimum value for is limited to the three values of

, and , which results in a significant gain in speed.
This limit on the search range does not affect the results even in
a high strain of 10%: is zero for nine samples and one for
the tenth sample on average. The value of that minimizes
(4) is also “memoized” [19] in a function for later use

(5)

The cost function is calculated for . The minimum
cost at gives the displacement of this point, which is
traced back to using the function to calculate all the
displacements ( )

(6)

The displacement map of all A-lines is calculated using the same
procedure independently. In Section III, we present a method for
coupling adjacent A-lines.

A. Hierarchical Search and Subpixel Displacement Estimation

Further speedup is achieved by downsampling the signal
by a factor of to , and comparing it with the unaltered
signal . This is done by simply skipping samples
from and performing DP on the th sample, as illustrated
in Fig. 2 left. This generates integer displacement estimations at

samples. The displacement of the skipped samples is then
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Fig. 2. In the left, the cost function is shown when DP is performed on
( downsampled by a factor of ) and (not downsampled). Hashed
squares indicate no cost calculation is performed due to downsampling of ,
and white and black representing low and high cost values respectively. Dis-
placement is calculated at samples in this stage ( in this figure).
In right, a new cost function around the optimum path of the first stage’s cost
function (the dashed line) is created, giving a displacement
accuracy at samples.

simply approximated by the linear interpolation of two neigh-
boring points whose displacements are calculated, as an initial
guess for the next step.

The displacement estimates are then refined to subpixel dis-
placement estimation at all samples. The original signal
(not downsampled) is compared with upsampled by a
factor of (Fig. 2 right) using parabolic interpolation. Repeating
the refinement procedure times results in a refinement factor
of .

In cross correlation methods, subsample displacement is usu-
ally achieved by interpolation of the correlation function [22],
which is subject to bias and jitter [22], [23]. Here, we interpo-
late the original RF data instead, which is shown to have similar
performance [23]. Although cosine-fit outperforms parabolic-fit
interpolation in terms of bias and jitter [22], [23], the latter is
used here for computational simplicity.

B. Results

For experimental evaluation, RF data was acquired from
an Antares Siemens system (Issaquah, WA) with a 7.27-MHz
linear array at a sampling rate of 40 MHz. For the purposes of
comparison, strain images were also calculated using a standard
cross correlation method with a 3-mm window size and 80%
overlap and a three point parabolic interpolation to find the sub-
sample location of the correlation peak [22]. Linear regression
with a 5-sample window is performed on the displacement field
to calculate strain. Normalization was performed to decrease
the dynamic range of the strain images: any strain value outside

was set to to eliminate the outliers in the strain
map ( and are the mean and standard deviation of the strain
values across the whole image). The unitless performance
metric signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) were calculated according to [2]

(7)

where and are the spatial strain average of the target and
background, and are the spatial strain variance of the

Fig. 3. (a)-(c) strain images obtained from freehand palpation of the phantom
using cross correlation, cross correlation with a 3 3 median filter applied on
the displacement image and 1-D DP respectively. The target window is fixed on
the lesion and the background window is moved to allow multiple CNR calcu-
lation. (d) Normalized CNR values of the lesion, obtained by dividing each bin
by the total of 36 CNR measurements. (e) SNR values of the cross correlation
and 1-D DP techniques. (f) Strain images obtained from freehand palpation of
the phantom using 2-D DP.

target and background, and and are the spatial average and
variance of a window in the strain image, respectively.

In the first experiment, a breast elastography phantom (CIRS,
Norfolk, VA) with a lesion of 10 mm diameter and three times
stiffer than the background was palpated freehand. In consecu-
tive images, where axial compression is low and there is little
nonaxial motion, both methods perform well. However, as the
axial compression and attendant nonaxial motion increase, the
DP method outperforms the cross correlation method. Fig. 3(a)
shows the strain image obtained with cross correlation. In
Fig. 3(b), a 3 3 median filter is applied to the displacement
measurements, before differentiation, as a 2-D continuity
check. Fig. 3(c) shows the strain image obtained with the 1-D
DP method. A high level of lateral motion, slightly more than 2
A-lines, at the left of the image and high axial strain cause the
cross correlation method to fail. To calculate the CNR values
the target window was selected as specified in the figure. The
background window was then moved across the strain image
(with 3.8 mm margin from all four sides and from the lesion
where the strain is expected to vary considerably) to allow
for a more comprehensive CNR measurement. The histogram
of Fig. 3(d) shows that 1-D DP gives better CNR values: the
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mean value of the 36 CNR measurements for cross correlation,
cross correlation with the 3 3 median filter, and 1-D DP are,
respectively, 2.60, 3.98, and 6.24. The standard deviation value
of CNR for cross correlation, cross correlation with the 3 3
median filter, and 1-D DP are, respectively, 2.08, 2.70, and
4.27, reflecting the changes in strain across the image caused
by medium inhomogeneity and nonuniform loading condition.

To obtain a strain filter [2], a CIRS elasticity QA phantom
with the Young’s modulus of 33 kPa was compressed in 24
steps, each step 0.005 in. The experiment was performed far
from the lesions of the phantom to generate close to uniform
strain due to a uniform compression. The strain map between
the first frame and all other frame was calculated using the cross
correlation and DP methods. The SNR metric was calculated in
a small window located at the top center of the image, where
strain is approximately constant. Fig. 3(e) shows that the 1-D
DP method has a higher dynamic range, an important elastog-
raphy performance metric [2].

III. 2-D DISPLACEMENT ESTIMATION

Until now, we have assumed pure axial compression inde-
pendently estimated on each A-line. However, lateral displace-
ment in a soft material is inevitable even when it undergoes pure
axial compression. This displacement is related to the Poisson’s
ratio, which describes the material compressibility. Also, free-
hand palpation is rarely a pure compression and thus also re-
sults in nonaxial tissue motion. As a result, a 2-D smoothness
regularization that considers the displacements between adja-
cent A-lines is more natural. The DP algorithm of Section II is
modified here to allow for 2-D displacement estimation and 2-D
smoothness regularization.

Assuming that ultrasound images consist of A-lines, the
distance between the pre and postcompression signals is

(8)

where and are the
axial and lateral displacements, respectively, and
refers to th A-line and

(9)

is the smoothness regularization with subscripts and referring
to axial and lateral. The cost function at the th sample of the th
A-line is

(10)

For memoization, and values that minimize the cost
function are stored for all , and values. The specific form
of the cost function allows the calculation of the displacement
of each A-line using the cost values of the previous A-line. The
cost function of the th line, , is calculated and is
minimized, resulting in its displacement map. The
function is also used for the calculation of the next cost function

Fig. 4. Two-dimensional DP results of freehand palpation of the breast
phantom. (a) Strain image with the target window and four background
windows for CNR calculation. (b) CNR values between the target window and
the four background windows on the top, right, bottom and left of the lesion
calculated for different regularization coefficient values in (10).

and is deleted from the memory afterward. This
makes the amount of memory required to store the cost function
values independent of the number of A-lines.

A. Results

To study the effect of the regularization weight on the CNR,
the breast phantom is palpated freehand. For two RF frames,
the elastogram is obtained using the 2-D DP algorithm with dif-
ferent values. CNR is calculated between the shown target
window and the four background windows on top, right, bottom,
and left of the lesion (Fig. 4). At low values, CNR is low
because of high noise in the windows, while at high values
CNR drops because high displacement changes are heavily pe-
nalized. is optimizing the tradeoff between noise
and contrast to maximize CNR, both in the lateral (background
windows on the right and left of the target) and axial (back-
ground windows on the top and bottom of the target) directions.
Since the background windows are close to the lesion, the strain
within each window is not expected to be constant even though
the phantom is homogeneous within them. This variation in the
ground truth strain will be reflected as noise in the CNR cal-
culation which is undesirable. However, we have selected the
windows such that they best capture the effect of on CNR
close to an inhomogeneity, which also contains some resolution
information.

Fig. 3(f) shows the strain image obtained using the 2-D DP
method using the same two frames that are used to generate the
strain images in Fig. 3(a)–(c). The CNR values [Fig. 3(d)] are
calculated for the same target and 36 background windows as
before, giving a mean of 8.96 and a standard deviation of 5.75.
Since the elasticity QA phantom cannot be compressed more
than 4%, we use the breast phantom for experimental evalua-
tion of the strain filter of the 2-D DP method. Fig. 3(e) shows
the SNR values, showing no degradation of the SNR even at a
high strain of 10%. Comparing these results with the 1-D DP
and cross correlation results, a significant increase in the image
quality, CNR value, and maximum allowed strain is achieved.

Substituting other computationally more expensive similarity
measures like normalized cross correlation in the function re-
sulted in no significant difference in the performance. Currently,
the algorithm takes 0.72 s to calculate the displacement map of
each pixel in an image with 1000 100 pixels with maximum
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axial displacement of 10 samples (1% strain) and maximum lat-
eral displacement of A-lines on a 3.8 GHz P4 CPU. The cur-
rent implementation is in MATLAB with the DP optimization
in mex functions.

IV. DISCUSSION AND CONCLUSION

The lateral search is performed in the 2-D DP method only to
decrease the noise and increase the robustness of the axial strain:
the lateral displacements are integer values and are not suitable
for calculating lateral strain. Results of Fig. 3 show that DP is
more robust to the signal decorrelation (caused by scatterer mo-
tion in high axial compression, and lateral and out of plane mo-
tions of the probe) than standard cross correlation techniques.
This iscritically important since it tolerateshigheraxial compres-
sion [Fig. 3(e)], increasing the dynamic range of the elastogram
which is crucial for lesion detection. Nonlinear elastic properties
of tissue also only appear at high strain values [3]. It also gener-
ates low-noise elastograms using almost any two frames in free-
hand palpation, given that they both belong to the same compres-
sion or relaxation cycle of the palpation excitation. Finally, no
postprocessing step such as median filtering is required.

The CNR and SNR metrics seem to indicate that the regu-
larization creates smooth elastograms while preserving contrast.
The only tunable parameter of the method, in (10), was kept
constant at throughout this work. It can also be varied be-
tween 5 and 50, as Fig. 4 indicates, with almost no effect on CNR.
This might indicate that the value optimized for phantom will
work well for real tissue. These features of the DP, along with
its high speed make it a promising elastography method.

DP strain images in Figs. 3 and 4 show some stress concen-
tration around the lesion which is not seen in the corresponding
cross correlation images. We are not sure yet whether this is an
artifact or high strains are created just around the lesion because
of nonlinear mechanical properties of the phantom. We are plan-
ning for validation of the estimated displacement of DP using
simulation and laboratory experiments for clarification. High
strain is also seen on the top edges in both cross correlation and
DP images. The curved shape of the breast phantom is probably
the reason for this high strain: in order for the edges of the probe
to touch the phantom, the part of the phantom just under middle
of the probe has to compress considerably. If the phantom ma-
terial hardens under high strains, the phantom around the edges
experiences higher strain. The absence of this stress concen-
tration in our experiments with noncurved phantoms seems to
prove this.

We have chosen to use the cross correlation as a compara-
tive benchmark to assess the potential of DP. This is because
cross correlation is the most commonly used method and has
been shown to accomplish at least as accurate results as any
other method, and thus it represents a “gold-standard” [24], [23].
However, we are planning for a comprehensive comparison of
the DP with other strain imaging techniques. Further work is re-
quired to study the effect of regularization on resolution [25]. To
achieve real-time performance in freehand palpation imaging,
an adaptive search range selection can be implemented by using
the continuity of displacement in time to confine the search. The
2-D algorithm can be extended to 2-D + to exploit the cost
function in previous time, optimize frame selection [26], and
incorporate a 2-D + regularization.
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Real-Time Regularized Ultrasound Elastography
Hassan Rivaz*, Emad M. Boctor, Michael A. Choti, and Gregory D. Hager

Abstract—This paper introduces two real-time elastography
techniques based on analytic minimization (AM) of regularized
cost functions. The first method (1D AM) produces axial strain
and integer lateral displacement, while the second method (2D
AM) produces both axial and lateral strains. The cost functions
incorporate similarity of radio–frequency (RF) data intensity
and displacement continuity, making both AM methods robust to
small decorrelations present throughout the image. We also exploit
techniques from robust statistics to make the methods resistant to
large local decorrelations. We further introduce Kalman filtering
for calculating the strain field from the displacement field given
by the AM methods. Simulation and phantom experiments show
that both methods generate strain images with high SNR, CNR
and resolution. Both methods work for strains as high as 10% and
run in real-time. We also present in vivo patient trials of ablation
monitoring. An implementation of the 2D AM method as well as
phantom and clinical RF-data can be downloaded.

Index Terms—Kalman filter, radio-frequency (RF) ablation,
real-time ultrasound elastography, regulariation, robust estima-
tion, two-dimensional (2D) strain.

I. INTRODUCTION

E LASTOGRAPHY involves imaging the mechanical
properties of tissue and has numerous clinical appli-

cations. Among many variations of ultrasound elastography
[1]–[4], our work focuses on real-time static elastography, a
well-known technique that applies quasi-static compression of
tissue and simultaneously images it with ultrasound. Within
many techniques proposed for static elastography, we focus on
freehand palpation elasticity imaging which involves deforming
the tissue by simply pressing the ultrasound probe against it.
It requires no extra hardware, provides ease of use and has
attracted increasing interest in recent years [5]–[10]. Real-time
elastography is of key importance in many diagnosis applica-
tions [11], [6], [12], [8], [13] and in guidance/monitoring of
surgical operations [14]–[16].

Global and local decorrelation between the pre- and post-
compression ultrasound images compromises the quality of the
elasticity images. The main sources of global decorrelation in
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freehand palpation elastography are change of speckle appear-
ance due to scatterer motion and out-of-plane motion of the
probe (axial, lateral and out-of-plane directions are specified in
Fig. 1). Examples of local decorrelation are: 1) a decrease in
the ultrasonic signal to noise ratio with depth, 2) low correla-
tion close to arteries due to complex motion and inside blood
vessels due to blood motion, 3) extremely low correlation in le-
sions that contain liquid due to the incoherent fluid motion [17],
[8], and 4) out-of-plane motion of movable structures within the
image [17].

Most elastography techniques estimate local displacements
of tissue based on amplitude correlation [18], [2] or phase corre-
lation of the radio-frequency (RF) echoes [19]–[21]. Assuming
a stationary signal model for the RF data, the use of large cor-
relation windows helps to reduce jitter errors (variance) for all
motion field estimation techniques studied in [18] and [22]. This
is intuitive as larger windows contain more information. How-
ever, in practice RF data is not stationary and, for large deforma-
tions, the decorrelation increases with window size. Therefore,
in addition to reducing the spatial resolution [23], larger win-
dows result in significant signal decorrelation [24], [23], [18].
Coarse-to-fine hierarchical search is used in [23] to combine the
accuracy of large windows with the good spatial resolution of
small window. However, the issue of signal decorrelation within
the window remains unresolved in this approach and can cause
the highest level of the hierarchical search to fail.

All of the aforementioned methods either do not calculate
the lateral displacement or they just calculate an approximate
integer lateral displacement. A 2D displacement field is re-
quired to calculate the thermal expansion, lateral and shear
strain fields [25] (i.e., reconstruct the strain tensor), Poisson’s
ratio and Young’s modulus [26], [27]. The axial resolutions of
ultrasound is determined by the pulse length, and the lateral
resolutions is dictated by the center frequency of the excitation
and the transducer pitch. Therefore, the lateral resolution is of
order of magnitude lower than axial resolution. As a result,
few 2D elastography techniques have been proposed to date.
Initially, 2D motion estimation started in the field of blood flow
estimation using speckle tracking [28]. Designed for blood flow
estimation, these techniques are not immediately suitable for
elastography which involves tissue deformation.

Attaching a coordinate system to the ultrasound probe as in
Fig. 1, , and in the ultrasound image are generally defined
as axial, lateral and out-of-plane directions. Assume that the ap-
plied compression to the tissue is the direction, and attach
a coordinate system to the applied force. Letting
and be the displacements in the and directions where

, axial and transverse strains are and .
In most experimental setups (including freehand palpation elas-
tography), and are parallel and will be either lateral or
out-of-plane, and therefore cannot be estimated accurately.

0278-0062/$26.00 © 2010 IEEE
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Fig. 1. Axial, lateral, and out-of-plane directions. The coordinate system is attached to the ultrasound probe. The sample (i,j) marked by x moved by .
, and are, respectively, axial and lateral displacements and initially are integer in DP.

To calculate an accurate transverse strain, and are perpen-
dicular in [29] by applying the compression force perpendicular
to the ultrasound imaging axis. Therefore, transverse strain is in
the direction of the ultrasound probe and hence can be mea-
sured with high accuracy. However, such an experimental setup
is not possible in many medical applications. Beam steering has
been used to solve this issue [30]. In freehand palpation elas-
tography, beam steering causes and to be unparallel, so
that a component of the is in the direction. The steering
angle determines the angle between and . Unfortunately,
large steering angles are required to obtain accurate estimates
of lateral strain, which is possible in phased arrays and not in
linear arrays.

Lateral strain1 estimation is obtained in [31] by iteratively cal-
culating axial strain, companding RF data and interpolating in
the lateral direction. In another work [32], tissue deformation
is modeled by locally affine transformations to obtain both lat-
eral and axial strains. Change of speckle appearance is taken
into account by proposing a Lagrangian speckle model [33]. Al-
though they provide high quality lateral strain, these techniques
are computationally expensive and are not suitable for real-time
implementation.

Axial strain is used in [34] to enhance the quality of lateral
displacement estimation. Tissue is assumed to be incompress-
ible and isotropic and therefore axial, lateral and out-of-plane
strains should add to zero. However, many tissues cannot be
considered incompressible. In fact, some research has even fo-
cused on imaging the ratio of the axial and lateral strain (i.e., the
Poisson’s ratio ) [31].

While most previously mentioned methods use tissue mo-
tion continuity to confine the search range for the neighboring
windows, the displacement of each window is calculated inde-
pendently and hence is sensitive to signal decorrelation. Since
data alone can be insufficient due to signal decorrelation, Pellot-
Barakat et al. [35] proposed minimizing a regularized energy
function that combines constraints of conservation of echo am-
plitude and displacement continuity. In another work [36], both
signal shift and scale are found through minimization of a regu-

1We hereafter assume the applied force is in the direction (i.e., and are
parallel) and therefore we use the term lateral strain instead of the term trans-
verse strain.

larized cost function. The computation time of these methods
is reported to be few minutes and therefore are not immedi-
ately suitable for real time elastography. In [37] and [38], few
phase-based methods are regularized and strain and elasticity
modulus images are obtained. The regularization term is the
Laplacian (second derivative) of the motion field and is spa-
tially variant based on the peak-value of the correlation coef-
ficient. The regularization makes the method significantly more
robust to signal decorrelation. However, it is still prone to decor-
relation within each window especially for large strain rates. In
a recent work [39], a displacement field is first calculated by
minimizing phase differences in correlation windows [21]. The
strain image is then estimated from the displacement field by op-
timizing a regularized cost function. The regularization assures
smooth strain image calculation from the noisy displacement
estimates.

Dynamic programming (DP) can be used to speed the op-
timization procedure [40], but it only gives integer displace-
ments. Subsample displacement estimation is possible [40], but
it is computationally expensive, particularly if subsample accu-
racy is needed in both axial and lateral directions. Therefore,
only axial subsample displacement is calculated [40]. In ad-
dition, a fixed regularization weight is applied throughout the
image. To prevent regions with high local decorrelation from
introducing errors in the displacement estimation one should
use large weights for the regularization term, resulting in over-
smoothing.

In this paper, we present two novel real-time elastography
methods based on analytic minimization (AM) of cost functions
that incorporate similarity of echo amplitudes and displacement
continuity. Similar to DP, the first method gives subsample
axial and integer lateral displacements. The second method
gives subsample 2D displacement fields and 2D strain fields.
The size of both displacement and strain fields is the same size
as the RF-data (i.e., the methods are not window based and the
displacement and strain fields are calculated for all individual
samples of RF-data). We introduce a novel regularization term
and demonstrate that it minimizes displacement underestima-
tion caused by smoothness constraint. We also introduce the
use of robust statistics implemented via iterated reweighted
least squares (IRLS) to treat uncorrelated ultrasound data as
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outliers. Finally, for the first time to the best of our knowledge
we introduce the use of Kalman filtering [41] for calculating
strain image from the displacement field. Simulation and ex-
perimental results are provided for quantitative validation. The
paper concludes with a clinical pilot study utilizing this system
for monitoring thermal ablation in patients with liver tumors.

II. METHODS

Assume that the tissue undergoes a deformation and let
and be two images acquired from the tissue before and after
the deformation. Letting and be of size (Fig. 1),
our goal is to find two matrices and where the th com-
ponent of and are the axial and lateral motion
of the pixel of (we are not calculating the out-of-plane
motion). The axial and lateral strains are easily calculated by
spatially differentiating in the axial direction (resulting in )
and in the lateral direction (resulting in ). The shear strains
(not calculated in this work) can also be easily calculated by
spatially differentiating in the lateral direction (resulting in

) or in the axial direction (resulting in ).
In this section, we first give a brief overview of a previous

work (DP) that calculates integer values for and . We then
propose 1D analytic minimization (AM) as a method that takes
the integer displacement field from DP and refines the axial
displacement component. We then introduce 2D analytic min-
imization (AM) that takes the integer displacement of a single
RF-line from DP and gives the subsample axial and lateral dis-
placement fields for the entire image. We conclude this section
by presenting a technique for calculating smooth strain field
from the displacement field using Kalman filtering.

A. Dynamic Programming (DP)

In order to present the general DP formulation, we consider a
single column (an RF-line) in (the image before deforma-
tion) in Fig. 1. Let and be the length of the RF-lines and
the number of RF-lines in the images (Fig. 1). Let and de-
note the axial and lateral displacements of the th sample of the
RF-line in column . In DP elastography [40], a regularized cost
function is generated by adding the prior of displacement conti-
nuity (the regularization term) to an amplitude similarity term.
The displacement continuity term for column is

(1)

which forces the displacements of the sample (i.e., and ) be
similar to the displacements of the previous sample (i.e.,

and ). and are axial and lateral regularization
weights respectively. We write to indicate
the dependency of and on . The regularized cost function
for column is then generated as following:

(2)

where and are temporary displacements in the axial and
lateral directions that are varied to minimize the term in the
bracket. After calculating for is minimized
at giving and . The and values that have
minimized the cost function at are then traced back to

, giving integer and for all samples of th line. The
process is performed for the next line until the displace-
ment of the whole image is calculated. The 2D DP method gives
integer axial and lateral displacement maps. In [40], we per-
formed hierarchical search to obtain subsample axial displace-
ment (the lateral displacement was not refined to subsample).
DP is an efficient method for global optimization and has been
used extensively in many applications in computer vision in-
cluding solving for optimal deformable models [42]. In the next
section, we propose an alternative method for calculating sub-
sample axial displacement which is both faster and more robust
than hierarchical DP.

B. 1D Analytic Minimization (AM)

Tissue deformations in ultrasound elastography are usually
very small and therefore a subsample displacement estimation is
required. We now develop a method that analytically minimizes
a regularized cost function and gives the refined displacement
field following the work presented in [16]. We first consider a
specialization of (2) in which we only consider refining axial
displacements to subsample level.

Having the integer displacements and from DP, it is de-
sired to find values such that gives the value of
the displacement at the sample for ( and
correspond to line . Hereafter, wherever the displacements cor-
respond to the th line, is omitted to prevent notation clutter).
Such values will minimize the following regularized cost
function:

(3)

where and are tunable axial and lateral regular-
ization weights and subscript refers to the previous RF-line
(adjacent RF-line in the lateral direction).

Substituting with its first-order Taylor ex-
pansion approximation around , we have

(4)

where is the derivative of the in the axial direction. The
optimal values occur when the partial derivative of with
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respect to is zero. Setting for
we have

(5)

...
. . .

(6)

where

is the identity matrix
and is the total displacement of the previous line (i.e., when
the displacement of the th line was being calculated,
was updated with ). and are matrices of
size m m and and are vectors of size .

Comparing 1D AM [as formulated in (5)] and 2D DP, they
both optimize the same cost function. Therefore, they give the
same displacement fields (up to the refinement level of the DP).
In the next two subsections, we will further improve 1D AM.

1) Biasing the Regularization: The regularization term
penalizes the difference

between and , and therefore can
result in underestimation of the displacement field. Such
underestimation can be prevented by biasing the regulariza-
tion by to , where

is the average displacement difference
(i.e., average strain) between samples and . An accurate
enough estimate of is known from the previous
line. With the bias term, the right-hand side of (5) becomes

where the
bias term is (only the first and the last
terms are nonzero) and all other terms are as before. In the other
words, except for the first and the last equations in this system,
all other equations are same as (5).

Equation (5) can be solved for in operations since
the coefficient matrix is tridiagonal. Utilizing
its symmetry, the number of operations can be reduced to .
The number of operations required for solving a system with
a full coefficient matrix is more than , significantly more
than .

2) Making Elastography Resistant to Outliers: Even with
pure axial compression, some regions of the image may move
out of the imaging plane and decrease the decorrelation. In such
parts the weight of the data term in the cost function should be
reduced. The data from these parts can be regarded as outliers
and therefore a robust estimation technique can limit their effect.
Before deriving a robust estimator for , we rewrite (4) as

(7)

where is the residual,
and is the regularization term. The M-estimate of

is where

is a robust loss function [43]. The minimization is solved by
setting

(8)

A common next step [44] is to introduce a weight function ,
where . This leads to a process known as “iter-
atively reweighted least squares” (IRLS) [45], which alternates
steps of calculating weights for using the
current estimate of and solving (8) to estimate a new
with the weights fixed. Among many proposed shapes for ,
we compared the performance of Huber [44], [43]

(9)

and Cauchy [45]

(10)

functions and discovered that the more strict Cauchy function
(which decreases with inverse of the square of the residual) is
more suitable in our application. To better discriminate outliers,
we calculate the residuals at linear interpolation of the integer
sample displacements provided by DP. With the addition of the
weight function, (8) becomes

(11)

where . This equation will con-
verge to a unique local minimum after few iterations [45]. The
convergence speed however depends on the choice of , which
in this work is defined manually. Since the Taylor approxima-
tion gives a local quadratic approximation of the original non-
quadratic cost function, the effect of higher orders terms in-
crease if is large. Assuming that DP gives the correct dis-
placements, where is the infinity norm
and . In practice, however, because the linear
interpolation of the DP displacements (which is very close to
the correct displacement) is used to calculate the residuals .
Therefore, a small value can be assigned to in 1D AM pro-
vided that DP results are trusted.

The coefficient matrix in (11) is the
Hessian of the cost function whose minimum is sought. This
matrix is strictly diagonally dominant (i.e.,
for all where is the th element of ), symmetric and all
diagonal entries are positive. Therefore, it is positive definite,
which means that setting the gradient of to zero results in the
global minimum of (not in a saddle point, a local maximum
or a local minimum). All of the 1D AM results presented in this
work are obtained with one iteration of the above equation.

1D AM takes the integer axial and lateral displacement fields
from DP and gives refined axial displacement. It inherits the
robustness of DP and adds more robustness when calculating the
fine axial displacements via IRLS. However, there are redundant
calculations in this method which are eliminated in 2D AM as
described next.
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C. 2D Analytic Minimization (AM)

In 2D AM, we modify (2) to calculate subsample axial and
lateral displacement fields simultaneously. The outline of our
proposed algorithm is as follows.

1) Calculate the integer axial and lateral displacements of one
or more seed RF-lines (preferably in the middle of the
image) using DP [(2)]. Calculate the linear interpolation of
the integer displacements as an initial subsample estimate.

2) Calculate subsample axial and lateral displacements of the
seed RF-line using 2D AM, as explained below. Add the
subsample axial and lateral displacements to the initial es-
timate to get the displacement of the seed line.

3) Propagate the solution to the right and left of the seed
RF-line using the 2D AM method, taking the displacement
of the previous line as the initial displacement estimate.

Benefits of 2D AM are two-fold. First it computes subsample
displacements in both axial and lateral directions. Lateral strain
contains important information from tissue structure that is not
available from axial strain [31], [46], [47]. Second, it is only
required to calculate the displacement of a single line using DP
(the seed), eliminating the need to have the integer displacement
map for the entire image. This is significant as in the 1D AM
method, the initial step to calculate the 2D integer displacements
using DP takes about times more than the 1D AM.

Assume that initial displacement estimates in the axial di-
rection, , and in the lateral direction, , are known for all

samples of an RF-line. Note that and are not
integer; for the seed line they are the linear interpolation of the
integer DP displacements and for the rest of the lines are the
displacement of the previous line. It is desired to find and

values such that the duple gives the
axial and lateral displacements at the sample . Such
values will minimize the following regularized cost function:

(12)

where is the th sample on the th RF-line. Since we
perform the calculations for one RF-line at a time, we dropped
the index to simplify the notations: , and are

, and . is the lateral displacement of
the previous RF-line (note that is the total lateral dis-
placement of the previous line, i.e., when the displacement of
the th line was being calculated, was updated with

). Since in the first iteration and (the ini-
tial displacement estimates) are in fact the displacements of the
previous RF-line, for the first iteration we have . This
simplifies the last term in the right-hand side to . The reg-
ularization terms are and : determines how close the
axial displacement of each sample should be to its neighbor on
the top and and determine how close lateral displacement
of each sample should be to its neighbors on the top and left

(or right if propagating to the left). If the displacement of the
previous line is not accurate, it will affect the displacement of
the next line through the last term in the right-hand side of (12).
Although its effect will decrease exponentially with , it will
propagate for few RF-lines. Therefore, we set

(13)

to prevent such propagation where is the residual asso-
ciated with the displacement of the th sample of the previous
line. A large residual indicates that the displacement is not accu-
rate and therefore its influence on the next line should be small,
which is realized via the small weight . This is, in principle,
similar to guiding the displacement estimation based on a data
quality indicator [48]. The effect of the tunable parameters

and is studied in Section III. Writing the 2D Taylor ex-
pansion of the data term in (12) around

(14)

where and are the derivatives of the at point
in the axial and lateral directions respectively. Note

that since the point is not on the grid ( and
are not integer), interpolation is required to calculate

and . We propose a method in Section II-C1 that eliminates
the need for interpolation. The optimal values occur
when the partial derivatives of with respect to both and

are zero. Setting and
for and stacking the unknowns in

and the initial estimates
in we have

(15)

...
. . .

where is a diagonal matrix of
size 2 2 , is a symmetric
tridiagonal matrix of size 2 2 with

(16)

blocks on its diagonal entries where and are the deriva-
tives of the at point in the axial and lateral
directions

(17)
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where and are calculated at point ,
and .

We make four modifications to (15). First, we take into ac-
count the attenuation of the ultrasound signal with depth. As the
signal gets weaker with depth, the first term in the right-hand
side of (15) gets smaller. This results in increasing the
share of the regularization term in the cost and therefore
over-smoothing the bottom of the image. The attenuation of
the ultrasound signal [49] reflected from the depth is

where is the frequency dependent attenu-
ation coefficient of tissue and is equal to 0.63 dB/cm/MHz for
fat [49], is the center frequency of the wave (in MHz) and
is in cm. Having the exponential attenuation equation, the atten-
uation level at sample will be

(18)

where is the speed of sound in tissue (in cm/sec)
and is the sampling rate of the ultrasound system (in MHz).
This is assuming that the TGC (time gain control) is turned
off. Otherwise, the TGC values should be taken into account
in this equation. Let the 2m 2m diagonal matrix be

. To compensate for the attenua-
tion, we multiply the and matrices in (15) by , and
therefore reduce the regularization weight with depth. As we
will show in Sections III and IV, the regularization weight can
vary substantially with no performance degradation. Therefore
approximate values of the speed of sound and attenuation co-
efficient will suffice. Second, we add a bias term in the regu-
larization similar to the 1D case. Here we only bias the axial
displacement since the difference between the lateral displace-
ments of the points on a RF-line is very small, usually less than
4 RF-lines. Third, we exploit the fact that, because the tissue
is in contact with the ultrasound probe, the axial displacement
of the top of the image is zero relative to the probe (the lateral
displacement of the top of the image is not zero as tissue might
slip under the probe). Therefore, we enforce the axial displace-
ment of the first sample to be zero by changing the first row of

, and . Fourth, we make the displacement estimation
robust via IRLS using the Cauchy function (10). Similar to 1D
AM, is selected manually. For the first (seed) RF-line, a small
value can be selected for if DP results are trusted. For the next
lines, the value of determines the accuracy of the Taylor ex-
pansion 14: for a small , the residuals of the inliers are small
and therefore a small can be chosen, while for a large the
inliers might give large residuals and therefore a large value for

is required. Since the tissue motion is mostly continuous,
mostly depends on the lateral sampling of the image (i.e., the
number of A-line per cm). Therefore if many A-lines are given
per cm of the image width, a small value of will give the op-
timum results. Since the amplitude of signal is decreasing due
to attenuation, we decrease the IRLS parameter with depth
by multiplying it with at each sample . With these modifica-
tions, (15) becomes

(19)

where
(i.e., for except for

which guarantees the displacement of the first sample
to be zero) is the weight function determined by the residuals

is
as before (10), the bias term is a vector of length whose
all elements are zero except the th element: ,
and is as before. Similar to (11), the co-
efficient matrix is strictly diagonally
dominant, symmetric and all the diagonal entries are positive.
Therefore is positive definite which means that solving (19)
results in the global minimum of the cost function . The up-
dated displacement field (axial and lateral) will be .

Equation (19) can be solved for in 9 m operations since
the coefficient matrix is pentadiagonal
and symmetric. This number is again significantly less than

, the number of operations required to solve a full
system.

1) Inverse Gradient Estimation: With the subsample initial
displacement field, the Taylor expansion should be written
around off-grid points, which requires calculation of image
gradient at these points [matrices and in (19)]. In
Fig. 2(a), this is equivalent to calculating gradient of on the
off-grid marks. There are two disadvantages associated with
this: 1) it requires interpolation of the gradients, and 2) the
image gradient should be recalculated after each iteration. As
proposed by [44], [50], image gradient can be instead calculated
at on-grid locations on image 1 in the following way.

Consider two problems: 1) to find the matches for grid points
on having the initial off-grid estimates on , and 2) to find
the matches for the off-grid points on having the initial grid
estimates on . For both problems, values must be interpo-
lated on the off-grid values. However, the second problem does
not require interpolation of the image gradient since the Taylor
expansion is written around grid points of [Fig. 2(b)]. It is
shown in [51] that the two techniques converge to the same re-
sults. Therefore, on one hand inverse gradient calculation is both
faster and easier to implement, and on the other hand it causes
no performance degradation. Exploiting this, (19) becomes

(20)

where and are now calculated on the grid points of image
1.

All the 2D AM results presented in this work are obtained
using (20). For the seed line where the initial estimate might
be inaccurate, this equation is iterated multiple times (about 10
times). For all other lines, this equation is iterated only once.

D. Strain Estimation Using Kalman Filter

Strain estimation requires spatial derivation of the displace-
ment field. Since differentiation amplifies the signal noise, least
squares regression techniques are commonly used to obtain the
strain field. Adjacent RF-lines are usually processed indepen-
dently in strain calculation. However, the strain value of each
pixel is not independent from the strain value of its neighboring
pixels. The only exception is the boundary of two tissue types
with different mechanical properties where the strain field is dis-
continuous. We use the prior of piecewise strain continuity via
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Fig. 2. (a) In the initial estimates (in black) are updated by the arrows (three components of ) to new estimates (in red) after an iteration of 2D AM. To
find using (19), it is required to calculate image gradient at the off-grid initial estimate locations (in black) on . (b) Schematic plot of two RF-data and

, each sampled at three locations (black dots). The black dashed–dotted arrow shows of the sample on (ignoring the regularization term) which requires
calculating the gradient on at an off-grid location. The blue dashed arrow shows of an off-grid sample on (ignoring the regularization term) which requires
calculating the gradient on at an on-grid location. Ignoring second-order derivatives, the length of the two arrows is equal. (a) Three samples on (left) and
corresponding matches on (right). (b) Inverse gradient estimation.

a Kalman filter to improve the quality of strain estimation. Al-
though locations with strain discontinuity are limited, we will
develop a technique to take such discontinuities into account.

We first calculate the strain using least squares regression.
Each RF-line is first differentiated independently: for each
sample , a line is fitted to the displacement estimates in a
window of length around , i.e., to the samples
to . The slope of the line, , is calculated as the strain
measurement at . The center of the window is then moved to

and the strain value is calculated. We reuse over-
lapping terms in calculation of and , and therefore
the running time is independent of the window length .
Having for and , we propose the
following algorithm based on Kalman filter to take into account
the prior of strain continuity.

are the noisy measurements of the underlying strain field
. Since the values are calculated using axial windows,

we apply the Kalman filter in the lateral direction. Let be the
Gaussian process noise and be the Gaussian measurement
noise to be removed. We have [52], [41]

(21)

(22)

Let (note the super minus) be our a priori strain estimate
from the process prior to step [i.e., from the (21)] and be
our a posteriori strain estimate at step given measurement .
Let also the variances of and be respectively and .
The time update (i.e., prior estimation) equations will be [41]

(23)

(24)

where is the variance of the process noise . is initial-
ized to zero for the first sample . The measurement update
equations will be [41]

(25)

(26)

where is the variance of the measurement noise . Note that
since both the state and measurement are scalars, all the
update equations only require scalar operations. We estimate
and as following. Let the mean (calculated using a Gaussian
kernel of standard deviation of sample) of the strain
values in 3 3 blocks around samples and be

and , respectively. Then is [52]

(27)

This is a reasonable estimate of as it tries to capture the dif-
ference between pixel values at adjacent RF-lines. If the dif-
ference between the mean strain values is high, less weight is
given to the a priori estimate. This space-variant estimation of
the model noise provides a better match to local variations in the
underlying tissue leading to a greater noise reduction. is the
variance of measurements in the entire image and is con-
stant throughout the image.

The strain estimation algorithm can be summarized as
following.

1) Perform least squares regression in the axial direction for
each RF-line. Generate a (noisy) strain image whose
pixel is . This step ensures continuity in the axial
direction.

2) Apply the Kalman filter to the noisy strain image in the
lateral direction. Generate a (denoised) strain image whose
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pixel is . This step ensures continuity in the lateral
direction.

Both steps are applied once and are not iterated. We show in the
experimental results how the Kalman filter removes the noise
from the strain image with minimal blurring, owing to the model
noise update (27).

III. SIMULATION RESULTS

Field II [53] and ABAQUS (Providence, RI) software are
used for ultrasound simulation and for finite element simula-
tion. Many scatterers are distributed in a volume and an ultra-
sound image is created by convolving all scatterers with the
point spread function of the ultrasound and adding the results
using superposition. The phantom is then meshed and com-
pressed using finite element simulation, giving the 3D displace-
ment of each node of the mesh. The displacement of each scat-
terer is then calculated by interpolating the displacement of its
neighboring nodes. Scatterers are then moved accordingly and
the second ultrasound image is generated. The displacement and
strain fields are then calculated using the AM methods and are
compared with the ground truth. The unitless metric signal-to-
noise ratio (SNR) and contrast to noise ratio (CNR) are also cal-
culated to assess the performance of the AM method according
to

(28)

where and are the spatial strain average of the target and
background, and are the spatial strain variance of the
target and background, and and are the spatial average and
variance of a window in the strain image, respectively.

The parameters of the ultrasound probe are set to mimic com-
mercial probes. The probe frequency is 7.27 MHz, the sampling
rate is 40 MHz and the fractional bandwidth is 60%. A Hanning
window is used for apodization, the single transmit focus is at
22.5 mm, equi-distance receive foci are from 5 to 45 mm at each
5 mm, the transmit is sequential, and the number of active ele-
ments is 64.

Two simulated phantoms are generated. The first phantom
is 50 10 55 mm and the second one is 36 10 25 mm.
Respectively and scatterers with Gaussian
scattering strengths [54] are uniformly distributed in the first and
second phantom, ensuring more than 10 scatterers [55] exist in
a resolution cell.

The mechanical properties of both phantoms, required for fi-
nite element simulation, is assumed to be isotropic and homoge-
neous. The first phantom is uniform while the second phantom
contains a circular hole filled with blood that can move out-of-
plane, simulating a blood vessel in tissue [Fig. 7(a)]. The scat-
terers are distributed in the vessel, also with the same intensity
and distribution as the surrounding material. A uniform com-
pression in the direction is applied and the 3D displacement
field of phantoms is calculated using ABAQUS. The Poisson’s
ratio is set to in both phantoms to mimic real tissue
[56], [57] which causes the phantoms to deform in and di-
rections as a result of the compression in the direction.

The first phantom undergoes compressions in the direction
to achieve strain levels of 1%–10%. Fig. 3 shows the SNR of
the axial strain of the 1D AM and 2D AM methods [the window
for SNR calculation covers the entire strain image in (a) and (f)].
The sharp drop of the SNR with strain in graph (a) is mainly due
to the strain underestimation in the bottom part of the image. It
can be explained as following. The unbiased regularization term
tries to force constant displacement [dashed–dotted red line in
(b)]. Assuming an ideal noiseless case where the data term gives
a smooth ramp displacement [dashed black line in (b)], mini-
mizing the cost function (which is the summation of the data and
the regularization terms) will underestimate the displacement at
the two ends [solid blue line in (b)]. This underestimation decays
exponentially moving towards the center of the image. This ar-
tifact is shown in the simulation experiment at 2% and 6% strain
levels in (c) and (d). Since we exploit the fact that the axial dis-
placement of the first sample is zero (Section II-C), the under-
estimation does not happen in the top of the image. Biasing the
regularization prevents this artifact, as is shown in (c) and (d).
The AM method with or without the bias term gives the same
result away from the bottom of the image: part (e) shows that if
we ignore 300 (5.8 mm) samples at the bottom of the image, the
SNR will not drop sharply unlike in part (a). Part (f) shows the
SNR of the AM methods with biased regularization calculated
in the entire image. The SNR at 1% strain in parts (e) and (f)
is the same. At higher strain levels, the strain underestimation
propagates more into the middle of the image, and therefore the
SNR decreases at higher strain levels in graph (e). Part (e) shows
2D AM gives slightly better axial strain compared to 1D AM.
IRLS slightly increases the SNR. However, we will see in the
simulation results of the second phantom that in the presence of
outliers significant improvement in SNR and CNR is achieved
using IRLS.

The SNR of the lateral strain field is much lower than that of
the axial strain field (Fig. 4). Unbiased regularization gives the
lowest SNR, mainly due to artifacts in the bottom of the image.
Similar to the axial strain, the SNR improves as 300 samples
from the bottom of image are omitted from the SNR calculation
(results not shown).

The effect of the regularization weights on bias and variance
of the axial strain image at 2% ground truth axial strain is shown
in Fig. 5. The blue curves show the bias and variance of the en-
tire strain image obtained with unbiased regularization. It shows
the tradeoff between the bias and variance: increasing the regu-
larization weight increases the bias and decreases the variance.
The variance starts to increase at which is caused by the
underestimation of the strain at the bottom of the image [the ar-
tifact in Fig. 3(c)]. If we exclude the bottom 300 samples of the
strain image from the bias and variance calculation (the black
dashed curve), we see a consistent drop of variance as is in-
creased. The black curves show the bias and variance of the en-
tire strain image obtained with biased regularization. Biasing the
regularization causes the bias to decrease as the regularization
weight is increased which is a nonstandard behavior. It can be
explained by the simple ground truth strain field which is uni-
form, exactly what the regularization term is trying to achieve.
Even in the unbiased case, only the bias of the bottom part of the
strain field increases as is increased (i.e., in the bias plot, the
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Fig. 3. Axial strain estimation in the first simulated phantom. (a) The SNR values corresponding to the unbiased regularization calculated in the entire image.
(b) Schematic plot showing the underestimation of the displacement (Data + reg. curve) with unbiased regularization (refer to the text). (c), (d) The calculated
displacements at the bottom of a RF-line at 2% strain and 6% strain levels respectively with biased and unbiased regularization terms. The ground truth matches the
displacement given by the biased regularization almost perfectly, and therefore is not shown in (c) and (d) not to block the biased regularization results. The length
of the RF-line is 2560 (49.3 mm). (e) The SNR values corresponding to the unbiased regularization calculated by omitting the bottom 300 samples of the image.
(f) The SNR values corresponding to the biased regularization calculated in the entire image. Note that the scale of the SNR in graph (a) is much smaller than that
of graphs (e) and (f). (a) Unbiased reg. Entire image. (b) Schematic displacements. (c) Calculated displacements at 2% strain. (d) Calculated displacements at 6%
strain. (e) Unbiased reg. Top of the image. (f) Biased reg. Entire image.

Fig. 4. Lateral strain estimation using the 2D AM method in the first simulated
phantom.

blue curve increases while the black dashed curve decreases).
Therefore, one cannot conclude from this experiment that higher

is beneficial to both bias and variance. To prove this, we de-
signed a simulation study where the underlying axial strain field
continuously varied with depth and the lateral and out-of-plane
strains were zero (such strain field is not physically realizable).
We observed that the absolute value of the bias monotonically
increases with with both unbiased and biased regularizations.
To save space, we do not present the full results here. Similar
curves for the lateral strain field is shown in Fig. 6.

The second simulation experiment is designed to show the
effect of smoothness weight and IRLS threshold CNR when the
correlation is lower in parts of the image due to fluid motion. The
phantom contains a vein oriented perpendicular to the image
plane (Fig. 7). The background window for CNR calculation is

Fig. 5. Bias and Variance of the axial strain as a function of the axial regu-
larization weight . The ground truth axial and lateral strain fields are respec-
tively uniform 2% and % fields ( is the Poisson’s ratio). The solid
blue and dashed black curves both correspond to unbiased regularization and
the solid black curve corresponds to the biased regularization. In the solid blue
and solid black curves, the entire image is included in the calculation of the bias
and noise. In the dashed black curve the bottom part of the strain field which
suffers from high bias [Fig. 3(b)] is excluded from the calculation of the bias
and noise. 1D AM and 2D AM have very similar bias and variance. The curves
with and without IRLS are also very close. Therefore each curve corresponds to
1D AM or 2D AM with or without IRLS. (a) Bias. (b) Variance.

located close to the target window to show how fast the strain is
allowed to vary, a property related to the spatial resolution. The
maximum CNR with IRLS is 5.3 generated at and

, and without IRLS is 4.8 at . Such high
value makes the share of the data term in the cost function very
small and causes over-smoothing.
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Fig. 6. Bias and Variance of the lateral strain as a function of the axial regularization weight . The ground truth axial and lateral strain fields are respectively
uniform 2% and 2 % fields ( is the Poisson’s ratio). The solid blue curve corresponds to unbiased regularization and the dashed and solid black curves
correspond to the biased regularization. IRLS is not used in the solid blue and dashed black curves. (a) Bias. (b) Variance.

Fig. 7. Measurements in (a) are in mm. In (b), a scatterer is shown in the bottom
left part as a red dot. Its displacement is calculated by interpolating the dis-
placements of its three neighboring nodes on the mesh. The target (circular)
and background (rectangular) windows for CNR calculation of (d) are shown in
(c). (a) Simulation phantom. (b) Finite element mesh. (c) Finite element strain.
(d) CNR.

A. Displacement Simulation

To study the performance of the Kalman filter, we simulate
a displacement field of size 100 100 samples whose strain
image (calculated using least squares regression) is as shown
in Fig. 8(a). One hundred samples in the axial direction corre-
sponds to approximately 1.9 mm (assuming 40 MHz sampling
rate), and 100 samples in the lateral direction corresponds to
10–25 mm depending on the probe. To be consistent with the
notations of Section II-D, let denote the strain values of
the uncontaminated image in (a). We then contaminate the dis-
placement field with a Gaussian noise with standard deviation
of 1.5 samples, and perform least squares regression to calculate
the noisy estimates [Fig. 8(b)]. We then apply the Kalman
filter as described in Section II-D to the noisy estimates in
the lateral direction (i.e., row-by-row). The posterior estimates
of the strain values, are shown in (c). The strain values of
the shown line in (a)–(c) (at samples) is shown in (d)
and (e) [The plot in (d) around the step in magnified in (e)].
The Kalman filter formulation is eliminating the noise without
over-smoothing the strain image. This is due to the model vari-
ance update (27). We note that although displacement is gen-
erally continuous in tissue, its spatial derivation (strain) is not:
at the boundary of two tissues with different elasticity moduli,
strain field is discontinuous.

IV. EXPERIMENTAL RESULTS

For experimental evaluation, RF data is acquired from an
Antares Siemens system (Issaquah, WA) at the center frequency
of 6.67 MHz with a VF10-5 linear array at a sampling rate of
40 MHz. Only the 2D AM method is used in the experimental
results. Phantom results and patient trials are presented in this
section. The tunable parameters of the 2D AM algorithm are set
to and [(12) and (20)],
and the tunable parameters of the DP (run for the seed RF-line
in the 2D AM algorithm) are (1) in all the
phantom results (except if specified otherwise). In the patient
results, all the parameters are the same except for which is
increased to because the data is noisier. The strain im-
ages in all the patient trials are obtained using the least squares
regression and Kalman filtering as described in Section II-D.

A. Phantom Results

1) Effect of Regularization on Residuals: The cost function
of the AM method (7) is composed of residuals (i.e., the data
term) and the regularization terms. The AM method minimizes
this summation. Therefore the AM method will not necessarily
minimize the residuals. We now show that the data term alone
is nonconvex and has many local minima. Adding the regular-
ization term will eliminate many of the local minima and makes
optimization of the data term easier. This is in addition to the ef-
fect of regularization that makes the displacement field smooth,
a generally desired attribute.

The effect of regularization on the residuals is studied
using experimental data. An elastography phantom (CIRS
elastography phantom, Norfolk, VA) is compressed 0.2 in
axially using a linear stage, resulting in an average strain of
6%. Two RF frames are acquired corresponding to before and
after the compression. The Young’s elasticity modulus of the
background and the lesion under compression are respectively
33 kPa and 56 kPa. The displacement map is calculated using
the 2D AM method and the residuals corresponding to the
displacement map are obtained. Fig. 9(a)–(c) shows the axial
and lateral strains at such a high strain rate (minimum of 2%
and maximum of 11%). The mean and median of the residuals

in the entire image is shown in (d). One could expect the
graph to monotonically increase as the regularization weight
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Fig. 8. (a) shows the strain field calculated using least squares regression of the uncontaminated displacement field. (b) depicts the strain field calculated using least
squares regression of the contaminated displacement field. (c) shows the strain field calculated from the noisy measurements of (b) using the proposed Kalman filter
(KF in (b) and (c) refers to Kalman filter). The pixels of images in (a) to (c) are respectively the ground truth (unavailable) strain values , the noisy measurements

, and posterior strain values . The brightness scale in (a)–(c) is the same. (d), (e) are the strain estimation at the horizontal line shown in (a)–(c). (d) is
magnified in (e) around the step. The Kalman filter removes the noise while keeping the image sharp, due to the variable model noise of (27). (a) Ground truth
strain. (b) Strain without KF. (c) Strain with KF. (d) Strain estimate. (e) Strain estimates.

increases, since the difference between the objective function
and the residuals is increased as is increased.

However, the residual values are very high at very low . There-
fore, numerical minimization of gives
a smaller value for compared to trying to directly
minimize . This indicates that the nonregularized
cost function is not quasi-convex and is very hard to minimize.

2) Resolution of the Strain Images Generated With AM: The
effect of the regularization on spatial resolution is evaluated ex-
perimentally using the experimental setup of the previous ex-
periment. The compression is set to 0.1 in in this experiment.
Fig. 10(a) shows the strain image obtained by compression the
lesion with the Young’s modulus of 56 kPa. Spatial resolution is
evaluated using modulation transfer function (MTF), an estab-
lished method for estimating the spatial resolution of medical
imaging systems that was relatively recently extended to elas-
tography [58]. The spatial resolution of the reconstructed im-
ages is determined with a three-step approach [59], [60]. First,
the edge spread function is computed by averaging the pixel
values across the background-inclusion interface [the line in
Fig. 10(a)]. Second, the line spread function (LSF) is computed
by differentiating the edge spread function. Third, the MTF is
determined by computing the Fourier transform of the LSF and
normalizing the resulting function to zero spatial frequency

(29)

Fig. 10(c) shows the MTF for five different normalization coeffi-
cients respectively. Strain results are obtained with a regression
window of length [Section II-D]. Increasing the

regularization weight is adversely affecting spatial resolution.
Spatial resolution is defined as the spatial frequency when the
value of MTF is 0.1. At and this value
is respectively 2 cycles/mm, 1 cycles/mm, and 0.5 cycles/mm.
In addition to , this value also depends on the length of the re-
gression window .

3) Image Quality Versus Axial and Lateral Sampling Rates
of the RF-Data: Sampling rate of the RF-data usually ranges
from 20 to 50 MHz depending on the hardware of the device.
The number of the A-lines provided in an image also varies sig-
nificantly. In addition, bandwidth limitations of the data transfer
can impose limits on the size of the image for real-time oper-
ations. In this study, we downsample the RF-data by a factor
of 2–4 in the axial direction and by a factor of 2–8 in the lat-
eral direction. Fig. 11(a)–(g) shows axial and lateral displace-
ment and strain images of the CIRS elastography phantom un-
dergoing maximum axial strain of 5%. Axial sampling rate can
be reduced by a factor of 2 without significant impact on the
strain image quality [part (h)]. Downsampling the images in the
lateral direction by a factor of 4 results the CNR of the axial
and lateral strain images to drop respectively 12% (from 16.3
to 14.3) and 56% (from 2.55 to 1.13) as shown in (i). While the
axial strain is robust to the number of A-line in the image even
at a high strain level of 5%, the lateral strain is sensitive to it
(i). Similar study with lower axial strain levels shows that as the
axial strain decreases, higher downsampling rates in both axial
and lateral directions are possible without a large impact on the
results.

4) Kalman Filter: The performance of the Kalman filter is
studied using the RF-data used in Fig. 9. The linear least squares
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Fig. 9. Phantom experimental results. The top row shows axial displacement and axial strains as labeled (KF in (c) refers to Kalman filter). Average axial strain and
maximum strain are approximately 6.6% and 11%. (d) and (e) show lateral displacement and lateral strain, respectively. (f) shows residuals as the regularization
weight varies. (a) Axial displacement (mm). (b) Axial strain. (c) Axial strain with KF. (d) Lateral displacement (mm). (e) Lateral strain. (f) Residuals.

Fig. 10. Phantom experimental results showing the resolution of the 2D AM. (a) Strain image. The edge spread function is evaluated along the vertical line.
(b) The strain across the edge [vertical line in (a)] for the five shown regularization values. (c) The MTF calculated across the vertical line in (a). Spatial resolution
is defined as the spatial frequency when the value of MTF is 0.1. (a) Axial strain. (b) Strain profile. (c) MTF.

differentiation technique is applied to the axial displacement
field calculated with 2D AM, resulting in [Fig. 12(a)]. The
Kalman filter is then applied to measurements of (a), giving
the posterior measurements of (b). Comparing the strain
values at a horizontal line of (a) and (b), the noisy measure-
ments are smoothed in the lateral direction using the proposed
Kalman filter, with minimal blurring of the edge.

B. Clinical Study

Seven patients undergoing open surgical radiofrequency (RF)
thermal ablation for primary or secondary liver cancer were en-
rolled between February 06, 2008 and July 28, 2009. All pa-
tients enrolled in the study had unresectable disease and were
candidates for RF ablation following review at our institutional
multidisciplinary conference. Patients with cirrhosis or subop-
timal tumor location were excluded from the study. All patients
provided informed consent as part of the protocol, which was

approved by the institutional review board. RF ablation was ad-
ministered using the RITA Model 1500 XRF generator (Rita
Medical Systems, Fremont, CA). Strain images are generated
offline. Some preliminary results are published in [15].

We show the results from only four patients due to space lim-
itations. Fig. 13 shows the B-mode scan, the strain images and
CT scans performed after RF ablation. Tissue is simply com-
pressed freehand at a frequency of approximately 1 compres-
sion per 2 s with the ultrasound probe without any attachment.
The shadow in Fig. 13(a) at 20 mm depth is produced by the
thermal lesion. Note that it is not possible to ascertain the size
and position of the thermal lesions from B-mode images. In ad-
dition, the thermal lesion has different appearances in the three
B-scans. However, the thermal lesions show very well as hard
lesions in the strain images. After gross correlation of the post
ablation CT scan and the thermal lesion in the strain images, the
size of the lesion seems to correspond well. However, a more
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Fig. 11. Results of the CIRS elastography phantom at 5% maximum strain at different axial and lateral sampling rates. The hard lesion is spherical and has a
diameter of 1 cm. Downsampling is performed by simply skipping samples in the axial or (and) lateral directions. In (c) and (f), a downsampling ratio of 2 is
applied in both axial and lateral directions. The lateral displacement is shown in number of samples in (d)–(f). (h) and (i) show the CNR between the target and
background windows in the strain images as the axial or lateral downsampling rates change. The target and background windows are shown in the axial strain
images (a)–(c) and the lateral strain image (g). In (i), the lateral strain curve is not calculated for downsampling ratios of 6 and higher because the background
window moves out of the image. The black dashed curve with the highest CNR is the strain obtained with the Kalman filter (KF). (a) Axial downsamp. ratio =
2. (b) Lateral downsamp. ratio . (c) Ax.-lat. downsamp. rat . (d) Axial downsamp. ratio . (e) Lateral downsamp. ratio . (f) Ax.-lat. downsamp.
rat . (g) Lateral downsamp. ratio .

rigorous validation of the size and shape of the ablated lesion in
the elastography image is underway using nonrigid registration
of CT and ultrasound images. To the best of our knowledge, this
is also the first demonstration of the success of elastography in
imaging the thermal lesion in an in vivo human experiment.

We have also acquired patient RF data of liver ablation prior
and after ablation in one of the patient trials. Fig. 14 shows the
B-mode, strain and venous and arterial phase2 CT images ob-
tained before ablation, and Fig. 15 shows the B-mode, strain
and lateral displacement images after ablation. In Fig. 14, the
tumor [marked in the CT images (f) and (g)] is not visible in

2CT scans are performed at different phases after intravenous injection of a
contrast agent. In the arterial phase (directly after injection of a contrast agent)
arteries will enhance, where as in the venous phase (30–60 s after injection) the
hepatic parenchyma and veins will enhance.

the B-mode image (a), but is clearly visible in the strain images
(b) and (c). While the tissue is getting compressed with the ul-
trasound probe, the middle hepatic vein (marked as 5) which
is only 4–8 cm from vena cava inferior pulsates at high ampli-
tude. The graph in (e) schematically shows the probe motion
and variations in the diameter of the vein. Therefore, the vein
can look soft as in (c) or hard as in (b) depending on whether its
diameter variation is in the same [marked by ellipse 1 in (e)] or
opposite [marked by ellipse 2 in (e)] direction as the probe mo-
tion. The effect of pulsation of vessels, a well-known cause of
signal decorrelation, is minimized via IRLS resulting in a low
noise strain image. In addition, since the 2D AM method gives a
dense motion field (same size as RF data), the small artery at the
diameter of less than 2 mm [marked as 4 in (a)] is discernible in
(b) from the low pressure portal vein. The ablated lesion is also
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Fig. 12. (a) Shows the axial strain field calculated by least squares regression of the noisy displacement field. (b) depicts the strain field calculated from the noisy
measurements of (a) using the proposed Kalman filter (KF in (a) and (b) refers to Kalman filter). The pixels of images in (a) and (b) are respectively the least
squares measurements , and posterior strain values . (c) shows the strain estimation at the 17 mm deep horizontal line shown in (a) to (b). The Kalman filter
removes the noise while keeping the image sharp, due to the variable model noise of (27). (a) Strain without KF. (b) Strain with KF. (c) Strain plots.

Fig. 13. In vivo images of the thermal lesion produced by RF ablation therapy of liver cancer. All images acquired after ablation. First, second, and third rows
correspond to the first, second and third patients respectively. The thermal lesion shows in (b), (f) and (j) as dark, surrounded by normal tissue in white. The lateral
displacement images are shown in number of samples (they do not immediately carry anatomical information). In (b), (d), (f), (h), (j), and (l) the delineated thermal
lesions is shown. The nonunity aspect ratio in the axes of the B-mode and strain images should be considered when comparing them to the CT scans. (a) B-mode
patient 1. (b) Axial strain. (c) Lateral displacement. (d) CT patient 1. (e) B-mode patient 2. (f) Axial strain. (g) Lateral displacement. (h) CT patient 2. (i) B-mode
patient 3. (j) Axial strain. (k) Lateral displacement. (l) CT patient 3.

discernible in the strain images of Fig. 15(b) and (c). We believe
the soft region in the middle of the two hard ablation lesions in
(b) and (c) (at the depth of 25–30 mm and width of 10–25 mm)
is not close to any of the 10 tines of the ablation probe. There-
fore because of its proximity to veins and vessels its temperature
has remained low.

V. DISCUSSION

The resolution of the method is formally studied in
Section IV-A using the phantom experiment. Future work
will include more intuitive measures for resolution in terms
of the smallest detectable target as a function of its elasticity
difference with the background.
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Fig. 14. In vivo images of the fourth patient before RF ablation. In (a), the left anterior branch of portal vein is marked as 1 and 2 and has low pressure and
therefore compresses easily. Arteries (marked as 3 and 4) and the middle hepatic vein (marked as 5) however pulsate with the heart beat and may have low or high
pressure. (b) and (c) both show the axial strain from the same location before ablation. They are calculated at two different phases of the heart beat. The cancer
tumor is discernible in (b) and (c) (regardless of the systolic or diastolic blood pressure), and its boundary is shown. 1 and 2 [as marked in (a)] correspond to the
high strain area in both (b) and (c). Since 3, 4, and 5 [as marked in (a)] pulsate, they may look hard [as in (b)] or soft [as in (c)]. (d) shows the lateral displacement.
The tumors is not visible in this image. (e) shows the motion of the probe and the variation in the diameter of the arteries due to the heart beat (refer to the text).
(f) is the arterial phase and (g) is the venous phase contrast CT images. The numbers 1–5 mark the same anatomy as (a). (a) B-mode pre-ablation. (b) Axial strain
pre-ablation. (c) Axial strain pre-ablation. (d) Lateral displacement pre-ablation. (e). (f) CT pre-ablation. (g) CT pre-ablation.

Fig. 15. In vivo images of the fourth patient after RF ablation. Similar to Fig. 14, the hepatic vein (marked as 5) can have low strain [as in (b)] or high strain [as
in (c)] values. (a) B-mode post-ablation. (b) Axial strain post-ablation. (c) Axial strain postablation. (d) Lateral displacement postablation.

The cost function is a regularized function of all displace-
ments on an A-line. This makes the methods robust to noise
which exist throughout the image. Besides, the AM methods are
not window-based and therefore they do not suffer from decor-
relation within the window. As a result, both AM methods work
for strains as high as 10%. In addition, the IRLS outlier rejec-
tion technique makes the AM methods robust to local sources
of decorrelation such as out-of-plane motion of movable struc-
tures or blood flow.

Global stretching assumes a constant strain across the depth
and stretches one of the RF-limes accordingly. It is shown that it
enhances the quality of correlation based elastography methods.
The reason is that the strain of each point can be assumed to be
the global strain (fixed for each RF-line) plus some perturbation,
i.e., constant strain is a better approximation than zero strain.
Biasing the regularization is motivated by the same reason and
involves almost no additional computational cost.

Improvement in the SNR and CNR achieved with Kalman
filtering differentiation is due to utilizing the (piecewise) conti-
nuity of the strain field. One could think of a unified framework
which includes both the 2D AM and the Kalman filtering and
directly calculates the strain field. We made an effort to formu-
late (15) in terms of strain values. Unfortunately, the coefficient
matrix in the left-hand side. became a full matrix for our de-
sired regularization. Such large full system cannot be solved in
real-time.

The least squares differentiation of Section II-D can be in-
corporated in the Kalman filter. This can be simply done by
defining the state at each point to be the displacement and the
strain of that point. The observed variables are the noisy dis-
placement measurements from 2D AM. Solving for the state
gives a strain estimate at each point. However, we preferred
to follow the common approach of first finding the strain by
solving least squares. In addition, the axial and lateral displace-
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ments can be considered as two channels of a measurement and
a Kalman filter that takes into account both intra-channel (spa-
tial) and inter-channel variations can be developed. This is a sub-
ject of future work.

Lateral displacement estimation with 2D AM is of order of
magnitude less accurate than the axial displacement estimates.
We tested the following algorithm for calculating the lateral dis-
placement field based on 1D AM: run 1D AM to find the axial
displacement field , then transpose both ultrasound images
and and run 1D AM again using calculated in the previous
step. The axial displacement field calculated for the transposed
images is in fact the lateral displacement of the original im-
ages. Although considerably more computationally expensive
than 2D AM, this algorithm did not improve the lateral displace-
ment estimation. Therefore only images of lateral displacement
are provided for the patient trials because the lateral strain did
not show the ablation lesion. This is in accordance with recent
work [36] which only shows the lateral displacement. A 2D dis-
placement field can be utilized to calculate the thermal expan-
sion and to reconstruct the strain tensor. Incorporation of the
synthetic lateral phase [61]–[63], into 2D AM to further improve
the accuracy of the lateral displacement measurement is also a
subject of future work.

In cases where the two ultrasound frames correlate very
poorly throughout the image, 1D AM outperforms 2D AM
because DP is run for the entire image in 1D AM. However,
in those cases the strain images are of very low quality even
with 1D AM. In cases where the images correlate reasonably,
the 2D AM algorithm slightly outperforms 1D AM in terms
of the SNR of the axial strain as shown in Fig. 3(e) and (f).
Also, 1D AM and 2D AM are very similar in terms of bias and
variance as mentioned in the caption of the Fig. 5. And finally,
2D AM is more than 10 times faster than 1D AM because it
eliminates the redundant calculations in the DP step of 1D AM.
This is important considering that there are combinatorial many
ways of choosing two frames for elastography from a sequence
of images. Having a fast algorithm, like 2D AM, makes it
plausible to invest time to perform real-time frame selection,
an area that we are currently working on [16], [64].

Recent work [65] has attempted to reconstruct elasticity from
the displacement field for monitoring thermal ablation. It has
also shown that [66] compared to strain images, elasticity im-
ages have both higher correlation with the ablation zone and
give higher CNR. Another work [67] has utilized the solution
of the elasticity reconstruction to improve motion estimation in
an iterative framework. Calculation of the elasticity modulus in
our ablation monitoring trials is an area of future work.

Statistical analysis of the residuals is a subject of future work.
The sum of squared differences used as the similarity metric in
our cost function is suitable if ultrasound noise can be modeled
as additive Gaussian noise. However, ultrasound noise is not
simply additive Gaussian and it has been shown that similarity
metrics that model the noise process considering physics of ul-
trasound give more accurate results [68]. Performance of the 2D
AM method for images that are not fully developed speckles
(i.e., have few scatterers per resolution cell) is also a subject of
future work.

Current implementations of the 1D AM and 2D AM take,
respectively, 0.4 s and 0.04 s to generate strain images (axial
for 1D AM and axial and lateral for 2D AM) of size 1000 100

on a 3.8 GHz P4 CPU. DP contributes to more than 90% of the
running time of the 1D AM, and that’s why it is slower than 2D
AM where DP is only run for a single A-line. The running time
of both methods changes linearly with the size of the image.

VI. CONCLUSION

Two regularized elastography methods, 1D AM and 2D AM,
are introduced for calculating the motion field between two ul-
trasound images. They both give dense subsample motion fields
(1D AM gives subsample axial and integer sample lateral and
2D AM gives subsample axial and lateral) in real-time. The size
of the motion fields is the same as the size of the RF-data (ex-
cept for few samples from the boundary whose displacements
are not calculated). Such dense motion fields lead to dense strain
fields which are critical in detecting small lesions. The prior of
tissue motion continuity is exploited in the AM methods to min-
imize the effect of signal decorrelation. The regularization term
is biased with the average strain in the image to minimize un-
derestimation of the strain values. Parts of the image that have
very low correlation are treated as outliers and their effect is
minimized via IRLS. The strain image is calculated by differ-
entiating the motion fields using least squares regression and
Kalman filtering. The performance of the proposed elastography
algorithms is analyzed using Field II and finite element simula-
tions, and phantom experiments. Clinical trials of monitoring
RF ablation therapy for liver cancer in four patients are also
presented. An implementation of the 2D AM method, the least
squares regression and the Kalman filter in MATLAB mex func-
tions, as well as some of the phantom and patient RF data used in
this work are available for academic research and can be down-
loaded.
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Abstract. The clinical feasibility of 2D elastography methods is hin-
dered by the requirement that the operator avoid out-of-plane motion of
the ultrasound image during palpation, and also by the lack of volumet-
ric elastography measurements. In this paper, we develop and evaluate
a 3D elastography method operating on volumetric data acquired from
a 3D probe. Our method is based on minimizing a cost function using
dynamic programming (DP). The cost function incorporates similarity
of echo amplitudes and displacement continuity. We present, to the best
of our knowledge, the first in-vivo patient studies of monitoring liver
ablation with freehand DP elastography. The thermal lesion was not dis-
cernable in the B-mode image but it was clearly visible in the strain
image as well as in validation CT. We also present 3D strain images
from thermal lesions in ex-vivo ablation. Good agreement was observed
between strain images, CT and gross pathology.

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common tumors, caus-
ing 662,000 deaths worldwide annually. Minimally invasive RF ablation [1] has
gained much interest recently since only 10% to 20% of patients with HCC are
amenable to traditional therapy of surgical resection of the tumor. In RF ab-
lation, an electrode is placed into the tumor to cauterize it [1]. Monitoring the
ablation process in order to document adequacy of margins during treatment
is a significant importance. Ultrasonography is the most common modality for
both target imaging and for ablation monitoring. However, ultrasonographic ap-
pearance of ablated tumors only reveals hyperechoic areas due to microbubbles
and outgasing and cannot adequately visualize the margin of tissue coagulation.

Accordingly, ultrasound elastography (Ophir et al, 1991) has emerged as a
useful augmentation to conventional ultrasound imaging. Elastography has been
used for monitoring RF ablation [2], [3] by observing that ablated region is
harder than surrounding tissue. In the most common variation of elastography,
ultrasound images are captured while the tissue is being compressed, and images
! Supported by the Link Foundation Fellowship.

D. Metaxas et al. (Eds.): MICCAI 2008, Part II, LNCS 5242, pp. 458–466, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Ablation Monitoring with Elastography: 2D In-vivo and 3D Ex-vivo Studies 459

are processed to provide a grid of local displacement measurements. These dis-
placement fields are then used to determine the elastic properties of the tissue
at each grid location. The grid of calculated elastic properties can be displayed
as an image.

Elastography is computationally expensive, making it challenging to display
strain images in real-time. Real-time feedback, however, is required for image
guided ablation operations. Another aspect is that signal decorrelation between
the pre- and post-compression images induces significant noise in the obtained
displacement map and is one of the major limiting factors in elastography [4].
Methods based on cross-correlation and phase zero estimation are currently the
most popular real-time elastography techniques which provide fast and accurate
motion tracking. In RF ablation, however, high decorrelation between pre- and
post-compression images results in high noise in the strain images obtained using
cross-correlation [3]. Phase zero estimation methods require an estimate of the
center frequency of the ultrasound RF signal, which varies with depth due to
frequency-dependent attenuation in tissue [5]. This variation can be significant
in RF ablation, leading to poor displacement estimation [5].

We have recently developed a real-time 2D elastography method based on
dynamic programming (DP) [6]. The method is more robust to signal decorrela-
tion than standard cross-correlation methods and is therefore a good candidate
for ablation monitoring where being real-time and robustness to noise are criti-
cally important. Here we report, to the best of our knowledge, the first in-vivo
patient results on monitoring RF ablation with 2D DP elastography and corrob-
orate the results with CT scans. As initial clinical studies revealed limitations
of 2D elastography in monitoring the thermal ablation, we were compelled to
progress toward 3D. We think the readership will find it informative to see how
our concept and methodology evolved. We extend our DP method to operate on
3D volumes. The benefits of 3D strain imaging of RF ablation are two-fold: 1) 3D
imaging eliminates the need to image the same plane while palpating the tissue,
which can be very difficult in the presence of breathing and cardiac motion, and
2) 3D imaging allows more precise monitoring of temperature deposition which
exhibits variations in 3D, particularly in the presence of blood vessels which act
as heat sinks. Previous work has generated 3D elastography by moving a con-
ventional 2D probe out-of-plane using mechanical guidance [7,8] or freehand [9].
In recent work by Treece et al. [10] and Fisher et al. [11] a 3D probe is used
to acquire 3D elastogrophy, using phase zero and cross-correlation based motion
tracking methods respectively. Here, we use 3D probe to acquire 3D data and
introduce a 3D DP motion tracking algorithm. We show that 3D elastography
can be successfully used to monitor ablation in 3D.

2 3D Displacement Estimation Using DP

Compared to other optimization techniques, DP is an efficient non-iterative
method of global optimization [12,13]. We have recently developed a real-time
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2D elastography method using DP [6]. In DP elastography, a cost function which
incorporates similarity of echo amplitudes and displacement continuity is mini-
mized. Since data alone can be insufficient to solve ambiguities of motion track-
ing due to signal decorrelation, the physical priors of tissue motion continuity
increases the robustness of the technique [6]. We have showed that DP gener-
ates high quality strain images of freehand palpation elastography with up to
10% compression, indicating that the method is more robust to signal decor-
relation (caused by scatterer motion in high axial compression and non-axial
motions of the probe) in comparison to the standard correlation techniques.
The method operates in less than 1sec and is thus also suitable for real time
elastography.

Here, we extend this method to operate on 3D volumes. Devising a DP algo-
rithm for optimization involves:

1. Breaking the total optimization cost into a sum of individual costs, such that
each cost corresponds to a discrete decision. The decisions should follow each
other sequentially and the cost corresponding to each decision should only
depend on the previous and not the future decisions (causality).

2. Determining what decisions are possible at each stage.
3. Writing a recursion on the optimal cost from the first stage to the final stage.

Let gk
j (i) be the intensity of the ith sample (axial direction), jth A-line (lateral

direction) and kth frame (out-of-plane direction) of the pre-compression ultra-
sound volume. Let gk+de

j+dl

′
(i + da) correspond to the post-compression volume

where da, dl and de represents axial, lateral and elevational displacements re-
spectively, and the size of the volume be m× n× p. The difference between the
two signals, ∆, can be quantified using sum of absolute differences (SAD), which
is computationally inexpensive to compute and has been shown to have good
robustness against outliers [14]:

∆(i, j, k, da, dl, de) =
∣∣∣gk

j (i) − gf+de

j+dl

′
(i + da)

∣∣∣ (1)

where the axial, lateral and elevational search ranges are limited by da,min ≤
da ≤ da,max, dl,min ≤ dl ≤ dl,max and de,min ≤ de ≤ de,max.

R(dai , dli , dei , dai−1 , dli−1 , dei−1) = (dai − dai−1)
2 + (dli − dli−1)

2 + (dei − dei−1)
2

(2)
is the smoothness regularization. The cost function at each point i, j and k is

Ck
j (da, dl, de, i) = ∆(i, j, k, da, dl, de) + w1R(da, dl, de, d

k−1
a , dk−1

l , dk−1
e ) (3)

+ min
δa,δl,δe

{
Ck

j (δa, δl, δe, i − 1) + Ck
j−1(δa, δl, δe, i)

2
+ w2R(da, dl, de, δa, δl, δe)

}
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where w1 is a weight for governing smoothness in the elevational direction
and w2 is a weight for governing axial and lateral smoothness1. Generally, the
optimum values of δa, δl, δe should be sought in the entire [da,min da,max] ×
[dl,min dl,max] × [de,min de,max] space. However, since the strain value is low
in elastography, it is expected and desired that at each sample of RF data,
the change between the displacement of a sample and its previous sample is
not more than 1. Therefore, the search range is limited to the nine values of
{da − 1, da, da + 1}×{dl − 1, dl, dl + 1}×{de − 1, de, de + 1}, which results
in a significant gain in speed. This limit on the search range does not affect the
results even in a high strain of 10%: ∆d is zero for nine samples and one for
the tenth sample on average. For memoization [12], δa, δl and δe values that
minimize the cost function are stored:

Mk
j (i, di, dl, de) = (4)

arg min
δa,δl,δe

{
Ck

j (δa, δl, δe, i − 1) + Ck
j−1(δa, δl, δe, i)

2
+ w2R(da, dl, de, δa, δl, δe)

}

The cost function Ck
j is calculated for i = 1 · · ·m, da = da,min · · · da,max, dl =

dl,min · · ·dl,max and de = de,min · · · de,max. The minimum cost at i = m gives the
displacement of this point, which is traced back to i = 1 using the M function to
calculate the three axial, lateral and elevational displacements (D = (da, dl, de)):

Dk
j (i) = arg min

da,dl,de

{
Ck

j (da, dl, de, i)
}

, i = m

Dk
j (i) = M(i + 1, Dk

j (i + 1)), i = 1 · · ·m − 1 (5)

This gives all three displacements simultaneously, in contrast with other 3D elas-
tography methods which give displacement in each direction in separate steps.

Further speed-up is achieved by downsampling the signal g(i) in the axial
direction by a factor of β to g∗(i), and comparing it with the unaltered signal
g′(i). This is done by simply skipping β−1 samples from g(i) and performing DP
on the βth sample as illustrated in Figure 1 left. This generates integer displace-
ment estimations at m/β samples. The displacement of the skipped samples is
then simply approximated by the linear interpolation of two neighboring points
whose displacements are calculated, as an initial guess for the next step.

The displacement estimates are then refined to subpixel displacement esti-
mation in the axial direction. The original signal g(i) (not downsampled) is
compared with g′(i + d) upsampled by a factor of γ (Figure 1 right) in the axial
1 The inclusion of the cost of the previous line (Ck

j−1(· · ·)) guarantees lateral smooth-
ness. Instead, we could force the displacements of each pixel to be similar to the
displacements of the neighboring pixel in the previous A-line, similar to what we did
in the w1R(· · ·) term to enforce elevational smoothness. The former is preferred since
a wrong displacement estimation does not affect the neighboring A-line’s displace-
ment estimation. However, it requires the Ck

j−1(· · ·) to be kept until the calculation
of Ck

j (· · ·) is completed. Therefore, at each time only two cost finctions are stored in
the memory, making the memory requirement independent of the number of A-lines.
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Fig. 1. In the left, the cost function C is shown when DP is performed on g∗(i) (g(i)
downsampled by a factor of β) and g′(i) (not downsampled). Hashed squares indicate
no cost calculation is performed due to downsampling of g(i), and white and black
representing low and high cost values respectively. Displacement is calculated at m/β
samples in this stage (β = 3 in this figure). In right, a new cost function around the
optimum path of the first stage’s cost function (the dashed line) is created, giving a
1/γ = 1/2 pixel displacement accuracy at m samples.

direction using parabolic interpolation. Repeating the refinement procedure n
times results in a refinement factor of 1/γn. The code runs in approximately
30sec for a typical volume on a 3.8GHz P4 CPU.

In cross correlation methods, subsample displacement is usually achieved by
interpolation of the correlation function, which is subject to bias and jitter [15].
Here we interpolate the original RF data instead, which is shown to have similar
performance [15]. Although cosine-fit outperforms parabolic-fit interpolation in
terms of bias and jitter [15], the latter is used here for computational simplicity.

3 Results

We first present in-vivo elastographic monitoring of RF ablation therapy of HCC
in human during surgery using 2D DP elastography. RF ablation was adminis-
tered using the RITA Model 1500X RF generator (Rita Medical Systems, Fre-
mont, CA). Ultrasound RF data is acquired from an Antares Siemens system
(Issaquah, WA) with a 7.27MHz linear array at a sampling rate of 40MHz. Fig-
ure 2 shows the B-mode scan, the strain image obtained using the DP method
and CT scans performed after RF ablation (first and second row corresponding
to first and second patient respectively). Tissue is simply compressed freehand
with the ultrasound probe without any attachment. The shadow in Figure 2(a)
at 20mm depth is produced by the thermal lesion. Note that it is not possible
to ascertain the size and position of the thermal lesions from B-mode images. In
addition, the thermal lesion has different appearances in the two B-scans. How-
ever, the thermal lesions show very well as hard lesions in both the strain images.
The size of the thermal lesion in the strain images and in CT scans are also in
accordance. The strain images provide with higher contrast of the thermal le-
sion and lower noise in the image, compared to the strain images of RF ablation



Ablation Monitoring with Elastography: 2D In-vivo and 3D Ex-vivo Studies 463

Fig. 2. In-vivo images of the thermal lesion produced by RF ablation therapy of HCC,
first and second row corresponding to the first and second patients. (a) & (d) B-
scan after RF ablation. The shadow in (a) indicates the presence of thermal lesion.
It is almost impossible to ascertain the size and position of the thermal lesion from
the B-scans. (b) & (e) Strain images after RFA ablation, generated using 2D DP
elastography and freehand palpation of the liver tissue. The thermal lesion is visible in
dark surrounded by normal tissue in white. (c) & (f) Post-ablation CT scans, with the
delineated thermal lesions (The non-unity aspect ratio in the axes of the B-mode and
strain images should be considered when comparing them with the CT scans).

reported in [3,8] which are obtained with cross-correlation. To the best of our
knowledge, this is also the first demonstration of the success of elastography in
imaging the thermal lesion in an in-vivo human experiment.

A Radionics device (Valleylab, Boulder, CO) is used for ex-vivo RF ablation.
For 3D elastography, we use a 3D probe that consists of a curvilinear array that
is mechanically rotated to scan a volume. Ultrasound RF data is acquired from
an Ultrasonix system (Vancouver, BC) at 4.5MHz frequency, 20MHz sampling
rate and 30% bandwidth. Figure 3 shows the experimental setup and results.
Comparing strain images obtained during ablation and after ablation, the growth
of the thermal lesion can be observed. There is also a good agreement between
the size of the lesion in axial and lateral directions in the post-ablation strain
images and gross pathology photograph. The ablation goes beyond the field of
view of the 3D ultrasound probe in the elevational direction. The volumetric
elastography contrast to noise ratio (CNR) [2] (CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
where s̄t and

s̄b are the spatial strain average of the target and background and σ2
t and σ2

b are
the spatial strain variance of the target and background) between two 3mm x
3mm x 3mm cubes, one in the thermal lesion and the other half way between the
liver surface and the lesion, is 3.4. Note that due to the lateral and elevational
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Fig. 3. Ex-vivo liver RF ablation experiment. The ablation power is set to 8W for
10 min and the cooler is turned off throughout the experiment. (a) The experimental
setup. The passive arm is holding the 3D probe and the liver is contained in the gelatin
phantom. (b) The liver sample after ablation (cut into four pieces) with the thermal
lesion. (c)-(f) 3D strain images 6min after the start of the ablation (target temperature
reached 90◦C in 3min and was approximately constant in the next 7min of ablation).
(g)-(j) 3D strain images after the ablation. (k)-(n) 3D B-mode images after the ablation.
Each 650 axial samples correspond to 25mm in the strain and B-mode images. Each
40 lateral samples correspond to 16.6mm and 30.4mm on the top and bottom of each
image (different values on the top and bottom since the probe is curved). Each 80
elevational samples correspond to 3.4mm and 6.3mm on the top and bottom of each
image.

regularization, DP elastography is working reasonably in the presence of the
ablation needle.
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4 Discussion and Conclusion

Previous work has shown promise in monitoring ablation in 2D ex-vivo and ani-
mal experiments. In this paper, we present high quality in-vivo 2D strain images
of thermal lesions and compared them to post-ablation CT data. Comparison is
more qualitative, however, since strain images are 2D and CT data is 3D and
ultrasound is not tracked. We also present formulation and experimental results
of a 3D strain imaging system based on DP. In DP, we regularize the problem of
3D displacement estimation: regularization in 2D is shown to increase robustness
[6]. As a result, no post processing step such as median filtering is performed.

We demonstrate the feasibility of 3D elastography monitoring of RF ablation
for the first time using a 3D probe; however, we are planning for a comprehensive
comparison of the 3D DP with other 3D strain imaging techniques [10,11]. The
lateral and elevational search is performed only to increase the quality of the
axial strain: the lateral and elevational displacements are integer values and are
not suitable for calculating strain. Good volumetric CNR between the thermal
lesion and background suggests that the regularization is not adversely affecting
CNR. However, a study similar to [6] on the effect of the 3D regularization on
the CNR and resolution should be done. Having an elastography system for 3D
ablation monitoring with promising ex-vivo results, in-vivo patient studies under
our active Institutional Review Board (IRB) approval are to commence.
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ABSTRACT
Out-of-plane motion in freehand 3D ultrasound can be estimated using the correlation of corresponding patches,
leading to sensorless freehand 3D ultrasound systems. The correlation between two images is related to their
distance by calibrating the ultrasound probe: the probe is moved with an accurate stage (or with a robot in
this work) and images of a phantom are collected, such that the position of each image is known. Since parts
of the calibration curve with higher derivative gives lower displacement estimation error, previous work limits
displacement estimation to parts with maximum derivative. In this paper, we first propose a novel method for
exploiting the entire calibration curve by using a maximum likelihood estimator (MLE). We then propose for
the first time using constrains inside the image to enhance the accuracy of out-of-plane motion estimation. We
specifically use continuity constraint of a needle to reduce the variance of the estimated out-of-plane motion.
Simulation and real tissue experimental results are presented.

Keywords: 3D ultrasound, Speckle decorrelation, Fully developed speckle

1. INTRODUCTION
Most common techniques for acquiring 3D ultrasound data are oscillating head probes and freehand 3D ultra-
sound. In oscillating head probes, a 1D ultrasound transducer is automatically swept inside the probe, enabling
3D image acquisition. In freehand 3D ultrasound, a position sensor is attached to an ordinary probe which is
swept over the desire region by the clinician.

Freehand 3D ultrasound is inexpensive, works with the existing 2D probes, and allows arbitrary 3D volume
acquisition. However, the need for the additional sensor makes it difficult to use. Sensorless volume reconstruction
of freehand 3D ultrasound is possible using the information in the images themselves: out of plane motion
estimation can be obtained from image correlation,1 which is the focus of this work, while in plane motion can
be estimated through image registration2–4 or by using techniques similar to elastography.5–7

The granular appearance of ultrasound images is the key factor in out-of-plane motion estimation (Figure 1).
Each pixel in an ultrasound image is formed by the back-scattered echoes from an approximately ellipsoidal region
called the resolution cell.8 The interference of scatterers in a resolution cell creates the granular appearance of
the ultrasound image, called speckle. Although of random appearance, speckle pattern is identical if the same
object is scanned from the same direction and under the same focusing and frequency. Speckle characterization
is essential in many areas of quantitative ultrasound. In this work, it is a prerequisite for speckle-based distance

Further author information: send correspondence to E-mail: rivaz@jhu.edu , eboctor1@jhmi.edu



estimation. We use low order moments to discriminate fully developed speckle (FDS) patches versus coherent
speckle patches.9

R = SNR =
〈Avr 〉√

〈A2vr 〉 − 〈Avr 〉2
(1)

S = skewness =
〈
(Avs − 〈Avs〉)3

〉

(〈A2vs〉 − 〈Avs〉2) 3
2

(2)

where A is the amplitude of the ultrasound RF envelope in the analysis patch, vr and vs are the signal powers
and 〈· · ·〉 denotes the mean. Here we use10 vr = 2vs = 1. An elliptical discrimination function is calculated in
the R-S plane by performing principal component analysis (PCA) on the data from simulated FDS patches.10
A patch is then classified as FDS if its R-S duple falls inside this ellipse.

Having found FDS patches in two ultrasound images, the correlation between them is used for estimating the
distance between the two images.11 The R-S metric requires approximately 3500 pixels per patch (depending
on the correlation of data12), but such large patches (which are rectangles) of FDS are unlikely to be found in
real tissue because of its inhomogeneity.11 Gee et al.13 proposed a heuristic technique that is robust to the
lack of FDS patches in the ultrasound image. This method allows the calculation of the elevational distance for
all patches of the image, regardless of their level of coherency, by measuring the axial and lateral correlation
of each patch. Since the behavior of coherent reflectors in the elevational direction can be different from their
behavior in the axial and lateral directions, the performance of the method can decline depending on the level
of anisotropy of the tissue.

In,14 we proposed a fast algorithm to find irregularly shaped FDS patches and showed that this algorithm
finds significantly more FDS patches. Here, we use beam steering as another technique to increase the number
of FDS patches found in the image.15 This is achieved by obtaining more data from a certain region of tissue,
hence reducing the size of the analysis patch. Having found such small FDS patches, we further use the steered
images for better out-of-plane (elevational) motion estimation.

Coherent scattering causes the elevational distance measurement from the conventional correlation algorithms
to be underestimated.11 Thus, distance measurement is limited to the patches of the ultrasound image that con-
tain only FDS.11 To completely determine the out-of-plane degrees of freedom between two planes, at least three
non-collinear pairs of such patches are required.4

Since FDS patches are extremely rare in real tissue, these methods usually have a low accuracy and are only
relevant in limited tissue types. Gee et al.13 proposed a heuristic technique that is robust to the lack of FDS
patches in the ultrasound image. This method allows the calculation of the elevational distance for all patches
of the image, regardless of their level of coherency, by measuring the axial and lateral correlation of each patch.
Since the behavior of coherent reflectors in the elevational direction can be different from their behavior in the
axial and lateral directions, the performance of the method can decline depending on the level of anisotropy of
the tissue. The purpose of this work is to devise a method applicable to a various tissue types that accurately
reconstructs 3D volumes from ultrasound images.

Recently, Laporte and Arbel16, 17 have proposed probabilistic fusion of noisy out-of-plane motion estimation.
This work is most similar to these works, in that it calculates the maximum likelihood estimate (MLE) of the
out-of-plane motion. We also use beam steering to obtain more data and increase the accuracy of the out of
plane motion estimation similar to.15

2. METHODS

2.1. Combining Steered Images
We are looking for rectangular FDS patches using images acquired from the same location at different steering
angles. The key idea is to combine data acquired from a certain region at different steering angles and therefore
reducing the size of the analysis patch. Figure 2 shows two images acquired at 0 and θ steering angles. A



x (lateral)

z (out-of-plane)

y (axial)

(a) Directions with respect to
ultrasound probe
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Figure 1. (a) shows the three directions relative to the ultrasound probe. Out-of-plane direction and elevational direction
are used interchangably in this work. (b) shows aquisition of two ultrasound images at a distance of ∆z. Ultrasound
beam is in order of a millimeter wide. This wideness affects the resolution of ultrasound image in the lateral, y, and
elevational, z, directions, as well as creating a granular pattern, called speckle. The size of the resolution cell in the axial
direction, x, is determined by the wavelength of the ultrasound wave and is magnified in this image.

rectangle patch in the left image is warped into a parallelogram and is shifted in the steered right image. The
position of the parallelogram can be simply found as a function of θ, x and y. Therefore, samples nX and nY

from the steered image correspond to samples nx and ny from the non-steered image and

nX = nx − vUS

2ν
· n

w
· sin(θ) · ny

nY =
ny

cos(θ)
(3)

where vUS = 1540000mm/s is the speed of ultrasound in tissue, ν is the sampling frequency of the ultrasound
machine, n is the total number of the A-lines and w is the width of image in mm. To find the correspondence
of a patch, the correspondent of its four corners are found using these equations and applying nearest neighbor
interpolation. The parallelogram connecting these four corners is the correspondent of the patch.

2.2. Maximum Likelihood Motion Estimation
Assume we have two parallel ultrasound images with ground truth out-of-plane distance z (Figure 1), and that
we have measured correlation coefficients ρi for i = 1 · · ·n patches between the two images (Figure 3). The goal
is to find µz which is maximum likelihood estimate of z given all the ρi measurements. Let ρi = fi(zi) be the
calibration function that relates the out-of-plane motion zi to correlation coefficient ρi for patch i (each patch
has a different calibration function depending on its depth, see Figure 6). Assuming that ρi is drawn from a
Gaussian distribution with mean f(µz) and variance σi, the conditional probability of ρi is

Pr(ρi | µz , σ
2
i ) =

1
(2πσ2

i )1/2
e
− (ρi−fi(µz))2

2σ2
i (4)
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Figure 2. Corresponding patches in images acquired with different steering angles. In the left, a patch is shown in the
not-steered image. In the middle, the patch which corresponds to the same tissue is shown in the scan-converted steered
image. In the right, the patch is shown in the raw steered image (not scan-converted).
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Figure 3. The correlation coefficient ρi is calculated between n patches of the two images.

We assume that ρi measurements are independent. Therefore, the conditional probability of observing all the
ρi values will be simply their multiplication. Looking at the product as a function of µ and σi and taking its
logarithm to convert multiplication to summation, we have the familiar log-likelihood equation

L(
→
ρ | µz ,

→
σ2) = −Σn

i=1

[
1
2

log σ2
i +

(ρi − fi(µz))2

σ2
i

]
+

n

2
log(2π) (5)

where
→
ρ and

→
σ2 are two vectors containing all the ρi and σ2

i measurements. In the above equation, ρi is the
correlation of two corresponding patches and is known. σ2

i is also known: it is the variance of the correlation
and is calculated in the calibration process (Figure 6). To find the ML estimate of the µz, we differentiate this
equation with respect to µz and set it to zero, arriving at

Σn
i=1

f ′
i(µz)(ρi − fi(µz))

σ2
i

= 0 (6)

where f ′ denotes derivative of f . Unfortunately this equation is not easy to solve for µz. Instead, lets transform
ρi to zi and write the log-likelihood functions in terms of zi’s. Equation 5 becomes

L(
→
z | µz,

→
σ2

z) = −Σn
i=1

[
1
2

log σ2
zi +

(zi − µz)2

σ2
zi

]
+

n

2
log(2π) (7)

where σ2
zi = σ2

i
f ′(ρi)2

is the transformed variance in the ρ domain (σi) to the z domain (σzi). Differentiating with
respect to µz and setting it to zero gives

Σn
i=1

zi − µz

σ2
zi

= 0 (8)



which can be easily solved to give

µz =
Σn

i=1
zi

σ2
zi

Σn
i=1

1
σ2

zi

(9)

Finally, we utilize constraints in the images to enhance out-of-plane motion estimation. Many surgical
procedures such as biopsy, drug delivery and brachytherapy involve inserting a needle into the tissue. The
prior of needle continuity can be used to decrease the variance of the measured out of plane motion (we are
assuming that the needle crosses US image plane and is not parallel to the image). Assume that the tip
of the needle can be measured at each image with a variance of [σ∗

needle]
2, and that the angle of the needle

with the normal of the ultrasound image (i.e the angle between the needle and the axes y in Figure 1) is
α. Also, let σ2

cor. denote the variance of the out-of-plane motion estimation using the correlation method and
σneedle = σ∗

needle/ tan(α). Assuming both noises are Gaussian, variance of the final estimate which combines
the two estimates is σ2

needleσ2
cor.

σ2
needle+σ2

cor.
. It can be easily shown that this quantity is less than both σ2

needle and σ2
cor.,

meaning that the resulting variance is less than both initial variances.

2.3. Calibration and Data Acquisition
The system operates in two distinct modes - calibration mode and image-based 3DUS reconstruction mode
(Figure 4). Both will be described from a process flow perspective. In the calibration mode, information necessary
to calibrate the distance estimations is collected (Figure 4). To this end, the robot control component steps the
robot through a series of precisely defined positions and triggers the acquisition of a single US frame (RF data)
at each position from a homogeneous fully developed speckle (FDS) phantom. These frames are associated with
their respective coordinates and stored for offline use. Then, the software system reads the batch of frames and
positions and subdivides the frames into distinct subpatches. Pairs of patches from the same location originating
from frames at different distances are correlated, thus creating a set of (strictly monotonous) calibration (or
decorrelation) curves x,y(d). These curves depend on the characteristics of the selected probe, the imaging
frequency, and the image location x, y (in particular the depth y) of the respective patches. Currently, the offline
calibration process takes 2-3 minutes including scan time to generate the needed calibration curves (decorrelation
curves). Before this recent development, manual data collection and offline processing using MATLAB scripts
used to take many hours of effort.

Figure 4. The data acquisition and calibration system (some of the blocks are the subject of future work).



(a) Calibration experiment (b) Out-of-plane motion estimation
using real tissue

Figure 5. The experimental setup for moving the probe out-of-plane and acquiring ultrasound images. In (a), the robot
moves the probe in the out-of-plane direction while the ultrasound is imaging a FDS phantom to generate the calibration
curves. In (b), the robot is moving the probe while the ultrasound is imaging real tissue, so that the speckle correlation
results can be compared to ground truth (i.e. robot readings).

3. EXPERIMENTAL SETUP

The ultrasound RF data was sampled with a robot-based system in order to achieve reliable, high-accuracy
ground truth readings for the displacements. This will give us the images we need for calibration and also the
gives us the ground truth when we reconstruct the volume. This process yielded a series of planar-parallel RF
slices through the respective phantom, in a fashion somewhat comparable to a freehand sweep. The phantoms
were positioned within the workspace of a high-precision three degrees-of-freedom (DoF ) cartesian robot stage
(DMC-21x3 with three servo motor stages, by Galil Motion Control; relative accuracy better 0.005 mm). For
calibration, the stage translated the probe to new positions every ∆x = 0.05 mm apart, then triggered RF
slice acquisition via a TTL signal connected to the ultrasound machine’s ECG trigger port, where the data was
written to file. For calibration data acquisition, a FDS phantom is imaged. For volume reconstruction, real
tissue (beef steak) is used. Figure 5 shows the experimental setup.

An Ultrasonix ultrasound machine (Burnaby, BC) with a sampling frequency of ν = 20MHz is used to acquire
RF data. To calibrate the rate of image decorrelation with out-of-plane motion, RF data of 5x80 parallel frames
were acquired from a FDS phantom at an elevational distance of 0.05 mm between consecutive images: five
frames at each location with steering angles of -5, -2.5, 0, 2.5 and 5.5 degrees. The experimental setup is shown
in Figure 5: the probe is moved with a micrometer with the accuracy of .005 mm. Calibration results showed
that the decorrelation rate is not affected by beam steering.

Out-of-plane motion estimation was performed on ex-vivo beef steak tissue. 4x80 RF frames at an elevational
distance of 0.05 mm between consecutive frames were acquired using the setup shown in Figure 5: four images
at each location with −5◦, −2.5◦, 0◦, 2.5◦ and 5◦ steering angles.
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4. OUT-OF-PLANE MOTION ESTIMATION
The correlations are calculated using Pearsons linear correlation coefficient ρ

ρ(W, Z) =
Σwizi − Nµwµz√

(Σw2
i − Nµ2

w) (Σz2
i − Nµ2

z)
(10)

where wi and zi, i = 1 · · ·N , are the intensity values of each pixel in patches W and Z, N is the total number
of pixels and µw and µy are the means of the intensity values of patches W and Z respectively.

Patches that are closest to being FDS are selected as described in.15 Figure 8 shows the results of recon-
structing out-of-plane motion using the correlation values. (a) and (b) are obtained by combining the two images
with ±2.5◦ steering angle at each location, while (c) and (d) are obtained by combining the two images with
±5◦ steering angle at each location. The results show that using the MLE method slightly reduces both the
underestimation error and the variance of the out-of-plane measurements. IN addition, it can be seen from (b)
and (d) that the needle constraint reduces the variance in the measurements.

5. DISCUSSION AND CONCLUSION
Out-of-plane motion estimation is only studied here for a fixed distance between two frames, 0.4mm. A study
of accuracy as the distance varies gives insight for optimum frame selection.18, 19 In freehand experiments the
images are not parallel as they are in our experiments, and therefore the rotations between the images need
to be found.11, 13, 20 We showed before15 that performing beam steering significantly increases the accuracy of
out-of-plane motion estimation. In this work, we showed that MLE can also be used to enhance the out-of-plane
motion estimation.
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Figure 8. relative error and standard deviation of the sensorless measurements. (a) The relative error. Reconstruction
is performed using two steered images at ±2.5◦. (b) The standard deviation of the measurements. W/O MLE refers to
without MLE, W/O constraint refers to without utilizing the needle continuity constraint, and W MLE refers to with
MLE. (c) and (d) are corresponding errors and variances with two steered images at ±5◦.
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Abstract. Tracked ultrasound elastography can be used for guidance in
partial breast radiotherapy by visualizing the hard scar tissue around the
lumpectomy cavity. For clinical success, the elastography method needs
to be robust to the sources of decorrelation between ultrasound images,
specifically fluid motions inside the cavity, change of the appearance of
speckles caused by compression or physiologic motions, and out-of-plane
motion of the probe. In this paper, we present a novel elastography tech-
nique that is based on analytic minimization of a regularized cost func-
tion. The cost function incorporates similarity of RF data intensity and
displacement continuity, making the method robust to small decorre-
lations present throughout the image. We also exploit techniques from
robust statistics to make the method resistant to large decorrelations
caused by sources such as fluid motion. The analytic displacement esti-
mation works in real-time. Moreover, the tracked data, used for targeting
the radiotherapy, is exploited for discarding frames with excessive out-
of-plane motion. Simulation, phantom and patient results are presented.

1 Introduction

Breast irradiation after lumpectomy significantly reduces the risk of cancer re-
currence. There is growing evidence suggesting that irradiation of only the in-
volved area of the breast, partial breast irradiation (PBI), is as effective as whole
breast irradiation [1]. Benefits of PBI include significantly shortened treatment
time and fewer side effects as less tissue is treated. However, these benefits cannot
be realized without localization of the lumpectomy cavity. Tracked ultrasound
elastography can be used for localizing the lumpectomy cavity in the treatment
room, minimizing tissue motion from planning to treatment.

This paper is focused on freehand palpation elastography, which involves es-
timating the displacement field of the tissue undergoing slow compression. Most
elastography techniques estimate the displacement field using local cross corre-
lation analysis of echoes [2,3,4]. These methods are very sensitive and accurate
for calculating small displacements. However, elastography is subject to speckle
decorrelation caused by various sources such as motion of subresolution scatter-
ers, out-of-plane motion, high compression and complex fluid motions.

The prior of tissue deformation continuity can be used to make elastography
more robust to signal decorrelation. Previous work on regularized elastography

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part I, LNCS 5761, pp. 507–515, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is computationally expensive [5,6]. Dynamic programming (DP) can be used
to speed the optimization procedure [7], but it only gives integer displacements.
Subpixel displacement estimation is possible [7], but it is computationally expen-
sive if a fine subpixel level is desired. In addition, a fixed regularization weight is
applied throughout the image. However, while two ultrasound images may cor-
relate well in most parts, they can have small correlation in specific parts. Four
examples of low correlation are: (1) correlation decreases with depth mainly due
to a decrease in the ultrasonic signal to noise ratio, (2) correlation is low close
to arteries due to complex motion and inside vessels due to blood motion, (3)
correlation is extremely low in lesions that contain liquid due to the incoherent
fluid motion [8,3], and (4) out-of-plane motion of movable structures within the
image [8] causes low local correlation. To prevent such regions from introduc-
ing errors in the displacement estimation one should use large weights for the
regularization term, resulting in over-smoothing.

Freehand palpation elastography provides ease-of-use and requires minimum
additional cost. However, out-of-plane motion cannot be avoided in freehand pal-
pation, which reduces the quality of any elastography method. Assisted freehand
elastography [9] significantly reduces the out-of-plane motion but it requires ad-
dition of a device to the probe. Quality metrics such as persistence in strain
images have also been developed to address this problem [10]. To measure the
persistence, elastography is performed on two pairs of images and the resulting
strain images are correlated. This method requires strain images for calculating
the quality metric. Therefore, trying all the combinations in a series of frames
to find the best pair for elastography will be computationally expensive.

In this paper, we present a novel elastography method based on analytic
minimization (AM) of a cost function that incorporates similarity of echo ampli-
tudes and displacement continuity. We introduce a novel regularization term and
demonstrate that it minimizes displacement underestimation caused by smooth-
ness constraint. We also introduce the use of robust statistics implemented via
iterated reweighted least squares (IRLS) to treat uncorrelated ultrasound data
as outliers. And finally, we use the tracking information to select the best pairs
of frames for elastography. Simulation, phantom and patient experiments are
presented for validation.

2 Regularized Displacement Estimation

Dynamic Programming (DP). DP is a discrete efficient optimization tech-
nique for causal systems. In DP elastography [7], a cost function is defined as

C(i, di) = min
di−1

{C(i − 1, di−1) + αaR(di, di−1)}+ |I1(i) − I2(i + di)| , i = 2 · · ·m

(1)
where di is the displacement of sample i, R(di, di−1) = (di − di−1)

2 is an axial
regularization term (axial, lateral and out-of-plane directions are respectively
z, x and y in Figure 2 (a)), αa is a weight for the regularization, I1 and I2

are corresponding RF-lines of before and after deformation and m is the length
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of RF-lines. The cost function is minimized at i = m and the di values that
have minimized the cost function are traced back to i = 1, giving the di for all
samples. We have implemented a 2D DP algorithm similar to [7] to generate
integer displacements as a starting point for the next step of our algorithm.

Analytic Minimization (AM). We now propose a method that analytically
minimizes a regularized cost function and gives the refined displacement field.
Only axial displacements will be refined for strain calculation.

Having the integer displacements di from DP, it is desired to find ∆di values
such that di + ∆di gives the value of the displacement at the sample i for i =
1 · · ·m. Such ∆di values will minimize the following regularized cost function

C (∆d1, · · · , ∆dm) = Σm
i=1 [I1(i) − I2(i + di + ∆di)]

2 +
αa(di + ∆di − di−1 − ∆di−1)2 + αl(di + ∆di − dp.

i − ∆dp.
i )2 (2)

where superscript p. refers to the previous RF-line (adjacent RF-line in the
lateral direction) and αl is a weight for lateral regularization. Substituting I2(i+
di +∆di) with its first order Taylor expansion approximation around di, we have

C (∆d1, · · · , ∆dm) = Σm
i=1 [I1(i) − I2(i + di) − I ′2(i + di)∆di)]

2 +
αa(di + ∆di − di−1 − ∆di−1)2 + αl(di + ∆di − dp.

i − ∆dp.
i )2 (3)

where I ′2 is the derivative of the I2. The optimal ∆di values occur when the
partial derivative of C w.r.t. ∆di is zero. Setting ∂C

∂∆di
= 0 we have

(I′2
2 + αaD+ αlÎ)∆d = I′2e− (αaD+ αlÎ)d+ αldt.p., D =





1 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . .
0 · · · 0 −1 1





(4)
where I′2 = diag(I ′2(1+d1) · · · I ′2(m+dm)), ∆d=[∆d1 · · ·∆dm]T , e=[e1 · · · em]T ,
ei = I1(i) − I2(i + di), d = [d1 · · ·dm]T , dt.p. = dp. + ∆dp. is the vector of total
displacement of the previous line and Î is the identity matrix. I′2, D and Î are
matrices of size m × m and ∆d, r, d and dt.p. are vectors of size m.

Biasing the Regularization. The regularization term αa(di + ∆di − di−1 −
∆di−1)2 penalizes the difference between di+∆di and di−1+∆di−1, and therefore
can result in underestimation of the displacement field. Such underestimation
can be prevented by biasing the regularization by ε to αa(di + ∆di − di−1 −
∆di−1 − ε)2, where ε = (dm − d1)/(m− 1) is the average displacement difference
between samples i and i − 1. An accurate enough estimate of dm − d1 is known
from the previous line. With the bias term, the R.H.S. of Equation 4 becomes
I′2e − (αaD + αlÎ)d + αldt.p. + b where the bias term is b = αa[−ε 0 · · · 0 ε]T

and all other terms are as before. Interestingly, except for the first and the last
equation in this system, all other m − 2 equations are same as Equation 4.

Equation 4 can be solved for ∆d in 4m operations since the coefficient matrix
I′2

2 +αaD+αlÎ is tridiagonal. Utilizing its symmetry, the number of operations
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can be reduced to 2m. The number of operations required for solving a system
with a full coefficient matrix is more than m3/3, significantly more than 2m.

Making Tracking Resistant to Outliers. Even with pure axial compression,
some regions of the image may move out of the imaging plane and increase
the decorrelation. In such parts the confidence of the data term is less and
therefore the weight of the regularization term should be increased. The parts
of the image with low correlation can be regarded as outliers and therefore
a robust estimation technique can limit their effect. Before deriving a robust
estimator for ∆d, we rewrite Equation 3 as C(∆d) = Σm

i=1ρ(ri) + R(∆d) where
ri = I1(i)−I2(i+di)−I ′2(i+di)∆di, ρ(ri) = r2

i and R is the regularization term.
The M-estimate of ∆d is ∆d̂ = argmin∆d {Σm

i=1ρ(ri) + R(∆d)} where ρ(u) is
a robust loss function [11]. The minimization is solved by setting ∂C

∂∆di
= 0:

ρ′(ri)
∂r

∂∆di
+

∂R(∆d)
∂∆di

= 0 (5)

A common next step [11] is to introduce a weight function w, where w(ri).ri =
ρ′(ri). This leads to a process known as “iteratively reweighted least squares”
(IRLS), which alternates steps of calculating weights w(ri) for ri = 1 · · ·m using
the current estimate of ∆d and solving Equation 5 to estimate a new ∆d with
the weights fixed. Among many proposed shapes for w(·), we use [11]

w(ri) =
{

1 |ri| < T
T
|ri| |ri| > T (6)

where T is a threshold that can be tuned. A small T will treat many samples as
outliers. With the addition of the weight function, Equation 5 becomes

(wI′2
2 + αD + α2Î)∆d = wI′2e − (α1D + α2Î)d + α2dt.p. + b (7)

where w = diag(w(r1) · · ·w(rm)). All of the results presented in this work are
obtained with one iteration of the above equation unless otherwise specified.
Current implementation of the AM algorithm with the IRLS takes 0.015s to
generate a dense displacement field of size 1300× 60 on a 3.4GHz P4 CPU(not
including the DP run time). The computation time increases linearly with the
size of images.

Frame Selection. The ultrasound probe is tracked in navigation/guidance
systems to provide spatial information, to generate freehand 3D ultrasound,
or to facilitate multi-modality registration. Through a calibration process, the
6DOF motion of the probe in the sensor coordinate system is transformed into
image coordinate system [12]. The mean of the absolute motion value of all pixels
in 3D, 〈|vx|〉, 〈|vy|〉 and 〈|vz |〉, can be analytically related to the 6DOF sensor
readings using straightforward and efficient geometric computations. For frame
i and j to be selected from a sequence of frames for elastography,

Qi,i = kx 〈|vx|〉2 + ky 〈|vy|〉2 + kz
‖ 〈|vz|〉 − vz,opt‖3

〈|vz|〉 + c
(8)
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should be minimized where kx, ky, and kz are weights for lateral, out-of-plane
and axial displacements and vz,opt is the optimum axial motion. Please refer to
[12] for a rationale of the shape this function. Note that the selected pairs are
not necessarily consecutive frames. The parameters, kx, ky, kz , vz,opt and c are
manually tuned to 1, 2, 1, 0.7 and 1 for the AM elastography method.

3 Simulation, Phantom and Patient Results

Simulation Results. RF ultrasound data of two phantoms are simulated using
Field II [13]. The first phantom is 50 × 10 × 55mm and the second one is 36 ×
10 × 25mm. They are both made of homogeneous and isotropic material: the
first one is uniform and the second one contains a circular hole filled with water,
simulating a blood vessel in tissue (Figure 2 (a)). A uniform compression in the
z direction is applied and the 3D displacement field of the phantom is calculated
using ABAQUS finite element package (Providence, RI). The Poisson’s ratio is
set to ν = 0.49 in both phantoms to mimic real tissue, which causes the phantom
to deform in x & y directions as a result of the compression in the z direction.

Respectively 5×105 and 1.4×105 scatterers with uniform scattering strengths
are uniformly distributed in the first and second phantom, ensuring more than
10 scatterers exist in a resolution cell. The scatterers are distributed in the 8mm
diameter vein also (Figure 2 (a)). To construct deformed ultrasound images, the
displacement of all of the scatterers is calculated by interpolating the displace-
ment of the neighboring nodes in the finite element analysis. The parameters
of the probe are set to mimic Siemens 5-10MHz probes. The probe frequency is
7.27MHz, the sampling rate is 40MHz and the fractional bandwidth is 60%.

The first phantom undergoes uniform compressions in the z direction to
achieve strain levels of 2% to 14% in 2% intervals. Ground truth integer dis-
placement values are used as the initial estimate for AM to decouple the perfor-
mance of DP from AM. Accurate subpixel displacement field is calculated with
AM and the mean strain values are compared with the ground truth (Figure 1
(a)-(c)). The results are only shown for 2%, 4%, 8% and 14% compression for
better visualization. The results with two threshold values for IRLS and without
IRLS demonstrate that outlier rejection does not affect the mean strain value,
while increasing the regularization weight αa increases underestimation of the
displacement. The rate of increase of the underestimation with increasing αa is
significantly more with the unbiased regularization (dashed line) as expected.

Significantly higher signal to noise ratio (SNR) [2] values can be achieved
with outlier rejection (Figure 1 (d)-(f)) without over-smoothing the image with
high αa values. To show the performance of the overall method, the initial inte-
ger displacement field is calculated with DP and accurate displacement field is
calculated with (Figure 1 (g)-(i)). The SNR values are less than previous case
especially at high strain values, where DP results deviates from ground truth.

The second simulation experiment is designed to show the effect of smooth-
ness weight and IRLS threshold on contrast to noise ratio (CNR) [2] when the
correlation is lower in parts of the image due to fluid motion. The phantom
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Fig. 1. Mean and SNR of the elastograms of the Field II simulated uniform phantom
at four different compression levels (shown in percentage) for three IRLS T values. The
solid and dashed lines correspond to biased and unbiased regularizations respectively.
(a)-(c) shows the relative underestimation of the strain. ε is the mean strain calculated
with the elastography method and ε∗ is the ground truth. (d)-(f) shows the SNR of
the AM. (g)-(i) shows the SNR of the AM with initial displacements found by DP.

contains a vein oriented perpendicular to the image plane (Figure 2). The initial
integer displacement is generated with DP. The background window for CNR
calculation is located close to the target window to show how fast the strain is
allowed to vary, a property related to the spatial resolution. The maximum CNR
with IRLS is 5.3 generated at T = 0.005 and αa = 38, and without IRLS is 4.8
at αa = 338. Such high αa value makes the share of the data term in the cost
function very small and causes over-smoothing.

Phantom Results. We perform freehand palpation experiment on a breast
phantom to examine the performance of the frame selection technique. 50 frames
of RF ultrasound data are acquired using a Siemens Antares system (Issaquah,
WA). Our custom data acquisition program is connected to the Axius Direct
Research Interface to send the command for capturing RF data. At the same
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Fig. 4. Patient experiment results. The arrow points to the lumpectomy cavity.

time, the program collects tracking information from a Polaris tracker (Waterloo,
Canada). Currently, the RF frames are stored on the ultrasound system and are
processed offline. Figure 3 shows the SNR and CNR results. In automatic frame
selection, Qi,j (equation 8) for any two frames i, j in a buffer of size 15 frames
is calculated. For the two frames which give the minimum Q, the strain image
is obtained. The next image is then fed to the buffer, its first image is removed
and the frame selection is performed again. The automatic frame selection gives
8 frame pairs for strain calculation (as seen in the figure by 8 SNR and CNR
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values). Without frame selection, 49 strain images are calculated. The average
CNR and SNR values are improved from 4.91 to 7.19 and from 4.98 to 5.88 with
frame selection.

Patient Results. We have acquired freehand palpation ultrasound RF data
using the Siemens Antares system from patients approximately four weeks after
lumpectomy. The ultrasound probe is tracked with the Polaris tracking system.
Optimal frame selection is performed to select images for elastography using the
AM method. The strain image (Figure 4) shows that the AM method can detect
the thin hard scar tissue even though it is close to the cavity fluids which undergo
incoherent motions and cause signal decorrelation. Since the AM method finds
the displacement of all the samples on an A-line at the same time, the correlated
data at the top and bottom of the cavity guide the method to find the correct
displacement inside the cavity where the data is decorrelated.

4 Discussion and Conclusion

We introduced a novel method for calculating a dense displacement map by
analytic minimization of a cost function. We used the IRLS method from ro-
bust statistics to make the tracking resistant to outliers. Moreover, we exploited
the tracking data to optimize frame selection. Through simulation studies using
Field II and finite element analysis, we showed that the proposed AM method
generates high quality displacement estimates. The elastography method works
in real-time. A comparison of the IRLS method with quality guided displacement
tracking [14] which also aims for robustness is a subject of future work.

We chose the novel application of the lumpectomy cavity localization as the
hard scar tissue is relatively thin and demands a high resolution elastography
method. Also, incoherent fluid motions in the cavity causes large decorrelations,
requiring a robust method. We have an active Institutional Review Board(IRB)
protocol and have promising results from 9 patients which will be published in
future work.
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Abstract. This paper presents a robust framework for freehand ultra-
sound elastography to cope with uncertainties of freehand palpation us-
ing the information from an external tracker. In order to improve the
quality of the elasticity images, the proposed method selects a few im-
age pairs such that in each pair the lateral and out-of-plane motions are
minimized. It controls the strain rate by choosing the axial motion to be
close to a given optimum value. The tracking data also enables fusing
multiple strain images that are taken roughly from the same location.
This method can be adopted for various trackers and strain estimation
algorithms. In this work, we show the results for two tracking systems
of electromagnetic (EM) and optical tracker. Using phantom and ex-vivo
animal experiments, we show that the proposed techniques significantly
improve the elasticity images and reduce the dependency to the hand
motion of user.

Key words: Ultrasound, Elastography, Elasticity, Tracking, Strain

1 Introduction

Ultrasound elastography is an emerging medical imaging modality which in-
volves imaging the mechanical properties of tissue and has numerous clinical
applications. Among many variations of ultrasound elastography [1], our work
focuses on real-time static elastography, a well-known technique that applies
quasi-static compression of tissue and simultaneously images it with ultrasound.
Within many techniques proposed for static elastography, we focus on freehand
palpation elasticity imaging which involves deforming the tissue by simply press-
ing the ultrasound probe against it. Freehand ultrasound elastography has shown
great potential in clinical applications especially for diagnosis and screening of
breast lesions [2]. The application of elastography is not limited to breast, and
other applications such as diagnosis of prostate cancer, monitoring ablation and
deep vein thrombosis have also been studied.

Despite the reports on success of elastography, yet it has not become a part of
any routine clinical application. The main reason is that elastography is highly
qualitative and user-dependent. The best result is achieved when the user com-
presses and decompresses the tissue uniformly in the axial direction with the
proper hand motion. It is difficult to control the compression rate as it is gov-
erned by the hand motion and the frame rate of RF data. Also, small lateral
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or out-of-plane motions can compromise the quality of images. However, it is
difficult to induce pure axial motion with freehand compression. Sophisticated
algorithms can only partially address the problem by compensating for in-plane
motions and applying smoothness constraints. The images are also hard to in-
terpret, and artifacts –caused by failure of the strain estimation algorithm or
poor hand motion– may be mistaken for lesions inside the soft tissue. Devel-
oping an elastography technique that is not affected by poor hand motion and
other sources of signal decorrelation will pave the way for wide-spread clinical
use of elastography.

To improve the reliability, quality metrics such as persistence in strain images
have been developed [3, 4]. This quality indicator is calculated for each image
and provided to the user as feedback. Persistence is also used to merge multiple
elasticity images together [3]. To measure the persistence, strain is computed
for two pairs of echo frames, and the resulting images are correlated. Although
these techniques offers a major advantage, there remains several limitations.
First, the strain has to be estimated before the calculation of the quality metric.
With typical ultrasound settings, the frame rate can reach more than 30 Hz. For
subsequent frames, an efficient implementation of this image-based metric might
cope with this rate. Nonetheless, the task will be extremely difficult to try all
the combinations in a series of frames. Moreover, the quality metric will not be
able to provide feedback to the user whether he/she should adjust the palpation
in certain direction. Also, there would be minimal control over the strain rate.

The ultrasound probe is often tracked in navigation/guidance systems to
provide spatial information, to form freehand 3D ultrasound, or to facilitate
multi-modality registration. In this work, we exploit the tracking data to en-
hance the quality of the elasticity images. We use the tracking data to select
multiple image pairs that contain the optimum deformation for the elastogra-
phy algorithm. The optimum value for lateral and out-of-plane motions is zero,
and the optimum axial motion is determined by the specific elastography algo-
rithm used, which is Normalized Cross-Correlation (NCC) in this work. Next,
we fuse the strain images obtained from the multiple image pairs together based
on the location of each strain image to improve image quality. We assume that
the ultrasound data is 2D. Nonetheless similar techniques proposed here could
be extended to 3D ultrasound.

2 Methodology

Consider a sequence of RF data collected during the palpation of tissue using a
tracked transducer. We have previously shown that it is possible to synchronize
the RF frames with the tracking information relying only on the same data
collected during palpation [5]. From synchronization, the tracking information
is interpolated at the incident time of each frame. The input to our algorithm is
then a series of RF frames along with their corresponding transformation.

First, we need to define a distance function between two frames of RF data.
For this purpose, we use a model of image decorrelation in presence of out-of-
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plane and lateral motion. RF signal is often modeled as the collective response
of scatterers randomly distributed within the resolution cell of the ultrasound
[6, 7]. Each scatterer is assumed to have an amplitude governed by the shape
of the resolution cell and a phase which is distributed from 0 to π uniformly at
random. Considering a Gaussian shape for the resolution cell Prager et. al [8]
calculated the correlation as a function of out-of-plane motion to be exp(− δ2

2σ2 ).
δ and σ denote the displacement and the width of the resolution cell respectively.
Although this function is only valid for fully developed speckle, it provides a con-
venient estimate of correlation. It should be noted that in [8], the displacement is
estimated from correlation, whereas here, we intend to define an energy function
based on displacement. Extending this formula to both out-of-plane and lateral
displacements, we define our energy function, E(x, z), as follows:

E(Dx, Dz) = exp(−Kx · D2
x −Kz · D2

z), (1)

where Dx and Dz represent the displacement in out-of-plane and lateral direc-
tions (Dy is reserved for axial motion). Kx and Kz determine the sensitivity to a
certain direction. In order to be able to use this function, we need a component-
wise metric representing the distance of two frames given their homogeneous
transformations. The first step is to compute the relative transformation be-
tween them. Suppose a = [ax ay az]T is the axis-angle representation of the
relative rotation, and t = [tx ty tz]T is the relative translation. Assuming a small
rotation, the relative displacement of a point, P = [xy 0]T , will be d = a×P + t.
We then define the distance vector of two frames, D = [Dx Dy Dz]T , as the RMS
of the components of d for all the points in the region of interest (ROI):

Dx = sqrt{ 1
(y2 − y1)

∫ y2

y1

(−az · y + tx)2dy },

Dy = sqrt{ 1
(x2 − x1)

∫ x2

x1

(az · x + ty)2dx },

Dz = sqrt{ 1
(y2 − y1)(x2 − x1)

∫ x2

x1

∫ y2

y1

(ax · y − ay · x + tz)2dydx }, (2)

where sqrt{.} returns the root. Here, ROI is assumed to be rectangular and
determined by x1, x2, y1, and y2. The vector D provides a measure of distance
for each direction separately. We use this vector in Equation (1) which gives us
an estimate of “pseudo-correlation” over the ROI.

The data goes through four stages of processing to create a single high-
quality strain image. In the first step, few images are selected from the data
series that are approximately collected from one cross-section of tissue with
minimal lateral and out-of-plane motion. To this end, the energy function of
each frame is computed with respect to all other frames in the sequence. Then,
the total energy is found for each frame as the sum of the energies of the M
closest frames, where closeness implies higher energy, and M is the maximum
number of frames to be selected. Then, the frame with the highest total energy
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(the center frame) is identified, and the M closest frames to the center frame
including itself are selected. Additionally, the frames that have E of less than
0.5 with respect to the center frame are disqualified. This is applied to ensure
lower number of frames are chosen when M frames from one cross-section are
not available.

In the next stage, the program evaluates all possible combination of frame
pairs for elastography. For M frames, there will be

(M
2

)
= M(M − 1)/2 pair

combinations which will be compared using a slightly modified version of E.
Since the pairs are directly compared, it suffices to minimize the exponent of
Equation (1) in order to maximize E. We also add a term for axial motion that
penalizes compressions that are higher than an optimum compression value, topt.
Hence, a “cost function”, C1, is defined as follows:

C1(D) = Kx·D2
x+Ky ·D̃y

2
+Kz ·D2

z , D̃y =
{

Dy − topt, |Dy − topt| > 0
0, |Dy − topt| ≤ 0 (3)

topt implies the optimal strain. Optimal strain can be theoretically defined
as described in [9]. It also depends on the robustness of the elasticity estima-
tion algorithm. topt might be within the range of the resolution of the tracker.
Therefore, at this stage we do not assign a penalty for the compressions less than
topt. If the compression is close to zero, the contrast of the reconstructed image
degrades. The program filters the pairs with low compression in the next stage
using image content. Similar to the first part, a maximum number of frames
with lowest cost are selected provided that the cost is lower than a threshold.
The threshold is not strict to ensure acceptable pairs are not filtered.

The final pairs are selected by recovering the global lateral motion and com-
pression by matching the two RF frames in each pair. The tracking information
is used to initialize the search. For instance, the search range for compression is
set to be from zero to the tracker reading in axial direction padded in both sides
with the maximum error of the tracker. Given two frame I1 and I2, the amount
of lateral motion a, and compression, b, is found by solving cross-correlation:

arg max
a,b





∑

x,y∈G

I1(x, y) · I2(x + a, by) + I1(x− a,−by) · I2(x, y)




 . (4)

The RF data is normalized with standard variation and assumed to have zero
mean. We employ two tricks which extensively increases the speed of search.
First, we do not match the entire image to solve for these parameters. Instead,
only pixels on a grid, G, are used as described by Equation (4). The two terms of
Equation (4) ensures that the search remains reciprocal, which means switching
the images only affects the sign of a and b. Second, a is recovered by matching
only the top part of the two images while b is fixed to one. The reason is that
the displacement due to compression is minimal in that region.

Having the global motions, the cost function is modified to penalize very low
compressions:
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C2(D̂) = Kx · D̂x
2

+ Ky · |D̂y − topt|3

D̂y + c
+ Kz · D2

z , (5)

where D̂x and D̂y are the global motions from Equation (4) converted to mm. c
is a small number that limits the cost of zero compression. Finally, the pairs with
the lowest cost are selected until a maximum number of frame pairs is reached
or the minimum cost grows higher than the average cost.

The last step involves computing the strain for all the selected frame pairs.
We have implemented normalized cross-correlation (NCC) [10] to recover the
displacements and least squares estimation to calculate the strain. Before calcu-
lating strain, the global lateral motion and compression from the previous step
are compensated in one image using cubic interpolation. This is known to reduce
the error of strain estimation [11]. The final strain image, Sfinal is the weighted
average of all the strains:

Sfinal =
∑m

i=1 wi · Si∑m
i=1 wi

, wi =
{ ρi

1−ρi
, ρi > 0.7

0, otherwise
(6)

where ρi is the correlation coefficient for the ith pair after applying the dis-
placements, and m is the number of pairs. Fusing the strains in this fashion is
acceptable since the algorithm only allows for compressions that are close to a
predetermined amount optimal for strain estimation.

3 Experiments and Results

We acquired ultrasound data using a SONOLINE AntaresTM ultrasound system
(Siemens Medical Solutions USA, Inc.) with a high-frequency ultrasound trans-
ducer (VF10-5) at center frequency of 6-8 MHz. We accessed RF through the
Axius DirectTM Ultrasound Research Interface provided by Siemens. Our custom
data acquisition program was connected to this interface to send the command
for capturing RF data. At the same time, the program collected tracking infor-
mation from either a “Polaris” optical tracker (Northern Digital Inc., Waterloo,
Canada) with passive markers or the “medSAFE” EM tracker (Ascension Tech.
Corp.).

RF data and tracking information was captured from a breast phantom con-
taining a harder lesion (CIRS elastography phantom, Norfolk, VA) and ex-vivo
pig liver. Alginate was injected to the liver to mark a part of liver, and then,
that area was ablated. The users were asked to palpate the tissue over the hard
lesion in the breast phantom and the ablated lesion in the pig liver while data
was being collected. Between 100 to 138 RF frames were acquired with the rate
of about 30 frames per second.

The first set of data was captured by an experienced user from the breast
phantom. Figure 1(a) shows the translation components of hand motion with
respect to the first frame. The axial motion is dominant and there is only a
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Fig. 1. (a) shows the translation of probe w.r.t. the first image. Proper hand motion
is applied as the axial compression is dominant. (b) is the output of our proposed
algorithm.

gradual drift in the lateral and elevational directions. Figure 1(b) depicts the
high-quality strain image resulting from the TrUE algorithm.

Applying a compression similar to the one shown in Figure 1(a) is a difficult
task for novice or even intermediate users. This is especially the case where axial
compression does not translate into a simple up and down motion. Ultrasound gel
creates a slippery surface that makes the palpation prone to out-of-plane motion.
Two case are shown in Figure 2, where one is tracked with the EM tracker and
the other one with the optical tracker. In Figure 2(a) the hand motion contains a
large amount of out-of-plane motion, whereas, in Figure 2(b), the user has moved
the probe laterally. In both cases, the TrUE algorithm generates reliable results.
Figures 2 (c) and (d) show the contrast-to-noise ratio (CNR) and signal-to-noise
ratio (SNR) of the strain image. The CNR and SNR value are computed from:

CNR =

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
, (7)

where s̄ and σ denote the mean and standard deviation of intensities. The t or
b subscripts show that the computation is only for the target or the background
region, respectively. The SNR and CNR for computing the strain from consecu-
tive frames (the dashed curve) is compared to the SNR and CNR of the strain
image from the proposed method (solid line). Using consecutive frames is the
standard method of elastography in ultrasound machines. Almost in all cases
the TrUE algorithm outperforms the consecutive frames by a large margin.

Although the SNR and CNR provide quantitative measures to compare the
strain images, they do not directly reflect the visual quality of strain. In Figure
3, we show results of elastography using our frame selection technique as well as
four other strain images calculated from consecutive frames. The Figure shows
the effects of improper compression in consecutive frames in the strain image.
At the same time our algorithm provides a single reliable strain.
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Fig. 2. Two cases of improper motions are shown where the hand motion suffers from
large lateral and elevational components evident in relative translations. The results
of case 1 with EM tacker is shown on the left column, and the results of case 2 with
optical tracker is shown on the right column.

4 Discussion

We presented a method of ultrasound elastography which is robust to the quality
of the hand motion of the user. Using the information from an external tracker,
it automatically selects multiple frame pairs with a specific compression and
minimal undesired motions. Our approach does not take into account the tissue
motion from other sources such as breathing or patient motion. However, these
types of motions are not normally problematic since they occur with a slower
pace compared to hand motion.

Our experiments shows that even when the transducer has severe lateral or
out-of-plane motions, the algorithm still manages to produce good results. The
multi-stage frame selection and careful image fusion makes the TrUE method
less sensitive to tacker accuracy and robust to strain estimation failures.

We are planning to use the proposed method in a breast cancer study. For this
purpose, we will be implementing our MATLAB code in C. The stain estimation
which is still the bottleneck of our approach will be executed in GPU allowing
for the use of sophisticated algorithms.
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(a) B-mode (b) TrUE (c) 1&2

(d) 2&3 (e) 3&4 (f) 4&5

Fig. 3. Comparison of the strain from TrUE vs. consecutive frames for ex-vivo pig liver.
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Ultrasound Elastography Using Three Images
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Abstract. Displacement1 estimation is an essential step for ultrasound
elastography and numerous techniques have been proposed to improve
its quality using two frames of ultrasound RF data. This paper intro-
duces a technique for calculating a displacement field from three frames
of ultrasound RF data. To this end, we first introduce constraints on
variations of the displacement field with time using mechanics of ma-
terials. These constraints are then used to generate a regularized cost
function that incorporates amplitude similarity of three ultrasound im-
ages and displacement continuity. We optimize the cost function in an
expectation maximization (EM) framework. Iteratively reweighted least
squares (IRLS) is used to minimize the effect of outliers. We show that,
compared to using two images, the new algorithm reduces the noise of
the displacement estimation. The displacement field is used to generate
strain images for quasi-static elastography. Phantom experiments and
in-vivo patient trials of imaging liver tumors and monitoring thermal
ablation therapy of liver cancer are presented for validation.

1 Introduction

Displacement, motion or time delay estimation in ultrasound images is an essen-
tial step in numerous medical imaging tasks including the rapidly growing field
of imaging the mechanical properties of tissue [1]. In this work, we perform dis-
placement estimation for quasi-static ultrasound elastography [1], which involves
deforming the tissue slowly with an external mechanical force, imaging the tis-
sue during the deformation, and performing displacement estimation using the
images. More specifically, we focus on real-time freehand palpation elastography
[2–7] where the external force is applied by simply pressing the ultrasound probe
against the tissue. Ease of use, real-time performance and providing invaluable
elasticity images for diagnosis and guidance/monitoring of surgical operations
are the key factors that have led to its successful commercialization.

A typical ultrasound frame rate is 20-60 fps. As a result, an entire series of
ultrasound images are freely available during the tissue deformation. Multiple
ultrasound images have been used before to obtain strain images of highly com-
pressed tissue by accumulating the intermediate strain images, and to obtain
persistently high quality strain images by performing weighted averaging of the
strain images [8–10]. Accumulating and averaging strain images increases their
signal to noise ratio (SNR) and contrast to noise ratio (CNR). However, these
techniques are susceptible to drift, a problem with any sequential tracking system

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part I, LNCS 6891, pp. 371–378, 2011.
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Fig. 1. Left: in-vivo images of liver. First and second (S1 and S2 from left) are two
strain fields calculated from I1 and I2, and from I2 and I3 respectively. S1 & S2 look
“similar”. Third image is S1 −ηS2 for η = 1.1. The strain range in the first two images
is 0 to 0.6%, and in the third image is ±0.3%. Right shows the ElastMI algorithm.

[11]. In addition, these techniques do not exploit additional images to improve
displacement estimation, which has many applications besides strain estimation.
Time series of ultrasound data has also been used to characterize tissue [12] and
improve elasticity reconstruction [13] and viscoelastic parameters [14, 15].

Figure 1 shows two consecutive strain images calculated from three ultrasound
images using the 2D analytic minimization (AM) method [16]. Our motivation is
to utilize the similarity of these two images to calculate a low variance displace-
ment field from three images. The contributions of this work are: (1) introducing
constraints on variation of the motion fields based on similarities of strain images
through time; (2) proposing an EM algorithm to solve for motion fields using
three images, and (3) reporting clinical tstudies of ablation guidance/monitoring,
with data collection corresponding to before, during and after ablation.

The rest of this paper is summarized as follows. We first introduce the Elas-
tography using Multiple Images (ElastMI) algorithm for tissue displacement es-
timation, which minimizes a cost function that incorporates data obtained from
three images and exploits mechanical constraints. The estimated low variance
displacement field can be used in numerous applications in imaging mechanical
properties of tissue; we use it for generating strain images by calculating its spa-
tial derivative. We use phantom and in-vivo clinical studies to compare ElastMI
versus the recently developed elastography technique of 2D AM (code available
online at www.cs.jhu.edu/~rivaz) [16].

2 ElastMI: Elastography Using Multiple Images

We have a set of p = 3 images Ik, k = 1 · · · 3, each of size m × n. Let the 2D
displacement field dk = (ak, lk) denote the displacement between Ik and I1,
where a refers to the axial (i.e. in the direction of the ultrasound beam) and l to
the lateral (i.e. perpendicular to the beam and in the imaging plane) directions.
By the choice of reference d1 = 0. Note that we set I1 as the reference image
to simplify the notation. However, in our implementation we always take the
middle image (i.e. I2) as the reference. Our goal is to calculate a high quality d2

by utilizing all three images in a group-wise approach.
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It is well known that many tissue types display linear strain-stress relation in
the 0 to 5% range (see [1] for example). In a freehand palpation elastography
setup with ultrasound acquisition rate of 20 fps or more, taking three consecutive
images as I1, I2, I3 corresponds to strain values of less than 1% and therefore
the linearity assumption is valid. Using this property and some simplifying as-
sumptions, it can be shown that the ratio of the strain and displacement fields
in different times is a constant value, i.e. strain images are similar up to a scale
as in Figure 1. We denote the scale factor by η = (ηa, ηl), and allow it to slightly
change spatially to account for small nonlinearities in the tissue. As such, ηa

and ηl are themselves scale fields in the axial and lateral directions each of size
m×n. Using this notation we have a3 = ηa.∗a2 and l3 = ηl.∗ l2 where .∗ denotes
point-wise multiplication.

Let θ contain all the displacement unknowns d2 and d3. The MAP estimate
of θ is obtained by maximizing its posterior probability

Pr(θ | I1, I2, I3) ∝ Pr(I1, I2, I3 | θ) Pr(θ) (1)

where we have ignored the normalization denominator. The data term is cal-
culated as Pr(I1, I2, I3 | θ) = Ση Pr(I1, I2, I3, η | θ). The summation over the
latent variable η makes the optimization problem intractable. We therefore use
Expectation Maximization (EM) to make the problem tractable as following.

1. Initialize: find an estimate for θ by applying the 2D AM method [16] to two
pairs of images (I1,I2) and (I1,I3) independently.

2. E-step: find an estimate for η using θ (details below).
3. M-step: update θ with the current estimate of η (details below).
4. Iterate between 2 and 3 until convergence.

The algorithm is shown in Figure 1 right. Note that unlike the traditional EM
which maximizes Pr(I1, I2, I3 | θ), we maximize the posterior probability of θ
(Equation 1). Steps 2 and 3 are elaborated below.

Calculating η from θ Using Least Squares. At each sample (i, j) in the
displacement field d2

i,j , i = 1 · · ·m, j = 1 · · ·n take a window of size mw × nw

centered at the sample (mw and nw are in the axial and lateral directions re-
spectively and both are odd numbers). Stack the axial and lateral components of
d2

i,j that are in the window in two vectors a2
i,j and l2i,j , each of length mw × nw.

Similarly, generate a3
i,j and l3i,j using d3. Note that since both displacement

fields d2
i,j and d3

i,j are calculated with respect to samples on I1, they corre-
spond to the same sample (i, j). We first calculate the axial component η(i,j),a

(η(i,j) = (η(i,j),a, η(i,j),l)). Discarding the spatial information in a2
i,j and a3

i,j ,
we can average the two vectors into two scalers ā2

i,j and ā3
i,j and simply cal-

culate η(i,j),a = ā3
i,j/ā2

i,j . However, a more elegant way which also takes into
account the spatial information is by calculating the least squares solution to
the following over-determined problem (superscript T denotes transpose).

a2
i,jη(i,j),a = a3

i,j giving η(i,j),a =
a2T

i,j a3
i,j

a2T
i,j a2

i,j

, (2)
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which is what we use in our implementation. To calculate the ratio of the lateral
displacement fields η(i,j),l, we take into account possible lateral slip of the probe,
which results in a rigid-body-motion. The rigid-body-motion can be simply cal-
culated by averaging the lateral displacement in d2

i,j and d3
i,j in the entire image,

and calculating the difference between these two average lateral displacements.
The lateral scaling factor η(i,j),l can be calculated using an equation similar to 2
where the axial displacement ai,j is replaced with the lateral displacements li,j .
However, we use the following approach which results in a better estimate for
η(i,j),l. The lateral strain εl is simply νεa where ν is an unknown Poisson’s ratio.
Since ν has a small dynamic range in soft tissue and since the difference between
the two displacement maps d2 and d3 is small, we can assume that ν does not
vary from d2 to d3. Therefore, η(i,j),l = η(i,j),a. This gives better estimate for
η(i,j),l since axial displacement estimation is more accurate [16].

Calculating θ by Maximizing Its Posterior Probability. To analytically
solve the MAP estimate of θ, we assume that the data is independent and
that the noise model is Gaussian. Although not completely held in real images,
these assumptions are also the foundation behind sum of square difference and
correlation based elastography methods, which have been extensively shown to
produce reliable results. With these assumptions, the robust MAP estimate for
θ can be obtained by minimizing the following cost function

C(θ) =
m∑

i=1

w12,i

(
I1(xi) − I2(xi + d̂2

i ) − δd2T
i ∇I2(xi + d̂2

i )
)2

+

m∑

i=1

w13,i

(
I1(xi) − I3(xi + ηi,ad̂2

i ) − ηi,aδd2T
i ∇I3(xi + ηi,ad̂2

i )
)2

+

m∑

i=1

(d2
i − d2

i−1)
T A(d2

i − d2
i−1) (3)

where d̂2
i is the estimate obtained using 2D AM, δd2

i = d2
i − d̂2

i is the update
in the displacement that we are looking for, A = diag(α,β ) is a 2 × 2 diagonal
matrix with tunable regularization weights (α,β ) that we adjust manually in
this work, and ∇ denotes the gradient operator. Robustness is achieved using
IRLS through weights w12,i and w13,i which are calculated as following

w1k,i = w(I1(xi) − Ik(xi + d̂k
i )), for k = 2, 3, and w(ri) =

{
1 |ri| < T

T
|ri| |ri| > T (4)

where T is a tunable parameter which determines the residual level for which
sample i can be treated as outlier. A small T will treat many samples as outliers.

Setting the derivative of C w.r.t. the axial (δa2
i = δd2

i,a) and lateral (δl2i =
δd2

i,l) components of δd2
i for i = 1 · · ·m to zero and stacking the 2m unknowns

in δd2 =
[
δa2

1 δl21 δa2
2 δl22 · · · δa2

m δl2m
]T and the 2m initial estimates in d̂2 =

[
â2
1 l̂21 â2

2 l̂22 · · · â2
m l̂2m

]T
we obtain the linear system of size 2m:
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Table 1. The SNR and CNR of the strain images of Figure 2

Axial, 2D AM Axial, ElastMI Lateral, 2D AM Lateral, ElastMI
SNR 11.11 12.64 6.06 6.63
CNR 8.48 9.63 2.96 3.39

(I ′ + D)δd2 = r −Dd̂2, D =





α 0 −α 0 0 0 · · · 0
0 β 0 −β 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −β 0 2β 0 −β · · · 0
0 0 −α 0 2α 0 · · · 0
...

. . .
0 0 0 · · ·− α 0 α 0
0 0 0 · · · 0 −β 0 β





, (5)

where I ′ is a symmetric tridiagonal matrix with 2×2 matrices I′ in its diagonal:

I ′ = diag(I′2(1) · · · I′2(m)),

I′2(i) =

[
(w12,i + w13,iηi,a

2)I ′1,a
2 (w12,i + w13,iηi,aηi,l)I ′1,aI ′1,l

(w12,i + w13,iηi,aηi,l)I ′1,aI ′1,l (w12,i + w13,iηi,l
2)I ′1,l

2

]
(6)

where I ′2 and I ′3 are calculated respectively at (xi + d̂2
i ) and at (xi + ηi. ∗ d̂2

i ),
superscript ′ indicates derivative and subscript a and l determine whether the
derivation is in the axial or lateral direction, and r is a vector of length 2m with
elements:

i even : ri = w12,iI
′
1,a(xi)

[
I1(xi) − I2(xi + d̂2

i )
]

+

w13,iηi. ∗ I ′1,a(xi)
[
I1(xi) − I3(xi + ηi. ∗ d̂2

i )
]

i odd : ri = w12,iI
′
1,l(xi)

[
I1(xi) − I2(xi + d̂2

i )
]

+

w13,iηi. ∗ I ′1,l(xi)
[
I1(xi) − I3(xi + ηi. ∗ d̂2

i )
]
. (7)

The coefficient matrix in Equation 5 is pentadiagonal and symmetric. As such,
it can be solved in 8m operations, significantly less than (2m)3/3 required for
solving a full system. For all the results presented in this work, the EM algorithm
is iterated once.

3 Results of Phantom Experiments and Patient Trials

RF data is acquired from an Antares Siemens system (Issaquah, WA) at the
center frequency of 6.67 MHz with a VF10-5 linear array at a sampling rate
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Fig. 2. Strain images of the CIRS phantom with the target and background windows
(for calculation of SNR and CNR). No Kalman filter [16] is used to ease the comparison.

Table 2. The CNR of the strain images of first, second and third patient trials (images
of second patient are shown in Figure 3). P1, P2 and P3 respectively correspond to
patients 1, 2 and 3. 2(s̄b − s̄t)

2 and σ2
b + σ2

t indicate contrast and noise respectively.

before ablation during ablation after ablation
2D AM ElastMI 2D AM ElastMI 2D AM ElastMI

P1
104 × 2(s̄b − s̄t)2 - - - - 2.18 2.22
104 ×

(
σ2

b + σ2
t

)
- - - - 0.108 0.083

CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
- - - - 4.49 5.17

P2
104 × 2(s̄b − s̄t)

2 0.45 0.89 - - 2.08 2.15
104 ×

(
σ2

b + σ2
t

)
0.0036 0.0045 - - 0.204 0.142

CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
11.16 14.05 - - 3.19 3.89

P3
104 × 2(s̄b − s̄t)2 0.235 0.234 0.0745 0.1716 4.85 4.82
104 ×

(
σ2

b + σ2
t

)
0.0045 0.0036 0.0091 0.0161 0.204 0.171

CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
7.22 8.01 2.87 3.26 4.87 5.31

of 40 MHz. An elastography phantom (CIRS elastography phantom, Norfolk,
VA) is compressed axially in two steps using a linear stage, and three images
are acquired. Resulting strain images are shown in Figure 2. The unitless metric
signal to noise ratio (SNR = s̄b

σb
) and contrast to noise ratio (CNR =

√
2(s̄b−s̄t)2

σ2
b+σ2

t
)

[1] of the ElastMI algorithm are shown in Table 1 (The SNR is only calculated
for the background window). Comparing to the 2D AM, the ElastMI algorithm
improves the SNR by approximately 14% and the CNR by approximately 11%.
The high quality of the lateral strain image, compared to state of the art strain
imaging techniques, is visually noticeable.

In the clinical studies, RF data was acquired from ablation therapy of three
patients with liver cancer using the Siemens Antares ultrasound machine in
the following way: for the first patient only after ablation, for the second patient
before and after ablation, and for the third patient before, during and after abla-
tion. The ablation was administered using the RITA Model 1500 XRF generator
(Rita Medical Systems, Fremont, CA). Tissue was simply compressed freehand
at a frequency of approximately 1 compression per 2 sec with the ultrasound
probe without any attachment, and the strain images are generated offline.
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b 

Fig. 3. Axial strain images of the second in-vivo patient trial corresponding to before
(top row) and after (bottom row) ablation. The first, second and third columns are
respectively B-mode, 2D AM strain and ElastMI strain images. The cancer tumor in
the top row, and the ablated lesion in the bottom row are delineated. The CNR between
the target and background (marked by t & b) windows are given in Table 2.

Results of the second patient trial are shown in Figure 3. Considering the
numerous sources of noise in the clinical data, the high contrast of the tumor
(top row) and the ablated lesion (bottom row) in the strain images make ElastMI
a promising tool for both finding the tumor and monitoring the ablation. It
should be noted that elastographic analysis of the ablated lesion is known to be
challenging due to high temperatures which significantly degrade the quality of
ultrasound data (mainly because of the air bubbles). Table 2 summarizes the
CNR, as well as noise and contrast values, in the patient trials obtained using
2D AM and ElastMI methods. In the six cases presented in this table (two before
ablation, one during ablation and three after ablation), the average increase in
the CNR achieved using ElastMI compared to 2D AM is 17%.

4 Conclusions

In this work, we proposed to utilize three ultrasound images to calculate high
quality displacement fields. We neglected the dynamics of tissue motion and
assumed a static model for tissue mechanics, which is valid in the quasi-static
elastography. Using this model and assuming tissue linearity, which holds in
the low strain rates of the freehand elastography, we introduced constraints on
the variations of the strain field with time. We then proposed ElastMI, an EM
algorithm that exploits these constraints for estimating displacement fields using
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three images. The algorithm involves solving sparse linear systems, and therefore
runs in real-time. The low variance motion field that we compute by exploiting
this new prior can be used in numerous applications in ultrasound imaging; we
used it here to generate strain images.
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