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FINAL TECHNICAL REPORT 

Coherence Properties of Strongly Interacting 
Atomic Vapors in Waveguides 

Maxim Olchanyi 

Summary 

The focus of this project was the transition from a coherent—thus integrable and predictable— 
behavior to a thermal one in atom waveguides and optical lattices. The approach to the theme 
ranged from a purely pragmatic to a thoroughly fundamental. Over the years, the focus was 
gradually shifting from a loss of coherence toward a broader question of predictability of the 
outcome of a quantum device. We payed a special attention to the systems with additional 
conserved or quasi-conserved quantities, serving, in this context, as additional predictors. 



Results from N00014-06-1 -0455 and N00014-09-1-0502 

Atom beam-splitting in strongly interacting gases 

An output of an atom beamsplitter is the simplest nontrivial far-from-equililibrium initial state of 
an atomic sample. The result of a consequent time propagation is determined by a competition 
between the conserved quantities of the non-interacting counterpart and the interactions be- 
tween the atoms. Generally, the former tend to preserve coherence and the later lead to a ther- 
malization of the sample and an inevitable decoherence. In this regard, the one-dimensional 
hard-core bosons [7-9, 24, 26-29] constitute a conceptually important intermediate case. On 
one hand, the free-fermionic integrals of motion tend to preserve the multi-beam structure of 
the atomic state and the coherence between the beams. On the other hand, the Bose-Fermi 
correspondence does not preserve the momentum distribution exactly. As a result, the beam- 
splitter peaks tend to broaden in the beginning, but the broadening stops well before the peaks 
start to overlap. 

Another system we studied was a one-dimensional Bose gas on a lattice in the mean-field 
regime [22]. There the goal was to repeat, for our system, the Chirikiov-lzrailev program for 
Fermi-Pasta-Ulam chain and determine the position of the chaos/decoherence threshold. We 
found that while the threshold remains finite in the thermodynamic limit, it moves towards infinite 
densities in the continuum limit. In particular this means that interaction-induced dynamical 
chaos does not seem to constitute an obstacle for a coherent operation of a beamsplitter. 

Influence of the conserved and quasi-conserved quantities on the output of a quantum 
device 

If a system possesses some nontrivial integrals of motion, the final state of the system after 
a time propagation will remember their initial values. However, even when the number of the 
conserved quantities (in involution) is as high as the number of the degrees of freedom, still, 
only a half of the phase coordinates is predictable: the corresponding canonical angles will 
be uniformly (in case of incommensurate frequences) covering the remaining submanifold. By 
analogy with a conventional microcanonical ensemble, one may devise an ensemble where not 
only the energy, but other integral of motion as well are bounded by respective windows. Such 
a statistical model will have a much higher predictive power than the standard thermodynamics. 

A canonical version of the generalized microcanonical ensemble above (the so-called Gen- 
eralized Gibbs Ensemble) has been proven to be operationally simple highly accurate theory 
for an outcome of the time evolution of a gas of impenetrable bosons [5, 7, 9, 24, 26-29], 
On the other end of the integrability-ergodicity continuum, the memory of the initial conditions 
vanishes for all initial states: quantitatively, this manifests itself in the eigenstate-to-eigenstate 
variance becoming much smaller [1, 2] than the quantum fluctuations. This effect is called 
Eigenstate Thermalization. We have successfully demonstrated the effect for the cases of a 
two-dimensional lattice with hard-core bosons [3, 4, 6, 11, 23], a one-dimensional lattice with 
hard-core bosons interacting via a soft-core and, in a different realization, via a three-body 
potential [1, 2], and a Josephson junction with two species of bosons [21]. 

We payed a special attention to the transition between the integrable and ergodic regimes. 
We found that in the cases of a rough quantum billiard [14] and in two atoms in a harmonic 
waveguide [16, 17, 20, 21] (constituting a Seba billiard), there exists a closed form analytic 
description of the correlation between the final and initial values of an observable that covers 
the full range of parameters from the integrable regime through a fully developed quantum 
chaos. 

To treat the fluctuations of the expectation values of observables across the spectrum (that 
define a typical deviation from ergodicity), we introduce a geometric structure—based on the 



Frobenius or Hilbert-Schmidt inner product—to the space of quantum observables [1, 2], The 
induced measure allows one to identify the most relevant information about the initial state 
needed to accurately predict the outcome. We envision that this technique can be successfully 
applied for design of quantum mesoscopic devices. 

Exotic symmetries in cold gases: supersymmetry, dynamical symmetry, and quantum 
anomalies 

We performed an extensive study of the relationship between some cold-gases-relevant PDEs 
(Nonlinear Schrödinger (NLS) (bosonic waveguide) and sine-Gordon (sG) (two coupled bosonic 
or fermionic waveguides)) and the Quantum-Mechanical Supersymmetry (QM-SUSY) [15]. We 
found that the QM-SUSY emerges in two unrelated instances: a property of the first Lax op- 
erator and the Bogoliubov-de-Gennes (BdG) Liouvillian respectively. In the first case, the QM- 
SUSY removes the thermal noise around multi-solitonic solutions. In the second case, the 
QM-SUSY guarantees that the BdG propagation correctly describes a penetration of a small 
soliton(breather) through a large stationary soliton of the NLS(sG) equation. 

Next, we predicted and subsequently studied the quantum-mechanical symmetry breaking 
or quantum anomaly for the Pitevskii-Rosch dynamical symmetry (decoupling of the monopole 
motion for two-dimensional harmonically trapped Bose gases). We obtain an expicit expres- 
sion for the anomalous shift in the monopole frequency and provided concrete suggestions for 
an experimental observation of the effect [19]. In our opinion, the monopole shift constitutes 
another macroscopic predictor for the (microscopic) equation of state, complementary to the 
density profile. 
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