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1. Introduction 

Symbiotic microorganisms are spatially separated from their animal host, e.g., in the 
intestine and skin, in a manner enabling nutrient metabolism as well as evolutionary 
development of protective physiologic features in the host such as innate and adaptive 
immunity, immune tolerance, and function of tissue barriers (1,2). The major interface 
barrier between the microbiota and host tissue is constituted by epithelium, 
reticuloendothelial tissue, and mucosa-associated lymphoid tissue (MALT) (2,3). 

Traumatic damage to skin and the internal epithelium in soft tissues can cause infections 
that account for 7% to 10% of hospitalizations in the United States (4). Moreover, wound 
infections and sepsis are an increasing cause of death in severely ill patients, especially those 
with immunosupression due to exposure to cytotoxic agents and chronic inflammation (4). 
It is well accepted that breakdown of the host-bacterial symbiotic homeostasis and 
associated infections are the major consequences of impairment of the “first line” of anti-
microbial defense barriers such as the mucosal layers, MALT and reticuloendothelium (1-3). 
Under these impairment conditions of particular interest then is the role of sub-mucosal 
structures, such as connective tissue stroma, in the innate defense compensatory responses 
to infections.  

The mesenchymal connective tissue of different origins is a major source of multipotent 
mesenchymal stromal cells (i.e., colony-forming-unit fibroblasts) (5, 6). Recent discovery of 
immunomodulatory function of mesenchymal stromal cells (MSCs) suggests that they are 
essential constituents that control inflammatory responses (6-7).  

Recent in vivo experiments demonstrate promising results of MSC transfusion for treatment 
of acute sepsis and penetrating wounds (7-9). The molecular mechanisms underlying MSC 
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action in septic conditions are currently under investigation. It is known to date that (i) 
Gram-negative bacteria can induce an inflammatory response in MSCs via cascades of Toll-
like receptor (type 4) and the nucleotide-binding oligomerization domain-containing protein 
2 (NOD2) complexes recognizing the conserved pathogen-associated molecular patterns; (ii) 
activated MSCs can modulate the septic response of resident myeloid cells; and (iii) 
activated MSCs can directly suppress bacterial proliferation by releasing antimicrobial 
factors (10, 11).  

Considering all of the above factors including the fact that MSCs are ubiquitously present in 
the sub-mucosal structures and conjunctive tissue, one would expect involvement of these 
cells in formation of antibacterial barriers and host-microbiota homeostasis. From this 
perspective our attention was attracted by the phagocytic properties of mesenchymal 
fibroblastic stromal cells documented in an early period of their investigation (5, 12). The 
phagocytosis mechanism is closely and synchronously connected with the cellular 
mechanisms of biodegradation mediated by the macroautophagy-lysosomal 
(autolysosomal) system (13-15). The last one decomposes proteins and organelles as well as 
bacteria and viruses inside cells and, therefore, is considered as a part of the innate defense 
mechanism (13- 15). 

Macroautophagy (hereafter referred to as autophagy) is a catabolic process of bulk 
lysosomal degradation of cell constituents and phagocytized particles (16). Autophagy 
dynamics in mammalian cells are well described in recent reviews (14, 17-20). Thus, it was 
proposed that autophagy is initiated by the formation of the phagophore, followed by a 
series of steps, including the elongation and expansion of the phagophore, closure and 
completion of a double-membrane autophagosome (which surrounds a portion of the 
cytoplasm), autophagosome maturation through docking and fusion with an endosome (the 
product of fusion is defined as an amphisome) and/or lysosome (the product of fusion is 
defined as an autolysosome), breakdown and degradation of the autophagosome inner 
membrane and cargo through acid hydrolases inside the autolysosome, and recycling of the 
resulting macromolecules through permeases (14). These processes, along with the drastic 
membrane traffic, are mediated by factors known as autophagy-related proteins (i.e., ATG-
proteins) and the lysosome-associated membrane proteins (LAMPs) that are conserved in 
evolution (21). The autophagic pathway is complex. To date there are over 30 ATG genes 
identified in mammalian cells as regulators of various steps of autophagy, e.g., cargo 
recognition, autophagosome formation, etc. (14, 22). The core molecular machinery is 
comprised of (i) components of signaling cascades, such as the ULK1 and ULK2 complexes 
and class III PtdIns3K complexes, (ii) autophagy membrane processing components, such as 
mammalian Atg9 (mAtg9) that contributes to the delivery of membrane to the 
autophagosome as it forms, and two conjugation systems: the microtubule-associated 
protein 1 (MAP1) light chain 3 (i.e., LC3) and the Atg12–Atg5–Atg16L complex. The two 
conjugation systems are proposed to function during elongation and expansion of the 
phagophore membrane (14, 19, 22, 23). A conservative estimate of the autophagy network 
counts over 400 proteins, which, besides the ATG-proteins, also include stress-response 
factors, cargo adaptors, and chaperones such as p62/SQSTM1 and heat shock protein 70 
(HSP70) (15, 19, 22, 24, 26-28).  

Autophagy is considered as a cytoprotective process leading to tissue remodeling, recovery, 
and rejuvenation. However, under circumstances leading to mis-regulation of the 
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autolysosomal pathway, autophagy can eventually cause cell death, either as a precursor of 
apoptosis in apoptosis-sensitive cells or as a result of destructive self-digestion (29).  

Based on this information we hypothesized that challenge of MSCs with Escherichia coli (E. 
coli) can induce a complex process where bacterial phagocytosis is accompanied by 
activation of autolysosomal pathway and stress-adaptive responses in MSCs. The objective 
of this current chapter is to provide evidence of this hypothesis. 

2. Hypothesis test: Experimental procedures and technical approach 

2.1 Bone marrow stromal cells  

Bone marrow stromal cells were obtained from 3- to 4-month-old B6D2F1/J female mice 
using a protocol adapted from STEMCELL Technologies, Inc., and were expanded and 
cultivated in hypoxic conditions (5% O2, 10% CO2, 85% N2) for approximately 30 days in 
MESENCULT medium (STEMCELL Technologies, Inc.) in the presence of antibiotics. 
Phenotype, proliferative activity, and colony-forming ability of the cells were analyzed by 
flow cytometry and immunofluorescence imaging using positive markers for 
mesenchymal stromal cells: CD44, CD105, and Sca1. The results of these analyses showed 
that the cultivated cells displayed properties of mesenchymal stromal clonogenic 
fibroblasts.  

The experiments were performed in a facility accredited by the Association for the 
Assessment and Accreditation of Laboratory Animal Care-International (AAALAC-I). All 
animals used in this study received humane care in compliance with the Animal Welfare 
Act and other federal statutes and regulations relating to animals and experiments involving 
animals and adhered to principles stated in the Guide for the Care and Use of Laboratory 
Animals, NRC Publication, 1996 edition. 

2.2 Challenge of MSCs with Escherichia coli bacteria 

MSC cultures of approximate 80% confluency were challenged with proliferating E. coli 
(1x107 microorganisms/ml) for 1-5 h in antibiotic-free media. For assessment of the cellular 
alteration ≥ 5 h the incubation medium was replaced with fresh medium containing 
penicillin and streptavidin antibiotics. Bacteria-cell interaction was monitored with time-
lapse microscopy using DIC imaging of MSCs and fluorescence imaging of E. coli labeled 
with PSVue® 480, a fluorescent cell tracking reagent (www.mtarget.com). At the end of the 
experiments the cells were either (i) harvested, washed, and lysed for qRT-PCR and 
immunoblot analyses, (ii) fixed for transmission electron microscopy and fluorescence 
confocal imaging, or (iii) used live for imaging of Annexin V reactivity, dihydrorhodamine 
123, a sensitive indicator of peroxynitrite reactivity, and colony formation. With this 
protocol the cells were tested for (i) phagocytic activity; (ii) autolysosomal activity; (iii) 
production of reactive oxygen (ROS) and nitrogen species, (iii) stress responses to E. coli; (iv) 
genomic DNA damage and pro-apoptotic alterations; and (v) colony-forming ability. The 
results of observations indicated that challenge with E. coli did not diminish viability and 
colony forming ability of the cells under the selected conditions (Fig.1). Stimulation of MSCs 
with E. coli resulted in expression of the proinflammatory genes, IL-1α, IL-1β, IL-6, and 
iNOS, as determined with qRT-PCR analysis. 
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Conditions: MSCs were incubated with ~1x107 /ml E. coli for 5 h in medium (without antibiotics). After 5 
h the medium was replaced with fresh medium (with antibiotics) and MSCs were incubated for another 
40 h. Inset: formation of colonies (red arrowhead) occurred at 72 h post-exposure to E. coli. 

Fig. 1. Bright field microscopy of MSCs challenged with E. coli. Images presented in the 
panels are MSCs at different time-points following exposure of MSCs to E. coli.  

2.3 Analysis of the cell proteins 

Proteins from MSCs were extracted in accordance with the protocol described previously 
(30). The aliquoted proteins (20 μg total protein per gel well) were separated on SDS-
polyacrylamide slab gels (NuPAGE 4-12% Bis-Tris; Invitrogen, Carlsbad, CA). After 
electrophoresis, proteins were blotted onto a PDVF membrane and the blots were 
incubated with antibodies (1 μg/ml) raised against MAP LC3, Lamp-1, p62/SQSTM1, 
p65(NFκB), Nrf2, HSP70, iNOS, and actin (Abcam, Santa Cruz Biotechnology Inc., 
LifeSpan Biosciences, Inc., eBiosciences) followed by incubation with species-specific IgG 
peroxidase conjugate. IgG amounts did not alter after radiation. IgG, therefore, was used 
as a control for protein loading.  

2.4 Immunofluorescent staining and image analysis 

MSCs (5 specimens per group) were fixed in 2% paraformaldehyde and analyzed with 
fluorescence confocal microscopy following labeling (30). Normal donkey serum and 
antibody were diluted in phosphate-buffered saline (PBS) containing 0.5% BSA and 0.15% 
glycine. Any nonspecific binding was blocked by incubating the samples with purified 
normal donkey serum (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) diluted 1:20. 
Primary antibodies were raised against MAP LC3, Lamp-1, p62/SQSTM1, p65(NFκB), 
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Nrf2, Tom 20, and iNOS. That was followed by incubation with secondary fluorochrome-
conjugated antibody and/or streptavidin-AlexaFluor 610 conjugate (Molecular Probes, 
Inc., Eugene OR), and with Hoechst 33342 (Molecular Probes, Inc., Eugene OR) diluted 
1:3000. Secondary antibodies used were AlexaFluor 488 and AlexaFluor 594 conjugated 
donkey IgG (Molecular Probes Inc., Eugene OR). Negative controls for nonspecific 
binding included normal goat serum without primary antibody or with secondary 
antibody alone. Five confocal fluorescence and DIC images of crypts (per specimen) were 
captured with a Zeiss LSM 7100 confocal microscope. The immunofluorescence image 
analysis was conducted as described previously (30). 

2.5 Transmission Electron Microscopy (TEM) 

MSCs in cultures were fixed in 4% formaldehyde and 4% glutaraldehyde in PBS overnight, 
post-fixed in 2% osmium tetroxide in PBS, dehydrated in a graduated series of ethanol 
solutions, and embedded in Spurr’s epoxy resin. Blocks were processed as described 
previously (30). The sections of embedded specimens were analyzed with a Philips CM100 
electron microscope. 

2.6 RNA isolation and qRT-PCR 

Total cellular RNA was isolated from MSC pellets using the Qiagen RNeasy miniprep kit, 
quantified by measuring the absorbance at 260nm on a Nanodrop, and qualified by 
electrophoresis on a 1.2% agarose gel. cDNA was synthesized using Superscript II 
(Invitrogen) and qRT-PCR was performed using SYBR Green iQ Supermix (Bio-Rad), each 
according to the manufacturers’ instructions. The quality of qRT-PCR data were verified 
by melt curve analysis, efficiency determination, agarose gel electrophoresis, and 
sequencing. Relative gene expression was calculated by the method of Pfaffl using the 
formula 2-ΔΔCt(31). 

2.7 Statistical analysis 

Statistical significance was determined using one-way ANOVA followed by post-hoc 
analysis with pair-wise comparison by Tukey-Kramer test. Significance is reported at a level 
of p<0.05. 

3. Response of MSCs to challenge with E. coli 
3.1 Phagocytosis and autolysosomal degradation of E. coli bacteria by MSCs 

TEM images presented in Fig. 2 show different stages of cell-bacterium interaction. The 
uptake of microorganisms occurred in at least two independent events. The first event 
encompassed engulfing and taking in particles by the cell membrane extrusions (Fig. 2A1). 
The second event was tethering and “zipping” of adhered particles by the cell plasma 
membrane (Fig. 2A2 – 2A5). The time–lapse fluorescence microscopy observation indicated 
that these events proceeded quickly and the uptake process required a few minutes (not 
shown). Thereafter, a significant amount of bacteria in MSCs was observed within 1 h of co-
incubation of the cells. The phagocytized bacteria were subjected to autolysosomal 
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degradation (Fig 2B). Formation of the double-membrane autophagosomes, which 
incorporated bacteria, was observable in MSCs at 3 h of co-incubation and during a further 
period of observation. Fusion of autophagosomes with lysosomes also occurred at this 
period. Fragmentation of bacterial constituents was observed at 5 h of co-incubation and 
appearance of bacterial “ghosts” at 24 h (Fig. 2B). 

Various cells eliminate bacterial microorganisms by autophagy, and this elimination is in 
many cases crucial for host resistance to bacterial translocation. Although autophagy is a 
non-selective degradation process, autophagosomes do not form randomly in the 
cytoplasm, but rather sequester the bacteria selectively (32, 33). Therefore, 
autophagosomes that engulf microbes are sometimes much larger than those formed 
during degradation of cellular organelles, suggesting that the elongation step of the 
autophagosome membrane is involved in bacteria-surrounding autophagy (33). The 
mechanism underlying selective induction of autophagy at the site of microbe 
phagocytosis remains unknown. However, it is likely mediated by pattern recognition 
receptors, stress-response elements, and adaptor proteins, e.g., p62/SQSTM1, which 
target bacteria and ultimately recruit factors essential for formation of autophagosomes 
(13,14, 33, 34). 
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Conditions: MSCs were incubated with ~1x107 /ml E. coli either for 3 h or 5 h in MesenCult Medium 
(without antibiotics). After 5 h the medium was replaced with fresh medium (with antibiotics) and 
MSCs were incubated for another 19 h.  

Fig. 2. Transmission electron micrographs (TEM) of E. coli phagocytosis by MSCs and 
autolysosomal degradation of phagocytized bacteria. 
A) Panel A1: Engulfing and up-take of bacteria (red arrows) by the cell plasma membrane 
extrusions (black arrows). Panels A2-A5: Tethering and zipping (green arrows) and up-take 
of bacteria (red arrows) by the cell plasma membrane. Specimens were fixed at 3 h co-
incubation of MSCs with bacteria.  
B) Autolysosomal degradation of phagocytized bacteria at different time-points after exposure 
of MSCs to E. coli (green arrows). Autophagosome (ATG) membranes are indicated with 
yellow arrows. Lysosome fusion with autophagosomes is indicated with red arrows.  

The results of TEM were corroborated by the data obtained with immunoblotting and 
immunofluorescence confocal imaging of autophagy MAP (LC3) protein, lysosomal LAMP1 
and the ubiquitin-associated target adaptor p62. A key step in the autophagosome 
biogenesis is the conversion of light-chain protein 3 type I (LC3-I, also known as ubiqitin-
like protein, Atg8) to type II (LC3-II). The conversion occurs via the cleavage of the LC3-I 
carboxyl terminus by a redox-sensitive Atg4 cysteine protease. The subsequent binding of 
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the modified LC3-I to phosphatidylethanolamine, i.e., process of lipidation of LC3-I, on the 
isolation membrane, as it forms, is mediated by E-1- and E-2-like enzymes Atg7 and Atg3 
(14). Therefore, conversion of LC3-I to LC3-II and formation of LC3-positive vesicles are 
considered to be a marker of activation of autophagy (14). A growing body of evidence 
suggests involvement of chaperone HSP70 in regulation of LC3-translocation. The results of 
immunoblot analysis of the proteins indicated an increase in the LC3-I to LC3-II – transition 
in the E. coli –challenged MSCs (Fig. 3). 

 
Conditions: MSCs were incubated with ~1x107 /ml E. coli for 3 h in MesenCult Medium (without 
antibiotics). After 3 h the medium was replaced with fresh medium (with antibiotics) and MSCs were 
further incubated for another 21 h.  

Fig. 3. Immunoblotting analysis of LC3, LAMP1 autolysosomal proteins, p62 adaptor protein, 
and stress-response elements: NF-κB(p65), Nrf2, HSP70 in MSCs challenged with E. coli.  

The images presented in Fig. 4A indicate an increase of formation of LC3-positive vesicles in 
MSCs challenged with E. coli .  The LC3 immunoreactivity co-localized with 
immunoreactivity to LAMP1, a marker of lysosomes, indicating presence of fusion of 
autophagosomes with lysosomes, i.e., formation of autolysosomes (Fig. 4A). This effect  
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Conditions: MSCs were incubated with ~1x107 /ml E. coli for 3 h in MesenCult Medium (without 
antibiotics). After 3 h the medium was replaced with fresh medium (with antibiotics) and MSCs were 
further incubated for 21 h.  Projections of LAMP1 protein (red channel) are shown in panels A2, A6, B2, 
and B6. Projections of LC3 protein (green channel) are shown in panels A3 and A7. Projections of p62 
protein (green channel) are shown in panels B3 and B7. Counterstaining of nuclei was with Hoechst 
33342 (blue channel). Panels A4, A8, B4, and B8 are overlay of signals acquired in the red, green, and 
blue channels. The confocal images were taken with pinhole setup to obtain 0.5 µm Z-sections.  

Fig. 4. Immunofluorescence confocal imaging of the LC3, LAMP1, and p62 protein in MSCs 
challenged with E. coli. Panels A1-A4 and B1-B4 are control specimens. Panels A5-A8 and 
B5-B8 are challenged with E. coli.  
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was accompanied by the presence of immunoreactivity to p62, a marker of ubiquitin-
dependent target transport, in autolysosomes that was associated with autophagy of E. 
coli (Fig. 4B, Fig. 5). The image analysis of autophagy was supported by results of 
immunoblotting of the proteins (Fig. 3). It should be noted that pre-incubation of cell 
cultures with wortmannin, an autophagy inhibitor, resulted in apoptotic transformations 
and ultimately loss of confluency approximately 3 h after challenge with E. coli (not 
shown). 

 
Panel A: Projection of FOXO3a (red channel; nuclear FOXO3a is indicated with yellow arrows) and p62 
(green channel). Panel B: Projection of LC3 (red channel) and p62 (green channel). Counterstaining of 
nuclei with Hoechst 33342 appears in blue color. Panels C and D – selected area indicated in panel B. 
Panel C: Signal acquired in the blue channel; bacterial DNA is indicated with white arrow.  
Panel D: Signals acquired in the blue, red and green channels; co-localization of bacterial nucleus with 
p62 and LC3 proteins is indicated with white arrow. 

Conditions: MSCs were incubated with ~1x107 /ml E. coli for 3 h in MesenCult Medium (without 
antibiotics). After 3 h the medium was replaced with fresh medium (with antibiotics) and MSCs were 
incubated for further 21 h. The confocal images were taken with pinhole setup to obtain 0.5 µm  
Z-sections.  

Fig. 5. Immunofluorescence confocal imaging of LC3, p62, phagocytized bacteria, and 
nuclear fraction of FOXO3a in MSCs challenged by E. coli. 

Autolysosomal degradation of phagocytized bacteria can involve reactive oxygen and 
nitrogen species ultimately leading to up-regulation of stress-adaptive elements (13). 
Confocal fluorescence imaging of formation of reactive nitrogen species in autolysosomes 
was conducted using dihydrorhodamine 123, a sensitive indicator of peroxynitrite. The 
results of assessment of oxidative environment in the MSC autolysosomes containing E. coli 
are presented in Fig. 6. The appearance of reactivity to dihydrorhodamine 123 was likely 
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due to up-regulation of nitric oxide synthase induced in MSCs in response to challenge with 
E. coli. It was hypothesized this increase in redox events in MSCs could at least in part 
contribute to degradation of the phagocytized bacteria. Indeed, as shown in Fig. 7 bacterial 
nuclei present in autolysosomes were positive to terminal deoxynucleotidyl transferase 
dUTP nick-end labeling (TUNEL). 

 
 
 

 
 
 
Panels A-C are projections of nuclei and oxidized fluorescent product of dihydrorhodamine 123. The 
images acquired in the blue (panel A) and green (panel B) are shown in grayscale; then, the images were 
overlaid in panel C in pseudo-colors that are “red” and “green”, respectively. Panel D is the selected 
area indicated in panel C, where nuclei are green, oxidized dihydrorhodamine 123 (DHRho 123) is red, 
and co-localization of nuclei and DHRho 123 is in yellow colors. The presence of bacterial genomic 
DNA in the autolysosome appears in yellow as result of interference of red and green colors. 
Experimental conditions were the same as indicated in Fig. 5. 

Fig. 6. Assessment of production of peroxynitrite in E. coli-challenged MSCs using 
dihydrorhodamine 123 probe.  
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Panel A: Projection the nuclear DNA is indicated with yellow arrows (blue channel, counterstaining of 
nuclei with Hoechst 33342). Panel B: Projection of TUNEL-positive DNA (green channel).  
Panel C: Projection of tyrosine-phosphorylated caveolin-1 (red channel). Panel D: Overlay of the images 
presented in panels A, B, and C. TUNEL-positive bacterial nuclei appear in yellow as result of 
interference of blue and green. TUNEL – positive staining of bacterial DNA occurred in autolysosomes.  
Experimental conditions were the same as indicated in Fig. 5. 

Fig. 7. Assessment of bacterial DNA damage in E. coli-challenged MSCs using terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). 

3.2 Stress-response of MSCs following challenge with E. coli bacteria 

General stress responses are characterized by conserved signaling modules that are 
interconnected to the cellular adaptive mechanisms. It is proposed that stress induced by 
inflammatory factors, microorganisms, and oxidants triggers a cascade of responses attributed 
to specific sensitive transcriptional and post-transcriptional mechanisms mediating 
inflammation, antioxidant response, adaptation, and remodeling (36-42). The components of 
the oxidative stress response employ a battery of redox-sensitive thiol-containing molecules, 
such as glutathione (GSH), thioredoxin 1 (TRX1)/thioredoxin reductase, 
apurinic/apyrimidinic endonuclease/redox effector factor-1 (APE/Ref-1), and transcription 
factors (such as nuclear factor-kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 
(Nrf2). Overall, these effector proteins play a major role in maintaining the steady-state 
intracellular balance between pro-oxidant production, antioxidant capacity, and repair of 
oxidative damage (39, 43). While NF-κB and Nrf2 are normally sequestered in the cytoplasm 
bound to their native inhibitors, i.e., IκB and Keap-1 respectively, bacterial products, pro-
inflammatory factors, and oxidative stress can stimulate their translocation to the nucleus (38, 
41, 44). NF-κB and Nrf2 are known to regulate numerous genes that play a crucial role in the 
host response to sepsis (40, 45) and therefore, have relevance to the current study. Regulation 
of Nrf2 function is controlled by numerous factors among which Nrf2 conjugates with Keap-1. 
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Dissociation of the Nrf2/Keap-1 complex results from a modification of cysteine residues in 
Keap-1 through either their conjugation or oxidation (40, 43, 45).  

Two major redox systems, the GSH and TRX1 systems, control intracellular thiol/disulfide 
redox environments. While the GSH/GSSG couple provides a major cellular redox buffer, 
TRXs serve a more specific function in regulating redox-sensitive proteins (46). These two 
redox systems function at different sites in the Nrf2 signaling pathway: first, the cytoplasmic 
dissociation of Nrf2 is primarily regulated by cytoplasmic GSH concentrations, and second, 
the nuclear reduction of Nrf2 cysteine 506 (required for Nrf2 binding of DNA) is primarily 
regulated by TRX1 (45). Redox dependence of DNA-binding activity of NF-κB has been 
broadly discussed (39, 47). DNA-binding activity of NF-κB can drastically increase in the 
presence of the reduced form of the redox factor-1 (Ref-1) redox-converted by TRX (39, 47). 
It should be noted that up-regulation of Nrf2 and NF-κB via autophagy-dependent 
mechanisms can also occur via lysosomal degradation of IκB and Keap-1, (48). Therefore, we 
do not exclude autophagy-dependent activation of these transcriptional factors in E. coli-
treated cells. Taking into consideration all of the above, one would assume that a battery of 
stress-sensitive mechanisms mediated by survival transcription factors such as NF-κB, Nrf2, 
and FOXO3a are involved in adaptive response of MSCs challenged with E. coli.  

Immunoblot analysis of stress-response proteins indicated that control MSCs had relatively 
high amounts of constitutively present NF-κB. Challenge of cells with E. coli resulted in 
prompt (within 1 h) increases in the nuclear fraction of NF-κB as determined with confocal 
immunofluorescence imaging (not shown). But, we did not observe a similar pattern when 
we assessed nuclear Nrf2. That could be due to an extremely low level of constitutive Nrf2 
in the cells (Fig. 3). A drastic increase in the nuclear fraction of NF-κB occurred during the 
period of the observation, i.e., 24 h post-exposure (Fig. 8). This effect was accompanied  
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Panel 1: Projection of the nuclear DNA (blue channel, counterstaining of nuclei with Hoechst 33342).  
Panel 2: Projection of NFκB(p65) (red channel, nuclear localization is indicated with yellow arrows). 
Panel 3: Projection of thioredoxin 1 (green channel, nuclear localization is indicated with yellow arrows). 
Panel 4: Overlay of the images presented in panels 1, 2, and 3. Panels 5-7: analysis of nuclear fractions of 
NFκB(p65) and thioredoxin 1 in ROI indicated in panel 4. Experimental conditions were the same as 
indicated in Fig. 5. 

Fig. 8. Assessment of nuclear fractions of NF-κB(p65) and thioredoxin 1 in MSCs challenged 
with E. coli. (A) Challenge with E. coli.; (B) Control. 

by transactivation of NF-κB-dependent proinflammatory factors such as IL-1α, IL-1β, IL-6, 
and iNOS (Fig. 9). Interestingly, pre-incubation of the cells with pyrrolidine 
dithiocarbamate, an inhibitor of NF-κB translocation, resulted in development of pro-
apoptotic alterations and loss of confluency in E. coli-treated MSCs (not shown). The 
response to E. coli–induced stress was also associated with increases in nuclear fractions of 
Ref-1 and TRX-1 (Figs. 8 and 10); these reducing agents appeared in close proximity with the 
nuclear NF-κB (Figs. 8 and 10). Moreover, the MSC stress-response at 24 h was characterized 
by significant expression of Nrf2 protein (Fig. 3) that accumulated in cell nuclei (Fig. 11). 
Based on these observations we concluded that the MSC response to challenge with E. coli 
activates complex molecular machinery designed to eliminate environmental 
microorganisms and increase adaptive capacity to stress. That conclusion contributes to a 
broad perspective on the role of stromal cells in the host innate defense and on the cell 
molecular mechanisms mediating resistance of cells to damage. Considering that the cell can 
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employ a battery of stress-response factors operating synchronously, we focused our 
attention on other cellular components that are crucial for cell survival, e.g., mitochondria, 
the caveolae vesicular system, and signaling cascades mediated by transcriptional factor 
FOXO3a. 

 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 9. qRT-PCR assessment of iNOS transactivation in MSCs challenged with E. coli. 
Conditions: MSCs were incubated with bacteria for 3 h in MesenCult Medium (without 
antibiotics). After 3 h the cells were harvested and lysed for extraction of RNA. 
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Panel A: Projection of the nuclear DNA (blue channel, high intensity; counterstaining of nuclei with 
Hoechst 33342). Bacterial nuclei are indicated with yellow arrow. Panel B: Projection of NFκB(p65) (red 
channel) and nuclear DNA (blue channel); nuclear co-localization of NFκB(p65) is indicated with white 
arrows. Panel C: Projection of Ref1 protein (green channel, nuclear localization is indicated with white 
arrows). Panel D: Overlay of the images presented in panels B and C. Nuclear co-localization of Ref1 and 
NFκB(p65) is indicated with white arrows. Panel E: Projection of Ref1 (red channel) and nuclear DNA 
(blue channel); nuclear co-localization of Ref1 is indicated with white arrows. 
Panel F: Projection of thioredoxin 1 protein (green channel, nuclear localization is indicated with white 
arrows). Panel G: Overlay of the images presented in panels E and F. Nuclear co-localization of Ref1 and 
thioredoxin 1 is indicated with white arrows. Experimental conditions were the same as indicated in Fig. 5. 

Fig. 10. Assessment of nuclear co-localization of NF-κB, thioredoxin 1, and Ref1 in MSCs 
challenged with E. coli.  
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FOXO3a, a member of a family of mammalian forkhead transcription factors of the class 
O, was recently proposed as mediator of diverse physiologic processes, including 
regulation of stress resistance and survival (49, 50). Thus, it is shown in our study that in 
response to oxidative stress, FOXO3a along with Nrf2 can promote cell survival by 
inducing the expression of antioxidant enzymes and factors involved in cell cycle 
withdrawal, such as the cyclin-dependent kinase inhibitor (CKI) p27 (50). We analyzed 
FOXO3a transcriptional factor in MSCs responding to E. coli challenge. Fig. 12 shows that 
the presence of E. coli increased FOXO3a protein in MSCs. The data suggest that, indeed, 
this FOXO3a transcriptional factor is also implicated in the stress-response to E. coli 
challenge. 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 11. Assessment of nuclear fractions of Nrf2 in MSCs challenged with E. coli. 
Counterstaining of nuclear DNA was with Hoechst 33342 (blue channel). Nrf2 staining is in 
green. Nrf2 localized in nuclei appears in turquoise/green color due to interference of 
“green” and “blue” (indicated with arrows). Experimental conditions were the same as 
indicated in Fig. 5. 
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Control: Panel A-C. Challenged with E. coli.: Panels D-F.  
Panels A and D: Projection of FOXO3a (red channel) and nuclear DNA (blue channel); nuclear 
localization of FOXO3a is indicated with white arrows. Panels B and E: Projection of FOXO3a protein 
(red channel only). Panel C and F: Relative intensity of the FOXO3a immunofluorescence shown in 
panels B and E, respectively. Experimental conditions were the same as indicated in Fig. 5. 

Fig. 12. Immunofluorescence assessment of nuclear fraction of FOXO3a in MSCs challenged 
with E. coli.  

4. Conclusion 

Multipotent fibroblast-type mesenchymal cells are the essential components of the stroma, 
which supports tissue barriers and integrity (51). Disturbance in the stroma, composed of 
endothelial, fibroblastic and myofibroblastic cells as well as macrophages and other 
inflammatory cells - can be a critical step triggering bacterial translocation and sepsis - 
exacerbating a variety of injury types. This chapter aims to define whether MSCs can 
contribute to antibacterial innate defense mechanisms. 

The antibacterial defense response of MSCs was characterized by extensive phagocytosis 
and inactivation of E. coli mediated by autolysosome mechanisms. E. coli-challenged MSCs 
showed increased transactivation of NF-κB, Nrf2, and FOXO3a stress-response 
transcriptional factors and associated expression of proinflammatory mediators. These 
observations were accompanied by a compensatory antioxidant response of MSCs mediated 
by nuclear translocation of Nrf2, Ref-1 and thioredoxin 1.  

Taken together our data support the hypothesis that (i) MSCs contribute to the innate 
defense response to bacterial infection; (ii) the mechanism of MSC responses involves 
specific macroautophagy and nitroxidation mediated by iNOS; and (iii) MSCs are armed 
against self-injury by the mechanisms degrading phagocytized E. coli. 

D E F 
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