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Abstract

Difficulties in obtaining accurate Stability and Control (S&C) data for nonlinear

regions in the flight envelope early in the design phase often lead to costly fixes late

in the acquisition process. Work examined herein addresses this problem by utilizing

recent advances in Computational Fluid Dynamics (CFD) to create a high-fidelity

database before any parts have to be physically produced. In combination with CFD,

System Identification (SID) is used to characterize the S&C characteristics of aircraft

by some Reduced Order Model (ROM). The method of obtaining enough data in the

“right” places, via some optimized maneuver, to create an accurate ROM is the main

focus of this work. A series of metrics were created and validated to help identify

the quality of any maneuver before it is even run. To validate the metrics, seven

different maneuvers were generated, run, and used to create models. These models are

then evaluated against sets of results from validation maneuvers to show accuracy of

modeling a given regressor space - the “regressor space” being the required variations

of the model variables (angle of attack, pitch rate, etc.). From the validated metrics,

the “best” maneuver for creating the most accurate model of a given grid within a

specified regressor space is defined.
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Accurate Modeling of Stability & Control Properties

for Fighter Aircraft from CFD

I. Introduction

1.1 General Issue

Inaccurate predictability of Stability and Control (S&C) characteristics of air-

craft early in the design phase has been the source of many costly design changes late

in the development of military fighters for decades. High-fidelity results of “simple”

configurations are easy to come by via simple linear methods, whereas difficulties arise

in nonlinear regions of the flight envelope. The often large error in S&C prediction of

a high-performance aircraft heading into the flight test phase of development results

in precious flight test hours being spent in benign conditions for safety reasons. Then

as the flight envelope is incrementally widened to include more nonlinear regimes,

these errors in prediction generally reveal themselves in the form of costly fixes that

have to be made.

At this late stage of the acquisition cycle, the initial flight test prototypes have

obviously been produced whose entire flight control system has been based on initial

bare airframe S&C data available at the time. Problems can also arise where the

structure itself has to be modified as well. This can be due to higher than expected

loading, improper control surface sizing, or a number of other issues. One common

problem, for example, as stated by William Thomas and William Blake, is that over

the last 50 years many “fighters suffered from roll coupling brought on by a combi-

nation of high rates of roll and insufficient stability to counter the resultant buildup

in alpha and beta. Enlarging the vertical tails was the most common and successful

solution” [20].

The issues stated above are only a few examples of how determining a more

accurate representation of the aircraft early in the design phase will save time and

1



money. Time by helping to keep a program on track and money by saving potentially

billions of dollars [25] in costly ad hoc fixes that are applied without a sound basis

of the fundamental physics concerned. These problems will only get worse with more

complex aircraft that are sure to be seen in the future [21].

1.2 Background

It is well known that today there are four main avenues of obtaining aerodynamic

data for an aircraft: Analytical analysis, wind tunnel testing, flight testing, and Com-

putational Fluid Dynamics (CFD). Analytical analysis includes linear aerodynamic

techniques, sets of data sheets, empirical relations, etc that can produce results in as

little as minutes. This method is useful due to its simplicity, fast turn-around time,

and ability to give a “starting-point” in design. The results compare well to benign

flight conditions but basic assumptions utilized in creating these methods fall apart

outside of such scenarios.

1.2.1 Wind Tunnel. Wind tunnel testing is often used extensively due to the

ability to use a representative model in an actual fluid to obtain results. The accuracy

of these results, even in nonlinear flight regions, can be quite accurate if done properly.

Wind tunnel tests must be done in such a manner that sting effects are removed, wall

effects are minimized, instrumentation is accurately placed and calibrated, etc. The

results of the wind tunnel test must then be properly filtered and scaled to the proper

size while taking Reynolds number effects into account as best as possible. Wind

tunnel test can be hampered by availability of a needed wind tunnel itself that meets

the desired velocity for a given flight condition and scale of the model. Even then,

there are limitations to the dynamic motions that can be conducted in a wind tunnel

which are key to understanding dynamic stability derivatives of an aircraft. The

entire process of wind tunnel testing is also expensive and time consuming and must

be redone as changes are made to the geometry of the aircraft.
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1.2.2 Flight Test. Flight testing is by far the most accurate as it is the

actual data of the actual aircraft at the actual flight conditions. This is the data

that, if available, other methods are trying to show comparison to so the benefits

are inherent. The drawbacks, however, are of great concern. First of all, flight test

cannot happen until there is first an aircraft to flight test which is not until late in

the design phase where millions if not billions of dollars have already been invested.

It is the most expensive method of all data gathering processes and is the most time-

consuming as it takes time to instrument the aircraft, get approval to fly within a

given flight envelope, acquire the data, analyze it, and determine the safety of pressing

forward. Even still, there are limitations to the data gathered from flight test. First,

the airplane is constrained to maneuvers that are physically flyable (the importance

of this will be detailed later) and the desired trajectory may not be met exactly due

to error from any number of sources such as wind gusts. Secondly, there is no way

to capture what the flow is doing around the body of the aircraft (off-body effects),

only the affect of the flow on the aircraft. An example of this is visualizing exactly

where the vorticies from wingtips or strakes are going and what they might affect

downstream. This second limitation is not so significant for the purpose of this study

but is worth stating in general.

1.2.3 CFD. Computational Fluid Dynamics is a relatively new tool that

has reached a level of maturity requisite for robust computations. The last nine to

ten years have particularly made significant progress in predicting full aircraft Navier-

Stokes solutions at not only static points, but also prescribed maneuvers and 6 Degree

of Freedom (6DOF) aircraft response [39]. This advancement in prescribed maneuvers,

specifically, are critical to determining the dynamic derivatives as they, by virtue of

being dynamic, require a time dependent motion to be computed. CFD also allows for

tight control over the motion being run as sources of error from flight test are removed.

The maneuvers are also not limited to flyable maneuvers where certain aerodynamic

parameters may be lumped together. Instead, any type of aircraft motion is possible
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in the flow field [21]. The only limitations to the maneuvers in CFD are from concerns

about the stability of the solution being computed and computational time needed

to run it. In general, the overall expense to gathering CFD data is less than wind

tunnel and the meshes used to compute the solution are fairly adaptable as the design

changes [14].

There are other limitations to CFD, of course. These include limitations in

modeling turbulence and transition of the flow. The solution can also be highly

dependent on the procedure and settings chosen. Other concerns include: Is the

solution grid and time step converged? What level of numeric temporal damping is

used for the final solution? Is the solution 1st or 2nd order accurate? What limiter

is used? These questions will be detailed at greater length in future chapters, but

speaking generally about CFD; turbulence models have made great strides and over

time “best practices” have been created, processor power has increased drastically,

and results to high-fidelity CFD have been shown to compare well with wind tunnel

and flight test.

1.2.4 Modeling Data. Up until now, only the means of obtaining aerody-

namic data has been discussed. Once the data is gathered (by whatever means), there

are any number of ways to compile this data for useful analysis at a later time. This

S&C data can be transformed into polynomials, graphs, table look-ups, or neural

networks. Polynomials are good due to their smoothness, but discontinuities in data

may require a partitioning approach. Graphs are good at looking at qualitative trends

but are not suitable for quantitative analysis. Table look-ups require interpolation

to be of practical use and often data in the table must be generated from numerical

differentiation which can introduce significant noise. Neural networks approximate

any nonlinear function to an arbitrary degree of accuracy but but do not give insight

into the aircraft dynamics [21].

System Identification (SID) is another method of compiling the retrieved data

by constructing a mathematical model of the system itself given the input and output
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to the system. SID is similar to two other general problems in aircraft dynamics and

control. The first being Simulation, where the output is determined given the input

and the system. Second is Control where, in short, the input must be found given

the system and the output [26]. SID has been utilized to evaluate wind tunnel and

flight test data to obtain an accurate Reduced Order Model (ROM) of an aircraft for

many years. This model can then be utilized to simulate the behavior of the aircraft

at a different condition than those used to create the model or used in aiding the

design of the control system for the aircraft. This evaluation of the dynamic response

of the airplane can also be used for analysis of the handling qualities of the aircraft.

An accurate analysis of handling qualities in nonlinear flight regions is of significant

interest today [42].

1.3 Research Focus

A high-quality mathematical model of an aircraft proves to be an invaluable

tool in the design process, including more accurately understanding the response of

the system to predict the expected loads during flight, design the control system,

and define the stability and controllability of the aircraft due to the sizing of various

surfaces, etc. Usually such a model is not available until late in the design phase of

an aircraft and even late in the design phase there are often large gaps in data due to

budget cuts to flight testing and limitations to maneuvers that can be performed in

a wind tunnel.

This is where CFD can play an important role. It can be well utilized to help

create a database of S&C data at relatively low cost, with very few “holes,” early in the

design process. This data can be fed into current SID tools that have been developed

specifically for modeling aircraft. This model can then be continually updated over

time as the design is updated to feed into successively higher design elements. Even

after the aircraft is produced, CFD can be utilized to help fill in the holes from flight

and wind tunnel test.
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Dynamic CFD simulations are needed to gain the benefit of enabling a model to

be created for dynamic stability derivatives as well as static. These dynamic maneu-

vers also feed the required “input” into a SID program along with the “output” from

which the model can be created to describe the relationship between the two - assum-

ing the aircraft and its aerodynamics have been properly excited by the maneuver. A

couple of primary questions fall out from this.

• What maneuver will best excite the full range of aircraft dynamics?

• Is there a way to know how good a maneuver is before the computational re-

sources are expended?

The answers to these questions will be the focus of the work included herein.

1.4 Research Objectives

It is important to first define how a maneuver is “good” and in order to do this

the criteria must be set. The simplest method to determine the goodness of a model

is to quantify the error of model prediction to another set (or sets) of data which lies

within the same regressor space as the data used to create the mathematical model.

The “regressor space” is the range of values of each of the model input variables (angle

of attack, pitch rate, etc.). The other set (or sets) of data must have known inputs

and outputs for comparison and accurately cover the desired regressor space trying

to be modeled.

The first objective is to tackle the question of whether it is possible to detect

how good a maneuver is at modeling a given regressor space before it is run. A set

of metrics will need to be developed to provide a basis for how good a maneuver

is. These metrics will need to be validated by running multiple maneuvers, each of

which either create the best model or maximize a certain attribute of the metrics for

validation. These maneuvers will then need to be compared against known data to

see which maneuver (or type of maneuver) produces the best results.
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The second primary objective is to create maneuvers that have not been utilized

in previous research that produce better results. These new training maneuvers can

be based on the validated metrics and even used to help validate the metrics. The

end goal of this objective is to have a new “best” maneuver.

1.5 Road Map

The first step in this project is to examine what work has already been done

in this area. Currently, the best maneuver is a “chirp” sinusoidal motion - a sinu-

soidal change in angle of attack with varying frequency and even varying amplitude.

Only the longitudinal response of an aircraft will be examined as well as it simplifies

the maneuver development process and conclusions from longitudinal motion can be

translated into the other two axes at a future time.

Two flight conditions will be examined, one subsonic and the other transonic. A

regressor space which covers both linear and nonlinear angles of attack will be utilized

along with a wide range of pitch rates. A grid of the F-16C will be provided for this

research and the newly developed Kestrel Unstructured Air Vehicles CFD solver will

be utilized as it includes many features which allow for easy use for grid motion as

well as to provide desired testing for the software.

The basis for creating metrics will also be developed by utilizing the input

regressor variables and describing how well a given maneuver covers various regions

of the regressor space in attempts to provide insight into how good a maneuver is

before it is run. For the validation of these metrics, many different maneuvers will

be produced along with the current “best” maneuver. The primary downfall of this

maneuver lies in its prediction of static data. Therefore, the chirp sinusoidal motion

will be modified to include static regions to help increase the prediction of this static

data. These maneuvers will then be utilized to create models of the lift, drag, and

pitching moment coefficients for the aircraft. These three coefficients are the only ones

that need to be modeled for longitudinal motion as any of the dynamic derivatives

required for analysis (such as Cm,a, Cm,q, etc) can be obtained by taking the respective
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derivatives of the original three models. These models are then used to predict the

results of same coefficients of different maneuvers (deemed comparison maneuvers)

which cover various regions of the regressor space in a dissimilar manner than the

maneuvers from which models are created and at least one of which will primarily

include static data.

The predictions of the various models to the comparison data will likely result

in one (or a couple of) maneuver(s) which are better than the rest. This model is

then deemed the new (or still standing) best maneuver. From this, the metrics which

best describe the characteristics of the best maneuver can be considered to be the

most important, thus validating those metrics. In this way, both primary goals are

inter-related: The metrics cannot be validated until it is known which maneuvers

are best and that is not known until they are all compared to validation data (the

comparison maneuvers).
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II. Background

2.1 Flow Physics

It is a good practice to first examine what type of flow features are expected

before starting a CFD project. Having a good “intuition” of what is going to have

to be calculated by the CFD solver will affect the entire process from how the grid is

made, what solver and settings should be used, etc. Those details will be examined

in the next section, so the current section will guide through what to expect as well

as some theory needed to set up later discussion.

2.1.1 Expected Flow Features. This “intuition” does not have to be inher-

ent by the user. Instead, it can be gained by researching similar work to see what

results were found. A great initial source to turn to is an aerodynamics textbook.

Even though most techniques utilized (at least initially) in these books rely on a

linearization of the governing equations and assume inviscid and irrotational flow, a

great deal of insight can be gained about the overall flow features to expect. Some

considerations when deciding what to research include the flight conditions, aircraft

orientation, and types of unique geometry that are on the aircraft. Examples include:

What Mach number will be flown? What range of Angles of Attack (AoA), sideslip,

etc will be examined? Are the wings swept? Are there strakes? Etc. One last concern

is to determine what needs to be modeled? Should the solution be inviscid or viscous?

How should turbulence effects be modeled?

The flight conditions can have a drastic effect on a CFD solution as it can restrict

what type of flow solver can be used, especially if hypersonic flight is desired. For this

research two Mach numbers will be examined. One will be in the transonic region and

the other in subsonic. The transonic case will induce important phenomena which

need to be discussed.

When an aircraft flies faster than its critical Mach number but before the flow

everywhere around the aircraft is above Mach 1, it is defined to be flying within its

transonic envelope. This region is roughly in the range of freestream Mach numbers
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of 0.8 to 1.2 but is highly dependent on the geometry of any aircraft. In this region

shocks are formed and drag is increased as can be seen in Figure 2.1. Transonic

Figure 2.1: Depiction of drag profile as Mach number increases from subsonic to
supersonic speeds [6].

airflow is also a highly nonlinear region where theoretical aerodynamics tend to fall

short in accurate prediction [7]. As stated in Section 1.1, the prediction of these

nonlinear aerodynamics is one of the primary reasons for the need of this research.

The feasibility of CFD computing accurate results for such nonlinear regions will be

discussed in Section 2.2.

The F-16C aircraft to be used is designed for high-speed, high-performance

flight. Due to such, it is designed with a thin cropped delta-wing, strakes, and has

a relatively small profile. The primary factor which results in the implementation of

a swept/delta wing in a design is for transonic/supersonic flight consideration. The

swept wing effectively increases the critical Mach number where the flow over the

wing becomes greater than Mach 1 even though the freestream Mach is less than 1.

This is done by decreasing the speed of the flow perpendicular to the leading edge of

the wing [7]. Strakes are essentially very small aspect ratio “wings” with very high

sweep, stationed in front of the main wing (see Figure 2.2). The primary purpose of
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Figure 2.2: Example of strake on aircraft [5].

strakes is to produce vorticies which stay attached to the wing surface at high AoA to

prolong stall and promote stability [42]. What vorticies are, how they are produced,

and techniques for quantifying them will be discussed in Section 2.1.3.

Aircraft orientation will greatly impact the types of flow features seen. The

maneuvers considered will vary over a wide range of AoA. This range is from -10

degrees to 30 degrees. It is known that when a wing gets to a certain “high” AoA,

flow separation will occur [42]. The magnitude of the AoA where separation occurs

varies greatly based on the shape of the wing. When this separation occurs, the wing

loses aerodynamic lift and is stalled. There are ways to prolong stall for the entire

aircraft when other features, such as strakes, on the aircraft affect the flow to keep it

attached to the wing longer.

The last question posed asks what is trying to be modeled about the aircraft?

In order to obtain the most accurate results as compared to flight test, it is necessary

to model the full turbulent Navier-Stokes equations. In summary of this section,

separation, vorticity, and turbulence theory all need to be looked at to understand

how they will affect a CFD simulation.

2.1.2 Separation. Boundary layer separation has critical effects on the flight

mechanics of an aircraft. This separation happens as AoA is increased from zero. At

low AoA, the boundary layer stays attached but as the AoA increases the coefficient of
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lift increases linearly until the adverse pressure gradient on the aft portion of the upper

surface becomes large enough to cause the boundary layer separation point to “jump”

forward (Figure 2.3(a)) and the increase of lift with AoA will lessen (Figure 2.3(b)).

As AoA increases more, the complete separation occurs and the lift rapidly decreases.

This separation also greatly increases the drag [42]. This nonlinear separated flow

(a) Separation [3] (b) Lift and drag coefficients [4]

Figure 2.3: Effects of increased AoA on flow over airfoil

region produces large vorticies ( [42])in this area above the wing which has a significant

dependency on the creation of the grid which will be mentioned in Section 2.2.1 as

well as a significant dependency on the turbulence model chosen (Section 2.1.6).

2.1.3 Vorticity and Q-Threshold. Vorticity is essentially rotation in a flow

field. This rotation is introduced primarily from viscosity which requires fluid velocity

exactly on the skin of the aircraft to be zero with respect to the velocity of the aircraft

itself. This leads into boundary layer and turbulence theory and will be discussed in

Section 2.1.5. The zero-velocity requirement at the surface and non-zero velocity

above the surface causes a viscous shear in the flow which causes a rotation [42].
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The viscous shear in the three-dimensional velocity field, U(x, t), can be described

by the rate-of-strain tensor in Eq. (2.1). Similarly, the rate-of-rotation tensor can be

described by Eq. (2.2) [43]. These equations combine to describe the entire velocity

gradient of the flow.

Sij =
1

2

(

∂Ui

∂xj

+
∂Uj

∂xi

)

(2.1)

Ωij =
1

2

(

∂Ui

∂xj

−
∂Uj

∂xi

)

(2.2)

Where xi/j is the three dimensional spacial variable.

Haller [22] discusses the difficulty in setting a universal method of defining

vorticity that works for any reference frame and problem conditions. The purpose of

this section is not to give an overview of many of the posed solutions. One important

method, however, needs to be mentioned as it is a helpful criterion utilized in many

flow solvers, including Kestrel. It is the Q-criterion or Q-threshold criterion. This

criterion attempts to produce a Galilean invariant vortex criterion which defines a

vortex as a spatial region where:

Q =
1

2

[

|Ω|2 − |S|2
]

> 0 (2.3)

It is seen that this definition essentially defines a vortex as that portion of the flow

where the rate-of-rotation is higher than the rate-of-strain. It is a useful feature as

it can help to isolate the large vorticies in the flow without capturing the vorticity in

the boundary layer where rotation rate and strain rate are of similar magnitudes.

Viscous effects do not account for all sources of vorticity in the flow, however.

Inviscid flows can still exhibit rotation due to the interference of certain changes in

geometry. The most common examples of this being at the wingtip or the strakes.

The flow on the bottom of a lift-producing wing (and similarly a strake) has higher

pressure than the air on the top of the wing. At the wingtips, however, high-pressure

air from the bottom of the wing sneaks around the tip to the top of the wing as seen

in Figure 2.4. The resulting vorticity that is produced can be seen in Figure 2.5.
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Figure 2.4: Airflow from bottom to top of wing [42].

Figure 2.5: Vorticity produced at tip of wing [42].
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2.1.4 Boundary Layer Theory. Before a discussion in turbulence theory

begins, it is pertinent to discuss turbulent boundary layer theory. Most of the rela-

tionships for turbulent boundary layers are primarily based on empirical correlations

of the shape of the velocity profile near the wall. This velocity profile is only relevant

for viscous flows where a no-slip boundary condition is enforced - zero-velocity at the

wall as discussed in Section 2.1.3. An important note is that the boundary layer is

initially laminar. This laminar profile is organized, predictable, and stable. In this

laminar flow, the linear viscous forces of the fluid dominate the nonlinear inertial

forces due to fluid velocity. This is considered low Reynolds number flow where the

Reynolds number is the ratio of inertial to viscous forces as seen in Eq. (2.4) [41]

Rex =
ρU∞x

µ
(2.4)

where ρ is the density, U∞ is the freestream velocity, x is the characteristic length

from the edge of the geometry, and µ is the dynamic viscosity of the fluid. Around

Reynolds numbers of 500,000, the flow transitions from laminar to turbulent. Most

aerospace applications have Reynolds numbers much higher than that for most of the

flow field so most CFD solvers assume fully turbulent flow for the entire domain. For

this purpose, only turbulent flow theory will be presented here.

Turbulent boundary layers are generally described in terms of non-dimensional

parameters. The first parameter to define is the thickness of the boundary layer, δ

(Eq. (2.5)). Describing this equation in words, this is defined as the height off the

surface where the flow velocity is 99% of the freestream. In all of the following, the

subscript e stands for this “edge” of the boundary layer and w stands for a value at

the wall or surface [41].
δ

x
=

0.371

Re
1/5
x

(2.5)
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Similarly, there is an integral parameter across the velocity profile known as displace-

ment thickness, δ∗, akin to boundary layer thickness:

δ∗ =

∫

∞

0

(

1−
ρu

ρeue

)

dy (2.6)

It is also useful to define functions that describe (in non-dimensional form) the velocity

at a given point above the surface, u (non-dimensional value is u+), and the height

above the surface, y (non-dimensional form is y+). These are given as Eq. (2.7) and

Eq. (2.8) respectively [41].

u+ =
u

uτ

(2.7)

y+ =
ρwuτy

µw

(2.8)

Where uτ is the friction velocity:

uτ =

√

τw
ρw

(2.9)

In Eq. (2.9), τw is the wall shear stress defined by:

τw = µ
∂u

∂y

∣

∣

∣

∣

w

(2.10)

The above equations do not provide a method for calculating the velocity as a function

of height off the surface as Eq. (2.7) is only the means of non-dimensionalizing u.

Before those equations are provided, it is important to understand that the change

in u+ varies depending on the height off the surface and not just one equation can

accurately define the value. Because of this, the boundary layer velocity profile is

divided into subregions. They are the sublayer, buffer layer, log layer, and the wake.

The first three are defined to be in the “Inner region” and the wake is said to be in

the “Outer region” as seen in Figure 2.6.
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Figure 2.6: Boundary layer regions [41]

The smallest to largest inner region layers are defined respectively by the fol-

lowing:

0 < y+ < 5 u+ = y+ (2.11)

5 < y+ < 30 u+ = 5 ln y+ − 3.05 (2.12)

30 < y+ < 1000 u+ =
1

κ
ln y+ +B (2.13)

There is debate over what the values of κ and B should be in Eq. (2.13), but they

are often accepted to be 0.4 and 5.5 respectively [41].

The last region to define the velocity profile for is the wake. The purpose in

distinguishing this as the outer region as compared to the other three regions is that

the inner regions are independent of the large freestream properties “far” from the

surface. In comparison, the outer region is much more dependent on the freestream
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Reynolds number and pressure gradient.

u+ =
1

κ
ln y+ +B +

2Π

κ
sin2

(π

2

y

δ

)

(2.14)

Where Π is given by:

Π = 0.8(β + 0.5)0.75 (2.15)

β =
δ∗

τw

∂pe
∂x

(2.16)

This brief overview of turbulent boundary layer theory aids in the understanding

of turbulence theory (Section 2.1.5) as well as turbulence modeling (Section 2.1.6) [41].

2.1.5 Turbulence Theory. Turbulence is a three-dimensional, unsteady, non-

linear, viscous phenomenon that occurs in high Reynolds number flows. Turbulent

flows can be thought of as a series of eddies of widely differing sizes which constantly

interact with each other. An example of these turbulent structures on a flat plate

can be seen in Figure 2.7. These structures are created by the viscous interaction

of the fluid and the wall, and the largest eddies are produced from a conversion of

the mean flow turbulent kinetic energy (k). This energy is then transfered to smaller

and smaller scales (called the energy cascade) until the scales are so small that the

viscosity at the wall dominates and converts the kinetic energy into heat. Figure 2.8

shows a generic depiction of the energy production and dissipation within these flows

(note the wave number is inversely proportional to the turbulent length scales [41]).

These differing length scales can correlate to the various regions in the boundary

layer as discussed in Section 2.1.4 (notice Figure 2.6 has y+ plotted on a log scale on the

x-axis). In order to describe turbulent flow it is necessary to first quantify the ranges

of these length (and corresponding time) scales. The outer scales are determined by

the flow velocity and geometry of the problem whereas the inner length scales are

set by Reynolds number and the location of where the kinetic energy is balanced by
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Figure 2.7: View of turbulent structures on plate [41].

Figure 2.8: Energy production and dissipation in turbulent flow [41].
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viscous dissipation, ε. The large (L) and small (λ) length scales are found in Eq.

(2.17) and Eq. (2.18) respectively [41].

L =
k

3

2

ε
(2.17)

λ =

(

ν3

ε

)
1

4

(2.18)

L

λ
= Re(3/4) (2.19)

Where ν is the kinematic viscosity, and Re is the turbulent Reynolds number. The

length scales correspond to related large (T ) and small (τ) time scales which are

respectively:

T =
k

ε
(2.20)

τ =
(ν

ε

) 1

2

(2.21)

It is seen from the above equations that the range in length and time scales can vary

by orders of magnitude for high Reynolds number flows (in which k is much larger

than ν). These length scales are also much smaller than the lengths found on an

aircraft (such as the length of the wing or fuselage). This will also be an important

factor for grid generation as discussed in Section 2.2.1.

It is now important to discuss the governing equations for fluid flow - the Navier-

Stokes (N-S) equations. The derivation of these equations is not necessary here and

it will suffice to say that Eq. (2.22) is a compact form of three separately applied

conservation laws - mass, momentum, and energy - for a fixed control volume [8].

∂

∂t

∫

Ω

~WdΩ +

∮

∂Ω

(~Fc − ~Fv)dS =

∫

Ω

~QdΩ (2.22)

Where ~W is the vector of conserved variables (Eq. (2.23)), ~Fc is the vector of con-

vective fluxes (flow through the surfaces of the control volume Eq. (2.24)), ~Fv is the
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vector of viscous fluxes (Eq. (2.26)), and ~Q contains all of the source terms (Eq.

(2.30)). Also, Ω denotes a control volume and dS the surface of the control volume.

~W =























ρ

ρu

ρv

ρw

ρE























(2.23)

~Fc =























ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV























(2.24)

Where V is the contravariant velocity (the velocity normal to the surface element)

and is defined by:

V = ~v · ~n = nxu+ nyv + nzw (2.25)

~Fv =























0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz























(2.26)

With

Θx = uτxx + vτxy + wτxz + k
∂T

∂x
(2.27)

Θy = uτyx + vτyy + wτyz + k
∂T

∂y
(2.28)

Θz = uτzx + vτzy + wτzz + k
∂T

∂z
(2.29)
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Which denote the viscous stresses and the heat of conduction.

~Q =























0

ρfe,x

ρfe,y

ρfe,z

ρ~fe · ~v + q̇h























(2.30)

In the above: ρ denotes the density; u, v, and w denote the velocity in the x, y,

and z coordinate directions respectively; E is the total specific energy; H is the total

enthalpy; ni terms are the components of the unit normal vector of the face in the

x, y, and z directions; τij terms are the components of the viscous stress tensor; T is

the temperature; k is the thermal conductivity, fe,i terms are the components of the

external volume forces; and q̇h is the heat flux due to radiation, chemical reactions,

etc.

The above N-S equations for Newtonian fluid flow are what must be solved

within all of the length scales and with a time step small enough to capture all of the

time scales for a time-accurate solution to fluid flow around any object. As will be

discussed in Section 2.1.6, this can be infeasible, so often these equations are simplified

by a process known as Reynolds Averaging. This is a process of decomposing the flow

velocities and pressure into mean and fluctuating components:

vi = vi + v
′

i, p = p+ p
′

(2.31)

Where the mean values have the bars and fluctuating values have the primes. These

equations are then substituted into the N-S equations which are then solved for the

mean values which are often the most interesting for engineering applications [8].

This set of equations are known as the Reynolds Averaged Navier-Stokes (RANS)

equations which produces the solution for the mean flow only. These substitutions

and simplifications will not be performed here but can be found in Nichols [41]. The
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bottom line from this process is that the N-S equations are essentially unchanged

aside from the of one term known as the Reynolds-stress tensor [8]:

τRij = −ρv
′

iv
′

j = −











ρ(u′)2 ρ(u′v′) ρ(u′w′)

ρ(v′u′) ρ(v′)2 ρ(v′w′)

ρ(w′u′) ρ(w′v′) ρ(w′)2











(2.32)

This tensor represents the transfer of momentum due to the fluctuations of the tur-

bulence. Also, this is a symmetrical matrix given in Eq. (2.32) which makes for only

six instead of nine independent components. The addition of this term into the N-S

equations therefore requires the introduction of six additional relations to close them.

This is the fundamental problem of modeling turbulence for the RANS equations.

2.1.6 Turbulence Modeling. The purpose of this section is not to give a

detailed explanation of various turbulence models, but rather to give a brief highlight

of the options available to aide in the decision of a final turbulence model.

It was mentioned in Section 2.1.5 that the full N-S equations can be used to

fully describe turbulent flows [41], but that in order to do so, all length (see Eq.

(2.17) & Eq. (2.18)) and time (see Eq. (2.20) & Eq. (2.21)) scales must be accurately

captured. There is a CFD method of accurately capturing all these scales and is

known as Direct Numerical Simulation (DNS). DNS CFD simulations are therefore,

not modeling turbulence at all, but rather directly solving the N-S equations on a grid

with spacing at least as small as the smallest length scales and a time step at least

as small as the smallest time scale. It is easy to see how this can quickly increase

computational cost as Reynolds number and size of domain increase [41] [47].

Section 2.1.5 posed a common method of a time-averaging the N-S equations

in order to bypass the necessity of capturing all of the length and time scales. This

method produces the RANS equations and that section left off by displaying the six

additional Reynolds stress tensor terms that need to be modeled. These types of

turbulence models that rely on this method are simply known as RANS turbulence
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models. They are based off of one single length scale and require various modeling

techniques to fulfill the closure problem [41].

As stated in the beginning of this section, it is not the goal to present detail

about the various turbulence models, but fundamental to so many RANS turbulence

models is the approximation made by Boussinesq [8] [41]. He proposed that the

turbulent stresses can be treated similarly as the viscous stresses in laminar flow.

That is - the Reynolds stresses can be approximated as being proportional to the

local mean flow rate-of-strain (Eq. (2.1)):

−ρv
′

iv
′

j = 2µtSij −
2

3
ρkδij (2.33)

Where δij is the Kronecker delta function. Boussinesq’s approximation reduces the

number of required models from the six needed for the Reynolds shear stress tensor,

to one [41]. This one value is deemed the eddy viscosity, µt, even though it is not

actually a characteristic of the fluid at all. It is instead a function of the local flow

conditions [8].

There have been multiple turbulence models based off the Boussinesq approx-

imation. Some of these use algebraic equations to model the eddy viscosity but are

generally quite limited in their use. Some of the most common, however, employ one

or two transport equations to model various properties upon which the eddy viscosity

is solved [41] [8] [47]. The general form of a transport equation is:

∂Z

∂t
+ Ui

∂Z

∂xi

=
1

σ

∂

∂xj

[

(v + vt)
∂Z

∂xi

]

+ P (Z)−D(Z) (2.34)

Where Z is the variable being modeled, the left-hand side is the convective transport

of Z, the first term in the right-hand side is the diffusion term, P (Z) is the production

term, and D(Z) is the destruction term [41].

The most popular one-equation model for external flow is the Spalart-Allmaras

model. It was derived by using empirical relationships, Galilean invariance, and di-
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mensional analysis, and was calibrated from results to two-dimensional mixing layers,

wakes, and flat-plate boundary layers [41] [8]. The Spalart-Allmaras model utilizes

the transport equation to model a kinematic eddy viscosity parameter from which the

eddy viscosity is estimated. This model is easy to implement into any type of grid, it

is robust, converges fast to steady-state, and only requires moderate grid resolution in

the near-wall region [8]. This model, however, displays shortfalls in modeling turbu-

lence in separated flow regimes and even limitations in some time-accurate cases [41].

The next turbulence model does not rely on the RANS equations, but instead

is three-dimensional, time-dependent solution to the N-S equations, similar to DNS.

The primary difference between this turbulence model and DNS is that it takes advan-

tage of the universal character of the small turbulent structures (as mentioned when

discussing the inner-region in Section 2.1.4). This model is known as the Large-Eddy

Simulation (LES) model as it still captures the large length scales (eddy’s) of turbu-

lent flow to calculate the momentum and energy transfer from the energy-carrying

structures. Since LES does not require the capture of the small length scales, it pro-

vides a significant computational saving over DNS but even still, when considering

high Reynolds number flows at transonic speeds, this method is infeasible [8]. LES

provides high-fidelity results, though, even in highly separates flows [45]. Variants

of the original LES model include the use of wall functions to save on even more

computational expense and other even utilize a hybrid RANS/LES model.

Probably the most common hybrid RANS/LES model is the Detached Eddy

Simulation (DES) model. The DES model provides a significant computational sav-

ings by greatly reducing the number of cells required, which makes high-Reynolds

number applications possible to run [45]. The benefits are quite obvious in that DES

can still capture the large unsteady eddies in separated flow in a time-accurate three-

dimensional solution while cutting cost by only employing the LES solver out of the

boundary layer. There are pitfalls, still, in that it does still require a very fine grid

with very specific requirements for what will produce the best results as discussed in

the Young Person’s Guide by Spalart [45]. Also, there are known issues to DES with

25



“ambiguous grids.” That is to say, there are issues when the defining line between the

RANS region and LES region are ambiguous in the domain [45]. Said another way,

DES performs well in flows where there are either thin boundary layers or in regions

of massive separation, but in thick boundary layer regions or “shallow” separation,

problems are known to arise [46].

In order to help fix this issue, a new version of the DES turbulence model was

created in which the switch from RANS to LES is modified to change at the height

of the boundary layer so the RANS model is kept through this entire region. For the

thick boundary layer regions this results in a delay for the switch from RANS to LES

and because of such this new model is known as the Delayed DES (DDES) turbulence

model [46].

2.2 CFD Settings

The underlying premise of this thesis is that CFD is a proven method of provid-

ing high-fidelity aerodynamic data for a full, high-performance aircraft - even when

operating in nonlinear regions. A large body of research has been performed by re-

searchers at the US Air Force Academy and the US Air Force SEEK EAGLE Office

in which high-fidelity results are obtained from CFD [11,16–19,35,39]. Within these

papers, the unstructured mesh solver, Cobalt (see Section 2.2.2), is used coupled with

the Detached-Eddy Simulation turbulence model (see Section 2.1.6), and adaptive

mesh refinement (see Section 2.2.1).

The purpose of this section is to outline the methodology to be used in per-

forming CFD calculations of a high-fidelity nature. Some of the key components to

discuss are the quality of the grid, the accuracy of a chosen turbulence model, and the

use of an appropriate solver and it settings. These three main topics are interrelated

and the choices of which are dependent on the expected flow features as well as the

object to be modeled.
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2.2.1 Grid Development. Grid generation is often the most time consuming

element in the CFD process, at least when modeling an entire aircraft. The complete

process of initial grid generation is beyond the scope of this research, but the grid

itself (especially specific aspects of it), can have a great influence on the results gained

from CFD.

A common approach to the grid development process is to start with an initial

grid which accurately describes the boundary surface of the object to be modeled and

to follow certain rules of thumb when creating the volume grid [13]. For instance,

some interrelated rules of thumb include having the first grid point located away from

the wall less than a y+ = 1 value, have at least two or three grid points in the viscous

sublayer for accurate shear prediction, and to have a growth rate of the boundary layer

cells of approximately 1.25 or less [13]. It is then common to use various techniques

to cluster cells in expected wake regions to the large separation can be modeled. Once

the initial grid is complete, a solution is found, the grid is refined (often by splitting

each edge in the domain to refine everywhere or some other type of global refinement)

and the solution run again. This process is done successively until all the appropriate

flow features emerge and the final solution changes less than a desired amount [13].

The above process can be very computationally expensive as the grid cell count

increases drastically at each iteration. Even still, Cummings, et al. [13] propose that

the above process may not actually produce more accurate results and instead a

physical basis for choosing the appropriate grid should be employed for accurate flow

prediction. One proposed idea is to produce the initial grid essentially the same as

mentioned above but then to refine the grid using a method called Automatic Mesh

Refinement (AMR). This method utilizes the flow solution of the initial grid to define

regions of highest separation and rotation by tracking vorticity (for example). The

cells within a defined iso-surface of vorticity are then removed and then re-grown at

a scale factor of 0.5 [13]. Both of the above processes were used in [13] and Figure

2.9 shows a comparison between the most refined grid (with 10.7 million cells) and a

grid created with two levels of AMR based off of an initial grid with roughly 2 million

27



cells and resulted in a grid with 3.2 million cells. This figure show how the vortex

Figure 2.9: Comparison of very fine grid (top) to grid created with AMR (bottom)
[13]

core is even more refined in the AMR grid than it is in the very fine grid. Figure

2.10 shows the results of the solution of these grids (very fine bottom left and AMR

bottom right) and the other less refined iterations of the very fine mesh (top). The

AMR grid shows more coherent vortical structures relative to even the very fine grid.

There is also a large amount of three-dimensional structure in the core region post

vortex breakdown. Cummings, et al. determined for this high AoA (27 deg) delta

wing the AMR grid produced equivalent results to the very fine grid [13]. The same

paper [13] also discusses the use of AMR on an F-18C grid with accurate results when

used in tandem with a DES turbulence model (see Section 2.1.6).

2.2.2 Flow Solver and Settings. Kestrel is an Air Force developed finite

volume, cell-centered, unstructured mesh solver based on the Air Vehicles Unstruc-

tured Solver (AVUS) developed by AFRL/RBAC in the 1990s (Also, the AVUS solver

is comparable to many ways to the industry code, Cobalt, which was mentioned in

Section 2.2). See page 51 in the Kestrel User Guide (Version 2.0) for more details
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Figure 2.10: Comparison of results of successively refined grids (top), fine grid
(bottom left), and AMR grid (bottom right) [13].

about the solver such as the method of solving the exact Riemann Solver, obtaining

second order accuracy, types of temporal schemes, etc [12].

The Spalart-Allmaras one-equation turbulence model, the Wilcox k − ω and

Menter’s Baseline two-equation models, and the DDES/Spalart-Allmaras turbulence

models are all implemented in the Kestrel solver (known as kAVUS). The AVUS

solver, however, had multiple functions built-in, whereas Kestrel was developed to be

a very general architecture that can handle new components and more complicated

use cases which can be developed and added at later dates. Because of this, the

kAVUS solver has taken out features built into AVUS such as reading and splitting

the grid and force and moment calculation so that the only purpose of kAVUS is to

compute the solution at a single iteration [12].

One important feature of Kestrel is the graphical user interface from which the

user inputs the solver settings. From this, the range of inputs and use cases can

be decided. The ability to select between static or dynamic simulations (6DOF or
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prescribed motion) is available. For this research, the prescribed motion features will

be utilized for inputing the designed maneuvers for the solver to compute.

2.3 Stability Derivatives

In Chapter I, the importance of accurately predicting aerodynamic data and

stability derivatives in nonlinear regions was established. The purpose of this section

is to outline what parameters are to be gathered, what they are, and what they

mean about the aircraft. For longitudinal motion (which is the only motion for this

research), there are two aerodynamic forces and one moment which act on the aircraft.

They are lift (the forces acting perpendicular to the freestream flow), drag (the forces

acting parallel to the freestream flow), and pitching moment (the resulting moment

in the lift-drag plane after all longitudinal forces on the aircraft are summed). It is

common to non-dimensionalize these values, however, to express them as coefficients.

The lift (CL), drag (CD), and pitching moment (Cm) coefficients are displayed in the

following:

CL =
L

1
2
ρ∞V 2

∞
S

(2.35)

CD =
D

1
2
ρ∞V 2

∞
S

(2.36)

Cm =
m

1
2
ρ∞V 2

∞
Slref

(2.37)

Where L is the total lift force, D is the total drag force, m is the total pitching

moment, ρ∞ is the freestream fluid density, V∞ is the freestream velocity, S is a

reference area (generally the planform area of the aircraft), and lref is a longitudinal

reference length (often the mean aerodynamic chord) [42].

The lift on an airplane is of obvious importance - it gets and keeps the airplane

in the air. It is also the force used to control and maneuver the airplane along with

thrust. It is through controlling and changing the direction and magnitude of these

forces that this control and maneuvering is accomplished [42]. Drag also plays an
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important role in this factor as it and weight make up what can be deemed “resistive”

forces to thrust and lift and an accurate knowledge of them is also essential in the

design of an airplane. This knowledge factors into the design of the flight control

system (which exists on essentially all high-performance aircraft), determining the

controllability and maneuverability of the aircraft, structural design, and many other

areas.

The pitching moment on the aircraft also plays into many of the above areas,

especially control system design. Longitudinal stability is primarily determined by the

pitching moment. Static stability can be explained as a restoring to equilibrium of a

system after a perturbation is input. If the system departs for equilibrium following a

disturbance, then it is said to be negatively stable and if it remains at the perturbed

stated then it is neutrally stable. All three of these states are depicted in Figure

2.11. In terms of pitching moment values, a quick examination of aircraft response

Figure 2.11: Depiction of Static stability, neutrality, and instability [2]

can explain desired values. Consider a perturbation in which the AoA of an aircraft
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is increased from a trim scenario. A stable system will have characteristics in which

the AoA will decrease “on its own.” In other words the pitching moment must be

negative with an increase in AoA so as to “push” the AoA back down. Likewise, if the

AoA is decreased then the pitching moment must be positive in order to increase the

AoA back to equilibrium. A convenient way to determine static longitudinal stability,

then, is to examine the slope of the pitching moment with AoA (know as Cm,α) [42].

This is depicted in Figure 2.12.

Figure 2.12: Slope of pitching moment for static stability, neutrality, and instability
[1]

It may seem odd that only the lift, drag, and pitching moment coefficients will

be modeled then. This is due to the fact that other desired derivatives (such as Cm,α)

can be obtained by simply taking the derivative of the model corresponding to the

desired result (for example: take the derivative of the pitching moment coefficient

model with respect to AoA to obtain a model for Cm,α). In this way, models of many

different stability coefficients can be obtained for “free” from the initial models.
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The discussion of stability would not be complete without at least mentioning

dynamic stability as well. Where static stability is a returning to an equilibrium state,

dynamic stability addresses the motion associated with this return (or departure) to

equilibrium. A system may tend to return to the equilibrium state, but does it

overshoot this destination? If so, is the magnitude of the overshoot larger than the

initial pertibation? If so then the system is dynamically unstable. If not then it is

dynamically stable. Figure 2.13 depicts these dynamic states of equilibrium.

Figure 2.13: Depiction of dynamic stability, neutrality, and instability [2]

The natural stability of the aircraft at any expected orientation is also of great

importance when designing a control system, especially for high-performance aircraft.

They are often naturally unstable to allow for high maneuverability as stability and

maneuverability are in conflict with each other [42] [29].
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As a last note, although only the longitudinal forces and moment were men-

tioned in this section, the same ideas and principles apply similarly when considering

longitudinal and lateral flight dynamics together.

2.4 System Identification

Section 1.2.4 discussed some of the various methods for modeling aerodynamic

data with the result that System Identification is the best method for understanding

the actual dynamics associated with the aircraft [21]. SID is the process of creating

a mathematical model of a system based on the responses of the system to various

inputs. The structure of this mathematical model can vary widely to accommodate

the type of system (linear versus nonlinear, etc) and its intended use. Figure 2.14

shows a simplified diagram of the task of SID to model an unknown, nonlinear aircraft

system based on its inputs and outputs. Fortunately, much work has been done in

Figure 2.14: Block diagram of relationship of system to known inputs and outputs.

the area of SID for nonlinear aircraft such as [23,24,26,29–31,33]. From these results,

there are a variety of forms that can be expected for the system model to take and as

well as there can be some advanced insight into which input parameters and coupled

parameters tend to represent specific output parameters the best [33].

CFD simulations are well suited to SID modeling as the input and output states

are all measured during the duration of the maneuver, there is very tight control of

the input variables, and CFD does not rely on sensors to gather output data. Quite

often the entire output state is not directly measured and must be estimated based
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on correlations between the known inputs/outputs and whatever is known about the

system. This state estimation can introduce error especially as the sensor data of the

known inputs/outputs may have a significant amount of error themselves [33]. From

this error, the flow conditions are not exactly known whereas in CFD they are tightly

controlled and the overall level of noise is reduced.

2.4.1 SID Techniques. One of the most common methods for SID is the

global nonlinear parameter modeling technique which describes the dependence be-

tween the motion (input variables) and the computed aerodynamic forces and mo-

ments (the output). The goal being to find the model which accurately captures the

nonlinearities with the minimum number of terms. This latter requirement improves

the ability to identify the model parameters which will result in the best predictive

capability [15, 21].

The multivariate analysis technique uses orthogonal modeling functions gener-

ated from the data to determine a nonlinear structure for the model and expands the

retained modeling functions into a multivariate polynomial [21, 30]. One of the main

advantages of this technique is that the dependencies of the output variables on the

input variables is done automatically based on data and statistical modeling metrics

without the need for a user’s judgment [21].

Another technique for SID is stepwise regression. It is also an automated pro-

cedure for statistical model selection, but for cases where there are a large number

of potential regressors (input variables). In this technique, the set of input variables

which produce the best fit according to some metric (such as the R2, or coefficient of

determination, statistic as seen in Eq. (2.38)) is found.

R2 =
St − Sr

St

(2.38)
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where

St =
∑

(yi − y)2 (2.39)

Sr =
∑

(yp − yi)
2 (2.40)

With yi being the known “true” value, y the average of the true values, and yp being

the predicted value from the model at that point.

2.4.2 System Identification Program for Aircraft. One specific collection of

SID tools that utilizes the techniques described above is called System Identification

Program for Aircraft (SIDPAC). This specific collection of programs is discussed due

to its ability to create accurate models (due to a high-fidelity method employed) and

because it is the bases of the SID program implemented directly into Kestrel. This

code was developed using Matlabr at the NASA Langley Research Center and has

been utilized successfully for SID modeling for many different flight test programs and

wind tunnel experiments [32]. It includes routines for “experiment design, data con-

ditioning, data compatibility analysis, model structure determination, equation-error

and output-error parameter estimation in both the time and frequency domains, real-

time and recursive parameter estimation, low order equivalent system identification,

estimated parameter error calculation, linear and nonlinear simulation, plotting, and

3-D visualization” [32].

SIDPAC decomposes a signal into a deterministic signal and nondeterministic

noise using Fourier analysis and the optimal Weiner filter (a low-pass filter). The

cut-off frequency for the low-pass filter is chosen automatically based on the data

provided and the filtered data is what is actually modeled in SIDPAC using multi-

variate orthogonal modeling functions generated from the independent variables. This

method is compared against a stepwise regression model in [21] and it is found that

the SIDPAC technique of multivariate orthogonal functions produces much better

results.
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2.5 Previous Research

All of the requisite topics have now been covered relating to the research of in this

paper. The last step of this chapter is to examine what work has been accomplished

in this area thus far.

2.5.1 Initial Attempts. In September 2003, a group of almost 100 technical

professionals from government, industry, and academia gathered together in Hampton,

VA for a NASA-sponsored symposium. The purpose of this conference was to discuss

Computational Methods for Stability and Control (COMSAC) and to discuss the

current capability of CFD to predict quality S&C data as well as what challenges stand

in the way of doing so. Many of the issues mentioned in Section 1.1 were introduced,

but at that time it was said that although CFD and fields such as aerodynamics

and performance have had much discussion and crossover, there was a lack of this

type of communication between CFD and S&C professionals. Within the aerospace

community, it is commonly accepted that the field of CFD has rapidly matured and

that the next big pay-offs could occur in S&C [20], but it is clear from the review

paper that there was at that time a lack of organization in the quest - which was the

purpose of this conference [20, 21].

At the conference, NASA Ames researchers attempted a “brute force” method

to filling an S&C database [10, 40, 44]. It was found that to produce a reasonable

database, it would include the running of “30 different angles-of-attack, 20 different

Mach numbers, and 5 different side-slip angles, each for a number of different geom-

etry configurations or control surface deflections [10]”. An emphasis was placed on

automating the process and rely on parallel computing as much as possible to reduce

the required time but in order to feasibly conduct such a large volume of work would

require primarily Euler simulations with fairly coarse Cartesian grids. It was also

posed that a select few hundred of the required solutions could be calculated and

then an interpolation procedure could be utilized to fill out the missing runs [21].
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A similar approach was to turn many of the runs to lower order solutions with

few high-order solutions at various locations to cut computational cost. This is a

tempting method but relies on efficient knowledge to know when a low-order solution

is acceptable and when it is not. It also assumes that the discrete set of points

computed capture all of the necessary nonlinearities when it could clearly be missing

important information. Another approach used was to apply a potential flow solver

to predict S&C derivatives as well as with a serial Euler code. The potential flow

solver provided much shorter execution times but suffered from an inability to predict

the frequency dependent behavior of dynamic S&C values [21].

Another method of using B-splines to represent nonlinear aerodynamic func-

tions in flight dynamic models was presented by Bruce and Kellett [9]. The method

presented offers a fit to an smooth function with guaranteed continuity. It also allows

for a possible reduction in the number of flight tests since large portions of nonlinear

functions can be identified from large amplitude maneuvers [21].

2.5.2 Current State-of-the-Art. A large body of work has been accom-

plished in analyzing many maneuvers (often referred to as training maneuvers) of

various types [14, 21, 34, 36–38]. The training signals examined include “continuous

[AoA] sweeps, sinusoidal pitching motions, coning motions, oscillatory coning motions,

configuration plunge pulses, plunge chirps, pitch chirps, Schroeder plunge motions,

yaw chirps, and composite pitch-yaw chirps [15].” Since the goal is to accurately

model high-performance aircraft, these maneuvers use large amplitude input signals

to excite the range of unsteady, nonlinear dynamics of the aircraft. It was found im-

portant to cover the entire range of the independent variables for the nonlinear model

identification [21].

One paper [21], in particular, is of increased importance for a couple of reasons.

First, the initial grid provided for this research is only a slightly modified version of

the F-16C grid in this paper (it is the exact grid from [15]) and looking at results

and settings used in this paper will lead to an understanding of what to expect from
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the grid. Second, this paper details the results to a large number of the maneuvers

discussed above.

The first set of simulations was to examine the effect of varied constant pitch

rate from -5 to 60 deg AoA at pitch rates varying from 5 to 40 degrees per second. It

was noted that at even a 5 degree per second pitch rate included dynamic effects on

the lift coefficient curve although the slope of which was the same in the linear region

(below 12.5 degree AoA for their unspecified flight condition) regardless of the pitch

rate. Beyond this linear range, however, this dynamic lift due to constant pitch rate

had a significant effect on the results such as the magnitude and location of max lift

coefficient [21].

Another maneuver covered in the same paper is the plunge pulse. This ma-

neuver is essentially one cycle of a sinusoidal change in AoA, where the change in

AoA is induced by a pure “up and down” translation instead of a rotation. Other

maneuvers were also performed such as a Schroeder Sweep plunge and conventional

and oscillatory coning motions. Each of which are compared to other maneuvers such

as DC chirp plunges and sinusoidal pitching motions which were not used to create

the models [21]. The details of these maneuvers are unimportant other than to note

the wide variety of options examined to date. Of all of these (and other) maneuvers

analyzed, the chirp signals were determined to be the best candidates for creating the

ROMs. This “chirp” signal is a sinusoidal motion with varying frequency and often

amplitude [15].

2.5.3 Where This Research Fits In. The work presented in Section 2.5.2 also

states the shortcomings of the maneuvers examined so far. The primary shortcoming

is in the prediction of the various static coefficients beyond the linear range of AoA

[15]. The training maneuvers used are fully dynamic in nature and as such do not

include static data. The models do predict dynamic data in nonlinear regions quite

well, however, so the insight gained thus far is still of great worth.
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The ultimate desire is to generate efficient yet accurate nonlinear aerodynamic

models capable of predicting static and dynamic force and moment stability coeffi-

cients, so a new maneuver needs to be developed and analyzed that includes both

static and dynamic regions. The knowledge gained in using a high amplitude ma-

neuver, built upon the current “best” maneuver of chirp sinusoidal motion, will be

used to create a modified maneuver known as a chopped sinusoidal motion. This

motion varies the amplitude and the frequency of sinusoidal AoA motion but at each

maximum or minimum amplitude the AoA will be held constant for a period of time

to introduce these static regions as will be seen in Section 3.4.
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III. Methodology

3.1 Overview

The methodology for this research may be broken into five stages: refining the

problem, development of metrics, development of maneuvers, finalizing the solver

settings, and refining the grid. It has also been deemed proper to limit the work of

this thesis to examine longitudinal aircraft responses only as the lessons learned can

be translated into all three axes as part of future work.

3.2 Refining the Problem

In order to begin developing metrics or maneuvers or running CFD simulations,

the problem must be sufficiently defined. The regressor space, flight conditions, and

desired outputs must each be specified as well as a common ground for each maneuver

to be compared against.

Practically, the choice of regressor space is determined primarily by some given

requirement of what range of AoA, pitch rate, etc are to be modeled. The choice

of regressor space for the purpose of this thesis is quite arbitrary, though, since the

purpose of this work is not to derive accurate models of the F-16C, but to determine a

new training maneuver with better static and dynamic prediction capabilities. So as

long as the defined regressor space meets certain criteria, it will be acceptable. First,

it must cover a wide range of linear and nonlinear longitudinal aircraft motion. Next,

it must provide enough “room” to allow for the large amplitude maneuvers to lie

within it. Lastly, there must also be some practical constraints so that the regressor

space falls within a set of reasonable/expected values of the real F-16C. In accordance

with this, the regressor space will be set as a range from −10 to 30 degrees AoA, and

the pitch rate, Q, will be set between ±100 degrees per second.

In the introduction it was mentioned that two Mach numbers will be evaluated,

one subsonic and the other transonic. Needing to also follow guidelines for proper

gridding techniques (Section 2.2.1), for proper initial y+ values, the flight conditions

are set at Mach numbers of 0.5 and 0.9 at an altitude of 10, 000 feet and assuming a
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standard day. For the given F-16C grid, this produces an initial y+ value of less than

1 for both Mach numbers. This process is backward from what is normally done.

Typically, the flight conditions are known ahead of time and the grid is created to

give the proper y+ values, etc.

Section 2.3 gives proper guidance in the desired outputs that should be modeled

for longitudinal quantification of S&C derivatives. These values are lift coefficient,

CL, drag coefficient, CD, and pitching moment, Cm. There are, of course, more

longitudinal dynamic derivatives than these that would be useful to S&C engineers,

but the models created for these primary variables can be quickly differentiated to

provided needed stability and ultimately control derivatives to aid in their analysis

[15].

The last item to address in order to properly refine the problem is to establish

a common ground for all maneuvers to be compared against. The desire is to find

a particular type of maneuver that minimizes the computational time to produce an

accurate model. This is essentially an optimization problem where computational ex-

pense is the cost function. This type of problem cannot be evaluated by optimization

techniques available. Therefore, each maneuver will be set to have the same length

in time (a value of five seconds) and no maneuver is allowed to leave the regressor

space at any time. In this way, each maneuver has the same real (and equivalently

computational) time, and the “best” maneuver will be the one which produces results

that fit the comparison data best (from the R2 technique mentioned in Section 2.4.1).

3.3 Metric Development

Another goal of this thesis is to see if there is a way to determine how good

a maneuver is before it is run. In an attempt to do so, a series of metrics will

be developed to quantify certain aspects of each maneuver to see which are most

important (if any certain conclusions can be drawn).
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Before a maneuver is run, the only information available is the trace of the

maneuver itself. Therefore, these metrics must rely solely on the input regressor

values that feed into the system, and if a method can be produced that will predict the

“goodness” of a maneuver before it is run, the metrics must be quantifying measures

of the path the maneuver traces on the regressor space.

Discretizing the regressor space to a to-be-determined sufficient degree would be

the first step in creating these metrics (Figure 3.1(a)). The maneuver input variables

could then be plotted on this grid over the regressor space to see how many points are

in each cell. An example of this for a simple, constant frequency, linear decrease in

amplitude, sinusoidal motion is seen in Figure 3.1(b). These figures show a very coarse
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(a) Discretized regressor space [3]
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(b) Example maneuver plotted [4]

Figure 3.1: Example of the discretized regressor space.

grid (step size of 1 deg for AoA and 10 deg
s

for pitch rate) for illustration purposes. In

reality, the discretization is much finer in order to capture the various regions of the

regressor space more accurately, such as values at zero pitch rate. The exact steps

in AoA and pitch rate will need to be determined, but not before the metrics are all

defined as they may help to define the final step sizes.

3.3.1 The Metrics. The metrics to be created should attempt to be quan-

tifiable measures of the discretized regressor space. The first metric is then defined as
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the percentage of the entire regressor space the maneuver covers. This calculation is

done by counting the number of cells with any number of points in it at all (whether

it has one or many points does not make a difference) and divide this number of cells

by the total number of cells as in Eq. (3.1).

Metric1 =
# of cells with data points

Total # of cells
× 100 (3.1)

A second metric is defined similarly as the percentage of the cells on the bound-

ary which have any number of data points in them as seen in Eq. (3.2). This metric

attempts to quantify how well a maneuver captures the bounds of the regressor space

that is being modeled.

Metric2 =
# of cells on boundary with data points

Total # of cells on boundary
× 100 (3.2)

These first two metrics do not give insight into how evenly the data covers the

regressor space, so the next two metrics attempt this. The first looks at the spread

in the data across all AoA values. To do this, each column of AoA is checked for the

number of cells with any number of values and then divided by the total number of cells

in the column. This produces an array of decimal percentage values for each column in

the AoA direction. For a perfectly distributed maneuver, each column would have the

same number of cells with data in them, producing a standard deviation of zero. That

is, then, the final step in calculating the next metric – taking the standard deviation

of the percentage of cells with data in them in each AoA column, normalized by the

maximum value. To help illustrate this metric, Eq. (3.3) is provided.

Metric3 = std
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Where std is the standard deviation function.

The next metric is the same as the previous except it examines the evenness of

the data in the rows of pitch rate values. Equation (3.4) illustrates this metric.

Metric4 = std
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(3.4)

Where Q represents the pitch rate.

The rest of the metrics will now focus on specific regions of interest in the

regressor space. The first region of interest is where the maneuver has zero pitch rate.

Section 2.5.3 discussed the lack of predictability of static data in the nonlinear regions

and the primary focus of this research is to focus on implementing static regions in

the maneuvers. Three metrics can be used to help quantify how well this region of

the regressor space is covered. First, the overall percentage of the zero pitch rate AoA

cells with data in them (Eq. (3.5)).

Metric5 =
# of cells at 0 Q with data points

Total # of cells at 0 Q
× 100 (3.5)

Next, the average total number of points per cell in the same row of cells (Eq. (3.6)).

Note this metric takes into account how many points are in each cell and not whether

or not there are any points at all in a cell. In this way, more “credit” is given for

extra time spent at zero pitch rate for a given AoA to allow for time to converge to a

proper solution. This metric (and future similar metrics) must be taken with caution

as spending an extraordinary amount of time at one static AoA value can inflate this

number without providing more useful information. Experience must be gained to

determine how many iterations or how much physical time is needed to arrive at a
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converged solution after zeroing pitch rate.

Metric6 =
Total # of data points at 0 Q

Total # of cells at 0 Q
(3.6)

The last of the three metrics for zero pitch rate is the standard deviation of the data

points in the last metric. This metric normalizes the number of points in each cell

by the largest value in the row, and then takes the standard deviation of all values in

the row.

Metric7 = std

[

cell1, cell2, · · · , celllast
Max value

∣

∣

∣

∣

@ 0 Q

]

(3.7)

The last two regions of interest are the “low” and “high” pitch rate regions.

These regions are arbitrary and will be varied (see Section 3.4.2) and all considered.

As referenced before, even a pitch rate as low as 5 deg
s

includes dynamic lift effects [21].

That value and others will constitute the set of cut-off pitch rates from the arbitrary

“low” to “high” magnitudes as seen in Eq. (3.8). These ranges of pitch rate will

exclude the row of zero pitch rate as it is examined thoroughly in Metrics 5− 7. The

range of high pitch rates will simply be the inverse of these values. If it is found

that other values other than those presented in Eq. (3.8) would be best, they can be

altered after the fact to produce the best metrics.

cut− off magnitudes = [5, 10, 20, 50]deg/s (3.8)

The same set of three metrics that were utilized for the zero pitch rate region will be

used for these two regions. Put in equation form, the three metrics for a low pitch
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rate region are:

Metric8 =
# of cells at low (not 0) Q with data points

Total # of cells at low (not 0) Q
× 100 (3.9)

Metric9 =
Total # of data points at low (not 0) Q

Total # of cells at low (not 0) Q
(3.10)

Metric10 = mean

(

std

[

cell1, cell2, · · · , celllast
Max value

∣

∣

∣

∣

@ low (not 0) Q

])

Each row

(3.11)

And similarly, the following equations depict the metrics for a high pitch rate region:

Metric11 =
# of cells at high Q with data points

Total # of cells at high Q
× 100 (3.12)

Metric12 =
Total # of data points at high Q

Total # of cells at high Q
(3.13)

Metric13 = mean

(

std

[

cell1, cell2, · · · , celllast
Max value

∣

∣

∣

∣

@ high Q

])

Each row

(3.14)

To reiterate, metrics 8− 13 will be recursively applied to the various deviations from

low to high pitch rate given in Eq. (3.8) to allow for wider explanation of why the

best maneuver is the best.

Also, the overall magnitude of the above metric values will greatly depend on the

step sizes used for the discretization, but this is not important as only the magnitude

of the values of one maneuver with respect to the values of other maneuvers will

matter. The step size of the discretization will, however, have an effects on how

accurately the trace of the maneuver is mapped to regressor space, which in turn can

affect the metric values. This can then alter the relative values of the outputs of the

metrics from each maneuver. For example, a discretization of 10 deg
s

in pitch rate will

include relatively large magnitudes as though they are in the zero pitch rate region.

Conversely, a discretization that is too fine may be excluding values from the zero

pitch rate region which can be practically considered zero.

This then sets the standard for defining the step size. In pitch rate, a value

less than 0.1 deg
s

is essentially zero especially when considering the length of time of a
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maneuver is performed. In 10 s, this would only equate to a 1 deg change in AoA. The

constraints in AoA are not so rigid as only metric 3 depends on this discretization,

and not very strongly. Therefore, the step size for AoA is arbitrarily set at 0.1 deg

increments, just for uniformity in magnitude of the discretization of both AoA and

pitch rate. To summarize:

Qstep size = 0.1
deg

s
(3.15)

AoAstep size = 0.1 deg (3.16)

The Matlabr code used for each of these metrics can be found in Appendix A.

The last note for the metrics defined above is to define what is “good” for

each metric. For all of the metrics except for 3 and 4 (the standard deviation of

the data in AoA and pitch rate), the higher the value the better. For the third

and fourth maneuvers, an evenly spread data set will display a standard deviation

that approaches zero. The other standard deviation values are calculated based on

sections of the AoA data (for a given region of pitch rate). It is not reasonable to

assume there will be data in every “column” and so an evenly spread data set will

not have a Gaussian distribution, but will be very flat – a high standard deviation.

3.4 Maneuver Development

In order to verify the metrics, there needs to be a large variety of maneuvers

from which to develop models. There must also be at least one (preferably more)

set(s) of validation data (none of which can be used in creating any models). This

way, each maneuver can be compared to the validation data and then quantified as

to how well the model predicts the validation data. This process helps to accomplish

both goals of this research at the same time. The metrics cannot be validated without

knowing which maneuvers are best/worst and it is not known which maneuvers are

best without testing them all and comparing them to validation data as described

above and in Section 1.4.
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The set of maneuvers to be created should include some simple baseline maneu-

ver with a very basic motion which can be similar to an actual flight test maneuver.

The current best maneuver (the chirp sinusoidal motion) should also be included so

the chopped sinusoidal motion can be compared directly to it. Having these two ma-

neuvers, knowing the latter is better than the former, will help to give some initial

results from the metrics by seeing which parameters are better in the chirp motion

than the basic.

Other than the two maneuvers discussed above, any number of variations of the

chopped sinusoidal motion can be included. It is also wise to include some maneuvers

whose purpose is to optimize certain aspects of the metrics for their validation and

not necessarily focused on producing the best model (which is the primary goal of the

other maneuvers). Since the maneuvers will focus on the chopped sinusoid, they may

all look very similar with primary differences in how they blend static and dynamic

regions.

Before the maneuvers are presented, the methodology for creating a maneuver

should be discussed. Equation (3.17) is a generic function for describing a sinusoidal

type motion where initial and final amplitudes and frequencies can be set as well as

how quickly the transition takes place from initial to final states. The output of this

equation can be used as the set of roll, pitch, or yaw angles over time, which will be

used for the AoA variation for the purposes of these maneuvers.

S(t) = s̃(t̂) cos[2π(βf t̂
1+λf + f1t̂+ Φ/360)] (3.17)
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with

s̃(t̂) = βat̂
1+λa (3.18)

βa =
a2 − a1

(tmax − t0)λa
(3.19)

t̂ = (t− t0) (3.20)

βf =
f2 − f1

(tmax − t0)λf
(3.21)

where t is the actual time, tmax is the maximum time of the maneuver, t0 is the start

time of the maneuver, a2 and f2 are the final amplitude and frequency, a1 and f1 are

the initial amplitude and frequency, λf and λa are the frequency and amplitude shift

parameters that define the variation from initial to final amplitude and frequency

states, and finally Φ is the phase shift in degrees. Note that an λf or λa equal to 1.0

gives a linear variation from f1 to f2 and a1 to a2, respectively [12].

Once the maneuvers are created, they are introduced into the CFD solver by the

means of an arbitrary input file. The Kestrel User Guide [12] describes the format this

file should have. There are eight header lines, followed by 13 columns of data. The

first column is current time (seconds), the next three columns are the basis vector,

nx, of the newly rotated x-axis in terms of the initial, inertial coordinate system,

likewise, the next three columns are the basis vector, ny, of the rotated y-axis, the

next three are the basis vector, nz, of the rotated z-axis, and the last three columns

are the (x, y, z) coordinates to the instantaneous center of rotation. Figure 3.2 show

a simple example of this type of file and the Matlabr code for the creation of this file

can be found in Appendix D.

3.4.1 The Final Maneuvers. The first maneuver will be a simple sinusoidal

motion with constant frequency and linearly varying amplitude. This type of motion

is inspired by the type of motion that occurs when a disturbance enters the system

and an under-damped response ensues. The magnitude and subsequent oscillations

of this maneuver are much higher and longer than would be seen in a normal aircraft,
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Figure 3.2: Sample arbitrary motion input file [12]

but this selection is a good introductory motion. For this type of maneuver, the

initial pitch rate will be the highest at the very beginning as that is where the highest

amplitude change happens (this being true only for the constant frequency case).

The amplitude, rate of decrease of the amplitude, and initial AoA, will all be set to

provide a maximum AoA of 30 deg and a minimum amplitude of -10 deg (as all of the

maneuvers will attempt to do), and a final amplitude of 0 deg. The final inputs to

Eq. (3.17) are listed in Table 3.1. These inputs produce the motion seen in Figure 3.3

which covers the regressor space seen in Figure 3.4. Figure 3.5 shows the pitch rate of

this maneuver over time along with AoA. This maneuver has a very even distribution

of the regressor space but not as much overall coverage as other maneuvers do.

Table 3.1: List of Inputs to Eq. (3.17) for each maneuver.
Maneuver # (s) AoAi a1 a2 f1 f2 λa λf Φ

1 8.0 22.5 0.0 0.8 0.8 1.0 1.0 -90
2 8.0 22.5 0.0 0.75 1.6 1.0 1.9 -90

3 - 7 8.0 27.0 0.0 0.6 1.35 1.0 1.9 -90

One of the maneuvers that must be included is the current best, the chirp

sinusoid, in order to determine if any of the chopped sinusoid maneuvers can better

predict the validation data. The chirp sinusoidal maneuver is very similar to the first

maneuver except the frequency is also allowed to be varied. This produces a maneuver

which utilizes the maximum pitch rate much more in order to cover a wider range of
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Figure 3.3: Motion of first maneuver.
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Figure 3.4: Regressor space covered by the first maneuver.
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Figure 3.5: Pitch rate of first maneuver compared to AoA.

AoA in the same amount of time. The use of the maximum pitch rate at the peak

of a given cycle is not held for the entire maneuver as that would produce too much

“repeat” data at the low AoA values as this is where the maximum pitch rate occurs

for a given cycle in a sinusoidal motion. By decreasing the maximum pitch rate, the

center region of the regressor space is filled in more evenly as seen in Figure 3.7.

The inputs for Eq. (3.17) are listed in Table 3.1 along with the rest of the

maneuvers. The same three set of figures shown for the first maneuver are presented

for this maneuver in Figure 3.6, Figure 3.7, and Figure 3.8. A linear decrease from the

initial to the final AoA was kept as it provides a very even coverage of the regressor

space as seen in Figure 3.7.

The rest of the maneuvers will each require more discussion as the implementa-

tion of a static (or another type) region requires manipulation beyond what is provided

from Eq. (3.17). The third maneuver will introduce the largest static regions of all

the maneuvers in attempt to get reliable static data and to also maximize the metrics

for zero pitch rate (metrics 5 − 7). For this purpose, roughly a quarter of a second
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Figure 3.6: Motion of second maneuver.
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Figure 3.7: Regressor space covered by the second maneuver.
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Figure 3.8: Pitch rate of second maneuver compared to AoA.

(about 4 to 5 percent of the total maneuver) of data will be held at zero pitch rate for

each peak amplitude through the maneuver as seen in Figure 3.11. The long length

of time is to account for the unsteadiness of the flow at large AoA values, and the

static regions are shorter at the lower AoA values.

Maneuver 3 poses the trade-off required when implementing static regions into

a maneuver. The second maneuver, although without static data, is able to produce

more oscillations (Figure 3.6) which in turn provides better overall coverage (Figure

3.7) than the third maneuver (see Figure 3.11 and Figure 3.12, respectively). The

results will have to be examined before a conclusion of how big of an effect the lesser

coverage of the regressor space will have on accurately modeling the dynamic response

of the aircraft for the chopped sinusoidal maneuvers.

This third maneuver is created by starting with a sinusoidal motion which over-

shoots the bounds of maximum and minimum AoA as seen in Figure 3.9(a). The

input values for Eq. (3.17) are seen in Table 3.1 which produce Figure 3.9(a). The

array of AoA for that motion is then run through a loop which “chops” off the peak
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amplitudes at specified values (Eq. (3.22)) which produces Figure 3.9(b).

Chop V alues =





30 23 18 15 12 10 8.5

-10 -5 0 2.5 5 6.5 8



 (3.22)

When this is done, however, sharp corners are left on the plot as seen in Figure
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Figure 3.9: Initial motion of third maneuver before and after “chopping.”

3.10(a). These corners can be a source of numerical instability for the CFD solver

so they must be rounded. To do so, the slope is found a few points before the chop

occurs. This then provides a known (x1, y1) at this point and its corresponding slope,

s1. The final y2 value is also known along with its slope of zero (s2 = 0). That is

enough information to fully define the equation for a circle at that point. This process

is given by the following set of equations:

x0 = x1 ±
(y2 − y1)s1
√

s21 + 1− 1
(3.23)

y0 = y1 ±
(x1 − x0)

s1
(3.24)

r = y2 − y0 (3.25)

y =
√

r2 − (x− x0)2 + y0 (3.26)
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Where (x0, y0) is the location of the origin of the circle, r is the radius, and y is

the value of the circle at a given x location. Also, the ± sign determines if you are

on the “upper” or “lower” surface of the circle. The Matlabr code for this process

can be found in Appendix C. After implementing this process, the sharp corner is

transformed into what is seen in Figure 3.10(b).
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Figure 3.10: Corners of third maneuver before and after smoothing sharp corners
from being chopped

Figure 3.11 shows the final form of the third maneuver with Figure 3.12 and

Figure 3.13 showing its coverage of the regressor space and pitch rate versus AoA

over time respectively. Figure 3.12 shows sparse amounts of data in the approximately

±40 deg
s

pitch rate range, but the figure does not show the large number of data points

at exactly zero pitch rate for each AoA value at the zero crossings.

The rest of the maneuvers start with the same two motions shown in Figure 3.9.

The difference between the next two maneuvers from the third is the treatment of the

blending from dynamic to static data. Both will include low pitch rate oscillations at

the corners of each chopped region. This low pitch rate will spread some of the zero

pitch rate data into some of the “bare” areas seen in Maneuver 3’s regressor space

(Figure 3.12). Maneuver 4 will stay conservative and keep a fairly large static region
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Figure 3.11: Motion of third maneuver.
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Figure 3.12: Regressor space covered by the third maneuver.
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Figure 3.13: Pitch rate of third maneuver compared to AoA.

while Maneuver 5 will have more low pitch rate oscillations with fewer truly static

points.

To do this, a cubic spline interpolation scheme will be used to smooth out the

motion seen in Figure 3.9(b). The built-in Matlabr “spline” function will be used.

This spline function solves for a piecewise polynomial for every region in between

each data point. This way, the function will exactly predict every point used for

the interpolation. At sharp corners, however, an overshoot will occur followed by a

damped oscillation – producing the low-pitch rate oscillations that are desired [28].

Since the spline function exactly predicts every point input into the function,

the data from Figure 3.9(b) must first have data points removed at specified intervals.

These values are then input into the function and sampled at the original input values.

This process is best explained through an example; assume a data set has the following
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original values:







x

y







=





1 2 3 4 5 6 7 8 9 10 11 12 13

24 25 26 27 28 29 30 30 30 30 30 30 30



 (3.27)

This example data set can then be be sampled at every fourth value to produce:







xs

ys







=





1 5 9 13

24 28 30 30



 (3.28)

The sampled data, (xs, ys), is then fed into the spline function as the “known values”

and the original x values are input as the desired output interpolated values calculated

by the spline function. This example is performed in Matlabr and the following result

are produced:







xf

yf







=





1 2 3 4 5 6 7 8 9 10 11 12 13

24 25.2 26.3 27.2 28 28.7 29.3 29.7 30 30.2 30.3 30.2 30





(3.29)

It is seen that the maximum value of the final yf values is above the maximum value

of the initial data set, y. With a much longer data set and a wider sampling rate, this

overshoot will be more pronounced and will be followed by undershooting the final

static data and then overshooting, etc., until the response is damped out entirely.

Maneuver 4 takes the original data set and samples it at every 0.02/dt intervals.

The final time step, dt, will be discussed in Section 3.5, but will be on the order of

1E−4 which will produce a sampling rate on the order of 1E2. Performing these steps

results in the final maneuver as seen in Figure 3.14(a) with a zoomed-in look at the

first spline blending from static to dynamic regions Figure 3.14(b). This maneuver

covers the regressor space seen in Figure 3.15 and has the pitch rates over time seen in

Figure 3.16. The regressor space looks “wiggly” which results in more overall coverage

and it can be vaguely seen that the there are over-lapping regions around zero pitch

rate with small deviations of AoA. This should produce quality low and zero pitch
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(b) Zoomed in view of first static region.

Figure 3.14: Fourth maneuver.

rate data at these specific AoA values. This regressor space should also be compared

to the regressor of the third maneuver (Figure 3.12). The large spaces seen in the

third regressor space are not apparent in the fourth.

The fifth maneuver is very similar to the fourth except the low pitch rate is

extended further into the static regions by increasing the sampling time to 0.045/dt

intervals, increasing the sampling time by 2.25 times. Plots similar to the fourth

maneuver can be seen in Figure 3.17, Figure 3.18, and Figure 3.19 respectively. The

regressor space shows smooth transitions from dynamic to static data and there is

a larger range of the over-lapped low pitch rate data around the static AoA values.

This larger spread in low pitch rate data at the angles means there are fewer data

points at exactly zero pitch rate, however. This will produce the main difference in

Maneuvers 4 and 5 – the fourth maneuver is more conservative in the sense that it

has more zero-pitch rate data points (including the low pitch rate points).

Two final maneuvers are to be examined. The primary purpose of these is to

produce an optimization of the importance of the low pitch rate metrics as well as

to provide greater AoA coverage at low pitch rate data as compared to Maneuvers 4

and 5 whose low pitch rate data stayed near the static values. Similarly, Maneuver 3
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Figure 3.15: Regressor space covered by the fourth maneuver.
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Figure 3.16: Pitch rate of fourth maneuver compared to AoA.
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(b) Zoomed in view of first static region.

Figure 3.17: Fifth maneuver.
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Figure 3.18: Regressor space covered by the fifth maneuver.
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Figure 3.19: Pitch rate of fifth maneuver compared to AoA.

is essentially the optimization of the zero pitch rate data metrics – to help define the

importance of those metrics with respect to others.

For these maneuvers, all static data will be removed in place of secondary low-

amplitude sinusoidal motion. This will also help to magnify (or minimize) the impor-

tance of purely static data over just low pitch rate data. To do this, the maneuver

found in Figure 3.9(a) is again utilized which is then chopped to include the static

regions, but this time the cutoff values are altered to be:

Chop V alues6 =





29.75 23 18 15 12 10 8.5

-9.75 -5 0 2.5 5 6.5 8



 (3.30)

Where the first column houses the only changes which are made to keep the final

maneuver within the regressor space. The output looks nearly identical to Figure

3.9(b). From here, each static region is now replaced with a low amplitude sinusoidal

motion with a specified maximum pitch rate of 20 deg
s
. This will produce many data
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points all within this region and very few static data points for the reasons specified

above.

This calculation is done with the use of a simple sine function. The base function

being:

AoA = A sin(ωt) (3.31)

With A being the amplitude, ω the frequency, and t the instantaneous time. The

derivative can then be taken to solve for the pitch rate over time:

Q =
∂AoA

∂t
= Aω cos(ωt) (3.32)

Equation (3.32) gives the means to specify a pitch rate over time. The derivative of

this equation, set equal to zero, will solve for the set of ωt values that produce the

maximum pitch rates. This is seen in the following:

Qmax =
∂Q

∂t
= 0 = −Aω2 sin(ωt) ⇒ sin(ωt) = 0 ⇒ ωt = [0, π, 2π, · · · ] (3.33)

Substituting the set of values of ωt given in to Eq. (3.32) produces for all variations

of ωt:

Q|max Q = Aω (3.34)

So far, both A and ω are undefined. The frequency is directly proportional to the

period of the wavelength, however, and the total time length, ∆t, of each static region

is known. The number of cycles only needs to be set in order to define ω. The number

of cycles must include a half cycle in order to allow for a smooth transition from the

dynamic data before the static data and then the dynamic data after. In other words,

the pitch rate changes sign from one side of the static data to the other so a half cycle

must be included to account for this variation.

A half cycle would only cover AoA values higher in magnitude than the static

data, but will include the largest range in AoA as is desired for these maneuvers. One
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and a half cycles will include AoA values higher and lower than the static data and

although the amplitudes of AoA will be smaller, they will be larger than any higher

number of cycles. For this reason, one and a half cycles per static region is chosen.

The period, T , of the cycle can then be calculated from this information, which in

turn allows for calculation of the frequency and then utilizing the defined maximum

pitch rate allows for calculation of the amplitude, A. This flow of calculations is seen

in the following:

T =
∆t

1.5
(3.35)

ω =
2π

T
(3.36)

A =
Qmax

ω
(3.37)

Note that the maximum pitch rate, Qmax is referred to in deg
s

and the frequency is in

rad
s

so the appropriate unit conversion must be done.

All of the inputs for Eq. (3.31) are now known and the desired low pitch rate

oscillations can be implemented, where the sign of the function must be switched for

the static regions on the “bottom” of the maneuver (see code in Appendix C). This

will still result in a discontinuity at the interface of the large and small amplitude AoA

variations. The spline technique discussed for Maneuvers 4 and 5 will be implemented

to dissolve this problem but with a sampling rate of every 0.015/dt iterations to alter

the final maneuver less. The sixth maneuver along with its regressor coverage and

pitch rate can be seen in Figure 3.20, Figure 3.21, and Figure 3.22 respectively.

The seventh maneuver is very similar to the sixth except the maximum pitch

rate is raised to 50 deg
s

to erase the white spaces seen between ± 20 to ± 50deg
s

in

Figure 3.21. This will also allow for larger AoA variations within this region which

provides better coverage of the regressor space in this range. Also, the chop values for

the static regions are changes again to keep the maneuver within the desired regressor
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Figure 3.20: Motion of sixth maneuver.
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Figure 3.21: Regressor space covered by the sixth maneuver.
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Figure 3.22: Pitch rate of sixth maneuver compared to AoA.

space as was done in Maneuver 6. The chop values are:

Chop V alues7 =





29 23 18 15 12 10 8.5

-9 -5 0 2.5 5 6.5 8



 (3.38)

Producing the plots similar to the rest of the maneuvers as seen in Figure 3.23, Figure

3.24, and Figure 3.25 respectively. The regressor space coverage in the ± 50deg
s

region

for Maneuver 7 is the best of all maneuvers although there is virtually no static data

which is the primary focus of most of the maneuvers.

3.4.2 Outputs from Metrics. The maneuvers have now all been defined as

well as the metrics. These seven maneuvers can now each be fed through the metrics to

see what relative values are presented for each. The first seven metrics are performed

only once for each maneuver while the last six metrics will each be performed four

times as specified in Section 3.3.1 and seen in Eq. (3.8). For the purpose of these

metrics, a time step of 0.0002 s is used.
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Figure 3.23: Motion of seventh maneuver.
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Figure 3.24: Regressor space covered by the seventh maneuver.
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Figure 3.25: Pitch rate of seventy maneuver compared to AoA.

Before the results of the metrics are output, the coverage of the discretized

regressor space as stated earlier and seen in Figure 3.1, will be displayed for each

maneuver. A note must be made about the fineness of the discretization in the

plots shown; the step size shown is ten times the step size used for the actual metric

calculations. If the actual step sizes are used, the plots would be too small to see. It

should also be noted the z-axis range is not on the same scale for Figures 3.26 - 3.32.

These surface plots help to illustrate the coverage of the discretized regressor spaces

as well as aid in understanding the results of the metrics.

In all of the tables shown, a green cell indicates one of the best values for a

given metric, a red cell one of the worst, and the white are the median values. These

colors make for easy indication of what a maneuver’s strengths and weaknesses are in

the metrics.

Table 3.2 shows very poor metrics for the first maneuver except in the “evenness”

of the maneuver in which it does quite well. The other metrics at various pitch rate
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Figure 3.26: Discretized regressor space for first maneuver
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Figure 3.27: Discretized regressor space for second maneuver
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Figure 3.28: Discretized regressor space for third maneuver
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Figure 3.29: Discretized regressor space for fourth maneuver
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Figure 3.30: Discretized regressor space for fifth maneuver
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Figure 3.31: Discretized regressor space for sixth maneuver
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Figure 3.32: Discretized regressor space for seventh maneuver

cutoffs (Tables 3.3 - 3.6) again show very poor results in the coverage of both the low

and high pitch rate regions.

From Table 3.2, the second maneuver (the current best) holds a significant

lead in the overall coverage of the regressor space, a low coverage of the boundary

cells, among the best (lowest) standard deviation in AoA, the best (lowest) standard

deviation in pitch rate, and among the worst coverage in all zero pitch rate metrics.

The other tables show very evenly spread data with average coverage of the low pitch

rate regions and is consistently the best in all categories of high pitch rate (coverage,

points per cell, and evenness). Maneuver 2 is superior to the first maneuver in nearly

every metric. This provides some initial confirmation in the metrics as this should be

the case for a set of valid metrics.

The third maneuver makes a significant sacrifice in the overall coverage of the

regressor space and the boundary (Table 3.2) as well as the low and high pitch rate

data (Table 3.3 through Table 3.6), in trade-off for the best number of points per cell

and standard deviation of the zero pitch rate data.
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Table 3.2: Output of first seven metrics for all seven maneuvers.
Percent Std in Data at 0 Q

Maneuver Whole Boundary AoA Q Percent Per Cell Std

1 1.2730 8.0484 0.0688 0.1263 2.0000 0.0525 0.0606
2 2.4035 7.5063 0.0986 0.0789 2.5000 0.0275 0.0892
3 1.1100 1.2302 0.1644 0.1588 3.7500 25.3850 0.1136
4 1.4516 8.9241 0.1493 0.1557 6.5000 2.7275 0.0756
5 1.7545 11.3428 0.1249 0.1614 7.0000 0.2900 0.0672
6 1.9574 16.4095 0.1164 0.1910 4.2500 0.0500 0.1252
7 2.0841 16.6597 0.0700 0.1119 3.0000 0.0350 0.1047

Table 3.3: Output of last six metrics for 5 deg
s

cutoff between high and low Q.

Points Below 5 deg
s

Points Above 5 deg
s

Maneuver Percent Per Cell std Percent Per Cell Std

1 2.1350 0.0731 0.0670 1.2282 0.0286 0.0721
2 2.8775 0.0355 0.0907 2.3791 0.0305 0.1159
3 0.0725 0.0007 0.0130 1.1620 0.0190 0.0645
4 4.1200 0.1898 0.0825 1.3093 0.0210 0.0810
5 5.1625 0.1627 0.0771 1.5748 0.0237 0.0950
6 3.5075 0.0415 0.1185 1.8760 0.0302 0.0806
7 1.4375 0.0169 0.0855 2.1169 0.0315 0.0941

Table 3.4: Output of last six metrics for 10 deg
s

cutoff between high and low Q.

Points Below 10 deg
s

Points Above 10 deg
s

Maneuver Percent Per Cell std Percent Per Cell Std

1 2.0612 0.0696 0.0689 1.1859 0.0264 0.0721
2 2.7938 0.0346 0.1017 2.3605 0.0303 0.1161
3 0.0850 0.0013 0.0152 1.2214 0.0200 0.0672
4 2.8400 0.1071 0.0788 1.2939 0.0208 0.0813
5 4.2188 0.1077 0.0789 1.4788 0.0220 0.0959
6 3.5913 0.0438 0.1189 1.7771 0.0294 0.0785
7 1.4750 0.0177 0.0835 2.1509 0.0322 0.0948
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Table 3.5: Output of last six metrics for 20 deg
s

cutoff between high and low Q.

Points Below 20 deg
s

Points Above 20 deg
s

Maneuver Percent Per Cell std Percent Per Cell Std

1 1.9600 0.0602 0.0719 1.1013 0.0234 0.0718
2 2.6956 0.0323 0.1135 2.3307 0.0303 0.1150
3 0.0831 0.0019 0.0145 1.3637 0.0221 0.0739
4 1.7638 0.0575 0.0763 1.3695 0.0224 0.0822
5 2.8950 0.0627 0.0957 1.4655 0.0226 0.0938
6 4.3719 0.0660 0.1215 1.3548 0.0225 0.0727
7 1.5131 0.0189 0.0834 2.2252 0.0337 0.0962

Table 3.6: Output of last six metrics for 50 deg
s

cutoff between high and low Q.

Points Below 50 deg
s

Points Above 50 deg
s

Maneuver Percent Per Cell std Percent Per Cell Std

1 1.6943 0.0436 0.0752 0.8519 0.0179 0.0685
2 2.5307 0.0289 0.1218 2.2755 0.0326 0.1075
3 0.2415 0.0044 0.0313 1.9743 0.0318 0.0928
4 1.1075 0.0280 0.0735 1.7885 0.0308 0.0885
5 1.8460 0.0324 0.0983 1.6563 0.0288 0.0900
6 1.9332 0.0297 0.0723 1.9770 0.0318 0.0926
7 2.2197 0.0302 0.0948 1.9520 0.0319 0.0925
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Maneuvers 4 and 5 are similar in that they have average coverage of the regressor

space and its boundary, have very good static data metrics (Maneuver 4 better than 5),

and good to great coverage of the low pitch rate regions (5 better than 4 on average).

The fourth maneuver has some poor results in the high pitch rate regions while the

fifth maneuver is generally average in the same metrics. These two maneuvers are

overall very similar as is expected with each excelling where it is expected as well.

The last two maneuvers have very good coverage of the entire regressor space

and especially the boundary, but have average to poor zero pitch rate data. They

vary from bad to good in low pitch rate data depending greatly on what the cutoff

is. The sixth maneuver is good to poor in high pitch rate metrics while the seventh

maneuver is excellent in the same.

3.4.3 Comparison Maneuvers. In order to validate the metrics and to de-

termine which maneuver is best, a set of validation data must be available. Data

used for this model comparison can be obtained from many outlets such as flight test,

wind tunnel test, empirical results, and of course, CFD. This research will utilize the

same CFD grid, solver, settings, etc. as the training maneuvers for the comparison

maneuvers. When both the training maneuvers and comparison maneuvers are based

on the CFD, any errors or discrepancies may be assumed to be modeling errors or

CFD convergence issues instead of configuration or flight condition differences or any

number of other possibilities [15].

When considering what types of comparison maneuvers to create, the purpose of

the training maneuvers and validation considerations for the metrics should be taken

into account. First, the model should be able to accurately predict a maneuver that

covers as wide of a region in the regressor space as possible and so would be similar

to the various training maneuvers. Second, the importance of the low pitch rate data

has been a big focus so another maneuver must accurately cover this region. Last

of all, the ability to predict static data is the primary downfall of the current “best”

maneuver, so the last maneuver must focus on static regions in the regressor space.
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The first comparison maneuver was created in a very similar manner to the

training maneuvers. Equation (3.17) was employed to create this maneuver with the

inputs given in Table 3.4.3. Toward the end of the maneuver, the bounds will exceed

the −10 deg AoA limit of the regressor space so this value is chopped at −10 deg in

the same manner of training Maneuvers 3 through 7. This, again, produces a sharp

corner so this problem is solved by utilizing the spline function similar to training

Maneuvers 4 and 5 except a sampling frequency of every 0.025/dt iterations so as to

be dissimilar to both training maneuvers. This produces the maneuver seen in Figure

3.33 which covers the regressor space seen in Figure 3.34.
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Figure 3.33: Motion of first comparison maneuver.

The second comparison maneuver focuses on low pitch rate entirely. For this

purpose, the amplitudes of this motion are small. The inputs for Eq. (3.17) are again

seen in Table 3.4.3. For this maneuver, however, the motion is only initially set for

2.5 s. The input values to Eq. (3.17) were established such that at 2.5 s, the maneuver

can then be “mirrored” and produce an even transition from one to the next. This
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Figure 3.34: Regressor space covered by the first comparison maneuver.

Table 3.7: List of Inputs to Eq. (3.17) for each comparison maneuver.
Maneuver # (s) AoAi a1 a2 f1 f2 λa λf Φ

1 8.0 0.0 24.0 1.8 1.2 1.0 1.2 90
2 8.0 1.0 4.0 0.6 0.8 1.0 1.0 -90
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process produces the maneuver seen in Figure 3.35 with the evenly spaced regressor

space seen in Figure 3.36. Notice the range of values on the axes of those two plots

as they are smaller than every other maneuver shown thus far.
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Figure 3.35: Motion of second comparison maneuver.

The last comparison maneuver for the static data was created directly in the

Kestrel User Interface in the provided prescribed motion GUI feature. This feature

includes simple sinusoidal motions as well as constant pitch rates an translations.

For this last maneuver, the initial AoA will be at the bottom of the regressor space

at −10 deg and will pitch up at a constant rate of 50 deg
s
, holding at every 2.5 deg

increments for 0.05 seconds (250 to 500 iterations) to allow the solution to converge

to a static value, until the AoA reaches the top of the regressor at 30 deg. This

stair-stepping approach can be seen in Figure 3.37 with its associated regressor space

coverage, Figure 3.38.
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Figure 3.36: Regressor space covered by the second comparison maneuver.
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Figure 3.37: Motion of third comparison maneuver.
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Figure 3.38: Regressor space covered by the third comparison maneuver.

3.4.4 Hypothesis. Maneuvers 6 and 7 are primarily used to give an example

of no static data and a concentration of lower pitch rate data to hopefully highlight

the importance of the static data and thereby, the static data metric. Conversely,

Maneuver 3 has the most static data with very little low pitch rate data. All of these

together should help to define a clear picture of the relative importance of each of

these metrics.

The first maneuver should not be the best as the second maneuver is essentially

an optimized form of the first as well as being the current best. The metrics also

predict the first maneuver to be the worst. The second maneuver is able to introduce

the most full, large-amplitude variations in AoA and therefore best overall coverage

of the regressor space at a sacrifice of no static data.

It is hypothesized that either Maneuver 4 or 5 will ultimately provide the best

match of the comparison sets of data as they provide the best blend between static

and dynamic data with relatively even coverage between the two. These two motions
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were, on average, the median maneuvers according to the metrics which would seem

to correlate a good blend between dynamic and static data.

It is also hypothesized that the metrics for the whole regressor space, zero

pitch rate coverage (percentage and points per cell), a low pitch rate data of ± 5deg
s

(percentage and points per cell), and the high pitch rate coverage of greater than

± 50deg
s

will be the most important metrics so long as all maneuvers are evenly

spaced well enough.

It is ultimately not important if these hypotheses are correct in the end as the

results of which maneuver is the new (or remaining) best along with (potentially)

validated metrics is the purpose of this research. It is sound scientific practice to set

a theory and test it, however, and for that reason they have been stated herein.

3.5 Final Solver Settings

Section 2.2.1 discussed the mesh refinement process and its dependence on the

solution of the flow field on the current grid. Therefore, before the grid refinement

study can take place, the solver settings must be fully defined.

One of the biggest decisions to make is the choice of time step. Cummings et

al. [13] develop a systematic process for properly performing a grid and time step

study and how these studies can be performed in tandem to produce the best results.

The grid size determines the size of flow phenomena that can be captured and the

time step determines what frequencies of unsteadiness can be captured. Fortunately,

however, the same paper gives accurate guidance for a proper time step for high AoA,

delta wing type configurations and even examines a similar model of the F-16C in the

results.

Cummings et al. [13] state in results and conclusions that a non-dimensional

time step of ∆t∗ = 0.01 is probably adequate for obtaining physically realistic results

in the leading edge vortex region and that this same value should be used as a starting

point and their results show the correct time step is usually close to this value. The
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non-dimensional time step is given by:

∆t∗ =
∆tU∞

l
(3.39)

Where ∆t is the dimensional time step, U∞ is the freestream flow velocity, and l is

a reference length for non-dimensionalization – often the mean aerodynamic chord.

Since the examples used in this paper have similar (nearly identical for the F-16 case

study) reference lengths, and the time step, solver settings, grid, etc., will all be

identical for all maneuvers and comparison maneuvers, the time step for this research

will follow this guideline and no time-step independence study will be performed. Also,

any error in one maneuver or model will be inherent in all - canceling the effective

error [15]. This does not, however, negate the premise of obtaining high-fidelity CFD

results and the basis for the chosen time step is sound.

It is found that for the Mach 0.9 case, a time step of 0.0001 produces a non-

dimensional time step of 0.008565 and for Mach 0.5 case, a time step of 0.0002 pro-

duces a non-dimensional time step of 0.00952. These values will then be set for all

cases respective to each Mach number.

Another parameter of special importance is the number of Newton sub-iterations.

Again, a study of the effect of this parameter on the solution is advised when per-

forming CFD calculations to compare with flight test or another data set. For this

research, a recommended practice given in the Kestrel user guide [12] of setting 3 to

5 sub-iterations for motion cases will be utilized. Due to the inherent unsteadiness

in the expected flow characteristics and AoA values, the high end of 5 sub-iterations

will be utilized for all cases and both Mach numbers.

One of the last parameters to mentioned in this section is the temporal damp-

ing values. It is common for CFD solvers to add numerical damping to the solved

equations on one or both of the temporal and spacial set of terms. This non-physical

damping promotes stability of the solver while damping out oscillations in the so-

lution and hence altering the calculated solution. Since this damping is completely
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numerical, it is best to set these values to zero at least over time, but this is often

infeasible.

For this purpose, the damping is decreased from 0.6 iteratively until the lowest

value is found which produces a stable solution, giving the “best answer” for a given

times step/sub-iteration combination on a certain grid. These three parameters are

intermingled and by lowering time step, for example, the damping should be able to

be decreased as well. These other values have already been set, however, and therefore

the lowest value must be used for the calculations so long as the value is reasonable and

it is common to all cases for a given Mach number. Kestrel only implements temporal

damping on both the advection and diffusion terms. The Kestrel development team

states that for the given release, damping values from 0.1 to 0.3 are reasonable and

even up to 0.6 can be acceptable for motion cases [12].

A complete list of solver settings can be found in Appendix B, but there are a

few other settings to mention in this section. The solver will utilize the full unsteady

N-S set of equations with the DDES turbulence model as mentioned in Section 2.1.6,

with second-order temporal and spacial accurate solutions. Start-up iterations will

also be utilized in which the boundary condition will be ramped from zero to the

specified Mach numbers over 500 iterations and then steady state calculations will

be calculated for a further 500 iterations before the time-accurate solution begins,

starting with a temporal advection damping of 0.6 (and the default value for diffusion

always being used of one-tenth the advection value), which is subsequently lowered

with the use of restarts until the minimum value is reached.

3.5.1 Computational Resources. Performance of full aircraft CFD simula-

tions requires a significant amount of computational power – more than is found in

a normal research lab. For this purpose, the DOD Supercomputing Resource Center

(SRC) will be utilized. In particular, the Raptor, Cray XE6 cluster will be utilized. It

has login nodes populated with 2.7-GHz AMD Opteron 64-bit quad-core processors.

The compute nodes have 2.4-GHz AMD Opteron 64-bit 8-core processors and there
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are 2732 of these compute nodes that share memory only on the node and not across

nodes. Each compute node has two of the 8-core processors (16 cores) with its own

Compute Node Linux operating system and 32 GBytes of DDR3 memory. Raptor’s

1.6 PBytes of disk storage will also be utilized for the housing of large visualization

and restart files [27].

3.6 Grid Refinement

It is noted that for the purpose of this research, the initial F-16C grid has been

provided by the US Air Force SEEK EAGLE Office, which has been utilized in at least

one paper produced by the office [15]. It is a full-scale model of the F-16 which is a

slightly refined version of the grid used for the first direct-eddy simulation calculation

over a full aircraft.

The model includes the forebody bump, diverter, and ventral fins (Figure 3.39(a)).

The engine duct is also modeled and meshed up to the engine face (Figure 3.39(b)).

The model is of a clean configuration with no wingtip missiles or attachment hard-

(a) Isometric view. (b) Mesh up to engine face.

Figure 3.39: Views of the original grid.

ware and has an initial cell count of 6,847,832 cells with a refined wake region for

high AoA studies. Since the grid is provided for this research, the grid generation was

performed previously and details about the process are unknown, but the mesh has

been utilized by authors of the grid and time step refinement paper [13] and has also
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been used to publish work in [15]. It cannot be assumed, however, that the grid was

utilized for the flight conditions specified or the same range of AoA values. For this

purpose, the grid refinement proposed in this section is accomplished.

It is also noted that it would be preferable to perform AMR on the given grid,

but the AMR module implemented in Kestrel is not in complete working order and

therefore a pseudo-AMR must be done. Instead, a different feature in Kestrel, where

various types of geometric regions can be defined from which mesh refinement is ac-

complished, in a similar manner as AMR would have been used. The difference being

that AMR defines the region by a vorticity iso-surface and the available capability

refines a defined geometric region. These geometric regions will be defined such that

they closely approximate the regions of highest vorticity which would be flagged for

refinement in AMR. In this way similar results may be gained (much better vortex

refinement without drastic increases in mesh size).

The process of refining by a region is much more time-consuming and it is

infeasible to examine the desired Q-threshold values over the length of an entire

maneuver (even with AMR the computational cost is increased significantly so as so

dismiss such a process for the scope of this work). Therefore, only the extreme values

of AoA will be refined and only one level of refinement will be done.

In other words, the solution of the original grid will be compared to other

solutions based on different defined regions (of varied size) to understand the change

in the solution answer from one grid to the next. Ideally, the refined grids would

be again refined based on regions of the highest Q-threshold again to see how much

the solution changes in that iteration of refinement. Even though refining based on a

region saves on computational cost by decreasing cell count when compared to refining

the entire mesh, the computational cost will still rise quickly.

Grid convergence for this work is not as important as if the comparison data

came from another source such as flight test, since the comparison maneuvers will be

run on the same grid as the rest of the maneuvers and the spacial resolution will be
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the same for all cases and any error resulting from this will fall out of the problem.

The one level of grid refinement will still be performed at both 30 deg and −10 deg

AoA as high-fidelity CFD simulations are still desired. Performing this “one level” of

grid refinement may not produce a grid converged solution, but will at least help to

quantify the type of error seen from the original grid the first levels of refinement.

The last note for the provided mesh is the boundary conditions. This grid in-

cludes adiabatic solid wall for the surface of the aircraft and the engine duct, and

modified Riemann invariants for the far-field boundaries. Also, a source boundary

condition is used to create an inflow condition at the engine exhaust (based on Rie-

mann invariants) and a sink boundary condition is used at the engine face to model

the corrected engine mass flow. The values for these can be found in Appendix B.

3.6.1 High AoA Refinement. The first CFD simulation is done using the

original grid and the solver settings mentioned in Section 3.5 and Appendix B. This

simulation will provide the baseline results for each Mach number at the 30 deg AoA

level and also provide the basis for defining regions for grid refinement for comparing

solution changes between grids.

After the first solutions were calculated, it was determined to examine two

levels of Q-threshold from which to define regions for refinement. Figure 3.40 shows

the results for Mach 0.5 at the stated AoA level and a Q-threshold value of 1.0, colored

by vorticity magnitude. Similarly, Figure 3.41 displays similar results for the Mach

0.9 case. Those figures show very large regions and is difficult to see where the

regions of highest vorticity are located. For this reason, another view is given with a

Q-threshold value of 2.5 as is seen for the Mach 0.5 case (Figure 3.42) and the Mach

0.9 case (Figure 3.43).

Figure 3.42 and Figure 3.43 show very similar regions where the highest vorticity

lies due to the strong vortex core created by the strakes, with the Mach 0.5 case

covering a slightly larger region. This flow field is highly separated in all regions -

including the vortex core from the strake. This region of highest unsteady flow from
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Figure 3.40: Flow solution of initial grid at Mach 0.5 and AoA = 30.

Figure 3.41: Flow solution of initial grid at Mach 0.9 and AoA = 30.
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Figure 3.42: Flow solution of initial grid at Mach 0.5 and AoA = 30.

Figure 3.43: Flow solution of initial grid at Mach 0.9 and AoA = 30.
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the strake will be the region of interest for the first grid refinement. This region is

defined by a cone starting above the strake and going backwards from there, increasing

in size to cover the area of the vortex core on each side of the aircraft. This grid is

seen in Figure 3.44, Figure 3.45, and Figure 3.46. This second grid roughly doubles

Figure 3.44: First refined region for AoA = 30 deg in X direction.

the cell count from the original grid to a total of 13,403,970 cells.

The next region defined for this case is much larger and covers nearly the entire

area seen in Figure 3.40 and Figure 3.41. This region is defined by two hexahedron,

one on each side of the symmetry plane of the aircraft. For the purpose of showing the

refined region, Figure 3.47, Figure 3.48, and Figure 3.49 each display the intermediate

step where only one side of the symmetry plane had been refined. This produces the

original grid on one half and the newly refined region on the other. This third grid

is almost four times larger than the original grid at 23,246,440 cells.

Two new grids have now been created based off of the results in the original

grid. Solutions are now calculated using these two new grids and the coefficients of

interest are plotted over time so the variation of these values for the three grids can

be seen. These results show good grid convergence between the second and third
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Figure 3.45: First refined region for AoA = 30 deg in Y direction.

Figure 3.46: First refined region for AoA = 30 deg in Z direction.
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Figure 3.47: Second refined region for AoA = 30 deg in X direction.

Figure 3.48: Second refined region for AoA = 30 deg in Y direction.
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Figure 3.49: Second refined region for AoA = 30 deg in Z direction.

0 1000 2000 3000 4000 5000
1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

Iterations

C
L

 

 

G1
G2
G3

(a) Mach = 0.5

0 500 1000 1500 2000 2500 3000 3500 4000
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Iterations

C
L

 

 

G1
G2
G3

(b) Mach = 0.9

Figure 3.50: Grid refinement results for lift at 30 deg AoA.
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Figure 3.51: Grid refinement results for drag at 30 deg AoA.
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Figure 3.52: Grid refinement results for pitching moment at 30 deg AoA.
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grid for both Mach numbers. The mean values and relative size of oscillations of the

coefficients are very similar and the change in mean value from the first grid to the

other two is relatively small considering the relatively small range on the y-axes of the

plots. Since the second and third grids are very similar in their answers, the second

grid is picked as the proper level of refinement with fewer cells to proceed forward to

grid refinement at the low AoA.

3.6.2 Low AoA Refinement. The “initial” grid for this -10 deg AoA refine-

ment is the second grid from the high AoA refinement. The initial CFD simulation is

again calculated on Grid 2 from above and can be examined to help determine which

regions should be refined for this case. The same two levels of Q-threshold from the

high AoA will again be examined. Figure 3.53 shows the results for Mach 0.5 at the

stated AoA level and a Q-threshold value of 1.0, colored by vorticity magnitude. Sim-

ilarly, Figure 3.54 displays similar results for the Mach 0.9 case. Those figures show

Figure 3.53: Flow solution of grid at Mach 0.5 and AoA = -10.

much smaller regions than the corresponding plots from the high AoA case. There
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Figure 3.54: Flow solution of grid at Mach 0.9 and AoA = -10.

is a well defined vortex core from the strakes again although this time they appear

to stay attached. Outbound on the wing, there is some vorticity which is off of the

surface and although it stays fairly immovable on this grid over time, it may become

unsteady with further refinement.

Looking at the other Q-threshold value of 2.5 again, again shows a strong vortex

core and little else as is seen in both Mach numbers (Figure 3.55 and Figure 3.55).

The second grid for this −10 deg AoA case will be again attempt to further

refine the vortex core as this is the source of highest overall vorticity. This region is

again defined by a cone starting below the strake and going backwards from there,

increasing in size to cover the area of the vortex core on each side of the aircraft.

This grid is seen in Figure 3.57, Figure 3.58, and Figure 3.59. This second grid adds

roughly 1.4 million cells to a total of 14,802,078 cells.

For this AoA, an extra grid will be utilized in which the outboard regions under

the wing will be refined and the vortex core region will not be refined for this third
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Figure 3.55: Flow solution of grid at Mach 0.5 and AoA = -10.

Figure 3.56: Flow solution of grid at Mach 0.9 and AoA = -10.
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Figure 3.57: First refined region for AoA = −10 deg in X direction.

Figure 3.58: First refined region for AoA = −10 deg in Y direction.
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Figure 3.59: First refined region for AoA = −10 deg in Z direction.

grid. This is due to the vortical structures seen outboard of the wing which although

steady, appear as though they may become unsteady with further refinement. Grid

3 for this AoA is seen in Figure 3.60, Figure 3.61, and Figure 3.62. This grid region

is defined by a hexahedron and totals roughly the same number of cells as Grid 2,

numbering at 14,341,214 cells.

The third and last region defined for this case is similar to the last grid for

the 30 deg AoA case. It is much larger than the previous two and covers nearly the

entire area seen in Figure 3.53 and Figure 3.53. This region is again defined by two

hexahedron, one on each side of the symmetry plane of the aircraft. Similar to the

final grid for the high AoA, only half of this refined mesh is shown for the purpose of

showing the distinction of the refined region versus the original (Figure 3.47, Figure

3.48, and Figure 3.49). This fourth grid is almost twice as big as the original grid

for this AoA, numbering at 26,509,412 cells.

There are now four grids available for this AoA. Each is used in CFD calculations

with the exact same settings as stated in Section 3.5 and Appendix B. The lift, drag,

and pitching moment coefficients for each grid is then samples over thousands of
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Figure 3.60: Second refined region for AoA = −10 deg in X direction.

Figure 3.61: Second refined region for AoA = −10 deg in Y direction.
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Figure 3.62: Second refined region for AoA = −10 deg in Z direction.

Figure 3.63: Third refined region for AoA = −10 deg in X direction.
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Figure 3.64: Third refined region for AoA = −10 deg in Y direction.

Figure 3.65: Third refined region for AoA = −10 deg in Z direction.
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iterations after a converged solution has been reached and the following results are

seen in Figure 3.66, Figure 3.67, and Figure 3.68 with results for both Mach numbers.
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Figure 3.66: Grid refinement results for lift at −10 deg AoA.
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Figure 3.67: Grid refinement results for drag at −10 deg AoA.

An interesting result happens in this grid convergence study; the change in the

mean value from the first to the second grid is in the “opposite direction” from the

jump from the first grid to the last two grids. It is seen that the oscillations of the

coefficients in the first two grids is nearly zero when compared to the oscillations of
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Figure 3.68: Grid refinement results for pitching moment −10 deg AoA.

the last two grids. This is due to the hypothesized result that the vorticity outboard

on the wing appeared as though it “should” be unsteady but was not accurately being

captured by the relatively coarse mesh in that region in the first two grids.

This “change in direction” of the mean coefficient values from Grid 1 to Grid 2

compared to Grid 1 to Grids 3 and 4 can happen when these fine oscillations in the

flow begin to be captured which can affect the surface pressures and thereby affect

the coefficients. These oscillations in the flow are important to model and include in

the results obtained in an accurate CFD simulation. This constitutes much of the

purpose for performing the grid refinement for this research when it was not purely

necessary for the task at hand.

Grids 3 and 4 produced similar results where Grid 3 provides a cell count savings

of almost 12 million. Due to the great computational savings and the similar results

produced to the fine mesh, Grid 3 will be the final grid utilized for all maneuver

calculations.
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IV. Results

4.1 Results of Maneuvers

This section will outline the results of the CFD calculations performed for each

Training Maneuver (TM) and Comparison Maneuver (CM). Not all TMs and CMs

were finished in time for the presentation of these results. Table 4.1 shows which jobs

were able to be accomplished at this time. The primary roadblock to finishing all

Table 4.1: Summary of finished versus unfinished cases.
Maneuver # Comparison #

Mach # TM1 TM2 TM3 TM4 TM5 TM6 TM7 CM1 CM2 CM3

0.5 X X X X X X X X X
0.9 X X X X X

cases was due to the computational expense. The large size of the jobs required the

use of thousands of processors for up to days at a time as seen in Table 4.2. These

Table 4.2: Summary of computational expense. Total number of hours ran = 1.64
million

Mach # CPU · Hours per Iter # Iters # Processors # Hours per Job

0.5 2̃.5395 25000 2048 3̃1

0.9 2̃.0890 50000 2048 5̃1

large computational requirements equated into long wait times in the queuing system

on Raptor for up to two weeks for one job to start. There were also software and

hardware issues with Raptor which would at times delete jobs after they had been

started, causing another long wait time in the queuing system. The combination of

these two issues resulted in unsuccessful completion of many jobs. All cases but CM3

for the Mach 0.5 were accomplished, however, so focus is given to these results in this

chapter.

Section 3.5 detailed the solver settings aside from the final value of the temporal

damping terms. These terms should be lowered as far as possible for the most accurate

solution. The static initial solutions of the flow field ended up with temporal advection

damping coefficient of 0.2 for the Mach 0.9 case and 0.1 for the Mach 0.5 case. For
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the TMs, the damping values were increased incrementally from those levels until a

stable solution was reached. The final values for the Mach 0.9 and 0.5 cases were 0.4

and 0.3 respectively.

4.2 Created Models

Creating the reduced order models from each TM was done automatically in

the Kestrel user interface as seen in Figure 4.1. The initial model created by the

Figure 4.1: Kestrel user interface for creation of models

interface caps the “Max Term Order” and “Max Regressor Order” of the models at

two for both. The maximum term order refers to the sum of all exponents for a given

term and maximum regressor order refers to the highest exponent a regressor variable

can have in a given term [12]. It was found that the models were quite insensitive

to maximum regressor order, but quite sensitive to maximum term order. It is best
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to keep the model as simple as possible for improved ability to identify the model

parameters which will result in the best predictive capability [15,21], but it must also

include enough terms to accurately describe the response. The following equations

represent the difference between two pitching moment coefficient predictions. The

first is the predicted coefficient for a given TM with a maximum term order of two.

The second is with a maximum term order of three.

Cm = C0 + C1α + C2Q+ C3α
2 + C4Q

2 + C5αQ (4.1)

Cm = C0 + C1α + C2Q+ C3α
2 + C4Q

2 + C5αQ

+C6Q+ C7α
3 + C8Q

3 + C9α
2Q+ C10αQ

2
(4.2)

The models for lift and drag coefficients are exactly the same as the equations for

pitching moment coefficient given in Eq. (4.1) and Eq. (4.2); only the coefficients

vary. Higher orders than those can be utilized but the equations follow the same

pattern with higher order terms added. It is not known ahead of time which maximum

order of terms is “best” until they are validated with the comparison results. For this

reason, models were created for each TM based on varying numbers of maximum term

orders.

Here is a good place to re-emphasize the ability to simply take a derivative of

the above equations with respect to a desired regressor variable to obtain a model

for that coefficient. As an example, in Section 2.3 the importance of the slope of the

pitching moment coefficient versus AoA curve is to longitudinal stability. To continue

with this same example, a model for this derivative coefficient can be determined by

taking the derivative of Eq. (4.1) or Eq. (4.2) with respect to AoA which produces

the following:

Cm,α = C1 + 2 ∗ C3α + C5Q (4.3)

Cm,α = C1 + 2 ∗ C3α + C5Q+ 3 ∗ C7α
2 + 2 ∗ C9αQ+ C10Q

2 (4.4)
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where each of the coefficients are the same as those found in Eq. (4.1) or Eq. (4.2)

respectively.

For the Mach 0.5 case, it was found that a gain was obtained from changing the

maximum term order from two to three but minimal gain was obtained from allowing

fourth order terms. Similarly for Mach 0.9, the change was significant between two

and three maximum order terms but also between three and four. Therefore, the

maximum term orders of two and three were both utilized in creating models for

Mach 0.5 and two, three, and four for Mach 0.9.

4.3 Prediction of Comparison Results

4.3.1 Mach 0.5. The models created for all TMs and for each maximum

term order option were all utilized in predicting the results of lift, drag, and pitching

moment coefficients for each CM for their respective Mach numbers. Primary focus

will be given to the Mach 0.5 cases as all TMs for this case were completed, even

though only two of the three CMs were completed. Unfortunately, the CM left un-

finished was the third one with the static data, which was the most important. Even

still, important results can be obtained from the completed cases.

Figure 4.2 and Figure 4.3 show model predictions for lift coefficient of CM1.

There is little variability between the seven models (created from the seven TMs) in

predicting the results of the CMs. Figure 4.4 and Figure 4.5 show zoomed in sections

of Figure 4.2; the first region being one of the peaks in the CM (close to 3.25 s) and

the other being the small static region in this CM at −10 deg AoA (near 4 s). Each

model performs quite well in predicting the peak of the lift curve shown in Figure 4.4

with the oscillations of CM1 due to the time accurate solutions of CFD where the

models created filter these type of oscillations out of the TMs before they are made

and would not capture these oscillations.

Again, very little variability is seen among the models in Figure 4.5 although the

models created from TM3, TM4, TM5, and TM6 predict the static value calculated
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Figure 4.2: All models with maximum order of 2 predicting lift for CM1.
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Figure 4.3: All models with maximum order of 3 predicting lift for CM1.
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by the CM the best, but the difference is essentially negligible. This minor result is in

accordance with the hypothesis that TMs with static regions – or at least low-pitch

rate data in the case of TM6 – will produce better results in the static regions than

the current best maneuver (TM2).

3.1 3.15 3.2 3.25 3.3 3.35 3.4

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time (s)

C
L

R2
1
= 0.99777, R2

2
 0.99775, R2

3
 0.99759, R2

4
 0.99782, R2

5
 0.99773, R2

6
 0.99782, R2

7
 0.99769

 

 
Comp
1
2
3
4
5
6
7

Figure 4.4: Zoomed in peak region of model predictions for CM1.

The drag coefficient predictions for CM1 are very similar to the lift coefficient.

Figure 4.6 shows the predictions for the models with a maximum order of two for

each term whereas Figure 4.7 is for a maximum order of three for each term. Very

little variability among the models is seen in both of these figures, a trend which will

continue for lift and drag coefficients.

Pitching moment coefficient, however, shows the most variability (as seen in

Figures 4.8 - 4.9) in model prediction for all cases with TM1 and TM2 providing

the worst predictions as indicated by the R2 metric. All of the other TMs which

have static and/or low pitch rate data at various AoA produce a better fit to the

results. To help understand the flow field, a series of figures are provided of the CFD
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Figure 4.5: Zoomed in static region of model predictions for CM1.
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Figure 4.6: All models with maximum order of 2 predicting drag for CM1.
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Figure 4.7: All models with maximum order of 3 predicting drag for CM1.
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Figure 4.8: All models with maximum order of 2 predicting pitching moment for
CM1.
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Figure 4.9: All models with maximum order of 3 predicting pitching moment for
CM1.

solution to the flow over the aircraft as the maneuvers are performed. The first figure,

(Figure 4.10), shows the Q-Threshold iso-surface (which relates to unsteadiness and

separation) of CM1 at the end of the short static region found at −10 deg AoA (about

at t = 4s) as compared to the flow solution of the static simulation (Figure 4.11) on

the same grid, again at −10 deg AoA. There are only subtle differences between

these two plots as they are both at least close to static data (the CM1 figure has an

instantaneous pitch rat of 1.77 deg
s
) comparisons even though one is during the course

of a prescribed motion. In Figure 4.12, however, the flow is in a portion of highest

pitch rate (98.7 deg
s
) at 8 deg AoA with the same iso-surface as plotted in Figures

4.10 - 4.11. This is similarly compared to the static case for the same grid, again at

8 deg AoA. The iso-surfaces on these two plots are vastly different. The differences

being derived from the high, positive pitch rate and its corresponding affect on the

flow field and hence the coefficients.
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Figure 4.10: Flow field of CM1 near zero pitch rate at −10 deg AoA.

Figure 4.11: Flow field of static solution at m10 deg AoA.
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Figure 4.12: Flow field of CM1 at high, positive pitch rate 8 deg AoA.

Figure 4.13: Flow field of static solution at 8 deg AoA.
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Similar to the model predictions for CM1, the lift and drag predictions are all

comparable for CM2 as seen in Figure 4.14 through Figure 4.17. Also similar to CM1

are the results of CM2. Seen in Figure 4.18 and Figure 4.19 are the pitching moment

predictions where Models 3 – 7 compare better than 1 and 2.
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Figure 4.14: All models with maximum order of 2 predicting lift for CM2.

Due to the similar results for lift and drag prediction from the various models,

plots are given of the static lift, drag, and pitching moment coefficients as predicted

by each model. These plots are seen in Figures 4.20 - 4.22, and the last plot of pitching

moment also includes a model prediction of pitching moment slope coefficient (Cm,α)

for only TM1 as an example of how simple, yet accurate, this process is (as discussed

in Section 4.2 and whose models are shown in Eq. (4.3) and Eq. (4.4)).

Figures 4.20 - 4.22 assure the results seen in the comparison data plots, and

provide a means to pull conclusions about the static “goodness” of each model without

the results of CM3. This is only possible since the variability in lift and drag versus

AoA among all models is very little. Because of this, it can be stated that for the
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Figure 4.15: All models with maximum order of 3 predicting lift for CM2.
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Figure 4.16: All models with maximum order of 2 predicting drag for CM2.
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Figure 4.17: All models with maximum order of 3 predicting drag for CM2.
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Figure 4.18: All models with maximum order of 2 predicting pitching moment for
CM2.
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Figure 4.19: All models with maximum order of 3 predicting pitching moment for
CM2.
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Figure 4.20: Comparison of all models predicting static CL versus AoA curve.
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Figure 4.21: Comparison of all models predicting static CD versus AoA curve.
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Figure 4.22: Comparison of all models predicting static Cm versus AoA curve.
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given regressor space, flight condition, optimization constraints, and TMs, the benefit

of the addition of static and low pitch rate data is of little importance or no harm

in the prediction of static lift or drag coefficients. If there was large variability, CM3

would be needed to determine which one fits the results the best.

The difference in the pitching moment versus AoA, however, is drastic when

comparing TM1 and TM2 to the rest of the TMs (see Figure 4.22). This may in

large part be due to the unsteadiness in pitch moment coefficient that is introduced

at high pitch rate as well as the non-linear AoA values. This can be seen in CM1 as

amplitude is ramped (with a corresponding pitch rate increase), oscillations in pitch

rate in the linear region appear. The start of oscillations are seen in Figure 4.18

and Figure 4.19 along the Cm = 0 line comparing before versus after t = 2s. The

Cm = 0 line corresponds to an AoA of about 8 deg - definitely in the linear region.

Therefore, having static regions in the flow allows for smoother data points at the

various AoA values, producing better predictability of the mean value. From this, it

can be determined that the addition of static and low pitch rate data is of significant

benefit to the prediction of pitching moment coefficient.

It was also determined that the predictions of Models 3, 4, 5, and 6 produced

the best results for pitching moment and Figure 4.22 is a good comparison for how

much worse the predictions of the other models are than the ones just listed. From

Tables 3.2 - 3.6, the metrics which these TMs excel are generally metrics 5 - 10: the

metrics describing zero and low pitch rate characteristics.

From Figures 4.2 - 4.19, both maximum term order choices were plotted. A

comparison between the better of the two is seen in those figures that the maximum

term order of three consistently produced better results. This can also be seen by

comparing Table 4.3 and Table 4.4. Table 4.3 shows the R2 values for the models

created with an allowed maximum term order of two. In every instance, these values

are smaller (worse) than those found in Table 4.4 which are models created from the
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Table 4.3: R2 metrics for each model with maximum term order of two.
CL CD Cm

Maneuver CM1 CM2 CM1 CM2 CM1 CM2

TM1 0.99777 0.99159 0.99884 0.99502 0.95683 0.78387
TM2 0.99775 0.99014 0.99879 0.99251 0.95597 0.80650
TM3 0.99759 0.98936 0.99883 0.98972 0.99862 0.99983
TM4 0.99782 0.98830 0.99894 0.98726 0.99889 0.99977
TM5 0.99773 0.98840 0.99892 0.98720 0.99891 0.99975
TM6 0.99782 0.98848 0.99895 0.98815 0.99894 0.99977
TM7 0.99769 0.98937 0.99885 0.98995 0.99895 0.99977

Table 4.4: R2 metrics for each model with maximum term order of three.
CL CD Cm

Maneuver CM1 CM2 CM1 CM2 CM1 CM2

TM1 0.99905 0.99798 0.99918 0.99554 0.96612 0.90293
TM2 0.99914 0.99787 0.99917 0.99410 0.96997 0.93632
TM3 0.99874 0.99761 0.99912 0.99416 0.99878 0.99991
TM4 0.99903 0.99797 0.99927 0.99241 0.99910 0.99990
TM5 0.99889 0.99830 0.99921 0.99216 0.99913 0.99990
TM6 0.99900 0.99817 0.99926 0.99274 0.99917 0.99991
TM7 0.99875 0.99835 0.99910 0.99373 0.99915 0.99992
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same TM with the only difference being the allowed maximum term order was allowed

to be three.

The results of the Mach 0.5 case display a lack of variability between the models

created from the various TMs in lift and drag coefficients. This may be due to the

linear nature of much of the regressor space defined. Perhaps the AoA range should

have been extended beyond 30 deg AoA. It could also be that the time it takes for

the transients in the flow to die out after zero pitch rate is held, has significant effects

on the modeled values. While the transients are “dying out,” the pitch rate is still

at zero so the model coefficients are trying to capture the transient magnitudes of

the coefficients as well as the static values and the result is seen as little difference

from the predictions of the completely dynamic cases. The last theory for the lack

of variability is the possibility that the length of time allowed for the TMs in this

research was too long, resulting in a situation where even the “worst” TMs were able

to cover the regressor space enough to still provide an accurate model of the region.

Ultimately, no specific TM stands out as the best and without clear distinction

between maneuvers, no clear conclusion can be made about metric validation. As

stated above, the pitching moment prediction shows a correlation to the zero and low

pitch rate metrics so the hypothesis of this region of data being of great importance

is upheld, but more testing is required before validation/invalidation can be deemed.

It is unclear which region of low pitch rate is most important or if static data is more

important than this low pitch rate data or maybe they are equally important? Such

conclusions cannot be made as of yet, just that initial results support the original

hypothesis.

It is determined, however, that the included effects of the higher-order terms

of the regressor variables when creating the models produces better predictability

for both CMs examined herein. Also, the ability of the models with static or extra

low pitch rate data were able to predict the dynamic regions of the comparison data

sets nearly as well as the current best TM. This strong conclusion helps to satisfy
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the concern about the trade-off of adding this static data in place of extra dynamic

coverage of the regressor space.

4.3.2 Mach 0.9. Only half of the total number of TMs and CMs were able

to finish in time for this thesis. Unfortunately, TM2 (the current best) was not among

those completed so it is difficult to draw conclusions beyond those already obtained

from the first Mach number, especially since the entire flight envelope at this Mach

number of 0.9 is nonlinear as it is in transonic flow.

Despite those short-comings, the data gathered is still of much worth. CM3

with the static data was completed for this Mach number, while it was not for Mach

0.5. The comparisons of the three models created from TMs 3, 6, and 7 to CM1 are

very similar to the results seen for Mach 0.5 so these plots will not be shown. The

plots for lift, drag, and pitching moment coefficient are found in Figure 4.23, Figure

4.24, and Figure 4.25 respectively. Only the models built using maximum term order

of three are shown as they all produced similar results but these cases produce the

best R2 metrics on average as seen in Table 4.5 through Table 4.7. The pitching

Table 4.5: R2 metrics for each model with maximum term order of two.
CL CD Cm

Maneuver CM1 CM3 CM1 CM3 CM1 CM3

TM3 0.99538 0.94839 0.99781 0.99150 0.99927 0.94938
TM6 0.99544 0.94920 0.99788 0.99131 0.99930 0.94929
TM7 0.99545 0.94934 0.99790 0.99112 0.99931 0.94809

Table 4.6: R2 metrics for each model with maximum term order of three.
CL CD Cm

Maneuver CM1 CM3 CM1 CM3 CM1 CM3

TM3 0.99751 0.96972 0.99951 0.99708 0.99929 0.95766
TM6 0.99752 0.96946 0.99954 0.99670 0.99931 0.95724
TM7 0.99744 0.96951 0.99954 0.99669 0.99932 0.95664

moment prediction is much worse over all than the predictions of the other CM or for

pitch moment predictions for the other Mach number. The same models predict the
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Figure 4.23: All models with maximum order of 3 predicting lift for CM3.

Table 4.7: R2 metrics for each model with maximum term order of four.
CL CD Cm

Maneuver CM1 CM3 CM1 CM3 CM1 CM3

TM3 0.99854 0.98225 0.99972 0.99542 0.99968 0.93117
TM6 0.99860 0.98260 0.99971 0.99558 0.99968 0.93286
TM7 0.99843 0.98175 0.99970 0.99579 0.99966 0.93528
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Figure 4.24: All models with maximum order of 3 predicting drag for CM3.
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Figure 4.25: All models with maximum order of 3 predicting pitching moment for
CM3.
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pitching moment coefficient for CM1 just as well as the models at Mach 0.5, so one

theory is this may be due to the large accelerations of CM3 from static to dynamic

and then back again to static. This would have to be tested through the creation of

a different “static” maneuver - one which will smooth the corners and hence decrease

the accelerations seen.

Plots for the static coefficient predictions of the three TMs are also given for

comparison to Mach 0.5 data. These plots are seen in Figure 4.26, Figure 4.27, and

Figure 4.28. These plots are given with the maximum regressor term order of three

just as with the other plots at this Mach 0.9 case. The lift and drag coefficients
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Figure 4.26: Comparison of all models predicting static CL versus AoA curve.

are again, very similar to one another although the first two TMs are not included in

these results so it is possible variation among those may occur. The pitching moment

coefficient for even these three TMs is seen to the same extent as is seen in Figure

4.22 among these TMs so it may be theorized that the additions of the static regions

in the flow field would again help to produce better modeling of the pitching moment
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Figure 4.27: Comparison of all models predicting static CD versus AoA curve.

−10 −5 0 5 10 15 20 25 30
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

AoA (deg)

C
m

 

 

3
6
7

Figure 4.28: Comparison of all models predicting static Cm versus AoA curve.
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coefficient than the currently best TM. This, of course, needs to be verified with the

completion of the final jobs before this theory can be stated with conviction.
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V. Conclusions

5.1 Summary

Inability to accurately predict nonlinear aerodynamics of high-performance air-

craft early in the design cycle has been the source of many costly fixes to fighter

aircraft after flight testing begins. Early prediction of these nonlinear effects will fil-

ter into many disciplines which must work together in the creation of an aircraft such

as structures, performance, S&C, flight controls, and many others. CFD is a relatively

new tool available to engineers and advances in modeling techniques and computa-

tional resources have advanced this field to a degree so as to provide high-fidelity

results even in these nonlinear regions.

In this research, the theory of CFD and its proper use to obtain high-fidelity

results was discussed in detail as well as the theory behind the why specific solver

settings should be used and in what conditions. Focus on the importance of S&C

parameters was also focused on as they describe the static and dynamic characteristics

of the aircraft that need to be understood in order to filter the proper information

into the other engineering disciplines mentioned. These characteristics of the aircraft

are excited by the large-amplitude motions included herein and then modeled with

SID techniques which have been utilized for flight and wind tunnel test results for

years. This process of utilizing CFD to create the input and output data needed for

SID techniques has been examined before, and the current state-of-the-art has been

covered as well as its known downfalls.

The goal of this research was to help advance the current state-of-the-art by

creating a set of metrics to describe the coverage of a TM over a desired regressor

space which can be used to predict how well a TM will model that same regressor

space. These metrics need to be validated before they can fulfill this last goal and this

validation is done by creating a variety of TMs which are run and compared against

validation data. The metrics which the best TMs excel would then be considered the

most important to optimize when creating different TMs.
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This goal was ultimately unattainable due to the lack of variation of being able

to define a “best” TM. Each of the models predicted results similar to each other,

including the current best TM. The only variation seen among the models is in the

prediction of pitching moment coefficient where the TMs with static data were able

to more closely model the pitch rate data from the CMs. TMs 3, 4, 5, and 6 had the

best predictions of pitching moment coefficient but the metrics which are optimized

by these four TMs varies from metrics 5 - 10: number of points at zero pitch rate and

low pitch rate, the percentage of cells at zero pitch rate and low pitch rate with data

points, and the “evenness” or standard deviation of the data across the same regions.

It was found that the definition of “low pitch rate” should be no larger than 20 deg
s

as that is the region all four of the TMs discussed here fall within.

Some theories as to the lack of variability of the model predictions include:

• The possibility of too much linear regions in the regressor space.

• The time required for the dynamic transients to dampen out when the pitch rate

is zero is too long and thus adversely affecting the results of the static regions

of the model - pushing the values closer to the dynamic values.

• The time length of the TMs may have been too long - allowing for even the

“worst” maneuvers to produce an accurate model.

A significant conclusion from these results concerns the trade-off between the

addition of static data into a TM versus obtaining greater coverage of the regressor

space through dynamic data only. It was found that the predictability of the dynamic

results of a TM was not significantly degraded by the addition of the static regions.

As a result, the importance of the static regions is verified even though the reason

is different than originally hypothesized. The accurate prediction of the pitching

moment data is most likely due to the unsteadiness introduced to pitching moment

at high pitch rates, even at benign AoA values.
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5.2 Recommendations

The completion of the cases not finished to date is of primary importance.

Comparing the Mach 0.5 data to the static CM (CM3) may give extra insight into

the ability of the chopped sinusoidal type motions to predict static data. Also, the

completion of the Mach 0.9 cases may provide more insight into these TMs as transonic

flow is inherently nonlinear and part of the reason why the Mach 0.5 models were so

similar is that the regressor space might have included too large of a linear region.

If the completion of the current TMs does not produce a distinction among

those used herein, then a different, much more nonlinear regressor space should be

examined to see if a difference can be induced. If not, then the conclusions stated

would be the only standing conclusions.

A potentially useful item to examine is the possibility of creating two models for

the S&C data from the CFD results. The first one would be identical to the current

process of passing the data through a low-pass filter and utilize the filtered data as the

basis for determining the coefficients for the models. Then, look at the frequency of

the fluctuations versus AoA by passing the data through a high-pass filter and create

a model to describe these fluctuations – probably best done in the frequency domain.

This would allow for the first model to predict the mean value and the second model

predict the unsteady fluctuations.

5.2.1 Future Work. The first recommendation for future work is to utilize

the new version of the Kestrel solver, due to be released in March, 2012. The current

Kestrel versions (2.1.2) and prior include a version of kAVUS that suffers from various

issues. These issues are isolated to Jacobian terms on the left-hand side, boundary

conditions, and the turbulence models. Steady state accuracy is not affected by these

issues, but they do cause problems with unsteady solution convergence depending on

the quality of the mesh and the flow conditions. This is especially true for moving-

grid problems and results in unsteady solutions having an undesirable dependency

on temporal damping magnitudes. Version 2.2 of Kestrel corrects these deficiencies
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and future research should include an appropriate re-evaluation of the cases presented

here with the updated version of Kestrel along with the utilization of AMR instead

of the refinement based on a region used herein.

After conclusions are solidified about which TM is best, this TM can then be

translated into three axes. After the TM is translated into three axes, this TM can

be run at a wide range of Alt-Mach combinations to get a map of the characteristics

of the aircraft over the flight envelope. These models can then be “fused” together

into one overall ROM.

Another area of concern realized in the course of this work is the need for

a standard method for grid and time convergence studies for moving grids. This

process may be similar to the poor man’s “steepest descent” method mentioned by

Cummings, et al. for grid and time convergence in static simulations [13].

Last of all, this research held the length of time constant for each TM. Research

may be done to determination of the minimum computational time needed to create a

model to a given fidelity. This may also have been a reason of why the models results

were similar – the regressor space may have been covered “too well” in the sense that

all TMs were then able to produce accurate models whereas if the length of time was

decreased there may have been more of a spread on how well each TM compared to

the results.
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Appendix A. Matlab
r Code for Metric Calculation

Listing A.1: Matlabr Code Used to Calculate Metrics for all Training Maneuvers
1 function [metric metrica metricq as qs z]= Metric ...

(pos2 ,rate2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0)

aextrema=bounds (1,:);qextrema=bounds (2,:);

astep=steps (1);qstep=steps (2);

ametstep=metricsteps (1);qmetstep=metricsteps (2);

6 arange=aextrema (1):astep:aextrema (2);

qrange=qextrema (1):qstep:qextrema (2);

[as,qs]= meshgrid (...

mean(arange (1:2)):astep:mean(arange(length(arange) -1:length(...

arange))) ,...

mean(qrange (1:2)):qstep:mean(qrange(length(qrange) -1:length(...

qrange))));

11 z=zeros(size(as));

pos3=zeros(1,length(pos2) -1);

for i=2: length(pos2)

pos3(i-1)=mean(pos2(i-1:i));

end

16 for i=1: length(rate2)

if rate2(i)>qextrema (1) && rate2(i)<qextrema (2);

for j=1: length(arange) -1

apos=j;

if pos3(i) <=arange(j+1)

21 break

end

end

for j=1: length(qrange) -1

qpos=j;

26 if rate2(i)<=qrange(j+1)

break

end

end

z(qpos ,apos)=z(qpos ,apos)+1;

31 end

end

asteps=size(z,2)/ametstep;

counta=zeros(asteps ,1);

totala=zeros(asteps ,1);

36 totala (1)=size(z,1)*ametstep;

for i=1: size(z,1)

k=1;

for j=1: size(z,2)

if z(i,j)~=0

41 counta(k)=counta(k)+1;

end

if mod(j,ametstep)==0

totala(k)=totala (1);

k=k+1;

46 end

end

end
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metrica=counta ./ totala;

% metric (1) =100* sum(counta)/sum(totala);

51

qsteps=size(z,1)/qmetstep;

countq=zeros(qsteps ,1);

totalq=zeros(qsteps ,1);

totalq (1)=size(z,2)*qmetstep;

56 for i=1: size(z,2)

k=1;

for j=1: size(z,1)

if z(j,i)~=0

countq(k)=countq(k)+1;

61 end

if mod(j,qmetstep)==0

totalq(k)=totalq (1);

k=k+1;

end

66 end

end

metricq=countq ./ totalq;

metric (1) =100* sum(countq)/sum(totalq);

71 count =0;

total =0;

j=size(z,2);

for i=1: size(z,1)

if z(i,1) ~=0

76 count=count +1;

end

total=total +1;

if z(i,j)~=0

count=count +1;

81 end

total=total +1;

end

j=size(z,1);

for i=2: size(z,2) -1

86 if z(1,i)~=0

count=count +1;

end

total=total +1;

if z(j,i)~=0

91 count=count +1;

end

total=total +1;

end

96 for i=1: length(qrange) -1

zeroqpos=i;

if 0<=qrange(i+1)

break

end
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101 end

metric (2) =100* count/total;

metric (3:4) =[std(metrica/max(metrica)) std(metricq/max(metricq))];

zsteps=size(z,2)/qmetstep;

106 countz=zeros(zsteps ,1);

k=1;

i=zeroqpos;

for j=1: size(z,2)

if z(i,j)~=0

111 countz(k)=countz(k)+z(i,j);

end

if mod(j,qmetstep)==0

k=k+1;

end

116 end

% disp(countz ’)

countz12 =0;

for i=1: length(countz)

if countz(i)>maxN0

121 countz(i)=maxN0;

end

if countz(i)>0

countz12=countz12 +1;

end

126 end

% disp(countz ’)

metric (5) =100* countz12/length(countz);

metric (6)=mean(countz);

metric (7)=std(countz/max(countz));

131 % figure;plot (1: length(countz),countz)

countz22 =0;

for mi=1: length(pm0)

% countz2=z(zeroqpos -pm0(mi):zeroqpos+pm0(mi) ,:);

136 countz2 =[z(zeroqpos -pm0(mi):zeroqpos -1,:);z(zeroqpos +1:...

zeroqpos+pm0(mi) ,:)];

% disp(countz2)

for i=1: size(countz2 ,1)

for j=1: size(countz2 ,2)

if countz2(i,j)>maxN0

141 countz2(i,j)=maxN0;

end

if countz2(i,j) >0

countz22=countz22 +1;

end

146 end

end

% disp(countz2)

metric (6+2*mi)=100* countz22 /(size(countz2 ,1)*size(countz2 ,2));

metric (7+2*mi)=mean(mean(countz2));

151 for i=1: size(countz2 ,1)
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met8(i)=std(countz2(i,:)/max(countz2(i,:)));

end

j=1;

for i=1: length(met8)

156 if isnan(met8(i))

met82(i)=0;

else

met82(i)=met8(i);

% met82(j)=met8(i);

161 % j=j+1;

end

end

metric (8+2*mi)=mean(met82);

end

166

mll =9+2* mi;

countz3 =[z(1: zeroqpos -pm0(mi) ,:);z(zeroqpos+pm0(mi):size(z,1) ,:)];

countz32 =0;

for i=1: size(countz3 ,1)

171 for j=1: size(countz3 ,2)

if countz3(i,j)>0

countz32=countz32 +1;

end

end

176 end

metric(mll)=100* countz32 /(size(countz3 ,1)*size(countz3 ,2));

metric(mll +1)=mean(mean(countz3));

for i=1: size(countz3 ,1)

met10(i)=std(countz3(i,:)/max(countz3(i,:)));

181 end

j=1;

for i=1: length(met10)

if isnan(met10(i))

met102(i)=0;

186 else

met102(i)=met10(i);

% met102(j)=met10(i);

% j=j+1;

end

191 end

metric(mll +2)=mean(met102);

%{

function [metric as qs z]= Metric(pos2 ,rate2 ,bounds ,steps)

196

aextrema=bounds (1,:);qextrema=bounds (2,:);

201 astep=steps (1);qstep=steps (2);

arange=aextrema (1):astep:aextrema (2);

qrange=qextrema (1):qstep:qextrema (2);
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[as,qs]= meshgrid (...

mean(arange (1:2)):astep:mean(arange(length(arange) -1:length(...

arange))) ,...

206 mean(qrange (1:2)):qstep:mean(qrange(length(qrange) -1:length(...

qrange))));

z=zeros(size(as));

for i=2: length(pos2)

pos3(i-1)=mean(pos2(i-1:i));

end

211 for i=1: length(rate2)

if rate2(i)>qextrema (1) && rate2(i)<qextrema (2)

for j=1: length(arange) -1

apos=j;

if pos3(i) <=arange(j+1)

216 break

end

end

for j=1: length(qrange) -1

qpos=j;

221 if rate2(i)<=qrange(j+1)

break

end

end

z(qpos ,apos)=z(qpos ,apos)+1;

226 end

end

count =0;

total =0;

for i=1: size(z,1)

231 for j=1: size(z,2)

if z(i,j)~=0

count=count +1;

end

total=total +1;

236 end

end

metric (1)=count/total;

count =0;

total =0;

241 j=size(z,2);

for i=1: size(z,1)

if z(i,1) ~=0

count=count +1;

end

246 total=total +1;

if z(i,j)~=0

count=count +1;

end

total=total +1;

251 end

j=size(z,1);

for i=2: size(z,2) -1
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if z(1,i)~=0

count=count +1;

256 end

total=total +1;

if z(j,i)~=0

count=count +1;

end

261 total=total +1;

end

metric (2)=count/total;

%}

266

end

141



Appendix B. Complete List of Solver Settings and Boundary

Conditions

Table B.1: kAVUS Inputs
Input Parameter (Static) & Motion Settings

Equation Set Turbulent N-S
Inviscid Flux Gottlieb and Groth

Turbulence Model DDES
Turbulence Wall No
Spatial Accuracy Second-Order

Temporal Accuracy Second-Order
Fixed Sweeps No
Max Sweeps 64

Sweeps Convergence Criteria 1.0e-8
Temporal Damping Coeff (Adv) Initial:0.6, Final:0.1-0.4
Temporal Damping Coeff (Diff) 1/10 of Temporal Damping Coeff (Adv)

Subiterations 5
Matrix Scheme Gauss-Seidel
Limiter Type Venkatakrishnan w/ K=2.5

Least Squares Type Weighted
Theta 1.0

Gradient Type Non-conservative
Stencil Type Original

Wall Accuracy Use spatial accuracy
Enable Gravity No

Relaxation 0.7
Solution Update Limited
Solution Average No

Time Stepping Scheme Global Specified

Listing B.1: Boundary Conditions for CFD Simulations
##################################################

Boundary Condition Specification File for:

3 F-16 Case

##################################################

4

Fuselage

Solid -Wall

8 Adiabatic No Slip

yes

##################################################

5

Wing

13 Solid -Wall
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Adiabatic No Slip

yes

##################################################

6

18 Canopy

Solid -Wall

Adiabatic No Slip

yes

##################################################

23 7

Bump

Solid -Wall

Adiabatic No Slip

yes

28 ##################################################

10

Vertical Tail

Solid -Wall

Adiabatic No Slip

33 yes

##################################################

11

Horizontal Tail

Solid -Wall

38 Adiabatic No Slip

yes

##################################################

12

Fin

43 Solid -Wall

Adiabatic No Slip

yes

##################################################

20

48 Inlet

Solid -Wall

Adiabatic No Slip

yes

##################################################

53 30

Engine Exhaust

Source

Riemann

P-Stat T-Stat K or Nu~/Nu Omega Mach Axis End Points ...

Swirl (A,B,C)

58 25.00 2500. -1. -1. 1.2 0. 0. 0. 1. 0. 0. ...

0. 0. 0.

No

##################################################

21

Engine Face

63 Sink
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Mass Flow

Mass Flow

0.6578800 1.0

No

68 ##################################################

22

Diverter Face

Solid -Wall

Slip

73 No

##################################################

3

Outer Boundary

Farfield

78 Modified Riemann Invariants

P-Stat T-Stat K or Nu~/Nu Omega Mach Alpha Beta

-1. -1. -1. -1. -1. -370. -370.

##################################################
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Appendix C. Matlab
r Code for Maneuver Development

Listing C.1: Matlabr Code Used to Calculate Training Maneuvers
close all;clear all;

% %{

out=’Y’;wrt =10; whichplots =[2 3];

4 t0=0; tmax =5;dt =.0002;

t=t0:dt:tmax;

that=t-t0;

aoai =8;

9

limit =1000;

bounds =[-10 30; -100 100];

steps =[.1;.10]*1;

% steps =[.1;.1];

14 metricsteps =[1;1];

maxN0 =1000/ dt;pm0 =[20/ steps (2)];% 10/ steps (2) 20/ steps (2) 50/ steps...

(2)];

figcount =0;

%% 1st maneuver

19 % %{

a1 =22.5; a2=0; f1=.8; f2=f1; lamf =1; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

trad2=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

24 trad2=trad2+aoai;

ratet2=zeros(length(trad2) -1,1);

accelt2=zeros(length(trad2) -2,1);

for i=2: length(trad2)

29 ratet2(i-1)=( trad2(i)-trad2(i-1))/dt;

end

for i=2: length(ratet2)

accelt2(i-1)=( ratet2(i)-ratet2(i-1))/dt;

end

34

[metric2 metrica2 metricq2 as2 qs2 z2]= Metric ...

(trad2 ,ratet2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

text1=num2str(pm0 (1)*steps (2));

% disp(’ pts_@_0Q ...

pts +/- 5deg/s pts +/- 10deg/s pts +/- 20...

deg/s pts +/- 50deg/s pts_high_Q ’)

39 % disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev per_cell std_dev per_cell ...

std_dev per_cell std_dev per_cell std_dev ’)

disp([’ ...

__________pts_@_0Q_________ ______pts +/- ’ text1 ’ deg/...

s_____ _________pts_high_Q________ ’])

disp( ’ Whole Boundary A_std Q_std percent ...

per_cell std_dev percent per_cell std_dev percent ...

per_cell std_dev ’)

145



disp([’1: ’ num2str(metric2 , ’%10.6f’)])

44 % z2=zeros (20 ,40);

if out==’Y’

[figcount ]= Plotdata(that ,trad2 ,ratet2 ,accelt2 ,metric2 ,as2 ,qs2 ,...

z2,whichplots ,figcount ,1);

end

49 if wrt ==1 || wrt ==10

Write_Motion(that ,trad2 ,aoai ,’man1.mtn’);

end

%}

54

%% 2nd maneuver

% %{

a1 =22.5; a2=0; f1 =.75; f2 =1.6; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

59 s1=(a1:(a2 -a1)/( length(that) -1):a2);

trad3=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

trad3=trad3+aoai;

ratet3=zeros(length(trad3) -1,1);

64 accelt3=zeros(length(trad3) -2,1);

for i=2: length(trad3)

ratet3(i-1)=( trad3(i)-trad3(i-1))/dt;

end

for i=2: length(ratet3)

69 accelt3(i-1)=( ratet3(i)-ratet3(i-1))/dt;

end

[metric3 metrica3 metricq3 as3 qs3 z3]= Metric ...

(trad3 ,ratet3 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

74 % disp(’Maneuver 2: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

% disp(metric3)

disp([’2: ’ num2str(metric3 , ’%10.6f’)])

79 if out==’Y’

[figcount ]= Plotdata(that ,trad3 ,ratet3 ,accelt3 ,metric3 ,as3 ,qs3 ,...

z3,whichplots ,figcount ,1);

end

if wrt ==2 || wrt ==10

84 Write_Motion(that ,trad3 ,aoai ,’man2.mtn’);

end

%}

89 %% 3rd maneuver
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% %{

a1=27; a2=0; f1=.6; f2 =1.35; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

94 pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

pos=pos+aoai;

extrema =[30 -10 23 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];

mark =1;

99 j=length(pos)+1;

k=1;

for i=1: length(pos)

if mark == 1

if pos(i)> extrema(k)

104 pos(i)= extrema(k);

j = i;

end

end

if mark == 2

109 if pos(i)< extrema(k)

pos(i)= extrema(k);

j = i;

end

end

114 if i>j

j=length(pos)+1;

k=k+1;

if mark == 1

mark =2;

119 else

mark =1;

end

if k > length(extrema)

break

124 end

end

end

rate=zeros(length(pos) -1,1);

accel=zeros(length(pos) -2,1);

129 for i=2: length(pos)

rate(i-1)=(pos(i)-pos(i-1))/dt;

end

for i=2: length(rate)

accel(i-1)=(rate(i)-rate(i-1))/dt;

134 end

[pos2 rate2 accel2 ]= accel_smooth(pos ,rate ,accel ,dt,limit);

% pos2=pos;rate2=rate;accel2=accel;

[metric1 metrica1 metricq1 as1 qs1 z1]= Metric ...

139 (pos2 ,rate2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Maneuver 3: pts_@_0Q ...

pts_around_0Q ’)
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% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

% disp(metric1)

disp([’3: ’ num2str(metric1 , ’%10.6f’)])
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if out==’Y’

[figcount ]= Plotdata(that ,pos2 ,rate2 ,accel ,metric1 ,as1 ,qs1 ,z1 ,...

whichplots ,figcount ,1);

end

149 if wrt ==3 || wrt ==10

Write_Motion(that ,pos2 ,aoai ,’man3.mtn’);

end

%}

154 %% 4th maneuver

% %{

cut=round (4*.005/ dt);

a1=27; a2=0; f1=.6; f2 =1.35; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

159 s1=(a1:(a2 -a1)/( length(that) -1):a2);

pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

pos=pos+aoai;

extrema =[30 -10 23 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];
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mark =1;

j=length(pos)+1;

k=1;

for i=1: length(pos)

169 if mark == 1

if pos(i)> extrema(k)

pos(i)= extrema(k);

j = i;

end

174 end

if mark == 2

if pos(i)< extrema(k)

pos(i)= extrema(k);

j = i;

179 end

end

if i>j

j=length(pos)+1;

k=k+1;

184 if mark == 1

mark =2;

else

mark =1;

end

189 if k > length(extrema)

break
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end

end

end

194 rate4=zeros(length(pos) -1,1);

accel4=zeros(length(pos) -2,1);

that2=t0:cut*dt:tmax;pos22=pos (1: cut:length(pos));

spl = spline(that2 ,pos22 ,that);

199 pp = spline(that2 ,pos22);

pos4=spl;

for i=2: length(pos4);rate4(i-1)=(pos4(i)-pos4(i-1))/dt;end

for i=2: length(rate4);accel4(i-1)=( rate4(i)-rate4(i-1))/dt;end

[metric4 metrica4 metricq4 as4 qs4 z4]= Metric ...

204 (pos4 ,rate4 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Maneuver 4: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

% disp(metric4)

disp([’4: ’ num2str(metric4 , ’%10.6f’)])

209

if out==’Y’

[figcount ]= Plotdata(that ,pos4 ,rate4 ,accel4 ,metric4 ,as4 ,qs4 ,z4 ,...

whichplots ,figcount ,1);

end

214 if wrt ==4 || wrt ==10

Write_Motion(that ,pos4 ,aoai ,’man4.mtn’);

end

%}

219

%% 5th maneuver

% %{

cut=round (9*.005/ dt);

224 a1=27; a2=0; f1=.6; f2 =1.35; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

pos=pos+aoai;

229

extrema =[30 -10 23 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];

mark =1;

j=length(pos)+1;

234 k=1;

for i=1: length(pos)

if mark == 1

if pos(i)> extrema(k)

pos(i)= extrema(k);

239 j = i;
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end

end

if mark == 2

if pos(i)< extrema(k)

244 pos(i)= extrema(k);

j = i;

end

end

if i>j

249 j=length(pos)+1;

k=k+1;

if mark == 1

mark =2;

else

254 mark =1;

end

if k > length(extrema)

break

end

259 end

end

rate5=zeros(length(pos) -1,1);

accel5=zeros(length(pos) -2,1);

264 that2=t0:cut*dt:tmax;pos22=pos (1: cut:length(pos));

spl = spline(that2 ,pos22 ,that);

pos5=spl;

for i=2: length(pos5);rate5(i-1)=(pos5(i)-pos5(i-1))/dt;end

for i=2: length(rate5);accel5(i-1)=( rate5(i)-rate5(i-1))/dt;end

269 [metric5 metrica5 metricq5 as5 qs5 z5]= Metric ...

(pos5 ,rate5 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Maneuver 5: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

% disp(metric5)

274 disp([’5: ’ num2str(metric5 , ’%10.6f’)])

if out==’Y’

[figcount ]= Plotdata(that ,pos5 ,rate5 ,accel5 ,metric5 ,as5 ,qs5 ,z5 ,...

whichplots ,figcount ,1);

end

279

if wrt ==5 || wrt ==10

Write_Motion(that ,pos5 ,aoai ,’man5.mtn’);

end

284 %}

%% 6th maneuver

% %{

cut=round (3*.005/ dt);qmax =20;
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289 a1=27; a2=0; f1=.6; f2 =1.35; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

pos=pos+aoai;

294

extrema =[29.75 -9.75 23 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];

mark =1;

j=length(pos)+1;

k=1;

299 for i=1: length(pos)

if mark == 1

if pos(i)> extrema(k)

pos(i)= extrema(k);

j = i;

304 end

end

if mark == 2

if pos(i)< extrema(k)

pos(i)= extrema(k);

309 j = i;

end

end

if i>j

j=length(pos)+1;

314 k=k+1;

if mark == 1

mark =2;

else

mark =1;

319 end

if k > length(extrema)

break

end

end

324 end

rate=zeros(length(pos) -1,1);

accel6=zeros(length(pos) -2,1);

for i=2: length(pos)

rate(i-1)=(pos(i)-pos(i-1))/dt;

329 end

[pos6 rate6 accel6 ]= accel_smooth2(pos ,rate ,accel ,dt ,qmax);

that2=t0:cut*dt:tmax;pos26=pos6 (1: cut:length(pos6));

pos6 = spline(that2 ,pos26 ,that);

334 for i=2: length(rate6);accel6(i-1)=( rate6(i)-rate6(i-1))/dt;end

[metric6 metrica6 metricq6 as6 qs6 z6]= Metric ...

(pos6 ,rate6 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Maneuver 6: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)
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339 % disp(metric6)

disp([’6: ’ num2str(metric6 , ’%10.6f’)])

if out==’Y’

[figcount ]= Plotdata(that ,pos6 ,rate6 ,accel6 ,metric6 ,as6 ,qs6 ,z6 ,...

whichplots ,figcount ,1);

344 end

if wrt ==6 || wrt ==10

Write_Motion(that ,pos6 ,aoai ,’man6.mtn’);

end

349 %}

%% 7th maneuver

% %{

cut=round (3*.005/ dt);qmax =50;

354 a1=27; a2=0; f1=.6; f2 =1.35; lamf =1.9; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

pos=pos+aoai;

359

extrema =[29 -9 23 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];

mark =1;

j=length(pos)+1;

k=1;

364 for i=1: length(pos)

if mark == 1

if pos(i)> extrema(k)

pos(i)= extrema(k);

j = i;

369 end

end

if mark == 2

if pos(i)< extrema(k)

pos(i)= extrema(k);

374 j = i;

end

end

if i>j

j=length(pos)+1;

379 k=k+1;

if mark == 1

mark =2;

else

mark =1;

384 end

if k > length(extrema)

break

end

end

389 end
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rate=zeros(length(pos) -1,1);

accel7=zeros(length(pos) -2,1);

for i=2: length(pos)

rate(i-1)=(pos(i)-pos(i-1))/dt;

394 end

[pos7 rate7 accel7 ]= accel_smooth2(pos ,rate ,accel ,dt ,qmax);

that2=t0:cut*dt:tmax;pos27=pos7 (1: cut:length(pos7));

pos7 = spline(that2 ,pos27 ,that);

399 for i=2: length(rate7);accel7(i-1)=( rate7(i)-rate7(i-1))/dt;end

[metric7 metrica7 metricq7 as7 qs7 z7]= Metric ...

(pos7 ,rate7 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Maneuver 7: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

404 % disp(metric7)

disp([’7: ’ num2str(metric7 , ’%10.6f’)])

% out=’Y’;

if out==’Y’

[figcount ]= Plotdata(that ,pos7 ,rate7 ,accel7 ,metric7 ,as7 ,qs7 ,z7 ,...

whichplots ,figcount ,1);

409 end

if wrt ==7 || wrt ==10

Write_Motion(that ,pos7 ,aoai ,’man7.mtn’);

end

414 %}

Listing C.2: Matlabr Code Used to Calculate Comparison Maneuvers
close all;clear all;

% %{

out=’Y’;wrt =0; whichplots =[2 ,3];

t0=0; tmax =5;dt =.0002;

5 t=t0:dt:tmax;

that=t-t0;

aoai =8;

10 limit =1000;

bounds =[-10 30; -100 100];

steps =[.1;.1]; metricsteps =[1;1];

maxN0 =1000/ dt;pm0 =[20/ steps (2)];% 10/ steps (2) 20/ steps (2) 50/ steps...

(2)];

figcount =0;

15

%% 1st maneuver

% %{

cut=round (5*.005/ dt);

a1=0; a2=24; f1 =1.8; f2 =1.2; lamf =1.2; phi =90;

20 bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);
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pos=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

aoai =8;

pos=pos+aoai;

25

% extrema =[30 -10 25 -5 20 -2.5 15 0 12 2.5 10 5 8 6 7 7 7];

extrema =[-10 30 -5 18 0 15 2.5 12 5 10 6.5 8.5 8 8 8];

mark =2;

30 j=length(pos)+1;

k=1;

for i=1: length(pos)

if mark == 1

if pos(i)> extrema(k)

35 pos(i)= extrema(k);

j = i;

end

end

if mark == 2

40 if pos(i)< extrema(k)

pos(i)= extrema(k);

j = i;

end

end

45 if i>j

j=length(pos)+1;

k=k+1;

if mark == 1

mark =2;

50 else

mark =1;

end

if k > length(extrema)

break

55 end

end

end

rate=zeros(length(pos) -1,1);

accel=zeros(length(pos) -2,1);

60 for i=2: length(pos)

rate(i-1)=(pos(i)-pos(i-1))/dt;

end

for i=2: length(rate)

accel(i-1)=(rate(i)-rate(i-1))/dt;

65 end

that2=t0:cut*dt:tmax;pos22=pos (1: cut:length(pos));

spl = spline(that2 ,pos22 ,that);

pos2=spl;

70 for i=2: length(pos2);rate2(i-1)=(pos2(i)-pos2(i-1))/dt;end

accel2=accel;

[metric1 metrica1 metricq1 as1 qs1 z1]= Metric ...
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(pos2 ,rate2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

75 text1=num2str(pm0 (1)*steps (2));

disp([’ ...

__________pts_@_0Q_________ ______pts +/- ’ text1 ’ deg/...

s_____ _________pts_high_Q________ ’])

disp( ’ Whole Boundary A_std Q_std percent ...

per_cell std_dev percent per_cell std_dev percent ...

per_cell std_dev ’)

disp([’1: ’ num2str(metric1 , ’%10.4f’)])

80 if out==’Y’

[figcount ]= Plotdata(that ,pos2 ,rate2 ,[],metric1 ,as1 ,qs1 ,z1 ,...

whichplots ,figcount ,1);

end

if wrt ==1 || wrt ==10

85 Write_Motion(that ,pos2 ,aoai ,’Comp1.mtn’);

end

%}

90 %% 2nd maneuver

% %{

t0=0; tmax =2.5;

t=t0:dt:tmax;

that=t-t0;

95

a1=1; a2=4; f1=.6; f2=.8; lamf =1; phi=-90;

bf=(f2-f1)/(tmax -t0)^lamf;

s1=(a1:(a2 -a1)/( length(that) -1):a2);

comp=s1.*cos (2*pi.*(bf*that .^(1+ lamf)+f1*that+phi /360));

100

that =0:dt:5;

half=length(comp);

inter=[comp comp (2: half)];

105 for i=1:half -1

inter(half+i)=-comp(half -i);

end

trad2=inter+aoai;

110

ratet2=zeros(length(trad2) -1,1);

accelt2=zeros(length(trad2) -2,1);

for i=2: length(trad2)

ratet2(i-1)=( trad2(i)-trad2(i-1))/dt;

115 end

for i=2: length(ratet2)

accelt2(i-1)=( ratet2(i)-ratet2(i-1))/dt;

end

120
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[metric2 metrica2 metricq2 as2 qs2 z2]= Metric ...

(trad2 ,ratet2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Comparison Maneuver 2: pts_@_0Q ...

pts_around_0Q ’)

% disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

125 disp([’2: ’ num2str(metric2 , ’%10.4f’)])

if out==’Y’

[figcount ]= Plotdata(that ,trad2 ,ratet2 ,[],metric2 ,as2 ,qs2 ,z2,...

whichplots ,figcount ,2);

end

130

if wrt ==1 || wrt ==10

Write_Motion(that ,trad2 ,aoai ,’Comp2.mtn’);

end

135 %}

%% 3rd maneuver

%{

140 [coeff ,flow ,motion] = readtrackoutput(’F16’);

trad2 = motion.AOA;

ratet2=motion.Q;

145

% for i=2: length(ratet2)

% accelt2(i-1)=( ratet2(i)-ratet2(i-1))/dt;

% end

150 %%

% [metric2 metrica2 metricq2 as2 qs2 z2]= Metric ...

% (trad2 ,ratet2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0);

% disp(’Comparison Maneuver 2: pts_@_0Q ...

pts_around_0Q ’)

155 % disp(’ Whole Boundary A_std Q_std per_cell ...

std_dev per_cell std_dev ’)

% disp ([’2: ’ num2str(metric2 , ’%10.4f’)])

that = motion.TIME;

for i=2: length(trad2)

rate2(i-1)=( trad2(i)-trad2(i-1))/dt;

160 end

if out==’Y’

[figcount ]= Plotdata(that ,trad2 ,rate2 ,[],[],[],[],[], whichplots ...

,figcount ,1);

end

165
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170

%}

Listing C.3: Matlabr Code Used to Round Corners of TM3
function [pos2 rate2 accel2 ]= accel_smooth(pos ,rate ,accel ,dt ,limit)

pos2=pos;

rate2=rate;

4 accel2=accel;

i=0;

while i<length(accel)

i=i+1;

j=i+2;

9 if accel(i)>limit

t1=pos(i); t2=pos(j);

if t2 <t1

x1=i-1;

y1=pos(i-1);

14 y2=pos(j+1);

s1=(pos(i)-pos(i-2))/2;

x0=x1+(y2 -y1)*s1/(sqrt(s1 ^2+1) -1);

y0=y1+(x1 -x0)/s1;

r=y0-y2;

19 pos2(x1:floor(x0))=-sqrt(r^2-([x1:floor(x0)]-x0).^2)+...

y0;

i=floor(x0);

else

x1=j+2;

y1=pos(j+2);

24 y2=pos(i);

s1=(pos(j+3)-pos(j+1))/2;

x0=x1+(y2 -y1)*s1/(sqrt(s1 ^2+1) -1);

y0=y1+(x1 -x0)/s1;

r=y2-y0;

29 pos2(ceil(x0):x1)=-sqrt(r^2-([ ceil(x0):x1]-x0).^2)+y0;

i=x1;

end

elseif accel(i)<-limit

t1=pos(i); t2=pos(j);

34 if t2 <t1

x1=j+2;

y1=pos(j+2);

y2=pos(i);

s1=(pos(j+3)-pos(j+1))/2;

39 x0=x1+(y2 -y1)*s1/(sqrt(s1 ^2+1) -1);

y0=y1+(x1 -x0)/s1;

r=y2-y0;

pos2(ceil(x0):x1)=sqrt(r^2-([ ceil(x0):x1]-x0).^2)+y0;
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i=x1;

44 else

x1=i-1;

y1=pos(i-1);

y2=pos(j+1);

s1=(pos(i)-pos(i-2))/2;

49 x0=x1+(y2 -y1)*s1/(sqrt(s1 ^2+1) -1);

y0=y1+(x1 -x0)/s1;

r=y2-y0;

pos2(x1:floor(x0))=sqrt(r^2-([x1:floor(x0)]-x0).^2)+y0...

;

i=floor(x0);

54 end

end

end

for i=2: length(pos)

59 rate2(i-1)=(pos2(i)-pos2(i-1))/dt;

end

for i=2: length(rate)

accel2(i-1)=( rate2(i)-rate2(i-1))/dt;

end

64 end

Listing C.4: Matlabr Code Used to Produce Low Pitch Rate Oscillations for TM6
and TM7

1 function [pos2 rate2 accel2 ]= accel_smooth2(pos ,rate ,accel ,dt ,qmax)

pos2=pos;

rate2=rate;

accel2=accel;

i=0;

6 while i<length(pos) -1

i=i+1;

if pos(i+1)==pos(i)

mark1=i;

for j=i:length(pos)

11 if pos(j)~=pos(mark1) || j== length(pos)

mark2=j-1;

break

end

end

16 i=mark2 +2;

T=dt*(mark2 -mark1)/1.5;

w=2*pi/T;

A=qmax/(w);

if pos(mark1)<pos(mark1 -1)

21 A=-A;

end

for k=mark1:mark2

pos2(k)=A*sin(w*(k-mark1)*dt)+pos(mark1);

end

26 end
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end

for i=2: length(pos)

rate2(i-1)=(pos2(i)-pos2(i-1))/dt;

31 end

for i=2: length(rate)

accel2(i-1)=( rate2(i)-rate2(i-1))/dt;

end

end

Listing C.5: Matlabr Code Used to Create Plots of all Maneuvers
function [i]= Plotdata(that ,pos2 ,rate2 ,accel2 ,metric1 ,as1 ,qs1 ,z1,...

whichplots ,i,choi)

% h=figure;set(h,’color ’,[1 1 1]);colormap(bone);patch(X,Y,-x’);

4 % axis equal;axis tight;axis off

% print(’-dpng ’,’I:\My Documents\Thesis\ThesisDoc\Paint\P1mv2.png...

’)

% print(’-deps ’,’I:\My Documents\Thesis\ThesisDoc\Figures\eps\ ...

P1mv2.eps ’)

fsize =16;

9 asize =14;

fweight=’b’;

ii=(i/length(whichplots))+1;

whichplots =[ whichplots 0];

j=1;

14 if whichplots(j)==1

j=j+1;

i=i+1;

h=figure(i);set(h,’color’ ,[1 1 1]);

[AX ,H1 ,H2] = plotyy(that ,pos2 ,that (2: length(that)),rate2);%,...

that (3: length(that)),accel2)

19 xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

set(H1 ,’LineStyle ’,’-’,’linewidth ’ ,2)

set(H2 ,’LineStyle ’,’--’,’linewidth ’ ,2)

set(get(AX(1),’Ylabel ’),’String ’,’AoA (deg)’,’fontsize ’,fsize ,...

’fontweight ’,fweight)

set(get(AX(2),’Ylabel ’),’String ’,’Pitch Rate (Q)’,’fontsize ’,...

fsize ,’fontweight ’,fweight)

24 if choi ==1

set(AX(1),’YLim’ ,[-12 32],’YTick ’ ,[ -10:5:30])

set(AX(2),’YLim’ ,[-120 120],’YTick ’ ,[ -100:25:100])

end

name=[’Time_AoAQ_ ’ num2str(ii) ’.eps’];

29 print(’-depsc’,name)

end

if whichplots(j)==2

j=j+1;

i=i+1;

34 h=figure(i);set(h,’color’ ,[1 1 1]);

plot(pos2 (2: length(pos2)),rate2 ,’.’,’markersize ’ ,10)
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xlabel(’AoA (deg)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’Pitch Rate (Q)’,’fontsize ’,fsize ,’fontweight ’,fweight)...

;

set(gca ,’fontsize ’,asize)

39 if choi ==1

set(gca ,’XTick ’ , -10:5:30)

set(gca ,’YTick ’ , -100:25:100)

axis ([-12 32 -120 120]);

end

44 % title({[’ Total %= ’ num2str(metric1 (1) *100) ...

% ’ Boundary %= ’ num2str(metric1 (2) *100) ];...

% [’Std Dev AoA= ’ num2str(metric1 (3))...

% ’ Std Dev Q= ’ num2str(metric1 (4))];...

% [’# pts per cell @ 0 Q= ’ num2str(metric1 (5))...

49 % ’ Std Dev Pts @ 0 Q= ’ num2str(metric1 (6))];...

% [’# pts per cell ~ 0 Q= ’ num2str(metric1 (7))...

% ’ Std Dev Pts ~ 0 Q= ’ num2str(metric1 (8))];

% [’# pts per cell highQ= ’ num2str(metric1 (9))...

% ’ Std Dev Pts highQ= ’ num2str(metric1 (10))];})

54 name=[’AoA_Q_ ’ num2str(ii) ’.eps’];

print(’-depsc’,name)

end

if whichplots(j)==3

j=j+1;

59 i=i+1;

h=figure(i);set(h,’color’ ,[1 1 1]);

plot(that ,pos2 ,’b’,’linewidth ’ ,2)

set(gca ,’fontsize ’,asize)

set(gca ,’XTick’ ,0:1:5)

64 if choi ==1

set(gca ,’YTick ’ , -10:5:30)

axis ([0 5 -12 32]);

end

xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

69 ylabel(’AoA (deg)’,’fontsize ’,fsize ,’fontweight ’,fweight);

name=[’Time_AoA_ ’ num2str(ii) ’.eps’];

print(’-depsc’,name)

end

if whichplots(j)==4

74 j=j+1;

i=i+1;

h=figure(i);surf(as1 ,qs1 ,z1);

set(h,’color ’ ,[1 1 1]);

set(gca ,’fontsize ’,asize)

79 view(gca ,[-30 45]);

% grid(axes1 ,’on ’);

% hold(axes1 ,’all ’);

xlabel(’AoA’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’Pitch Rate (Q)’,’fontsize ’,fsize ,’fontweight ’,fweight)...

;

84 zlabel(’Number of Occurances ’,’fontsize ’,fsize ,’fontweight ’,...

fweight)
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% title({[’ Total %= ’ num2str(metric1 (1) *100) ...

% ’ Boundary %= ’ num2str(metric1 (2) *100) ];...

% [’Std Dev AoA= ’ num2str(metric1 (3))...

% ’ Std Dev Q= ’ num2str(metric1 (4))];...

89 % [’# pts per cell @ 0 Q= ’ num2str(metric1 (5))...

% ’ Std Dev Pts @ 0 Q= ’ num2str(metric1 (6))];...

% [’# pts per cell ~ 0 Q= ’ num2str(metric1 (7))...

% ’ Std Dev Pts ~ 0 Q= ’ num2str(metric1 (8))];

% [’# pts per cell highQ= ’ num2str(metric1 (9))...

94 % ’ Std Dev Pts highQ= ’ num2str(metric1 (10))];})

% print(’-dpng ’,’Test1.png ’)

name=[’Regressor_ ’ num2str(ii) ’.eps’];

print(’-depsc’,name)

99 end

end
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Appendix D. Matlab
r Code for Creating Arbitrary Motion File

Listing D.1: Matlabr Code Used to Produce Arbitrary Motion File for Kestrel
Input
function [] = Write_Motion(that ,pos2 ,aoai ,filename)

%% Write motion to file for Kestrel input

if isempty(filename)

4 filename=’ChopSinArb.mtn’;

end

fid = fopen(filename , ’w’);

a1=’#################################################### ’;

a2=’Arbitrary Motion File:’;

9 a3=’Insert Descriptive Title Here’;

a4=’###################################################### ’;

a5=’Motion Reference Frame (Body or Mesh):’;

a6=’Mesh’;

a7=’###################################################### ’;

14 a8=’Time Rotated Basis Vectors (x3 ,y3,z3) Cur. Position of Center ...

of Rotation ’;

fprintf(fid , ’%s \n’, a1);

fprintf(fid , ’%s \n’, a2);

fprintf(fid , ’%s \n’, a3);

fprintf(fid , ’%s \n’, a4);

19 fprintf(fid , ’%s \n’, a5);

fprintf(fid , ’%s \n’, a6);

fprintf(fid , ’%s \n’, a7);

fprintf(fid , ’%s \n’, a8);

24 aoas=pos2 -aoai;

for i=1: length(pos2)

A=[that(i) cosd(aoas(i)) -sind(aoas(i)) 0 sind(aoas(i)) cosd(...

aoas(i)) 0 0 0 1 320.654 91.0 0];

fprintf(fid , ...

’%8.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f ...

%9.6f %9.6f %9.6f %9.6f \n’,A);

29 end

fprintf(fid , ’%s’, ’end’);

fclose(fid);

end
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Appendix E. Matlab
r Code for Creating Outputs of Models

Listing E.1: Matlabr Code Used to Load Data for Analysis
%Load Data

close all;clear all;clc;

3

for i=1:7

filename =[’Man’ num2str(i)];

cd ..

cd(filename)

8 [iter(i,:),time(i,:),CL(i,:),CD(i,:),Cm(i,:),aoa(i,:),Q(i,:)] ...

= readtrackoutput2 (’F16’); %#ok <*SAGROW >

end

for i=1:2

filename =[’Comp’ num2str(i)];

13 cd ..

cd(filename)

[iterC(i,:),timeC(i,:),CLC(i,:),CDC(i,:),CmC(i,:),aoaC(i,:),QC...

(i,:)] = readtrackoutput2 (’F16’);

end

18 filename =[’Comp’ num2str (3)];

cd ..

cd(filename)

[iterC3 ,timeC3 ,CLC3 ,CDC3 ,CmC3 ,aoaC3 ,QC3] = readtrackoutput2 (’F16’)...

;

23 cd ../ Models_max2

iterC (3,:)=zeros(1,size(iterC ,2));

iterC (3,1: length(iterC3))=iterC3;

28 % timeC (3,:)=zeros(1,size(timeC ,2));

% timeC (3,1: length(timeC3))=timeC3;

timeC (3,:)=timeC (2,:);

CLC(3,:)=zeros(1,size(CLC ,2));

33 CLC(3,1: length(CLC3))=CLC3;

CDC(3,:)=zeros(1,size(CDC ,2));

CDC(3,1: length(CDC3))=CDC3;

38 CmC(3,:)=zeros(1,size(CmC ,2));

CmC(3,1: length(CmC3))=CmC3;

aoaC (3,:)=zeros(1,size(aoaC ,2));

aoaC (3,1: length(aoaC3))=aoaC3;

43

QC(3,:)=zeros(1,size(QC ,2));

QC(3,1: length(QC3))=QC3;

% clear iterC3 timeC3 CLC3 CDC3 CmC3 aoaC3 QC3 filename i
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Listing E.2: Matlabr Code Used to Read Tracking Data Outputs from Kestrel
function [iter ,time ,CL ,CD ,Cm ,aoa ,Q] = readtrackoutput2 (filename)

2 % Imports Kestrel tracking output files

% "filename" is the file name w/o the extensions

fid1 = fopen([ filename ’.coeff ’]);

fid2 = fopen([ filename ’.motion ’]);

for skip = 1:20

7 fgetl(fid1);

fgetl(fid2);

end

%i = 0;

%while ~feof(fid1) % check for end of file

12 %i = i + 1;

A = fscanf(fid1 ,’ %f %f %f %f %f %f %f %f %f %f %f %f ’ ,[12,...

inf]);

% for i = 1:size(A,2)

iter = A(1,:);

time = A(2,:);

17 % aoa = A(3,:);

% coeff.BETA = A(4,:);

% coeff.CAXIAL = A(5,:);

% coeff.CNORMAL = A(6,:);

CL = A(7,:);

22 CD = A(8,:);

% coeff.CSIDE = A(9,:);

Cm = A(10,:);

% coeff.CROLL = A(11,:);

% coeff.CYAW = A(12,:);

27 % end

% A;

clear A

%i = 0;

32 %while ~feof(fid2) % check for end of file

%i = i + 1;

B = fscanf(fid2 ,’ %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f...

%f %f %f %f %f %f %f %f %f %f’ ,[25,inf]);

% for i = 1:size(B,2)

% flow.ITER = B(1,:);

37 % flow.TIME = B(2,:);

aoa = B(3,:);

% flow.NONLINP = B(4,:);

% flow.YPLUS = B(5,:);

% flow.SUPER = B(6,:);

42 % flow.FX = B(7,:);

% flow.FY = B(8,:);

% flow.FZ = B(9,:);

% flow.MX = B(10,:);

% flow.MY = B(11,:);

47 Q = B(12,:);

% end

clear B
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end

Listing E.3: Matlabr Code Used to Create Plots of Models
%PlotModels

function []= PlotModels(time ,CM ,CA ,ylab ,leg ,rs)

lw=1; fsize =16; asize =14; fweight=’b’;

5 for i=1:m

h=figure;set(h,’color’ ,[1 1 1]);

plot(time(i,:),CA(i,:),’k-’,’linewidth ’,lw)

hold on

plot(time(i,:),CM(i,:),’r:’,’linewidth ’,lw)

10 xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(ylab ,’fontsize ’,fsize ,’fontweight ’,fweight);

set(gca ,’fontsize ’,asize)

legend(’Actual ’,leg)%,’fontsize ’,asize)

title([’R^2= ’ num2str(rs(i)*100)],’fontsize ’,asize)

15 % name=[ name1 num2str(i) ’.eps ’];

% print(’-depsc ’,name)

end

20 end

Listing E.4: Matlabr Code Used to Analyze Output Models
%Compare Models

close all;clc;clear CD1 ybar St Sr CL1 Cm1 CL2 CL3 CL4 CL5 CL6 CL7...

...

CD2 CD3 CD4 CD5 CD6 CD7 Cm2 Cm3 Cm4 Cm5 Cm6 Cm7

4 %Must first run ’LoadData.m’ for this code to work !!!!!!

n=2;m=2;

%Model from Maneuver 1:

for i=n:m

9 CD1(i,:) =(9.789573e-03) +(3.336984e-04).*aoaC(i,:) .^2+(1.529731...

e-05) .*...

aoaC(i,:).*QC(i,:) -(1.396869e-04).*aoaC(i,:) -(2.072500e...

-05) .*...

QC(i,:) +(1.196021e-07).*QC(i,:) .^2;

ybar=mean(CDC(i,:));

St=sum((CDC(i,:)-ybar).^2);

14 Sr=sum((CD1(i,:)-CDC(i,:)).^2);

rsCD1(i)=abs((St -Sr)/St);

CL1(i,:) =2.235669e -02+2.100859e-02.* aoaC(i,:) +6.996580e...

-04.*...

QC(i,:) -1.175294e-04.* aoaC(i,:) .^2+6.192553e -06...

19 .*aoaC(i,:).*QC(i,:) +4.882452e-07.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL1(i,:)-CLC(i,:)).^2);

165



rsCL1(i)=abs((St -Sr)/St);

24

Cm1(i,:) = -1.681662e -02 -5.707444e -04.*QC(i,:) +2.590801e -03.*...

aoaC(i,:) -1.062944e-04.* aoaC(i,:) .^2+5.133947e -06.* aoaC(i...

,:) ...

.*QC(i,:) +6.123563e-08.* QC(i,:) .^2; %#ok <*SAGROW >

ybar=mean(CmC(i,:));

29 St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm1(i,:)-CmC(i,:)).^2);

rsCm1(i)=abs((St -Sr)/St);

end

34 % PlotModels(timeC ,CD1 ,CDC ,’CD ’,’Model1 ’,rsCD1)

% PlotModels(timeC ,CL1 ,CLC ,’CL ’,’Model1 ’,rsCL1)

% PlotModels(timeC ,Cm1 ,CmC ,’Cm ’,’Model1 ’,rsCm1)

%Model from Maneuver 2:

39 for i=n:m

CD2(i,:) =9.971521e -03+3.345139e-04.* aoaC(i,:) .^2+1.528962e...

-05.*...

aoaC(i,:).*QC(i,:) -1.858821e -05.*QC(i,:) -1.461004e-04.*...

aoaC(i,:);

ybar=mean(CDC(i,:));

St=sum((CDC(i,:)-ybar).^2);

44 Sr=sum((CD2(i,:)-CDC(i,:)).^2);

rsCD2(i)=abs((St -Sr)/St);

CL2(i,:) =2.307955e -02+2.107215e-02.* aoaC(i,:) +6.957933e -04.*QC...

(i,:) ...

-1.177817e -04.* aoaC(i,:) .^2+8.516905e-06.* aoaC(i,:).*QC(i...

,:) -...

49 1.087788e-07.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL2(i,:)-CLC(i,:)).^2);

rsCL2(i)=abs((St -Sr)/St);

54

Cm2(i,:) = -1.679564e -02 -5.632180e -04.*QC(i,:) +2.504913e -03.*...

aoaC(i,:) -9.978461e-05.* aoaC(i,:) .^2+5.130502e -06.*...

aoaC(i,:).*QC(i,:) -1.081843e -07.*QC(i,:) .^2;

ybar=mean(CmC(i,:));

59 St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm2(i,:)-CmC(i,:)).^2);

rsCm2(i)=abs((St -Sr)/St);

end

64 % PlotModels(timeC ,CD2 ,CDC ,’CD ’,’Model2 ’,rsCD2)

% PlotModels(timeC ,CL2 ,CLC ,’CL ’,’Model2 ’,rsCL2)

% PlotModels(timeC ,Cm2 ,CmC ,’Cm ’,’Model2 ’,rsCm2)

%Model from Maneuver 3:

69 for i=n:m
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CD3(i,:) =9.912525e -03+3.256221e-04.* aoaC(i,:) .^2+1.393598e...

-05.*...

aoaC(i,:).*QC(i,:) -1.437804e -05.*QC(i,:) +1.468528e -07.*...

QC(i,:) .^2 -4.635287e -05.* aoaC(i,:);

ybar=mean(CDC(i,:));

74 St=sum((CDC(i,:)-ybar).^2);

Sr=sum((CD3(i,:)-CDC(i,:)).^2);

rsCD3(i)=abs((St -Sr)/St);

CL3(i,:) =2.387139e -02+2.097867e-02.* aoaC(i,:) +7.156790e...

-04.*...

79 QC(i,:) -1.252798e-04.* aoaC(i,:) .^2+5.070804e -07.*QC(i,:)...

.^2+...

2.015581e-06.* aoaC(i,:).*QC(i,:);

ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL3(i,:)-CLC(i,:)).^2);

84 rsCL3(i)=abs((St -Sr)/St);

Cm3(i,:) = -1.790076e -02 -5.588308e -04.*QC(i,:) +2.457503e -03.*...

aoaC(i,:) -8.962253e-05.* aoaC(i,:) .^2+2.155569e -07.*QC(i,:)...

.^2+...

4.550380e-07.* aoaC(i,:).*QC(i,:);

89 ybar=mean(CLC(i,:));

St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm3(i,:)-CmC(i,:)).^2);

rsCm3(i)=abs((St -Sr)/St);

end

94

% PlotModels(timeC ,CD3 ,CDC ,’CD ’,’Model3 ’,rsCD3)

% PlotModels(timeC ,CL3 ,CLC ,’CL ’,’Model3 ’,rsCL3)

% PlotModels(timeC ,Cm3 ,CmC ,’Cm ’,’Model3 ’,rsCm3)

99 %Model from Maneuver 4:

for i=n:m

CD4(i,:) =1.007479e -02+3.262006e-04.* aoaC(i,:) .^2+1.465288e...

-05.*...

aoaC(i,:).*QC(i,:) -1.693442e -05.*QC(i,:) -5.606118e -05.*...

aoaC(i,:) +8.137841e-08.* QC(i,:) .^2;

104 ybar=mean(CDC(i,:));

St=sum((CDC(i,:)-ybar).^2);

Sr=sum((CD4(i,:)-CDC(i,:)).^2);

rsCD4(i)=abs((St -Sr)/St);

109 CL4(i,:) =2.452260e -02+2.093719e-02.* aoaC(i,:) +7.182334e...

-04.*...

QC(i,:) -1.245912e-04.* aoaC(i,:) .^2+4.062658e -06.* aoaC(i,:)...

.*...

QC(i,:) +2.545718e-07.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

114 Sr=sum((CL4(i,:)-CLC(i,:)).^2);
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rsCL4(i)=abs((St -Sr)/St);

Cm4(i,:) = -1.703279e -02 -5.572417e -04.*QC(i,:) +2.435494e -03.*...

aoaC(i,:) -9.418785e-05.* aoaC(i,:) .^2+2.347739e -06.* aoaC(i...

,:) .*...

119 QC(i,:) +6.924145e-08.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm4(i,:)-CmC(i,:)).^2);

rsCm4(i)=abs((St -Sr)/St);

124 end

% PlotModels(timeC ,CD4 ,CDC ,’CD ’,’Model4 ’,rsCD4)

% PlotModels(timeC ,CL4 ,CLC ,’CL ’,’Model4 ’,rsCL4)

% PlotModels(timeC ,Cm4 ,CmC ,’Cm ’,’Model4 ’,rsCm4)

129

%Model from Maneuver 5:

for i=n:m

CD5(i,:) =9.993058e -03+3.269691e-04.* aoaC(i,:) .^2+1.436076e...

-05.*...

134 aoaC(i,:).*QC(i,:) -1.623005e -05.*QC(i,:) +9.284830e -08.*...

QC(i,:) .^2 -5.130136e -05.* aoaC(i,:);

ybar=mean(CDC(i,:));

St=sum((CDC(i,:)-ybar).^2);

Sr=sum((CD5(i,:)-CDC(i,:)).^2);

139 rsCD5(i)=abs((St -Sr)/St);

CL5(i,:) =2.450979e -02+2.092801e-02.* aoaC(i,:) +7.227792e...

-04.*...

QC(i,:) -1.222738e-04.* aoaC(i,:) .^2+3.069282e -06.* aoaC(i,:)...

.*...

QC(i,:) +2.955129e-07.* QC(i,:) .^2;

144 ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL5(i,:)-CLC(i,:)).^2);

rsCL5(i)=abs((St -Sr)/St);

149 Cm5(i,:) = -1.687697e -02 -5.616563e -04.*QC(i,:) +2.455266e -03.*...

aoaC(i,:) -9.542033e-05.* aoaC(i,:) .^2+2.940546e -06.* aoaC(i...

,:) .*...

QC(i,:) +4.286884e-08.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CmC(i,:)-ybar).^2);

154 Sr=sum((Cm5(i,:)-CmC(i,:)).^2);

rsCm5(i)=abs((St -Sr)/St);

end

% PlotModels(timeC ,CD5 ,CDC ,’CD ’,’Model5 ’,rsCD5)

159 % PlotModels(timeC ,CL5 ,CLC ,’CL ’,’Model5 ’,rsCL5)

% PlotModels(timeC ,Cm5 ,CmC ,’Cm ’,’Model5 ’,rsCm5)
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%Model from Maneuver 6:

164 for i=n:m

CD6(i,:) =1.003183e -02+3.275261e-04.* aoaC(i,:) .^2+1.456518e...

-05.*...

aoaC(i,:).*QC(i,:) -1.593029e -05.*QC(i,:) -6.653847e -05.*...

aoaC(i,:) +6.521430e-08.* QC(i,:) .^2;

ybar=mean(CDC(i,:));

169 St=sum((CDC(i,:)-ybar).^2);

Sr=sum((CD6(i,:)-CDC(i,:)).^2);

rsCD6(i)=abs((St -Sr)/St);

CL6(i,:) =2.451389e -02+2.091614e-02.* aoaC(i,:) +7.215477e...

-04.*...

174 QC(i,:) -1.223068e-04.* aoaC(i,:) .^2+4.044164e -06.* aoaC(i,:)...

.*...

QC(i,:) +1.867449e-07.* QC(i,:) .^2;

ybar=mean(CLC(i,:));

St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL6(i,:)-CLC(i,:)).^2);

179 rsCL6(i)=abs((St -Sr)/St);

Cm6(i,:) = -1.701866e -02 -5.607149e -04.*QC(i,:) +2.452204e -03.*...

aoaC(i,:) -9.580407e-05.* aoaC(i,:) .^2+3.169494e -06.*...

aoaC(i,:).*QC(i,:) +5.142742e -08.*QC(i,:) .^2;

184 ybar=mean(CLC(i,:));

St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm6(i,:)-CmC(i,:)).^2);

rsCm6(i)=abs((St -Sr)/St);

end

189

% PlotModels(timeC ,CD6 ,CDC ,’CD ’,’Model6 ’,rsCD6)

% PlotModels(timeC ,CL6 ,CLC ,’CL ’,’Model6 ’,rsCL6)

% PlotModels(timeC ,Cm6 ,CmC ,’Cm ’,’Model6 ’,rsCm6)

194

%Model from Maneuver 7:

for i=n:m

CD7(i,:) =9.958869e -03+3.300937e-04.* aoaC(i,:) .^2+1.377499e...

-05.*...

aoaC(i,:).*QC(i,:) -1.153540e -05.*QC(i,:) -8.913833e -05.*...

199 aoaC(i,:) +5.712025e-08.* QC(i,:) .^2;

ybar=mean(CDC(i,:));

St=sum((CDC(i,:)-ybar).^2);

Sr=sum((CD7(i,:)-CDC(i,:)).^2);

rsCD7(i)=abs((St -Sr)/St);

204

CL7(i,:) =2.365951e -02+2.103502e-02.* aoaC(i,:) +7.270375e...

-04.*...

QC(i,:) -1.224904e-04.* aoaC(i,:) .^2+2.165246e -06.* aoaC(i,:)...

.*...

QC(i,:) +1.354950e-07.* QC(i,:) .^2;
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ybar=mean(CLC(i,:));

209 St=sum((CLC(i,:)-ybar).^2);

Sr=sum((CL7(i,:)-CLC(i,:)).^2);

rsCL7(i)=abs((St -Sr)/St);

Cm7(i,:) = -1.709275e -02 -5.585180e -04.*QC(i,:) +2.463586e -03.*...

214 aoaC(i,:) -9.600510e-05.* aoaC(i,:) .^2+3.277661e -06.*...

aoaC(i,:).*QC(i,:);

ybar=mean(CLC(i,:));

St=sum((CmC(i,:)-ybar).^2);

Sr=sum((Cm7(i,:)-CmC(i,:)).^2);

219 rsCm7(i)=abs((St -Sr)/St);

end

% PlotModels(timeC ,CD7 ,CDC ,’CD ’,’Model7 ’,rsCD7)

% PlotModels(timeC ,CL7 ,CLC ,’CL ’,’Model7 ’,rsCL7)

224 % PlotModels(timeC ,Cm7 ,CmC ,’Cm ’,’Model7 ’,rsCm7)

lw=3; fsize =16; asize =14; fweight=’b’;

for i=n:m

h=figure;set(h,’color’ ,[1 1 1]);

229 plot(timeC(i,:),CLC(i,:),’k-’,’linewidth ’ ,4)

hold on

plot(time(i,:),CL1(i,:),’r-’,’linewidth ’,lw)

plot(time(i,:),CL2(i,:),’g-’,’linewidth ’,lw)

plot(time(i,:),CL3(i,:),’b-’,’linewidth ’,lw)

234 plot(time(i,:),CL4(i,:),’m-’,’linewidth ’,lw)

plot(time(i,:),CL5(i,:),’g--’,’linewidth ’,lw)

plot(time(i,:),CL6(i,:),’b--’,’linewidth ’,lw)

plot(time(i,:),CL7(i,:),’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

239 xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’CL’,’fontsize ’,fsize ,’fontweight ’,fweight);

legend(’Comp’,’1’,’2’,’3’,’4’,’5’,’6’,’7’)

title([’R^{2}_{1}= ’ num2str(rsCL1(i)),’, R^{2}_{2} ’ num2str(...

rsCL2(i)),’, R^{2}_{3} ’ ...

num2str(rsCL3(i)),’, R^{2}_{4} ’ num2str(rsCL4(i)),’, R...

^{2}_{5} ’ ...

244 num2str(rsCL5(i)),’, R^{2}_{6} ’ num2str(rsCL6(i)),’, R...

^{2}_{7} ’ num2str(rsCL7(i))])

end

for i=n:m

h=figure;set(h,’color’ ,[1 1 1]);

249 plot(timeC(i,:),CDC(i,:),’k-’,’linewidth ’ ,4)

hold on

plot(time(i,:),CD1(i,:),’r-’,’linewidth ’,lw)

plot(time(i,:),CD2(i,:),’g-’,’linewidth ’,lw)

plot(time(i,:),CD3(i,:),’b-’,’linewidth ’,lw)

254 plot(time(i,:),CD4(i,:),’m-’,’linewidth ’,lw)

plot(time(i,:),CD5(i,:),’g--’,’linewidth ’,lw)

plot(time(i,:),CD6(i,:),’b--’,’linewidth ’,lw)

170



plot(time(i,:),CD7(i,:),’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

259 xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’CD’,’fontsize ’,fsize ,’fontweight ’,fweight);

legend(’Comp’,’1’,’2’,’3’,’4’,’5’,’6’,’7’)

title([’R^{2}_{1}’ num2str(rsCD1(i)),’, R^{2}_{2}’ num2str...

(rsCD2(i)),’, R^{2}_{3}’ ...

num2str(rsCD3(i)),’, R^{2}_{4}’ num2str(rsCD4(i)),’, R^{2}...

_{5}’ num2str(rsCD5(i)),’, R^{2}_{6}’...

264 num2str(rsCD6(i)),’, R^{2}_{7}’ num2str(rsCD7(i))])

end

for i=n:m

h=figure;set(h,’color’ ,[1 1 1]);

269 plot(timeC(i,:),CmC(i,:),’k-’,’linewidth ’ ,4)

hold on

plot(time(i,:),Cm1(i,:),’r-’,’linewidth ’,lw)

plot(time(i,:),Cm2(i,:),’g-’,’linewidth ’,lw)

plot(time(i,:),Cm3(i,:),’b-’,’linewidth ’,lw)

274 plot(time(i,:),Cm4(i,:),’m-’,’linewidth ’,lw)

plot(time(i,:),Cm5(i,:),’g--’,’linewidth ’,lw)

plot(time(i,:),Cm6(i,:),’b--’,’linewidth ’,lw)

plot(time(i,:),Cm7(i,:),’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

279 xlabel(’Time (s)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’Cm’,’fontsize ’,fsize ,’fontweight ’,fweight);

legend(’Comp’,’1’,’2’,’3’,’4’,’5’,’6’,’7’)

title([’R^{2}_{1}’ num2str(rsCm1(i)),’, R^{2}_{2}’ num2str...

(rsCm2(i)),’, R^{2}_{3}’ ...

num2str(rsCm3(i)),’, R^{2}_{4}’ num2str(rsCm4(i)),’, R^{2}...

_{5}’ num2str(rsCm5(i)),’, R^{2}_{6}’...

284 num2str(rsCm6(i)),’, R^{2}_{7}’ num2str(rsCm7(i))])

end

% print(’-depsc ’,’CL_Comp1_M5_max2 .eps ’)

289

%% Static Data Analysis

Astat = -10:.01:30;

Qstat=zeros(1,length(Astat))+0;

294

%Model from Maneuver 1:

CD1s =9.730597e -03+3.431586e -04.* Astat .^2+1.114767e -05.*...

Astat .*Qstat -1.863392e-04.* Astat +2.175502e -07.*...

Astat .^2.* Qstat -2.179208e -05.* Qstat -3.443936e -07.*...

299 Astat .^3+1.909637e -08.* Astat.* Qstat .^2 -8.172904e -08.*...

Qstat .^2+7.794505e -10.* Qstat .^3;

CL1s =1.716054e -02+2.081710e -02.* Astat +6.690807e -04.*...

Qstat -4.813678e -06.* Astat .^3+7.158772e -07.* Astat .^2.*...

Qstat -7.668215e -06.* Astat.* Qstat +7.978169e -09.*...

304 Qstat .^3+1.583122e -05.* Astat .^2+2.569745e -07.*...
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Qstat .^2+7.375897e -09.* Astat.* Qstat .^2;

Cm1s = -2.046480e -02 -5.460982e-04.* Qstat +2.417664e -03.* Astat...

-3.625706e-06.* Astat .^3+3.044896e-07.* Astat .^2.* Qstat...

-3.860851e-09.* Qstat .^3+2.844594e-08.* Astat.* Qstat...

.^2 -3.065744e-07.* Qstat .^2 -6.108701e-06.* Astat .^2 -4.261713e...

-07.* Astat .* Qstat; %#ok <*SAGROW >

%Model from Maneuver 2:

309 CD2s =9.319225e -03+3.503486e -04.* Astat .^2+1.225731e -05.* Astat.*...

Qstat -1.703414e-04.* Astat +1.638292e -07.* Astat .^2.* Qstat...

-5.657110e-07.* Astat .^3 -7.683677e-06.* Qstat -8.013186e -10.*...

Qstat .^3;

CL2s =1.692528e -02+2.088811e -02.* Astat +7.252946e-04.* Qstat...

-5.104902e-06.* Astat .^3+3.107823e-07.* Astat .^2.* Qstat...

+2.495334e-05.* Astat .^2+2.766175e-06.* Astat.*Qstat -1.303175...

e -08.* Astat.* Qstat .^2 -2.810888e-09.* Qstat .^3;

Cm2s = -2.163996e -02 -5.333153e-04.* Qstat +2.478468e -03.* Astat...

-3.378626e-06.* Astat .^3 -4.521698e-08.* Astat.* Qstat...

.^2+2.087651e-07.* Astat .^2.* Qstat +2.836222e -07.* Qstat...

.^2 -3.386342e-09.* Qstat .^3+1.283839e-06.* Astat .*Qstat...

-5.663656e-06.* Astat .^2;

%Model from Maneuver 3:

314 CD3s =9.252898e -03+3.516546e -04.* Astat .^2+1.284095e -05.* Astat.*...

Qstat -8.600562e-07.* Astat .^3+3.505367e -08.* Astat.* Qstat...

.^2 -1.536454e-04.* Astat -1.679629e-07.* Qstat .^2+5.357569e...

-08.* Astat .^2.* Qstat -1.131920e -09.* Qstat .^3 -3.974588e -06.*...

Qstat;

CL3s =1.762809e -02+2.063312e -02.* Astat +7.435046e-04.* Qstat...

-5.105015e-06.* Astat .^3+8.481360e-08.* Astat.* Qstat...

.^2+2.769515e-05.* Astat .^2+9.290891e-08.* Astat .^2.* Qstat...

-2.601925e-07.* Qstat .^2 -3.163653e-09.* Qstat .^3;

Cm3s = -1.946036e -02+2.299033e-03.* Astat -5.503736e -04.* Qstat...

-1.597633e-06.* Astat .^3 -4.146868e-05.* Astat .^2+4.770809e...

-08.* Astat .* Qstat .^2+3.474431e -06.* Astat.*Qstat -1.587192e...

-07.* Astat .^2.* Qstat -2.119689e -07.* Qstat .^2 -1.746067e -09.*...

Qstat .^3;

%Model from Maneuver 4:

319 CD4s =9.209800e -03+3.512430e -04.* Astat .^2+1.269150e -05.* Astat.*...

Qstat -8.323128e-07.* Astat .^3 -1.313685e -04.* Astat +2.201535e...

-08.* Astat .* Qstat .^2+9.902947e -08.* Astat .^2.* Qstat -1.170078...

e -07.* Qstat .^2 -8.455517e -06.* Qstat -6.842621e-10.* Qstat .^3;

CL4s =1.724702e -02+2.070095e -02.* Astat +7.423128e-04.* Qstat...

-5.190808e-06.* Astat .^3+2.040528e-07.* Astat .^2.* Qstat...

+3.035673e-05.* Astat .^2+3.773327e-08.* Astat.* Qstat...

.^2 -2.312165e-09.* Qstat .^3 -8.982990e-08.* Qstat .^2;

Cm4s = -1.968283e -02+2.342294e-03.* Astat -5.374400e -04.* Qstat...

-1.917533e-06.* Astat .^3 -3.689443e-05.* Astat .^2+3.296173e...

-06.* Astat .* Qstat +1.599009e -08.* Astat.* Qstat .^2 -2.893298e...

-09.* Qstat .^3 -5.165568e-08.* Astat .^2.* Qstat -7.281210e -08.*...

Qstat .^2;
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%Model from Maneuver 5:

324 CD5s =9.130721e -03+3.524162e -04.* Astat .^2+1.258388e -05.* Astat.*...

Qstat -8.469415e-07.* Astat .^3 -1.280549e -04.* Astat +2.327615e...

-08.* Astat .* Qstat .^2 -1.295475e -05.* Qstat +8.877916e -08.*...

Astat .^2.* Qstat -1.207452e -07.* Qstat .^2;

CL5s =1.696247e -02+2.069711e -02.* Astat +7.420088e-04.* Qstat...

-5.378247e-06.* Astat .^3+3.785705e-05.* Astat .^2+3.831630e...

-08.* Astat .* Qstat .^2+2.060893e -07.* Astat .^2.* Qstat -1.029270...

e -06.* Astat.*Qstat -1.641683e-09.* Qstat .^3 -7.006502e -08.*...

Qstat .^2;

Cm5s = -2.021508e -02+2.397853e-03.* Astat -5.422347e -04.* Qstat...

-2.177549e-06.* Astat .^3 -3.078932e-05.* Astat .^2+1.748001e...

-06.* Astat .*Qstat -2.400336e -09.* Qstat .^3+6.050437e -08.*...

Astat .^2.* Qstat +3.481904e -08.* Qstat .^2;

%Model from Maneuver 6:

329 CD6s =9.241321e -03+3.502276e -04.* Astat .^2+1.287600e -05.* Astat.*...

Qstat -7.555134e-07.* Astat .^3 -1.336560e -04.* Astat -1.304469e...

-05.* Qstat +8.551504e-08.* Astat .^2.* Qstat +1.804724e -08.*...

Astat .* Qstat .^2 -9.829171e -08.* Qstat .^2;

CL6s =1.704703e -02+2.070347e -02.* Astat +7.287251e-04.* Qstat...

-5.173246e-06.* Astat .^3+2.022190e-07.* Astat .^2.* Qstat...

+3.201886e-05.* Astat .^2+2.089257e-08.* Astat.* Qstat .^2;

Cm6s = -2.006787e -02+2.369637e-03.* Astat -5.433397e -04.* Qstat...

-2.075239e-06.* Astat .^3 -3.385414e-05.* Astat .^2+1.000226e...

-07.* Astat .^2.* Qstat -1.993588e -09.* Qstat .^3+6.588607e -09.*...

Astat .* Qstat .^2+1.182338e -06.* Astat.* Qstat;

%Model from Maneuver 7:

334 CD7s =9.295198e -03+3.520622e -04.* Astat .^2+1.322779e -05.* Astat.*...

Qstat -7.314771e-07.* Astat .^3 -1.653406e -04.* Astat +1.578238e...

-08.* Astat .* Qstat .^2 -1.274319e -05.* Qstat -8.560719e -08.*...

Qstat .^2+2.732796e-08.* Astat .^2.* Qstat +3.151080e -10.* Qstat...

.^3;

CL7s =1.682322e -02+2.078854e -02.* Astat +7.133831e-04.* Qstat...

-4.984327e-06.* Astat .^3+2.623087e-05.* Astat .^2+1.543615e...

-08.* Astat .* Qstat .^2+1.468376e -06.* Astat.* Qstat +2.227071e...

-09.* Qstat .^3+3.621003e-08.* Astat .^2.* Qstat;

Cm7s = -2.052570e -02 -5.649622e-04.* Qstat +2.413161e -03.* Astat...

-2.239398e-06.* Astat .^3 -2.961360e-05.* Astat .^2+1.950899e...

-07.* Astat .^2.* Qstat +1.711179e -09.* Qstat .^3 -1.188499e -08.*...

Astat .* Qstat .^2+8.199981e -08.* Qstat .^2 -5.416685e -07.* Astat...

.* Qstat;

339 h=figure;set(h,’color’ ,[1 1 1]);

plot(Astat ,CL1s ,’r-’,’linewidth ’,lw)

hold on

plot(Astat ,CL2s ,’g-’,’linewidth ’,lw)

plot(Astat ,CL3s ,’b-’,’linewidth ’,lw)

344 plot(Astat ,CL4s ,’m-’,’linewidth ’,lw)
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plot(Astat ,CL5s ,’g--’,’linewidth ’,lw)

plot(Astat ,CL6s ,’b--’,’linewidth ’,lw)

plot(Astat ,CL7s ,’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

349 xlabel(’AoA (deg)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’CL’,’fontsize ’,fsize ,’fontweight ’,fweight);

legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’)

h=figure;set(h,’color’ ,[1 1 1]);

354 plot(Astat ,CD1s ,’r-’,’linewidth ’,lw)

hold on

plot(Astat ,CD2s ,’g-’,’linewidth ’,lw)

plot(Astat ,CD3s ,’b-’,’linewidth ’,lw)

plot(Astat ,CD4s ,’m-’,’linewidth ’,lw)

359 plot(Astat ,CD5s ,’g--’,’linewidth ’,lw)

plot(Astat ,CD6s ,’b--’,’linewidth ’,lw)

plot(Astat ,CD7s ,’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

xlabel(’AoA (deg)’,’fontsize ’,fsize ,’fontweight ’,fweight);

364 ylabel(’CD’,’fontsize ’,fsize ,’fontweight ’,fweight);

legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’)

h=figure;set(h,’color’ ,[1 1 1]);

plot(Astat ,Cm1s ,’r-’,’linewidth ’,lw)

369 hold on

plot(Astat ,Cm2s ,’g-’,’linewidth ’,lw)

plot(Astat ,Cm3s ,’b-’,’linewidth ’,lw)

plot(Astat ,Cm4s ,’m-’,’linewidth ’,lw)

plot(Astat ,Cm5s ,’g--’,’linewidth ’,lw)

374 plot(Astat ,Cm6s ,’b--’,’linewidth ’,lw)

plot(Astat ,Cm7s ,’m--’,’linewidth ’,lw)

set(gca ,’fontsize ’,asize)

xlabel(’AoA (deg)’,’fontsize ’,fsize ,’fontweight ’,fweight);

ylabel(’Cm’,’fontsize ’,fsize ,’fontweight ’,fweight);

379 legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’)

% print(’-depsc ’,’Cm_Static2_M5_max2.eps ’)
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