
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

On Predictability of System Anomalies in Real World

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

As computer systems become increasingly complex, system anomalies have become major concerns in system

man- agement. In this paper, we present a comprehensive measurement study to quantify the predictability of

different system anomalies. Online anomaly prediction allows the system to foresee impending anomalies so as to

take proper actions to mitigate anomaly impact. Our anomaly prediction approach combines feature value

prediction with statistical classification methods. We conduct extensive measurement study to investigate

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

14-08-2011

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Real World System Anomaly, System Anomaly Prediction

Yongmin Tan, Xiaohui Gu

North Carolina State University

Office of Contract and Grants

Leazar Hall Lower Level- MC

Raleigh, NC 27695 -7214

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Conference Proceeding

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-10-1-0273

611102

Form Approved OMB NO. 0704-0188

56351-CS.4

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Xiaohui Gu

919-515-9676

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

On Predictability of System Anomalies in Real World

Report Title

ABSTRACT

As computer systems become increasingly complex, system anomalies have become major concerns in system man-

agement. In this paper, we present a comprehensive measurement study to quantify the predictability of different

system anomalies. Online anomaly prediction allows the system to foresee impending anomalies so as to take proper

actions to mitigate anomaly impact. Our anomaly prediction approach combines feature value prediction with statistical

classification methods. We conduct extensive measurement study to investigate anomalous behavior of three systems in

the real world: PlanetLab, SMART hard drive data, and IBM System S. We observe that real world system anomalies

do exhibit predictability, which can be predicted with high accuracy and significant lead time.

Conference Name: IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommu

Conference Date: August 17, 2010

As computer systems become increasingly complex, system anomalies have become major concerns in system man-

agement. In this paper, we present a comprehensive measurement study to quantify the predictability of different

system anomalies. Online anomaly prediction allows the system to foresee impending anomalies so as to take proper

actions to mitigate anomaly impact. Our anomaly prediction approach combines feature value prediction with statistical

classification methods. We conduct extensive measurement study to investigate anomalous behavior of three systems in

the real world: PlanetLab, SMART hard drive data, and IBM System S. We observe that real world system anomalies

do exhibit predictability, which can be predicted with high accuracy and significant lead time.

On Predictability of System Anomalies
in Real World

Yongmin Tan, Xiaohui Gu
Department of Computer Science
North Carolina State University

ytan2@ncsu.edu, gu@csc.ncsu.edu

Abstract—As computer systems become increasingly complex,
system anomalies have become major concerns in system man-
agement. In this paper, we present a comprehensive measurement
study to quantify the predictability of different system anomalies.
Online anomaly prediction allows the system to foresee impending
anomalies so as to take proper actions to mitigate anomaly
impact. Our anomaly prediction approach combines feature value
prediction with statistical classification methods. We conduct
extensive measurement study to investigate anomalous behavior
of three systems in the real world: PlanetLab, SMART hard drive
data, and IBM System S. We observe that real world system
anomalies do exhibit predictability, which can be predicted with
high accuracy and significant lead time.

I. I NTRODUCTION

Modern computer systems (e.g., cloud computing plat-
forms [1], [2], enterprise data centers, massive data analyt-
ics [3], and web hosting services) have become increasingly
complex as systems grow in both scale and functionality.
Unfortunately, such complexity makes systems more vulner-
able to various anomalies such as performance bottlenecks,
resource hotspots, service level objective (SLO) violations, and
various software/hardware failures. System administrators are
often overwhelmed by the tasks of correcting system problems
under time pressure. Thus, it is imperative to provide automatic
system anomaly management to achieve robust computer sys-
tems.

Previous system anomaly management work (e.g., [4], [5],
[6], [7], [8], [9]) can be classified into two categories: (1)re-
activeapproaches that take corrective actions after an anomaly
happens, and (2)proactive approaches that take preventive
actions on all system components beforehand. The reactive
approach does not have prevention cost but can have prolonged
service downtime, which is often unacceptable for continu-
ously running applications such as data stream processing.
Moreover, it is often difficult to reproduce the anomaly-
inducing environments to perform offline anomaly diagnosis,
which may limit the effectiveness of reactive anomaly cor-
rection. In contrast, proactive approach offers better system
reliability but can incur prohibitive overhead. To this end, we
explore a newpredictiveanomaly management approach that
can foresee impending system anomalies through intelligent
prediction so that we can take just-in-time corrections to steer
the system away from the abnormal state.

To achieve efficient predictive anomaly management, one
big challenge is to provide high quality online system anomaly

prediction. Although previous work (e.g., [10], [11], [12]) has
addressed the anomaly detection problem, anomaly prediction
needs to capture pre-anomaly symptoms to raise advance
anomaly alert before the anomaly happens. In [13], we pre-
sented the initial design of our online anomaly prediction
scheme. However, one big question is whether real system
anomalies do exhibit certain predictability and whether our
anomaly prediction scheme can efficiently capture the pre-
dictability. The goal of this work is to provide quantitive
answers to the question by conducting a comprehensive mea-
surement study over a range of anomalies in real production
systems.

Our anomaly prediction approach aims at achievingadvance
anomaly prediction with a certainlead time. The intuition
behind our approach is that system anomalies often manifest
gradual deviations in some system metrics before the system
escalates into the anomaly state. We monitor various system
metrics called features (e.g., CPU load, free memory, disk
usage, network traffic) to build a feature value prediction
model using discrete-time Markov chain schemes. We also
induce statistical anomaly classifiers using naive Bayesian or
tree augmented naive Bayesian (TAN) learning methods. We
then integrate feature prediction and anomaly classifier to
forecast the system anomaly state at a future time. In this
paper, we conduct an extensive comparative study to quantify
the predictability of system anomalies in three production
systems: (1)PlanetLab failure datathat incorporate real host
failures over a two-month period on the widely used wide-
area computing platform PlanetLab [14]; (2)SMART disk
failure data [15] that include measurement data of 369 real-
world disks, among which 178 disks experience disk failures;
and (3) IBM System S performance anomaly datathat report
measurements of SLO violations on the IBM stream process-
ing cluster [3]. Our extensive measurement study reveals the
following key observations:

First, real world system anomalies exhibit varied predictabil-
ity. Our anomaly prediction scheme can achieve i) more than
95% true positive rate and less than 20% false positive rate
for the PlanetLab ping failure data under [10,90] seconds lead
time requirements; ii) 80-85% true positive rate and less than
10% false positive rate with up to 18 hours lead time for the
SMART disk failure data; and iii) 95-85% true positive rate
and less than 10% false positive rate with 2 to 18 seconds lead
time for the System S performance anomaly data.

Second, using proper discretization methods, the discrete-
time Markov chain scheme can achieve high prediction ac-
curacy for most system metrics except those metrics whose
values present irregular changing patterns or large variation
ranges. However, we observe that low prediction accuracy over
a small number of metrics does not significantly affect the
accuracy of the integrated anomaly prediction model.

Third, simple statistical classifiers such as naive Bayesian
and TAN models can achieve high accuracy given sufficient
training data for both normal and abnormal states. The TAN
model outperforms the naive Bayesian method in most cases
since it relaxes the strong independence assumption made by
the naive Bayesian method. However, we also observe one
exception in the SMART disk failure dataset where TAN
has worse performance than naive Bayesian. The reason is
because the TAN model estimates the conditional probability
based on not only the class variable but also other metrics.
The SMART data set includes some metrics that have large
variation range and imbalanced distribution, which results in
unreliable estimation of some conditional probabilities.

The rest of the paper is organized as follows. Section II
presents the design and algorithms of the anomaly prediction
schemes. Section III describes the anomaly data collection and
experimental results. We discuss related work in Section IV.
Finally, the paper concludes in Section V.

II. SYSTEM DESIGN

In this section, we present the design details of our sys-
tem anomaly prediction scheme. We first describe the feature
value prediction scheme followed by the statistical anomaly
classification methods. We then present the integrated anomaly
prediction model.

A. Feature Evolving Pattern Model

We use finite discrete-time Markov chains (DTMC) to
model the evolving patterns of various system features such as
CPU consumption, memory usage, and input/output data rate.
For example, Figure 1 shows a Markov model for a metric
ranging from 0 to 30 with three discretized states. To build a
Markov chain model for a metricx with M distinct states, we
learn the transition probability matrixPx: an M × M matrix
where the elementpij at row i and columnj denotes the
conditional probability of making a transition from statei to
statej. We derivePx from a training data set by counting the
number of different state transitions observed.

Assuming the Markov chain is homogeneous, we can de-
rive the feature value distribution ofx for any time in the
future by applying the Chapman-Kolmogorov equation: af-
ter t time units, the probability distribution for metricx is
πt = πt−1Px = πt−2P

2
x = ... = π0P

t
x, whereπt and π0

denote the probability distribution at timet and the initial
probability distribution for the metricx, respectively. Given a
current statei, if we want to predict the state at a future time
t, we only need to check those elements of matrixπt = π0P

t
x

at row i to decide the most probable state (i.e., the state with

0.5

0.3

0.2

0.3

0.3

0.2

0.5

0.2

0.5

Bin 1
[0,5]

Bin 2
[6,20]

Bin 3
[21,30]

Fig. 1. Feature evolving pattern prediction. The metric value ranges
from 0 to 30. We partition the values of the metric into three states.
The arcs are labeled with state transition probability.

the largest transition probability) that the current statei will
evolve to after timet.

To use DTMC, we need to perform discretization to trans-
form continuous feature values into discrete states. Common
discretization techniques include equal-width and equal-depth
approaches. The equal-width approach divides the range of a
feature value intoM equal-width bins while the equal-depth
approach puts the same number of samples into each bin.
However, we find that the above two approaches can incur
high prediction error during our experimental study.

To address the problem, we propose a hybrid discretization
approach. We first use the equal-width approach to create
M bins. We check the number of data samples fallen into
each bin. If there is no bin with extremely small number of
data samples (e.g. less than 10% of the second smallest bin),
the discretization is accepted. Otherwise, we apply the equal-
width approach again but use more bins (e.g.2M). Then we
recursively merge some bins with their neighbors. In each
iteration, we merge the bin containing the smallest number
of data samples. We proceed until the total number of bins
is reduced to the target numberM . The merit of this hybrid
approach is two-folded: it preserves the original continuous
attribute distribution; and it eliminates the negative effect
of some outliers by balancing the number of data samples
allocated to different bins. In the experimental section, we will
show the impact ofM and different discretization approaches
on the accuracy of feature value prediction.

It is also possible to apply other prediction methods such
as Kalman filter to predict feature values at a future time.
We choose DTMC in this work since DTMC can provide
the probabilities of all possible values a feature can have
at a future time. Thus, we can easily integrate the feature
value prediction results with the statistical anomaly classifiers
to compute the anomaly probability at a future time. The
details about the integrated anomaly prediction model will be
described in Section II-C.

B. Statistical Anomaly Classification

The goal of the anomaly classifier is to decide whether the
system is currently running in a normal or abnormal state.
Let ~xt denote a measurement sample, which is a vector of
system metric values[x0, . . . , xn] at timet. Let Ct denote the
system state at timet1, which can take one of the two states
{abnormal(1), normal(0)}. The input to the classifier is a
training data set that contains a time series of records〈 ~xt, Ct〉.

1we will omit the subindext when the context is clear.

C

1 2 3 4X X X X

(a) naive Bayesian classi-
fier

C

X1

2

3

4X

X

X

(b) TAN classifier

Fig. 2. Statistical anomaly classifier for one class variableC and four feature
variablesx1, x2, x3, x4.

Note that our classifier training process is supervised since we
depend on an anomaly detector [16] (e.g., application-specific
anomaly predicates [10]) to provide a proper class labelCt

for each training sample~xt.
Ideally, the classifier should be able to produce posterior

probabilities, i.e.P (C = 1|~x) and P (C = 0|~x) for a given
measurement~x. We then compare the posterior probabilities
for abnormal andnormal classes to decide the classification
result. That is, the system is classified as abnormal if the
following inequality holds:

log P (“abnormal”|~x) − log P (“normal”|~x) > δ (1)

Otherwise, the system is considered to be in the normal state.
Larger δ means stronger classification confidence since the
likeliness of one class is overwhelmingly greater than that of
the other class. A typical value ofδ is either zero or the prior
difference of the likelihood derived from the training data.

However, computing the posterior probability can be chal-
lenging: we need to evaluateP (C = c|~x) for every possible~x
in the multi-dimensional feature space. If the dimensionality
is high, the computation will be very costly. We leverage
Bayes’ rule to transform the posterior probabilityP (C = c|~x)
into the conditional probabilityP (~x|C = c). We apply naive
Bayesian classifier [17] and tree-augmented naive Bayesian
(TAN) network [18] in this work.

Naive Bayesian Classifier.The assumption of a naive
Bayesian classifier is that each metric is independent given the
class label, illustrated by Figure 2(a). To computeP (C = c|~x),
we apply the Bayes’ rule to transform the posterior probability
into the conditional probability:

P (C = c|~x) =
P (~x|C = c)P (C = c)

P (~x)
(2)

We neglect the denominatorP (~x) which does not depend on
C, and only focus on the numerator of the fraction. We further
apply the naive independence assumption so that we transform
P (~x|C = c) into

∏n

i=1
P (xi|C = c).

Tree-Augmented Naive Bayesian (TAN) Network.The TAN
model extends the naive Bayesian model by considering de-
pendencies among metrics with a constraint that each metric
has at most one parent in the network other than the class
variable. The structure of the TAN model is a tree rooted at
the class variableC and contains conditional probabilities for
each tree node, illustrated by Figure 2(b). The posterior prob-
ability P (C|~x) is not exactly equal to, but still proportional

to the multiplication of the conditional probabilities of each
individual metric. However, different from the naive Bayesian
classifier, not all metrics are independent now. We applied an
existing scheme[19] to learn the TAN model. For example, we
can derive the following proportional relations for the TAN
model shown in Figure 2(b):P (C = c|~x) ∝ P (x1|C =
c)P (x2|C = c, x3)P (x3|C = c, x1)P (x4|C = c, x3).

The posterior probabilityP (C = c|~x) is proportional to the
probability thatC is assigned with “abnormal” or “normal”.
We use an odds ratio [20], denoted byΩ(~x), to assign class
labels to a sample vector~x, i.e., the system is classified as
abnormal if the following inequality holds:

Ω(~x) =
P (C = 1|~x)(1 − P (C = 0|~x))

P (C = 0|~x)(1 − P (C = 1|~x))
> α (3)

The thresholdα is a tunable parameter that can be used to
control the classification confidence. A typical value ofα is
one.

C. Integrated Anomaly Prediction

To achieve advance anomaly prediction, our scheme inte-
grates feature value prediction and statistical anomaly clas-
sification. Through the feature evolving pattern model, we
can predict the values of each metric at a future time. The
anomaly classifier is then used to perform classification over
future predicted metric values. In other words, during the
computation of conditional probabilities in naive Bayesian or
TAN classifier, we replace the metric values in Equation 2
and Equation 3 with the predicted metric values in the form
of prediction probabilities from the Markov model.

For the naive Bayesian classifier, we need to replace the
deterministic discrete value ofxi with all possible discrete
values thatxi can take. We denoteP (xi[s, t]) as the probabil-
ity that xi takes values at a future timet, given the current
value ofxi. Therefore,P (xi|C = c) becomes

∑

s P (xi[s, t]) ·
P (xi[s, t]|C = c). Since we build a Markov prediction model
separately for each collected metric, we aggregate all metrics
in ~x to get the predicted posterior probabilitieŝP (C = c|~x)
and use Equation 1 to get the anomaly prediction result.

For the TAN classifier, we compute the predicted posterior
probability in the similar way as the naive Bayesian model
except for those metrics whose conditional probabilities de-
pend on other metrics, such asx2, x3, x4 in Figure 2(b). For
example, the metricx2 depends on the metricx3. If we want to
evaluateP (x2|C = c, x3) at a future time, we need to sum all
possibilities of both metricx2 and metricx3. To be specific, if
we useP (x2[s2, t]) andP (x3[s3, t]) to denote the probability
that x2 andx3 take valuess2 ands3 at a future timet given
the current value ofx2 and x3, respectively, we can com-
pute P (x2|C = c, x3) as

∑

s2
P (x2[s2, t])

∑

s3
p(x3[s3, t]) ·

P (x2[s2, t]|C = c, x3[s3, t]). We aggregate all metrics in~x to
get the predicted posterior probabilitŷP (C = c|~x) and use
odds ratio in Equation 3 to get the anomaly prediction result.

III. SYSTEM EVALUATION

In this section, we evaluate our online anomaly prediction
scheme. We perform a comprehensive measurement study over

three real-world systems. We first describe our evaluation
methodology. Next, we present and analyze our experimental
results.

A. Evaluation Methodology

We have implemented the anomaly prediction system and
deployed it on several real world computing infrastruc-
tures such as PlanetLab [14], NCSU virtual computing lab
(VCL) [2], and IBM System S stream processing cluster [3].
One big challenge for this measurement study is to collect
real system anomaly data from deployed production systems.
Although previous research projects have collected various
failure data [21], most of them lack fine-grained continuous
measurement data that are required by the anomaly prediction
system. One exception is the SMART disk failure data [15],
which have been included in our measurement study. To collect
more fine-grained real world system anomaly data, we have
developed a scalable continuous monitoring system [22] and
deployed it on the PlanetLab, VCL, and IBM System S. We
have collected a set of real system anomaly data by monitoring
those systems for extended period of time. All collected met-
rics are used to train both the feature value predictor and the
anomaly classifier. We now describe the anomaly trace data
used in this paper.

PlanetLab anomaly data.We collected measurement data
on the widely used planetary-scale open computing platform
PlanetLab. We monitored about 400 PlanetLab nodes dis-
tributed all over the world. Our system collects 66 host metrics
such as CPU load, virtual memory states, disk usage, and
network traffic. The detailed description about those metrics
can be found on either PlanetLab monitoring site [23] or our
InfoScope monitoring site [24]. The metric sampling period is
10 seconds. We started the data collection since January 2009.
The dataset used in this set of experiments was collected from
Nov. 14th to Nov. 24th, 2009.

Our monitoring infrastructure is capable of capturing three
types of node anomalies: 1) ping failure: a host is not respon-
sive to successive five ping trials initiated by the management
node; 2) SSH failure: a node can not be accessed through “ssh”
command; and 3) monitoring sensor failure: the monitoring
sensor program running on that node crashed and cannot be
restarted. Each detected failure is recorded in a failure log with
the node name and timestamp. The system stores monitoring
metric data received from different nodes in separate log files.
We correlate the failure log with monitoring metric logs using
node name and failure start time. We label 100 records right
before each failure occurrence as “abnormal” and other records
as “normal”.

SMART disk failure data. Our second anomaly dataset is
SMART (self monitoring and reporting technology) data for a
collection of real-world disks [15]. The dataset contains time
series of SMART attributes collected by SMART incorporated
in most modern hard disk drives. In this dataset, there are
totally 369 distinct disks, 178 of which are labeled asgood
while the remaining 191 ones are labeled asfailed. Each disk
has a time-series of samples of SMART attribute values. Those

samples are collected at a nearly-regular interval of two hours.
Most good disks have approximately 300 samples. The number
of samples for those failed disks range from 10 to 300. This is
because for those failed disks, collected data may get corrupted
or even lost before failure occurrences.

In the SMART dataset, one sample originally consists of 59
attributes. We remove those attributes that are obviously not
useful for prediction, such as serial number, frame, and hours.

IBM System S anomaly data. We collected our third
anomaly trace on the IBM System S [3], a large-scale data
stream processing system running on a commercial cluster
consisting of about 250 blade servers. We run a complicated
multi-modal stream analysis reference application [25]. We
collected 21 system metrics with the sampling interval of two
seconds. The system anomalies include bottleneck anomaly,
throughput anomaly, and processing time anomaly. Those
anomalies are caused by various reasons such as memory leak,
CPU starvation, and buffer management error.

Evaluation metrics. We evaluate our anomaly prediction
algorithms in three aspects. First, we evaluate the feature value
prediction accuracy. We use themean prediction error(MPE)
to measure the deviation of true values from predicted values.
For a collected metricxi at timet, we know its current discrete
valueSt. We derive its future discrete valueS′

t+T with a lead
time T using the algorithm described in section 2.1. We then
transform the predicted discrete valueS′

t+T into a predicted
metric valuex′

i(t + T) using the average value of all data
samples inside the bin representing the discrete valueS′

t+T .
We calculate the mean prediction error for a metricxi for the
whole testing data setD as follows:

MPEi(T) = AV GD

(

|xi(t + T) − x′

i(t + T)|

xi(t + T)

)

(4)

Second, we evaluate the performance of the classifier using
the receiver operating characteristic(ROC) curve. The ROC
curve is often used to show the tradeoff between true positive
rate and false positive rate of a classification algorithm. To
draw a ROC curve, we change the value of thresholdδ in
Equation 1 for the naive Bayesian classifier and the value of
thresholdα in Equation 3 for the TAN classifier to generate
a series of (true positive rate, false positive rate) pairs.

Third, we evaluate the performance of the integrated
anomaly prediction algorithm using the standard true positive
rate Atp and false positive rateAfp metrics. Given a lead
time T , the anomaly prediction model infers a class label
ĉ(t + T) at time t for a future record~xt+T . On the other
hand,~xt+T has been annotated with its true labelc(t + T).
By comparing the predicted labelĉ(t + T) with the true label
c(t + T), we calculate true positivesNtp which corresponds
to the number of abnormal samples correctly predicted; true
negativesNtn which corresponds to the number of normal
samples correctly predicted; false positivesNfp which corre-
sponds to the number of normal samples mistakenly predicted
as abnormal; false negativesNfn which corresponds to the
number of abnormal samples mistakenly predicted as normal.
Thus, we can calculate the true positive rateAtp and false

10 40 70 90
0

5

10

15

20

25

lead time (s)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

equal−depth
hybrid
equal−width

(a) quantization scheme

10 40 70 90
0

5

10

15

20

25

lead time (s)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

M = 5
M = 10
M = 30

(b) quantization granularity

Fig. 3. Markov prediction error for PlanetLab data.

positive rateAfp in a standard way as follows,

Atp =
Ntp

Ntp + Nfn

, Afp =
Nfp

Nfp + Ntn

(5)

B. Results and Analysis

We now present our anomaly prediction results. For each
examined system, we first show the mean prediction error
of the Markov predictor under different parameters. We then
evaluate the naive Bayesian classifier and the TAN classifier
using ROC curves. Finally, we show the integrated anomaly
prediction accuracy under different lead time. We also report
the overhead of the anomaly prediction system.

1) PlanetLab Anomaly Prediction:We first examine failure
data collected on the PlanetLab. We focus on the host ping
failures since we find that SSH failures and sensor program
startup failures are rare. Host ping failures occur frequently
on the PlanetLab but with various frequencies and durations
on different hosts. We observe ping failures on nearly 400
PlanetLab nodes. The average number of occurrences for one
node is 15. The average duration of ping failures is 6 hours.
For each host, we use first half of the data as training and
second half as testing.

Figure 3(a) shows the MPE achieved by the feature value
prediction model using different discretization approaches.
Generally, MPE increases as the lead time becomes larger. We
observe that our Markov predictor achieves reasonable predic-
tion accuracy in all cases. The results show that our hybrid
discretization approach consistently achieves lower prediction
error than both the equal-width and equal-depth approaches.
Figure 3(b) shows the MPE of the feature value prediction
model using the hybrid discretization approach under different
number of bins. Among the threeM values, we observe
that the predictor achieves the best prediction accuracy when
M is 10. With a small number of bins (e.g.,M = 5),
the discretization scheme tends to group a large range of
data samples into one bin. As a result, the “representative”
value of one discrete bin may no longer be representative.
Even though the prediction in terms of the bin identifier is
correct, the difference between the metric’s true value and
the representative value of that bin in Equation 4 will be
large. On the other hand, with a large number of bins (e.g.,
M = 30), each bin is assigned with less training data. If the
training dataset is not large enough, the Markov chain will
get insufficiently trained. Thus, the predictor may make more

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

node1: ece.uprm.edu
node2: scsr.nevada.edu

(a) NaiveBayes

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

node1: ece.uprm.edu
node2: scsr.nevada.edu

(b) TAN

Fig. 4. Classification ROC curves for PlanetLab data.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (s)

ac
cu

ra
cy

true positive rate
false positive rate

(a) NaiveBayes + Markov

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (s)

ac
cu

ra
cy

true positive rate
false positive rate

(b) TAN + Markov

Fig. 5. Advance anomaly prediction accuracy for PlanetLab data.

mistakes when predicting bin identifier, which will also incur
larger feature value prediction error.

We then evaluate the performance of the naive Bayesian
classifier and the TAN classifier. When we use the classifier in
isolation, it means that we classify whether the current system
state exhibits abnormal behavior. Figure 4(a) and Figure 4(b)
show the ROC curves for two PlanetLab hosts as examples.
Optimal performance should be at the top left of each figure
with high true positive rate and low false positive rate. We
observe that our classifiers have good performances. Further-
more, the TAN model performs slightly better than the naive
Bayesian model.

We now evaluate the performance of our advance anomaly
prediction scheme shown by Figure 5(a) and Figure 5(b).
We average the results among five PlanetLab hosts and show
standard error bars for both true and false positive rates. We
have several observations: 1) our system can still achieve
reasonably good prediction accuracy for future system state;
2) prediction accuracy drops as the lead time becomes larger,
which indicates that predicting anomalies in more distant fu-
ture is more challenging; 3) TAN classifier has more predictive
power than the naive Bayesian classifier, and is more robust
under increasing lead time; 4) both algorithms are stable
with small standard error bars, which implies the anomaly
prediction algorithms are robust for different node failures.

2) SMART Anomaly Prediction:We now present the
anomaly prediction results for the SMART dataset. We split
the original SMART dataset into six subsets, each of which
contains failed and normal disks. Therefore, we conduct six-
fold cross-validation for all related experiments. First, we
show the impact of different configurations on the prediction
accuracy of the Markov predictor in Figure 6(a) and Figure
6(b). Again, we observe that our hybrid discretization approach

2 8 14 18
0

5

10

15

20

25

30

35

40

lead time (hours)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

equal−depth
hybrid
equal−width

(a) quantization scheme

2 8 14 18
0

10

20

30

40

50

60

70

lead time (hours)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

M = 5
M = 10
M = 30

(b) quantization granularity

Fig. 6. Markov prediction error for SMART data.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

worst subset
average
best subset

(a) NaiveBayes

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

worst subset
average
best subset

(b) TAN

Fig. 7. Classification ROC curves for SMART data.

consistently performs better than the other two approaches.
Particularly, the equal-width discretization yields much higher
prediction error than the other two approaches in the SMART
dataset. The reason is because some SMART metrics have a
wide range of values. The equal-width discretization tends to
make the range of each bin very big. Therefore, one specific
data sample may be numerically far away from the representa-
tive value of its bin, especially when the bin contains a small
number of training samples. Similarly, the prediction accuracy
is the highest whenM is neither too small nor too big. For the
similar reason as that of the equal-width discretization scheme,
the prediction accuracy with bin number equalling to five is
much worse than the other two cases.

Figure 7(a) and Figure 7(b) show the ROC curves of the
naive Bayesian classifier and the TAN classifier. We show
the best and the worst data subsets as well as the average
result. For the SMART dataset, low false positive rate is
favored since it is costly to replace a good hard drive that is
incorrectly predicted to crash soon. We observe that both naive
Bayesian classifier and TAN classifier can achieve reasonable
detection rate while keeping the false alarm rate very low.
ROC curves also implies that we can adjust the threshold to
trade-off true and false positive rates. However, different from
the previous set of experiments, we observe that the TAN
classifier performs worse than the naive Bayesian classifier this
time. The reason is that the conditional probabilities of some
metrics in the TAN model depends on not only the class label
but also other metrics. In the SMART dataset, some metrics
have large value range and the distribution of different bins can
be very imbalanced. Thus, the estimation of some conditional
probabilities become unreliable when some of the metric bins
contain very few training samples. This problem is not so acute
in the case of the naive Bayesian classifier since it assesses the

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (hours)

ac
cu

ra
cy

true positive rate
false positive rate

(a) NaiveBayes + Markov

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (hours)

ac
cu

ra
cy

true positive rate
false positive rate

(b) TAN + Markov

Fig. 8. Advance anomaly prediction accuracy for SMART data.

conditional probability only based on the class variable, and
the values of the class variables are adequately represented in
the SMART dataset.

Figure 8(a) and Figure 8(b) show the performance of
the integrated anomaly prediction algorithms using the naive
Bayesian classifier and TAN classifier, respectively. Since the
TAN model has worse classification accuracy than the naive
Bayesian model, the prediction accuracy also exhibits the same
trend. The prediction model using the naive Bayesian classifier
can achieve 85-80% true positive rate and 2-9% false positive
rate for a lead time of up to 18 hours.

3) System S Anomaly Prediction:We now present the ad-
vance prediction results for the System S dataset. Different
from previous two systems, this set of experiments focus
on performance anomalies (e.g., prolonged processing time,
low throughput) caused by various faults such as insufficient
resources or program bugs. We collected data from six hosts
so that we use six-fold cross-validation in the experiments.

Figure 9(a) and 9(b) show the feature value prediction ac-
curacy under different discretization schemes and quantization
granularity, respectively. Again, we observe that the hybrid
discretization scheme using 10 discrete bins achieve the best
prediction accuracy.

In Figure 10(a) and Figure 10(b), we show the accuracy
of the naive Bayesian classifier and the TAN classifier for
detecting a performance anomaly caused by a memory leak
bug fault. We set the service level objectives (SLOs) in ad-
vance and label collected metric vectors with SLO violation
or compliance. We observe that both classifiers achieve nearly
perfect performance.

Figures 11(a) and 11(b) show the accuracy of the two
integrated anomaly prediction models for predicting System
S performance anomalies. We observe that both prediction
models can achieve very good prediction accuracy for the
System S performance anomaly dataset.

We now evaluate the overhead of our online anomaly pre-
diction model. Table I shows the average training time and
prediction time of the two prediction models. The training time
includes the time of building the Markov model and inducing
the anomaly symptom classifier. The prediction time includes
the time to retrieve state transition probabilities, calculate pos-
terior probabilities, and synthesize the classification result for
a singe data record. These statistics are collected over 100 dif-
ferent experiment runs. We observe that the total training time

2 8 14 18
0

5

10

15

20

25

30

35

lead time (s)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

equal−depth
hybrid
equal−width

(a) quantization scheme

2 8 14 18
0

5

10

15

20

25

lead time (s)

m
ea

n
pr

ed
ic

tio
n

er
ro

r
(%

)

M = 5
M = 10
M = 30

(b) quantization granularity

Fig. 9. Markov prediction error for System S data.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

worst subset
average
best subset

(a) NaiveBayes

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

worst subset
average
best subset

(b) TAN

Fig. 10. Classification ROC curves for System S data.

is within several hundreds of milliseconds and the prediction
requires less than 150 microseconds. We notice that the naive
Bayesian classifier is faster than the TAN classifier in both
training and prediction. The above overhead measurements
show that our approach is practical for performing online
prediction of system anomalies.

There are several other factors that may affect the perfor-
mance of our anomaly prediction scheme. First, the prediction
accuracy depends on the amount and the quality of training
data (i.e., prediction model bootstrapping). Ideally, the training
dataset should be large enough to cover all pre-anomaly symp-
toms. Second, the prediction accuracy can be improved by pro-
viding adaptability to dynamic execution environments [26].
We plan to further refine our anomaly prediction model along
those directions in future work.

IV. RELATED WORK

System anomaly prediction has recently received much re-
search attention. Previous work can be classified into three
categories: data-driven, symptom-driven and event-driven ap-
proaches. Data-driven methods [27] learn and classify recur-
ring failure patterns from historical data. Symptom-based ap-
proaches [28], [29] evaluate periodic measurements of system
parameters such as memory consumption, input workload,
number of processes. Event-based methods [30], [31], [32],
[33] directly analyze time series of error events. Different
from previous work, our research focuses on black-box online
failure prediction by combining feature value prediction with
statistical anomaly classification. Our work is closely related
to the Tiresias system [34] which also proposed a block-box
failure prediction solution for distributed systems. However,
one major difference is that Tiresias first applies anomaly
detection on individual metrics to generate a vector of feature

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (s)

ac
cu

ra
cy

true positive rate
false positive rate

(a) NaiveBayes + Markov

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lead time (s)

ac
cu

ra
cy

true positive rate
false positive rate

(b) TAN + Markov

Fig. 11. Advance anomaly prediction accuracy for System S data.

time / scheme NaiveBayes + Markov TAN + Markov
training time 412±1.5 ms 510±2 ms

prediction time 105±0.01 us 125±0.02 us

TABLE I
ANOMALY PREDICTION SYSTEM COST.

anomalies, and then use clustering method to predict failures.
Thus, the accuracy of failure prediction depends on accu-
rate anomaly detectors to generate correct anomaly vectors.
In contrast, our approach does not require feature anomaly
detectors but combines feature value prediction with whole
system classification using user-defined anomaly predicates.

Recently, statistical learning methods have been shown to
be promising for autonomic failure management. Cohen et
al. proposed to apply the TAN model to correlate system-
level metrics to system states [6], and capture the essential
characteristic called signature of a system state [16]. Chen
et al. explored a decision tree learning approach to diagnose
failures [35]. Several machine learning techniques have been
used to correlate disk failures with SMART parameters [36],
[15]. In comparison, we focus on exploring online learning
techniques for classifying future system state.

Considerable research efforts have been conducted on sys-
tem log analysis. Lin and Siewiorek studied a 22-month log for
identifying transient and intermittent error processes [30]. Sa-
hoo et al. evaluated the rule-based classification and Bayesian
networks for failure prediction on an IBM cluster [37]. Liang
et al. collected RAS event logs from BlueGene/L and proposed
three prediction schemes based on the correlations between
failure occurrences [38]. Xu et al. proposed a console log
mining algorithm to detect runtime problems in Hadoop file
system [39]. In comparison, our work focuses on online char-
acterization of black box system anomalies using performance
and resource metrics.

Mickens et al. presented several statistical analysis methods
for predicting host availability [40]. Power et al. investigated
the predictive power of different statistical schemes and learn-
ing approaches [41]. Schroeder et al. studied failure statistics
in a large-scale high-performance computing system [42].
Pinheiro et al. conducted a comprehensive statistical study on
failure trends in a large disk drive population [43]. Javadi et
al. discovered statistical models of host availability in a large-
scale distributed system SETI@home [44]. Different from the
above work, this work focuses on quantifying the predictability
of real-world system anomalies.

V. CONCLUSIONS

In this paper, we have presented a comprehensive measure-
ment study to quantify the predictability of various system
anomalies: PlanetLab host ping failures, SMART disk failures,
and IBM System S performance anomalies. We have devel-
oped an integrated anomaly prediction scheme that combines
efficient feature value prediction with statistical classification
methods. To the best of our knowledge, our work makes
the first attempt to quantify the tradeoff between prediction
accuracy and prediction lead time using real world system
anomalies. Our experimental results show that real world
system anomalies do exhibit predictability and our anomaly
predictor can achieve high prediction accuracy with significant
lead time.

ACKNOWLEDGMENT

This work was sponsored in part by NSF CNS0915567
grant, NSF CNS0915861 grant, U.S. Army Research Office
(ARO) under grant W911NF-08-1-0105 managed by NCSU
Secure Open Systems Initiative (SOSI), IBM Exploratory
Stream Analytics Award, and IBM Faculty Award. Any opin-
ions expressed in this paper are those of the authors and do
not necessarily reflect the views of the NSF, ARO, or U.S.
Government. The authors would like to thank the anonymous
reviewers for their insightful comments.

REFERENCES

[1] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2/.
[2] “Virtual Computing Lab,” http://vcl.ncsu.edu/.
[3] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE: the

system s declarative stream processing engine,” inProc. of SIGMOD,
2008.

[4] E. Kiciman and A. Fox, “Detecting Application-Level Failures in
Component-based Internet Services,”IEEE Transactions on Neural Net-
works, 2005.

[5] J. M. Agosta, C. Diuk, J. Chandrashekar, and C. Livadas, “An Adaptive
Anomaly Detector For Worm Detection,” inProc. of sysML, 2007.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase, “Cor-
relating Instrumentation Data to System States: A Building Block for
Automated Diagnosis and Control,” inProc. of OSDI, Dec. 2004.

[7] J.Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Triage: Diagnosing
production run failures at the user’s site,” inProc. of SOSP, 2007.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot- A Technique for Cheap Recovery,” inProc. of OSDI,
Dec. 2004.

[9] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi, “Anal-
ysis and Implementation of Software Rejuvenation in Cluster Systems,”
in Proc. of SIGMETRICS, 2004.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Detecting Past and Present Intrusions Through Vulnerability-Specific
Predicates,” inProc. of SOSP, Oct. 2005.

[11] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards automated
detection of application performance anomaly and change,” inProc. of
DSN, 2008, pp. 452–461.

[12] J. Breese and R. Blake, “Automating computer bottleneck detection with
belief nets,” inProc. of UAI. San Francisco, CA: Morgan Kaufmann,
1995, pp. 36–45.

[13] X. Gu and H. Wang, “Online Anomaly Prediction for Robust Cluster
Systems,” inProc. of ICDE, Apr. 2009.

[14] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the internet,” inProc. of HotNets-
I, Princeton, New Jersey, October 2002.

[15] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, “Machine learning
methods for predicting failures in hard drives: A multiple-instance
application,” Journal of Machine Learning Research, vol. 6, pp. 783–
816, 2005.

[16] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history,” inProc.
of SOSP, 2005, pp. 105–118.

[17] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian classi-
fiers,” in Proc. of AAAI, 1992, pp. 223–228.

[18] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-
sifiers,” Machine Learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[19] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,”IEEE Trans. Information Theory, pp. 462–467,
Nov. 1968.

[20] A. W. F. Edwards, “The measure of association in a 2x2 table,”Journal
of the Royal Statistical Society. Series A (General), pp. 109–114, 1963.

[21] “Computer Failure Data Repository,” http://cfdr.usenix.org/.
[22] Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M. Wamboldt, “Self-Correlating

Predictive Information Tracking for Large-Scale Production Systems,”
in Proc. of ICAC, Jun. 2009.

[23] “CoMon,” http://comon.cs.princeton.edu/.
[24] “InfoScope Distributed Monitoring System,”

http://dance.csc.ncsu.edu/projects/infoscope/index.html.
[25] K.-L. Wu and et al., “Challenges and experience in prototyping a multi-

modal stream analytic and monitoring application on system S,” inProc.
of VLDB, 2007, pp. 1185–1196.

[26] Y. Tan, X. Gu, and H. Wang, “Adaptive System Anomaly Prediction for
Large-Scale Hosting Infrastructures,” inProc. of PODC, 2010.

[27] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M. Weiss,
“Predictive algorithms in the management of computer systems,”IBM
Systems Journal, 2002.

[28] R. Singer, K. G. andJ.P. Herzog, R. King, and S. Wegerich, “Model-
based nuclear power plant monitoring and fault detection: Theoretical
foundations,” inProc. of ISAP, jul 1997, pp. 60–65.

[29] S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. Trivedi, “A methodol-
ogy for detection and estimation of software aging,”Software Reliability
Engineering, International Symposium on, pp. 282–292, 1998.

[30] T.-T. Lin and D. Siewiorek, “Error log analysis: statistical modeling
and heuristic trend analysis,”Reliability, IEEE Transactions on, vol. 39,
no. 4, pp. 419 –432, oct 1990.

[31] F. Salfner, M. Schieschke, and M. Malek, “Predicting failures of com-
puter systems: a case study for a telecommunication system,” inProc.
of IPDPS, 2006.

[32] B. Eckart, X. Chen, X. He, and S. L. Scott, “Failure prediction models
for proactive fault tolerance within storage environments,” inProc. of
MASCOTS, 2008, pp. 181–188.

[33] F. Salfner and M. Malek, “Using hidden semi-markov models for
effective online failure prediction,” inProc. of SRDS, 2007, pp. 161–174.

[34] A. W. Williams, S. M. Pertet, and P. Narasimhan, “Tiresias: Black-box
failure prediction in distributed systems,” inProc. of IPDPS, 2007.

[35] M. Y. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. A. Brewer,
“Failure diagnosis using decision trees,” inProc. of ICAC, 2004.

[36] G. Hamerly and C. Elkan, “Bayesian approaches to failure prediction
for disk drives,” inProc. of 18th ICML, 2001, pp. 202–209.

[37] R. K. Sahoo and et al., “Critical event prediction for proactive manage-
ment in large-scale computer clusters,” inProc. of SIGKDD, 2003.

[38] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” inProc. of DSN,
2006.

[39] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” inProc. of SOSP,
2009, pp. 117–132.

[40] J. W. Mickens and B. D. Noble, “Exploiting availability prediction in
distributed systems,” inProc. of NSDI, 2006.

[41] R. Powers, M. Goldszmidt, and I. Cohen, “Short term performance
forecasting in enterprise systems,” inProc. of KDD, 2005, pp. 801–807.

[42] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” inProc. of DSN, 2006, pp. 249–258.

[43] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large
disk drive population,” inProc. of FAST ’07, Feb. 2007.

[44] B. Javadi, D. Kondo, J.-M. Vincent, and D. Anderson, “Mining for
statistical models of availability in large-scale distributed systems: An
empirical study of seti@home,” inProc. of MASCOTS, sept. 2009.

