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ABSTRACT

We present a literature review on the problem of camera network topology discovery,
focussing on its two main types: overlapping and non-overlapping camera fields of
view. These two problems are fundamentally different and each requires a specifically
tailored approach. We describe the most popular approaches for each problem and
analyse their suitability for our project.
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Camera Network Topology Discovery Literature Review

Executive Summary

The INVS (Intelligent Networked Video Surveillance) project has been ongoing in the ISRD IAE
Group since 2007. The 2010-2011 year of the project focuses on multi-camera tracking and match-
ing. The aim is to demonstrate a live camera handover system for a network of about 10 cameras
with both overlapping and non-overlapping views. Hence an important decision in this project is
how to handle camera network topology discovery.

Here we present a literature review on the problem of camera network topology discovery,
focussing on its two main types: overlapping and non-overlapping camera fields of view. These
two problems are fundamentally different and each requires a specifically tailored approach. We
describe the most popular approaches for each problem and analyse their suitability for this project.
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1 Introduction

Cameras are becoming cheaper and smaller day by day. There are cameras in most cell phones,
surveillance cameras in subway stations, busy streets and shopping malls. There are even cameras
on satellites and trucks.1

A camera network is a set of cameras (ten or as many as hundreds) monitoring some envi-
ronment for a particular purpose. Camera networks may be the best way to obtain time-critical
information in situations where the safety of human lives is at stake, such as, terrorist attacks in
a busy subway/airport, natural disaster sites or urban combat zones. Camera networks will be
essential for 21st century military, enviromental and surveillance applications [Devarajan, Cheng
& Radke 2008].

Computer networks pose several research challenges to the direct application of traditional
computer vision algorithms. Firstly, computer networks usually contain tens to hundreds of cam-
eras, which is many more than is considered in many vision applications. These cameras are likely
to be spread over a wide geographical area. Until recently, research on computer networks was
conducted in controlled environments, where the cameras were fixed and their relation to each
other was known. Nowadays it is assumed that cameras may be moved intentionally or acciden-
tally (by being bumped) and that their configuration is not known.

Manual inspection is an inefficient and unreliable way to monitor large camera networks, es-
pecially when one needs to follow a moving target in a crowded scene. In response to this, several
systems have been developed to automate the inspection task. A key part of any camera network is
to understand the spatial relationships between cameras in the network. In early surveillance sys-
tems, this information was manually specified or derived during camera calibration. This process
is error prone and time consuming. Furthermore, it is not robust as cameras may go down or get
moved during the observation period. Hence automatic network topology discovery methods are
required.

2 Topology Estimation

There are two main types of topology estimation problems [Radke 2010]: overlapping and non-
overlapping. In the overlapping problem it is assumed that the cameras observe parts of the same
environment from different perspectives. The relationship between the cameras can be modeled as
an undirected graph, called the vision graph (see Section 2.1). The vision graph contains an edge
between two cameras if they observe some (or all) of the same scene.

In the non-overlapping problem it is assumed that no two cameras observe the same part of
the environment. Relationships between the cameras are induced by the likelihood that an object
in one camera appears in another after some amount of time. These relationships can be modeled
with an undirected graph called the communication graph, where edge weights correspond to
transition probabilities and times (see Section 2.2).

The vision and communication graphs (and their computation) are fundamentally different.
Consider the hypothetical network of ten cameras in Figure 1 [Devarajan, Cheng & Radke 2008].

1Google Maps trucks record 360◦ video as they drive around cities.
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The presence of an edge in the communication graph does not imply the presence of the same edge
in the vision graph, since nearby cameras may be pointed in different directions (e.g., cameras A
and C). Similarly, cameras looking at the same scene may be physically distant (e.g., cameras C
and F).

Some researchers do not construct the vision nor communication graphs explicitly. Instead,
they model the transition probabilities and expected transition times between different regions of
camera views. Such models allow one to derive both the vision and the communication graphs
(see Section 2.3).

Figure 1: (a) A camera network with ten cameras (A-K) and their corresponding fields of view.
(b) The associated communication graph. (c) The associated vision graph.

2.1 Vision Graph Estimation

Mandel, Shimshoni & Keren [2007] describe a simple algorithm for estimating the vision graph
based on motion detection. The authors apply the sequential probability ratio test (SPRT) to ac-
cept/reject the possibility that two cameras observe the same scene based on the correspondence
(or lack thereof) of the aggregated detections. Although the algorithm is simple, the method is not
fully validated as it is only tested on a toy 3-camera network.

Van Den Hengel et al. [2007] begin by assuming that the vision graph is fully connected.
Edges that contradict observed evidence are removed. In particular, an edge between two regions
is removed if one camera observes movement while the other does not (in the same moment in
time). The authors describe an efficient algorithm that learns the near-optimal topology of a large
100-camera network in just one hour of footage. The algorithm is robust as it is not affected
by varying lighting conditions, camera angles and size of moving objects. Some examples of
matching camera views are shown in Figure 2.

Devarajan, Cheng & Radke [2008] estimate the vision graph by matching features across cam-
era views. First, each camera detects a set of distinctive feature points in its image that are likely to
match other images of the same scene. Both the number of features and the length of each feature
descriptor are summarised in a fixed-length structure called a feature digest. Each camera matches
its own feature digest with those of other cameras. An edge in the vision graph is established if
enough matches are found. The feature digest of an image is based on the popular and successful
scale-invariant feature transform (SIFT) detector/descriptor proposed by Lowe [2004]. In particu-
lar, the feature digest is a compressed subset of SIFT features that are both distinctive and spatially
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Figure 2: Groups of images whose views are overlapping. The edges of the vision graph are
shown in green.

well distributed across the image. The paper analyzes the tradeoffs between the size of the feature
digest, the number of transmitted features, the level of compression and the overall performance
of edge generation.

2.2 Communication Graph Estimation

Marinakis & Dudek [2006] use a stochastic version of the Expectation-Maximization algorithm
to learn plausible agent trajectories. The approach uses only detection events from the deployed
sensors (equivalent to motion detection in video). The model assumes that the network is tra-
versed by a fixed number of agents (up to 10), which travel between sensor nodes, as well as,
an external sink node. Results obtained from simulations and experimental data suggest that the
technique produces accurate topology graphs under a variety of conditions and compares well to
other approaches.

Marinakis, Giguère & Dudek [2007] present a simple topology estimation algorithm that relies
purely on the order of detection events in each camera (rather than their timestamps). The key idea
is to find the smallest graph that successfully explains the observed data. Assuming that there are
N agents in the environment, the algorithm considers all possible trajectories (paths) that could
be taken by these agents. It then constructs the smallest graph that can explain every such path.
Interestingly, when the problem is formulated in this way it is equivalent to set-covering, which
is known to be NP-complete. The authors show that a simple greedy heuristic works well, even
better than a more sophisticated statistical approach. The algorithm is accurate on small simulated
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networks. However, no real experiments are performed and problems arise when N is smaller than
the true number of agents.

2.3 Combined Graph Estimation

Makris, Ellis & Black [2004] exploit temporal correlations in observations of agents’ movements
through the network. The authors use Expectation-Maximization (EM) to learn a Gaussion Mix-
ture Model (GMM) that models links between entry/exit zones. For each camera view, a set of
entry/exit zones is automatically learnt [Makris & Ellis 2003].2 A cross-correlation value is com-
puted for each possible link from an exit zone i to an entry zone j. If the cross-correlation has
a clear peak then there is a real link between i and j. Additionally, estimates of the transition
times and probabilities can be extracted from the cross-correlation. If a link is detected between
the zones of two cameras, then the two cameras are either adjacent (in the communication graph)
or overlapping (edge in the vision graph). In particular, the two cameras are overlapping if the
transition time is approximately zero; otherwise the target moves through an unseen path and so
the cameras are adjacent in the communication graph. The experimental results look promising.

Correlation is effective for monotonic relationships in general, but is not flexible enough to
handle multi-modal distributions. Such relationships can occur, for example, when both cars and
pedestrians are part of the observations. In general, the more dense the observations and the longer
the transition time, the more false correspondences will be generated by the method. With this in
mind, Tieu, Dalley & Grimson [2005] improve the approach of Makris, Ellis & Black [2004]. They
use more flexible, multi-modal transition distributions, and explicitly handle correspondence. This
is accomplished by using mutual information as a (more general) measure of statistical dependence
to estimate object correspondence. The approach makes few assumptions and does not require
supervision.

3 Avoiding Topology Estimation

Camera network topology estimation is a non-trivial task that remains unsolved for a large num-
ber of cameras and complex activity patterns, such as those in a crowded public scene. Recently
Wang, Tieu & Grimson [2010] proposed a method which bypasses the topology inference and
correspondence problem. They use Latent Dirichlet Allocation (LDA)3 to cluster trajectories into
activities and model paths commonly taken by objects across multiple camera views. The method
has few restrictions on the camera topology, the structure of the scene and the number of cameras.
Evaluation is performed on two large real data sets, each of which contains more than 14,000
trajectories. On the downside, the method is limited to learning relationships among activity pat-
terns; any temporal relationships are not discovered automatically, instead they are determined by
a pre-defined temporal threshold.

Loy, Xiang & Gong [2009a] model the dependencies between activities across camera views
with a time delayed probabilistic graphical model (TD-PGM). The nodes of the graphical model

2Naive K-means is used to cluster starting and ending points of object trajectories into entry/exit regions [Makris &
Ellis 2003].

3LDA is a new standard for document analysis. The model uses multivariate beta distributions to model the rela-
tionships between words, documents and topics.
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represent activites in different semantically decomposed regions from different camera views,
while its directed edges encode causal relationships between these activities. The proposed ap-
proach is effective in a 9-camera network installed in a busy train station with complex and diverse
scenes, such as, long queues at a ticket office, concourse, train platforms and escalators (see Figure
3). Incredibly the method works on low-quality 320 × 230 video running at a mere 0.7 frames per
second. Note that the method is rather complex, requiring a two-stage structure learning algo-
rithm. A simpler algorithm solving the same task is found in their earlier paper [Loy, Xiang &
Gong 2009b].

Figure 3: The learned activity dependency graph. Edges are labeled with their associated time
delays. Regions and nodes with discovered inter-camera dependencies are highlighted.

4 Discussion

The aim of the INVS project for the year 2010-2011 is to demonstrate a live camera handover
system for a network of about 10 cameras with both overlapping and non-overlapping views. To
this end, we believe there are three possible options for this project:

1. Model both the vision and communication graphs independently.

2. Model a combined graph (see Section 2.3) that allows one to derive the vision and commu-
nication graphs.

3. Avoid topology estimation entirely (see Section 3).

As we move down the above list, the robustness and the generality of the methods increase. How-
ever, there is a price to pay — the methods become considerably more complex, especially in
option 3.

As far as option 1 is concerned, the construction of the two graphs differ widely. The construc-
tion of the vision graph can be considered simpler as it can be solved by matching features (e.g.,
movement, SIFT) across camera views. The communication graph, on the other hand, requires
one to use sophisticated tools to model transition probabilities and time delays.

Overall it seems that option 2 is best as it achieves a good balance between method generality
and implementation complexity.
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