UNCLASSIFIED

Australian Government

Department of Defence
Defence Science and
Technology Organisation

Fuzzing: The State of the Art

Richard McNally, Ken Yiu, Duncan Grove and Damien
Gerhardy

Command, Control, Communications and Intelligence Division

Defence Science and Technology Organisation

DSTO-TN-1043

ABSTRACT

Fuzzing is an approach to software testing where the system being tested is
bombarded with test cases generated by another program. The system is then
monitored for any flaws exposed by the processing of this input. While the
fundamental principles of fuzzing have not changed since the term was first
coined, the complexity of the mechanisms used to drive the fuzzing process
have undergone significant evolutionary advances. This paper is a survey of
the history of fuzzing, which attempts to identify significant features of fuzzers
and recent advances in their development, in order to discern the current state
of the art in fuzzing technologies, and to extrapolate them into the future.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO-TN-1043 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: — (08) 7389 5555
Facsimile: (08) 1389 6567

© Commonwealth of Australia 2012
AR No. 015-148
February, 2012

APPROVED FOR PUBLIC RELEASFE

ii UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Fuzzing: The State of the Art

Executive Summary

Fuzzing is an approach to software testing where the system being tested is bombarded
with test cases generated by another program. The system is then monitored for any
flaws exposed by the processing of this input. Whilst such a simplistic approach may
sound naive, history has shown fuzzing to be surprisingly effective at uncovering flaws in
a wide range of software systems.

This combination of simplicity and effectiveness led to the wide adoption of fuzzing
based approaches within the software attacker community around the turn of this century.
Early fuzzing implementations tended to be relatively simple, constructing test cases from
a sequence of random numbers. Driven by a desire to test increasingly sophisticated
systems, the complexity of fuzzing implementations has increased to the point where
there are now several recognisable classes of fuzzer, each with their own strengths and
weaknesses.

With its effectiveness established, it was only a matter of time before fuzzing was in-
corporated into software development best practices and used as part of a software test
and defensive coding regime. Several companies have developed and released commercial
fuzzing tool suites, including fuzzing support for large numbers of computer protocols.
This, in addition to research activies within both the academic and commercial spheres,
suggests that fuzzing techniques will continue to evolve, and fuzzing will remain an im-
portant tool for vulnerability discovery in the future.

This paper is a survey of the history of fuzzing, which attempts to identify significant
features of fuzzers and recent advances in their development.

UNCLASSIFIED

iii

DSTO-TN-1043 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Authors

Richard McNally

Command, Control, Communications and Intelligence Division

Richard McNally was awarded a B.Sc. Hons in Computer
Science in 1999 from James Cook University in Townsville,
Queensland. He joined DSTO’s Advanced Computer Capa-
bilities Group in 2000 and currently works in the Command,
Control, Communications and Intelligence Division’s Informa-
tion Operations Branch.

Ken Yiu

Command, Control, Communications and Intelligence Division

Ken Yiu was awarded a B.Sc (Applied Maths and Computer
Science) in 1993, and a B.E. (Elec.)(Hons) from the University
of Adelaide in 1994. He joined DSTO in 1994 and has worked in
Trusted Computer Systems and Advanced Computer Capabil-
ities Groups. He now works in Information Operations Branch
in Command, Control, Communications and Intelligence Divi-
sion.

Duncan Grove
Command, Control, Communications and Intelligence Division

Dr Duncan Grove graduated with first class honours in Com-
puter Systems Engineering from the University of Adelaide in
1997, and received a PhD in Computer Science from the same
institution in 2003. Following his doctoral studies he joined
DSTO’s Advanced Computer Capabilities Group where he led
the Annex long range research task, which developed Multi
Level Security devices and next generation networking tech-
nologies. He recently joined DSTO’s newly formed Parallax
Project where he is continuing to apply his interests in com-
puter security.

UNCLASSIFIED v

DSTO-TN-1043

UNCLASSIFIED

Damien Gerhardy
Command, Control, Communications and Intelligence Division

Damien Gerhardy was awarded a Bachelor of Computer Sci-
ence in 1999 from Adelaide University, South Australia and
now works in the Information Operations Branch.

vi

UNCLASSIFIED

Glossary

UNCLASSIFIED

Contents

1 Introduction

2 The Evolution of Fuzzing

2.1

2.2

Fuzzing at University of Wisconsin-Madison

2.1.1 Fuzzing UNIX
2.1.2 Fuzzing Revisited
Wider Adoption

3 Fuzzer Concepts

3.1
3.2

Anatomy of a Fuzzer

Fuzzer Terminology

4 The Case for Fuzzing

4.1
4.2

Why Fuzz?

Strengths and Weaknesses of Classical Fuzzing

5 A Description of Fuzzer Types

5.1
5.2
5.3
5.4

Fuzz Generators
Delivery Mechanisms
Classical Monitoring Systems

Modern Fuzzers

6 Experiences

7 Conclusions

7.1
7.2

The State of the Art

Fuzzing in the Future

A Literature Survey

Automatic Generation of Test Cases
An Empirical Study of the Reliability of UNIX Tools
A Re-examination of the Reliability of UNIX Utilities and Services
The Robustness of Windows NT Applications Using Random Testing

UNCLASSIFIED

DSTO-TN-1043

ix

10

.......... 10
............... 11

13

.......... 13
.......... 15
.......... 16
.......... 17

20

22

.......... 22
.......... 22

vii

DSTO-TN-1043 UNCLASSIFIED

viii

Leveraging Control Flow for Evolutionary Input Crafting
Grey-box Attack Surface Testing with Evolutionary Fuzzing
KLEE: Unassisted Generation of for Complex Systems Programs
Automated Whitebox Fuzz Testing
Grammar-based Whitebox Testing
Experiences with Model Inference Assisted Fuzzing
Taint-based Directed Whitebox Fuzzing
Configuration Fuzzing for Software Vulnerability Detection
TaintScope: Checksum-Aware Directed Fuzzing
Finding and Understanding Bugs in C Compilers

Automatic Exploit Generation L

B Tools & Frameworks
B.1 Codenomicon DEFENSICS (2001-present)
B.2 beStorm and Mu Dynamics
B.3 SPIKE (2001-present)
B.4 Valgrind (2004-present)
B.5 The Art Of Fuzzing (TAOF) (2006-2009)
B.6 Peach (2006-present)

B.7 General Purpose Fuzzer (GPF) (2007-present)

B.8 Sulley (2008-present)

B.9 Flashboom (2009)

B.10 Spider Pig (2010-present) oo
C Experimental Results

C.1 Peach e
References

UNCLASSIFIED

33
34
34
34
34
34
35
35
35
36
36

37
37

41

UNCLASSIFIED DSTO-TN-1043

Glossary

Attack Surface That portion of a software system which is exposed to the user. Users
can attempt to influence the system’s state by varying their interaction with the
Attack Surface.

Black-Box This approach considers that the system being tested is a black-box - i.e.
that it has visible inputs and outputs and its presence can be determined, but the
interior state and implementation of the system are not visible.

Classical Fuzzer A fuzzer which obeys the Black-Box assumption.

EFS Evolutionary Fuzzing System - extends General Purpose Fuzzer (GPF) by using a
Genetic Algorithm for data generation.

GPF General Purpose Fuzzer - an early extensible fuzzing framework used as the basis
for EFS. GFS can take network packets and generate semi-valid packets based on
various methods.

Grey-Box Unlike black-box, some of the internal workings of the system can be ascer-
tained and are used by the fuzzer. However, the information available is incomplete.

Flaw A mistake in the design or implementation of a system that leads to incorrect be-
haviour. It is commonly accepted that nearly all complex systems contain flaws,
though in many cases the incorrect behaviour is only exhibited under some circum-
stances.

Fuzzer A piece of software used to test systems by presenting the system being tested
with inputs produced as the result of of an algorithmic process (including random
input).

Highly Structured Input Many systems use multiple passes to process input. For ex-
ample a compiler will successfully complete the lexical analysis stage before moving
on to parsing and then semantic analysis.

Modern Fuzzer A Fuzzer which relaxes the Black-Box assumption and has some method
of monitoring the internal state of the system being fuzzed.

Oracle An Oracle in the fuzzing context is a software component that supplies the cor-
rect /expected output of an action. It is most often used to validate the output from
the System Under Test. See Test Case.

RE Reverse Engineering - The process of deriving the internal structure, processes or
data formats of a system or program. Some of the Reverse Engineering tools the
fuzzing community builds upon includes debuggers, disassemblers, static/structural
analysis tools and code graph visualisation tools.

Semi-Valid Data Fuzzing data which has been post-processed to make it resemble valid
data. Examples of this includes data which correctly obey message formats, have
correct length fields, or correct checksums.

SUT System Under Test - This is the program or system being tested.

UNCLASSIFIED

ix

DSTO-TN-1043 UNCLASSIFIED

Test Case A collection of input fed to the System Under Test in order to test it. A test
case can succeed or fail, with failure indicating the presence of a flaw. Good test
cases (when manually crafted) include the expected output value of the test in the
case (Myers 2004); this is optional for fuzzers.

White-Box The fuzzer has access to and uses a relatively complete understanding of the
internal operations of the SUT in the fuzzing process.

Vulnerability This is a flaw which is exploitable. Software containing a vulnerability
can be made not only to crash, but to execute commands under the control of an
attacker.

X UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

1 Introduction

Fuzzing is an approach to software testing whereby the system being tested is bombarded
with test cases generated by another program. The program is then monitored, in the
hope of finding errors that arise as a result of processing this input.

In the early days of fuzzing these test cases consisted of a simple stream of random
bytes. Although an approach based on directing random data towards a program’s inter-
faces might seem naive, it proved to be surprisingly effective at uncovering bugs (Miller,
Fredriksen & So 1990). It is perhaps even more surprising that fuzzing techniques continue
to be effective to this day, as attested to by the level of fuzzing related activity on security
mailing lists like BugTraq®.

This paper discusses the history of fuzzing, from its roots in academia, through its
enthusiastic adoption by the black-hat community, to its acceptance as part of corporate
software testing best practices. It begins by looking at the evolution of fuzzing in section
two. Section three presents a fuzzer anatomy and guide to terminology commonly used in
the field. Section four presents a discussion of relative merits of fuzzing and section five
discusses the different types of fuzzer. Section six describes the authors’ experiences in
attempting to use some of the existing fuzzers and frameworks. Section seven summarizes
the state of the art and attempts to extrapolate future trends in fuzzing.

While this work attempts to combine input from a variety of sources, the input is
predominantly drawn from academic papers and tools and documentation from the black-
hat community. Summaries of many of these papers and tools are presented in Appendices
A and B respectively. A small number of examples using these tools are also documented
in Appendix C. Given the vast array of fuzzing tools available (and the limited nature
of some of the proof-of-concept fuzzers which only illustrate a single concept), only the
significant fuzzers are covered in this discussion.

!see http://www.securityfocus.com/archive/1/description

UNCLASSIFIED 1

DSTO-TN-1043 UNCLASSIFIED

2 The Evolution of Fuzzing

This section attempts to provide an overview of the history of fuzzing. Rather than
attempting to be comprehensive, it is intended to give the flavour of major milestones,
advances and trends. The use of randomised test input as a means to stress test software
dates back at least as far as 1970 (Hanford 1970), and has also been applied to the problem
of hardware validation (Wood, Gibson & Katz 1990). However, this discussion focuses on
topics related to the application of fuzzing to software and is restricted to the period from
1990 to early 2011. During this period fuzzing rose from relative obscurity, was widely
adopted as an approach to vulnerability discovery by the black hat community, and has
become a quality assurance tool commonly used by in-house software testing teams.

2.1 Fuzzing at University of Wisconsin-Madison

Fuzzer development began at the University of Wisconsin-Maddison (UW-Maddison) with
the coining of the term “fuzzer” as part of a class project in Professor Barton Miller’s 1988
CS736 class (Miller 1988). Over a span of 18 years, from 1988 to 2006, Professor Miller
and his associates performed a series of studies, developing a variety of fuzzers and using
them to audit the reliability of applications on various UNIX operating systems. The
results of these studies were summarised in a series of four papers. The first two of these
papers represent significant milestones in the development of fuzzing, and, as such, are
discussed in some detail below. The final two papers, which dealt mainly with porting the
methods developed in the first two papers to Windows and MacOS X, are of less interest.
It is worth noting however that in each case a significant percentage of the applications
tested were found to harbour flaws.

2.1.1 Fuzzing UNIX

Professor Miller’s class project called for students to develop “The Fuzz Generator”. This
was to be a tool capable of generating random streams of output suitable for testing the
robustness of a variety of UNIX utilities, thus emulating the “fuzz” that line noise threw
into serial lines?. The resulting program, called fuzz was then used to audit the reliability
of a suite of UNIX utilities on a variety of UNIX platforms, with the results published in
(Miller, Fredriksen & So 1990).

Fuzz was, by modern standards, extremely simple. The output it produced consisted
of a stream of random bytes. This output was then given to the target application for
processing either as input to stdin via a pipe or as simulated console input. The simulation
of console input was supported by a second tool called ptyjig. The System-Under-Test
(SUT) was then monitored, waiting for the process to terminate after processing each
input. The file system was then examined, looking for core files. If a core file was
found, it indicated that an error had occurred, otherwise there had not been an error.
The monitor also incorporated a timeout mechanism, used to identify inputs that hung

2The project was apparently inspired when a lecturer at UW-Maddison, connected by modem to the
university during a thunder storm, discovered that line noise not only interfered with what he was typing
but also caused several UNIX utilities to crash.

2 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

the system under test. The result of the audit process found flaws in over a quarter of the
tested programs (Miller, Fredriksen & So 1990)3, thus unequivically establishing fuzzing
as a viable means of uncovering flaws.

2.1.2 Fuzzing Revisited

Five years after the first paper Miller et al. published a follow-up paper detailing the
results of a repeat of the original UNIX utility audit (Miller et al. 1995). Further, instead
of merely repeating the tests from their first study the tests were broadened using three
new tools, portjig, xwinjig and 1ibjig. The first of these, portjig, simply accepted
input via stdin and sent it to the program via a network pipe. This allowed network
services to be tested in a similar fashion to an application reading from stdin. The other
two tools, which are addressed below, introduced fuzzing approaches that hitherto had
not been seen.

The second tool, xwinjig, operated as a man-in-the-middle, forwarding messages be-
tween an X Windows server and X Windows application. From this position it was able
to generate messages for transmission to either the server or the client application. It
incorporated four different methods for generating messages. The four types were:

Random Messages: A stream of random bytes, similar to fuzz,

Garbled Messages: An existing message stream was modified through random injection,
modification and deletion of bytes,

Random Events: New events that satisfied basic structural requirements were con-
structed and injected into the message stream, and

Legal Events: New mouse and keyboard events that are completely valid are constructed
and injected into the message stream.

According to Miller et al., “Each input type is closer to valid input than the previous one
(and therefore potentially tests deeper layers of the input processing code)”.

The third tool, 1ibjig, was designed to allow the testing of how well applications
handle conditions where there were insufficient resources to allocate memory successfully.
It did this by intercepting calls to the system’s memory allocation routines, such asmalloc
and calloc, and randomly failing requests for memory regardless of resource levels.

The audit they conducted using these tools was broken into four parts. The first
repeated the testing of command line tools using fuzz and ptyjig, but expanded the
number of platforms from six to nine. The failure rate was between 6% and 43% for each
of the operating systems, with only two systems achieving a failure rate of less than 15%%.
The second set of tests focused on the use of portjig for testing network services. The
audit was conducted on four OSs, testing each of the services listed in the /etc/services
file. None of these failed. The third group of tests concerned the use of xwinjig to uncover

3See entry in Appendix A for more detail
“Miller et al. also note that approximately 40% of the bugs found and reported in 1990 were still present
in exactly the same form five years later.

UNCLASSIFIED 3

DSTO-TN-1043 UNCLASSIFIED

flaws in the X Windows server and applications. No bugs were found in the server, but
several applications were found to crash or hang. Of particular interest is the number of
flaws uncovered using each of xwinjig’s different modes. No flaws were uncovered using
random messages. Approximately 58% of applications crashed or hung when exposed to
various combinations of garbled messages, random events and legal events. 26% of these
were susceptible to legal events alone. The final run of tests used 1ibjig to randomly fail
calls to malloc. A total of 53 programs confirmed as using malloc were tested; 25 (47%)
of them failed.

2.2 Wider Adoption

It is difficult to determine precisely when fuzzing first became used in the black-hat com-
munity, as the extent and speed of uptake of fuzzing techniques is not well known. The
techniques themselves were readily amenable to bespoke development in scripting lan-
guages; dedicated tools and frameworks were not required, although they might have made
the task easier and promoted code reuse. It is clear that two important steps in the spread
were Aitel’s 2002 paper and the release of SPIKE, and the availability of PROTOS at the
same time. By 2005 it had transitioned from a little known niche technique to one that
was being widely discussed and adopted. It was the subject of many discussions in Defcon
14 and 15, and the Blackhat Briefings (Las Vegas) in 2005, and more subsequently. Vul-
nerability researchers started using fuzzing as a brute force method for discovering flaws,
which they would then analyse to determine whether the flaw represented an exploitable
vulnerability. Initially the fuzzing tools developed within the black-hat community were
relatively simple, designed to test for classes of simple errors such as uncovering string
handling errors. They did this by by passing larger and more complex arguments to pro-
grams as command line parameters, WiFi parameters or errors in file formats (Sutton &
Greene 2005).

It was quickly realised however that such simple approaches suffered from some serious
limitations when it came to uncovering less simplistic flaws. This is perhaps best exem-
plified by considering what would happen if the SUT being tested by a random fuzzer
expected a 32-bit checksum as part of its input. If the SUT validated the checksum before
doing any further processing and all of the input bytes were random then there was a 1 in
232 chance that the checksum would be valid for the remainder of the bytes. All remain-
ing inputs would be rejected almost immediately, serving only to evaluate the checksum
calculation routines continuously.

One solution to this is exemplified by the PROTOS project, a series of studies con-
ducted at the University of Oulu in Finland (Roning et al. 2002). Starting in 1999,
PROTOS was involved in a series of projects established with the goal “Security Testing
of Protocol Implementations”. In his thesis Kaksonen described a methodology, which he
called mini-simulation, that uses a simplified description of the protocol’s interactions and
syntax to automatically generate system input that nearly complies with correct protocol
usage (Kaksonen 2001). This approach, which is now generally known as grammar based
fuzzing, could give the fuzzer an understanding of the protocol sufficient to allow it con-
trol over which aspects of the protocol’s correctness were violated. This could be used to
ensure that any checksums present within the protocol were always valid, or to systemat-

4 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

ically vary which rules were broken. Both of these approaches boosted the efficacy of the
fuzzing process. Similar, though less well documented approaches were being adopted by
the blackhat community.

The year 2001 also saw the first public release of a fuzzing framework, SPIKE, with
a subsequent presentation given at Blackhat 2002 (Aitel 2002). SPIKE is a framework
that supports block based fuzzing. Block based fuzzing allows the structure of input to be
specified as a series of layered blocks with varying granularity. The key benefit to this was
the ability to build new structures on top of existing ones with less effort. For example,
when building a fuzzer that targets Web-application user interfaces, it would be possible to
leverage preexisting support for HI'TP in HTTP protocol fuzzers to generate the HT'TP
block/envelope.

Both grammar and block based based fuzzing presented their own drawbacks, most
significantly the effort required to develop the requisite grammar describing the syntax
and interactions of the SUT. Another approach, known as mutative fuzzing, avoids this
effort by taking an existing, valid test case and randomly modifying it to generate a new
test case. This process is exemplified by xwinjig when operating in garbled message and
random event mode.

After completing the original PROTOS project in 2003, a new project, called PROTOS
Genome (Viide et al. 2008), began exploring methods that could automatically generate
grammars suitable for fuzzing. The system they developed could, when given a representa-
tive set of inputs, infer information about the input grammar. This inference process was
sufficient to derive grammars for several file archival formats which, when used to generate
test cases, proved adequate for discovering flaws in numerous anti-virus products.

Another result of the PROTOS project was a set of testing suites suitable for auditing
different implementations of various protocols by various vendors. A variety of protocols
were supported including the common LDAP, SNMP, SIP, DNS and HT'TP network pro-
tocols. The PROTOS SNMP testing suite was released in 2002 containing over eighteen
thousand test cases suitable for testing Simple Network Management Protocol (SNMP)
implementations. In 2001 the research conducted as part of PROTOS was commercial-
ized to form Codenomicon, the first company devoted to the development of commercial
fuzzing tools. Other commercial fuzzing systems have since been released including those
by MuDynamics and beSTORM.

The next major advance in fuzzing methodology occurred in approximately 2007 and
coincided with increased interest in fuzzing from within the software testing community.
Existing approaches to fuzzing had largely been constrained to considering the input and
output of the SUT. These new fuzzers, inspired by tools developed within the software
testing community, began utilising run-time analysis of the SUT’s interal operation to
guide the fuzzing process. An early example of this is work done by Sparks et al. us-
ing the PaiMei framework to support data-flow analysis (Sparks et al. 2007). Tools like
KLEE and SAGE utilise source code access to combine fuzzing with other software testing
approaches like binary instrumentation and static analysis to further inform the fuzzing
process (Cadar, Dunbar & Engler 2008, Godefroid et al. 2008).

While this concludes the history of fuzzing methodologies, it is worth making two
further points. Firstly, although fuzzers have been categorized into a relatively small
set of classes, a vast array of different tools and frameworks have been developed, and

UNCLASSIFIED)

DSTO-TN-1043 UNCLASSIFIED

in many cases released publicly. The table in Appendix B represents just a sampling
of significant fuzzers. The second is that the importance of fuzzing has increased such
that it is considered best practice to incorporate fuzzers into the software testing and
quality assurance processes. This is especially true with respect to security testing as
demonstrated by the inclusion of fuzzing within Microsoft’s testing practices and published
software development lifecycle (Godefroid 2010) (Microsoft 2011).

6 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

3 Fuzzer Concepts

3.1 Anatomy of a Fuzzer

A fuzzer can normally be broken into three fundamental components: a fuzz generator,
a delivery mechanism, and a monitoring system, each of which is discussed below. Each
of these components can be implemented using techniques with varying levels of sophis-
tication and can also support different levels of integration. While some systems, like the
configuration fuzzer (Dai, Murphy & Kaiser 2010), resist a clean decomposition according
to this taxonomy, the breakdown remains useful. Each of the components is discussed
below.

Fuzz Generator: The fuzz generator is responsible for generating the inputs that will
be used to drive the System Under Test (SUT). The fuzz generator’s output is a series of
test inputs, which are subsequently fed to the SUT by the delivery mechanism. A given
fuzz generator normally creates inputs that are appropriate for testing specific applica-
tions or classes of application. Fuzzers can also use a variety of approaches in the fuzz
generation process, each with their own advantages and drawbacks, significantly impacting
the effectiveness of the fuzzing process. Many of these approaches are discussed in the
following sections. Most of the advances in fuzzing have come as a result of improvements
made to the fuzz generator.

Delivery Mechanism: The delivery mechanism accepts system inputs from the fuzz
generator and presents them to the SUT for consumption. The delivery mechanism is
closely tied to the nature of input that the target application processes. For example, a
system which accepts input from a file requires a different delivery mechanism to a system
which accepts “user” interaction using a mouse.

Monitoring System: The monitoring system observes the SUT as it processes each
system input, attempting to detect any errors that arise. Although the monitor is often
overlooked, it plays a critical role in the fuzzing process, directly impacting which classes
of error the fuzzer is able to find. Though they have started to receive more attention in
recent years, monitoring systems have historically only seen limited advances.

3.2 Fuzzer Terminology

Fuzz The word fuzz is used flexibly within the community, potentially leading to con-
fusion. It is possible to fuzz a target, which is to say use fuzz testing on the target. It is
possible to throw fuzz at a target, in which case fuzz refers to one or more of the system
input sets generated. Finally, fuzz is sometimes used as the name for the process of mu-
tating legitimate input, such that it makes sense to say that a document has been fuzzed.
Fortunately the intended meaning is nearly always clear from the context. This paper uses
the term as a verb, describing the process of producing the fuzzing data and applying it
to the system being tested.

UNCLASSIFIED 7

DSTO-TN-1043 UNCLASSIFIED

Classical and Modern Fuzzers A “Classical” Fuzzer is one which obeys the Black-
Box assumption: i.e. that the system being tested has visible inputs and outputs, and that
its presence can be determined, but the interior workings of the system are not visible.
Tools and techniques can be applied to the system (e.g. debuggers to pause the system,
and protocol modellers to predict the behaviour of the system), but internal system state
is not accessed.

A “Modern” Fuzzer relaxes this assumption and has access to the SUT’s internal state
and structures. Some of these techniques can be very sophisticated (including branch
analysis tools which feed back into the Fuzz Generator).

Coverage A software system consists of a collection of executable code and data. The
code can be broken into a set of basic blocks, each with a single point of entry and a
single point of exit. The concept of coverage relates to the number of distinct basic blocks
through which execution passes while processing one or more input sets. Coverage is an
important concept in fuzzing because of the intuition that basic blocks can contain flaws,
so any basic block that remains untested potentially harbours a flaw missed by the fuzzing
process.

Depth When software is processing input some segments of the code act as “gatekeep-
ers” for other sections of code, controlling which basic blocks are executed. These can
reject a test case before it proceeds to the next stage of processing. For example, code
that initially receives the data could reject that input if it encounters non ASCII char-
acters while attempting to read a string, or a later step could reject the input because
the resulting string is not one of a predefined set of acceptable strings. The idea of depth
corresponds to the number of such gatekeepers that must be passed to reach a particular
segment of code, with more gatekeepers corresponding to a greater depth. Significant
efforts have been made to develop fuzzing techniques suited to discovering bugs at greater
and greater depths within the SUT.

Efficiency There are multiple aspects that contribute to the efficiency of the fuzz testing
process but in essence, to be considered efficient, a fuzzer must generate test cases that
deliver high levels of coverage at the desired depth with minimal computational effort.
When comparing two fuzzers intended to reach a desired depth within a system, the more
efficient fuzzer generates less wasted test cases. This means that the test data is not
discarded by code at shallower depths, and that code exercised by the test case had not
previously been exercised by other test casess. A fuzzer which is highly efficient against
one SUT may be inefficient against another, as highly efficient fuzzers are usually tailored
to a system.

Black-box, White-box, and Grey-box Testing These terms, taken directly from
software engineering parlance, refer to the nature of the information about the operation
of the SUT that is used by the testing process. They should not be confused with the pur-
pose behind the testing. Historically black-box testing was the province of black-hat vul-
nerability researchers and white-box testing was used predominantly in white-hat software

8 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

testing and quality assurance efforts. White-box and black-box testing are also sometimes
characterised as functional testing and structural testing respectively (Kaksonen 2001).

At one extreme is black-box testing, where the system’s internal operation is completely
opaque and the testing process is limited to observing the system’s input and output
behaviour. An example of this would be a web-application such as a search engine, because
given a search query the internal operation of the web-application remains inscrutable
except for what is contained in the output. Although in this case knowledge of the TCP /IP
and HTTP protocols do offer at least some insight, these are defined externally to the
system itself, and in fact one valid approach to fuzzing is to test compliance with such
open standards.

White-box testing lies at the other end of the spectrum. In this case the fuzzer can
take advantage of information such as the source code and design specifications of the
SUT, allowing greater insights into how the system works. Such information can often
be used to increase the efficiency of the fuzzing process. Common examples where such
fuzzing is possible include when the SUT is either developed in-house or an open source
product.

Grey-box testing covers the circumstances that fall between these two extremes. No
universally accepted method for delineating between grey-box and either of the extremes
exists. This paper will use the term white-box for any testing process that requires access
to source code. Grey-box testing will cover any testing that does not have access to source
code, but examines the behaviour of the SUT using any means other than input and output
inspection, such as static analysis, reverse engineering, or executing inside a debugger.

UNCLASSIFIED 9

DSTO-TN-1043 UNCLASSIFIED

10

4 The Case for Fuzzing

4.1 Why Fuzz?

Fuzzing is just one of many methods that can be used to discover flaws within a software
system. Numerous other methods exist, such as source code review, static analysis, devel-
opment of unit tests, model checking and beta testing. Given the abundance of existing
methodologies it is worth looking at why fuzzing has been so widely adopted over the last
decade, and in which circumstances it is best applied.

It Works: As has already been mentioned, while automated system input generation
may initially seem like a counter intuitive approach to discovering flaws, history has shown
it to be surprisingly effective at uncovering non-obvious errors that had been missed by
other approaches (Miller, Fredriksen & So 1990). (Godefroid 2010) indicates that a third
of Windows 7 bugs between 2007 and 2010 were discovered by the SAGE fuzzer, after
they had been through (and missed by) the normal software quality control process.

Does not require source code: One of the areas that fuzz testing initially gained
traction was within the black-hat community where it was used to search for zero-day
vulnerabilities in commercial software products. One of the reasons for this uptake is
that many approaches to fuzzing do not require access to the source code for the system
under test, which is typically not available for commercial software products. A lack
of source code obviously rules out analysis techniques available to white-hats like code
review, but it can also hinder the use of approaches like static analysis and model checking.
The compilation process can remove symbolic information which assist these processes,
especially from production code, which is usually “stripped” of this information, and
sometimes even obfuscated to prevent analysis of the program.

Fuzzing can be simple: At its simplest fuzzing can merely involve the generation of
random data and feeding that data as input to the system under test. Depending on the
nature of the system under test, more complex methods can often yield a more efficient
fuzzer, but a basic fuzzer in this fashion is typically relatively simple to develop, especially
where the SUT is amenable to a mutative fuzzing approach or a suitable fuzzing framework
can be leveraged.

Manual tests are expensive: Historically software quality assurance teams typically
relied predominantly on suites of manually developed test cases to test software. Tradi-
tional software testing is often positive testing (i.e. testing that features work as specified),
rather than negative testing (i.e. testing that the system does not do things that it is not
supposed to do), and some flaws cannot be practically found using only positive testing.
Fuzzing is one method of cost effective negative testing. As such fuzzing is often used to
augment a manually crafted test suite, with the fuzzer able to generate a high volume of
tests using methods that probe for unsafe assumptions within the system.

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Human testers have blind spots: Software engineering practice has shown that test
cases are more effective when written by someone other that the original programmer,
since a blind spot in implementation is likely to also be replicated in testing. (Myers 2004)
places as two of his princples that “A programmer should avoid attempting to test his or
her own program”, and “A programming organization should not test its own programs”.
For human testers to be effective, they also need to understand the implemented system,
including boundary and corner cases. This is expensive, both in time and conceptual
effort, and requires two teams to understand the operation of the system. The tests may
be flawed by the testers’ preconceptions of the system (although these can be different
from the implementers’). By using random sampling, a significant part of the input state
space can be covered without requiring much human code development. This input state
space includes items which neither the implementer nor the tester regard as significant,
and therefore exercises parts of the attack surface that they might not.

Portability: In many cases fuzzers are not inherently tied to a specific SUT, a fuzzer
generated for one system can often be applied to another system. For example a protocol
fuzzer such as an HTML fuzzer could be used to test several different web browsers,
including different versions and multiple vendors.

Fewer false positives: Historically, static analysis approaches to software testing have
tended to swamp the operator with an overly long list of possible flaws, many of which are
spurious. Spurious flaws arise because the reasoning processes used for abstract execution
are incomplete. Fuzzing, by uncovering flaws through actual execution, only reports flaws
that can actually be realised, thus reducing the effort wasted by the tester to analyse
false leads. However because of this, it also may not identify as many real flaws as static
analysers. Historically however, fuzzing has been unable to differentiate between flaws
(which may be benign) and vulnerabilities (which can be exploited by an attacker).

4.2 Strengths and Weaknesses of Classical Fuzzing

Fuzzing’s biggest strength is its ability to augment the efforts of a person testing the
software. Even the most basic fuzzer significantly increases the number of input sets that
can be used in the validation process.

The earliest fuzzers operated using purely random data. While this initially proved to
be surprisingly effective at discovering bugs within a system, it was also quickly realized
that random searches were often inefficient. For example a web browser will drop an
incoming HTTP message if it does not satisfy the formatting restrictions laid out in the
HTTP protocol, so a fuzzer that uses purely random data will only generate a system
input set that starts with "GET / HTTP/1.0\n\n" 1 in 256'¢ or 2?* times. Even when
taking into account variations allowed by case insensitivity and HTTP version 1.1, this is
still only 1 in 2'6, meaning that for every test that reaches the target web application, on
average 65535 test cases are rejected by the server before reaching the web application.
This realisation gave the motivation for the development of increasingly sophisticated
systems for generating input sets that met at least some of the requirements demanded
by the target application. Two approaches were adopted for overcoming this problem.

UNCLASSIFIED 11

DSTO-TN-1043 UNCLASSIFIED

12

The first was the adoption of mutative approaches which allowed the number and nature
of structure violations to be controlled. The second was an increasingly complex support
within generative systems for knowledge of input grammars. In time, support for input
grammars also passed into the mutative systems, where it allowed for mutation without
violating the structural requirements.

Another area where classical fuzzers can be inefficient is if the input contains checksum
values. These affect both the generative and mutative approaches, and can render them
ineffective unless knowledge of the checksum is incorporated into the fuzzing process.

The final weakness of classical fuzzers is the limited concept of what a flaw is. For
example a fuzzer typically cannot detect an access violation when an unauthenticated user
is given access to resources that should only be available after a successful login. Instead,
they are typically limited to detecting when an application has crashed, or in some cases
hung. Several possibilities exist for improving the coverage offered by fuzzers, including
enhanced support for detecting execution failures, support for broader classes of errors,
and enhancement of applications with increased use of asserts to validate various forms of
internal state.

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

5 A Description of Fuzzer Types

5.1 Fuzz Generators

Numerous methods have been devised for driving the fuzz generation process. This section
provides a taxonomy (as per (Takanen, Demott & Miller 2008)) which can be used to
describe the operation of fuzz generators. The taxonomy classifies fuzzers according to
two distinct axes. The first axis is whether new system input sets are generated by
mutating existing input sets or creates new ones from internal logic. The second is the
“intelligence” that the fuzz generator uses. These two axes are described below.

There are two fundamental approaches available to Fuzz generators for the production
of system input; Mutative and Generative.

Mutative: A Mutative fuzzer takes existing data and distorts it, changing some of the
data in order to create a new input set. The second mode of operation supported by
xwinjig is a good example of this.

Mutators typically have much less intelligence associated with them than Generators,
but also require much less human effort to understand protocols and interfaces (substitut-
ing computational effort, which can be cheaper).

They can often be applied in cases where the SUT accepts highly structured input; a
key reason for the use of a mutative approach is that it allows the fuzzer to easily harness
any complex internal structures within the original file without needing to recreate them.
This often makes it significantly easier to create a mutative fuzzer that operates at greater
depths than it would be to develop an equivalent generative fuzzer. One drawback however
is that the coverage achieved by the resultant fuzzer tends to be concentrated near code
paths that result from processing the original system input. Thus, it is unlikely that flaws
related to functionality for which there are no examples will be uncovered. e.g. If TFTP
data is not present in a pcap network traffic capture file, then that protocol may not be
fuzzed by a mutator using that pcap.

Generative: A Generative fuzzer creates new system input sets from its own resources.
The contents and structure of this input can vary from an unstructured stream of random
data to highly structured inputs depending on nature of the interface being fuzzed and the
desired depth at which the fuzzer is targeted. Any understanding of necessary format and
structure for the input must be incorporated by a programmer, which means they typically
require more effort than a mutative fuzzer. However, if a complete understanding of the
structure is incorporated, a generative fuzzer can achieve high levels of coverage with
excellent efficiency. Any incompleteness in the understanding of the input format can
adversely effect the level of coverage, potentially missing flaws that could otherwise be
found, or simply failing to exercise much of the SUT’s attack surface.

In the simple case, as exemplified by the fuzz tool, generation can simply create a
stream of unstructured random data.

UNCLASSIFIED

13

DSTO-TN-1043 UNCLASSIFIED

14

The trend from Mutative towards Generative fuzzers, especially between 2007-2009,
meant that protocol specific or model based generators were written. These were poten-
tially more powerful than mutative fuzzers, but fuzzing a network protocol became more
complex. For example, to fuzz a simple network process like FTP, a mutative fuzzer would
take a network packet capture and make variations based on this valid data. A generative
fuzzer needed to understand a number of protocols to make this work, including DNS.
Depending on the type and level of fuzzing required, it might also need to understand
TCP state and maintain sequence numbers etc. These operations were certainly possible
in some of the fuzzing frameworks, however it meant that beginning to fuzz using genera-
tive tools could have a significant start up cost. Once the basic protocol libraries/scripts
have been written, code reuse made these operations more useful. This corresponds to the
the comments at (Takanen 2009a).

The two major classes above can be further characterized by describing the techniques
used to produce the random data:

Oblivious: An oblivious fuzzer does not account for the type and structure of informa-
tion that the system under test expects to receive. In the case of an oblivious mutative
fuzzer, the fuzz generator selects bytes within the original test case at random and re-
places them with random values. An oblivious generative fuzzer may generate a stream of
random bytes. The original fuzz tool as described by Miller, Fredriksen & So in their first
paper is a good example of an oblivious generative fuzzer (Miller, Fredriksen & So 1990).

Template Based: Template based fuzzers have at least some minimal understanding of
the structure accepted by the system. This knowledge was stored in a template that listed
the location and type of some components of a well formed test case. Both mutative and
generative fuzzers can use such templates to constrain their values used on the regions
covered by the template to reasonable values that are less likely to result in rejection
during preliminary processing steps. When the SUT expects highly structured input
this can increase the depth at which it is possible to fuzz efficiently. One example of a
template based fuzzer is xwinjig which supported both mutative and generative modes
of operation (Miller et al. 1995).

Block Based: This refers to a data representation technique. SPIKE (Aitel 2002) was
the original fuzzer which used a block based approach. Initial fuzzers (such as template-
based fuzzers) represented data as fields and strings/sequences. SPIKE represented all
data as nested data blocks of varying types, making it easier to construct functions that
operated on the data injected into the SUT (for example length calculations and check-sum
generation).

Grammar Based: A fuzzer that is grammar based incorporates a grammar that covers
at least part of the input language accepted by the system under test. Grammars are nor-
mally found in generative fuzzers, although they could potentially be applied to mutative
fuzzing as well. This is best exemplified with two fuzzers that generate source code for
testing compilers (Hanford 1970, Yang et al. 2011).

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Heuristic based: A fuzzer that incorporates heuristics can try to make decisions that
are “smarter” than random. These heuristics typically try to exploit knowledge of com-
mon error sources like edge cases for numbers and Unicode/UTF-8/ASCII transformation
errors, integer overflow errors, off-by-one errors and signed /unsigned handling errors.

(Takanen, Demott & Miller 2008) classify the sophistication of a fuzzer’s data produc-
tion capabilities in the ascending order as:

e Static and random template-based fuzzer. These are limited to simple request-
response protocols and do not incorporate dynamic-functionality.

e Block based fuzzers include some rudimentary dynamic content such as check-sums
and length values to overcome the inefficiency of generating these randomly.

e Dynamic Generation or Fvolution based fuzzers have a limited ability to learn a
protocol based on feedback from the target system, and can vary the input fed to
the SUT based on the data being received from it. These can have an understanding
of the program state.

e Model or Simulation based fuzzers can have a full implementation of a protocol. A
model based fuzzer understands the content of the protocol and the sequences of the
messages.

All types of fuzzer may use random numbers, however generator based fuzzers are more
likely to be (partially) deterministic and use key/boundary values as well. The dependence
on random numbers is recognised in Takanen et al. as being simple, however it can be
inefficient when exercising control structures (since a test against a 32-bit field may take
a long time to find a critical value, especially a check-sum).

5.2 Delivery Mechanisms

Fuzzers typically work by presenting system input to the SUT for it to process. Taking
these test cases and presenting them to the SUT as input is the responsibility of the
delivery mechanism. Given that the aim is to find flaws in the regular operation of the
target program, most delivery systems simulate those normally used by the SUT. As
such delivery mechanisms are not normally very complicated, although there are some
exceptions. Common delivery mechanisms include:

Files

e Environment Variables

Invocation Parameters (e.g. command line and API parameters)

Network Transmissions

Operating System Events (includes mouse and keyboard events)

Operating System Resources

UNCLASSIFIED

15

DSTO-TN-1043 UNCLASSIFIED

16

File based fuzzers have an advantage in that all of the relevant fuzzed data is effectively
encapsulated in a single entity. Early network fuzzers such as ProxyFuzz were quite simple,
configured as a network proxy between the SUT and a data source, modifying packets as
they flowed through the proxy. This is still more complicated than file fuzzing, because in
protocol fuzzing, a session is defined by multiple interactions and some of these interactions
can be dependent on previous events. This necessitated the development of systems which
also monitored the responses out of the SUT and dynamically varied the delivered data
based on these responses. This led to the construction of dynamic content generation in
fuzz generators.

One example of a fuzzer that uses a non-standard delivery mechanism is the configu-
ration fuzzer (Dai, Murphy & Kaiser 2010). This fuzzer is designed to randomly alter the
runtime configuration of the SUT while processing inputs and uses a delivery mechanism
that directly modifies the process’s memory. Delivery mechanisms like direct memory in-
jection may seem conceptually simple, but actually require significant complexity to avoid
corruption of the SUT and thus spurious errors.

Remote fuzzing is primarily done across the network interface, although monitoring
of the results can be more difficult because of the the lack of access to the SUT for
observation. Use of remote SQL and HTML queries can sometimes reveal information
about the internal state of the remote system due to subtle differences returned by the
SUTS.

5.3 Classical Monitoring Systems

The ability to detect that system input has resulted in an error is critical to the fuzzing
process. In addition to detecting errors, the monitoring system often cooperates with
the fuzz generator to determine which input sets contributed to the flaw being expressed.
There are two broad classes of monitoring system. Local monitoring systems are used when
the system under test is installed and executed on the same system as the monitoring
system. Remote monitoring systems are used where the monitoring system can only
interact with the system under test by monitoring its input and output behaviour.

Local Monitoring Systems Initially local monitoring systems were simple and rudi-
mentary. In the initial UW-Maddison study the monitoring process consisted of launching
the SUT, feeding it the input set and waiting until the process terminated. After the
process had terminated the file system was checked for the presence of core dump files.
The presence of a core dump signaled that the system had failed, whereas the lack of such
files indicated that no errors had been found. Local monitoring system have increased in
sophistication since that time and now often use an augmented run-time environment in
order to improve error detection. On example is the Microsoft Application Verifier, which
monitors the application’s interaction with Windows APIs in order to detect potentially
unsafe usage patters and to detect any raised exceptions (even if they are handled.) An-
other example is offered by Muniz & Ortega (2011) who, in order to fuzz Cisco’s 10S

®Blind SQL injection uses varying Web error messages to determine the effects of injecting SQL code
into a database system. The output of this system is not otherwise accessible to the user

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

operating system, loaded the OS image into a simulator which had been modified so that
GDB and IDA Pro could be used to monitor IOS’s execution.

Remote Monitoring Systems Given the limited ability of a remote monitoring system
to observe the SUT, they have historically been less capable than their local counterparts.
Early examples typically looked for interruptions to network communications, signified by
either a TCP reset packet or a timeout for either a TCP or a UDP communication channel.
Given the increasing complexity of network based applications, it was unsurprising that
more advanced remote error detection methods have become available. For example, if a
web-based application is running as a Tomcat servlet then an attached monitor can also
examine the output from the Tomcat server to detect and analyse errors within the servlet.

5.4 Modern Fuzzers

Despite their simplicity, classical/black-box fuzzing techniques were powerful and often
effective. SPIKE is a good example of this: its internal structure is basic, but its data
handling abilities are powerful and expressive.

Once basic fuzzer functionality stabilised, designers turned their attention to making
fuzzers more efficient. Their primary approach was to restrict the fuzzer’s search space to
data items which were of interest. For security fuzzers, these were data items that could
affect security critical parameters e.g. size fields for buffers created by system calls like
malloc() and strncmp().

In search of an effective technique to determine these parameters, fuzzer writers decided
to relax the black-box assumption and look inside the box. Any fuzzer which does not use
the black-box assumption we classify as a Modern Fuzzer.

As many fuzzer writers did not have source code for their SUTSs, they turned to reverse
engineering tools — debuggers, disassemblers, and static structural analysers to map the
SUT’s code execution graph — These tools allowed analysis of the SUT to identify some
items (such as calls to libraries) which might be security critical and vulnerable, but also
allowed the writers to track the flow of data through the program. This led to data based
analysis techniques such as symbolic execution and dynamic taint analysis.

A modern fuzzer may use both generative and mutative methods and also hybrids of
the two in its fuzz generator. The Evolutionary Fuzzing System (EFS) (DeMott, Enbody
& Punch 2007) is notable for using a Genetic Algorithm for mutating data (from an initial
randomly generated set).

A modern fuzzer usually uses similar delivery mechanisms to a classical fuzzer, however
it might also use memory based delivery. With a memory based delivery mechanism the
fuzzer is able to directly modify the memory contents of the target system. Among other
things this can allow the fuzzer to bypass parts of the system’s input processing, for
example bypassing check-sum verification routines by presenting fuzz data to functions
that are normally protected by a check-sum verification step. Another example is the Dai,
Murphy & Kaiser (2010) configuration fuzzer, which randomises the system under test’s
configuration with each test case (Dai, Murphy & Kaiser 2010).

UNCLASSIFIED

17

DSTO-TN-1043 UNCLASSIFIED

18

Modern (Grey) fuzzers can have more sophisticated target monitoring than classical
types. Classical White-box fuzzers can have full (traditional) debugging abilities (since
they have source code and compiler symbols available to them). Classical black-box fuzzers
do not typically monitor the internal program state of the SUT but examine the system
after it has crashed/failed. Grey-box fuzzing can use hybrid techniques such as a Runtime
Analysis Engine which monitors the System-Under-Test (SUT) but is capable of determin-
ing finer grained data about the SUT runtime environment and execution state instead
of just “running vs crashed”. Some Runtime Analysis Engines are capable of compre-
hensively instrumenting the SUT code, including replacing instructions and data symbols
with their own library calls and symbols.

Taint analysis tags the data input into the SUT and subsequently analyses the SUT
either during the execution flow or post a failure to examine how the program used the
input data and which program elements were touched (“tainted”) by the data. In this way
the search space can be constrained, as any data which does not taint a program region
of interest can be removed from the fuzz set.

Associated with data tagging, Symbolic Execution instruments an SUT with symbols
replacing “concrete” (static input dependent) values in the program. When these symbols
are executed, a Path Constraint is constructed to indicate which branch was taken due to
the symbol. Eventually a Constraint Solver can determine the conditions of the branch
and use this information to adjust the data, allowing the other part of the branch to be
explored. These techniques are used by Microsoft’s SAGE fuzzer (Godefroid 2010), which
reportedly found a third of the Windows 7 bugs between 2007-2009.

Use of library hooking and dynamic loading techniques are used by GuardMalloc and
Valgrind (Nethercote & Seward 2007). These two systems monitor every malloc and free
made by the SUT and Valgrind uses a synthetic processor to monitor memory accesses. Use
of virtualisation technologies is becoming more common as it becomes more widespread
and cheaper.

These are sophisticated techniques which establish a feedback path between the target
monitoring code and the Fuzz Generator. However, some of these techniques are quite
slow and require off-line processing. Nonetheless they are remarkably powerful and are
many times more efficient than random fuzzing, especially when coupled with the search
for a vulnerable goal state found by structural analysis. These techniques are referred to
as directed fuzzing.

Use of fuzzing techniques by the software quality community also brought with it
different monitoring systems which were not available or useful to the black hat community.
These included development of Reporting Engines, which reported the results of the fuzzing
to developers to allow the vulnerability to be fixed. These were capable of automatically
generating documents in required bug-report formats. Also, as part of the automated
test system for white-box fuzzing (but also model-based black-box fuzzing), Oracles were
developed to provide the “right” answer for a given data input. Grey-box fuzzers can also
use these techniques by extracting code fragments from the SUT in order to construct an
Oracle (e.g. Taintscope takes check-sum generation execution traces from the SUT and
solves them to generate correct check-sums that the SUT will accept).

Takanen (2009b) discusses the trend for more sophisticated data representation within
fuzzers (both classical and modern), especially fuzzers which use model/protocol descrip-

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

tion approaches. Initial black-box fuzzing efforts were primarily based around ASCII;
ASN.1 became necessary as protocol generators became popular (and is used in Codenomi-
con), and XML is used in Codenomicon, Peach and MuDynamics to represent complex
structures.

UNCLASSIFIED 19

DSTO-TN-1043 UNCLASSIFIED

20

6 Experiences

After completing the basic literature review, a small, representative set of fuzzers was
chosen for use in conducting some basic experiments. Before conducting these, a small
collection of programs was written, with each deliberately containing a common basic flaw,
like buffer overflows or NULL pointer dereferencing. These toy programs were intended
for use in establishing a baseline for the selected fuzzers. Initial expectations were that
these fuzzers and fuzzing frameworks would be easy to use and, in the case of frameworks,
adaptable for the basic test cases. This, however proved not to be the case.

The first problem was that many of the tools were discovered to be immature, un-
stable, or poorly supported. For example, having downloaded fuzzgrind’s source code,
significant levels of investigation and modification were required before it would compile.
After addressing its compilation problems we attempted to use fuzzgrind to fuzz the
collection of toy programs, only to discover that, for reasons that remain unclear, it was
incapable of uncovering any of the flaws they contained. The lack of online information
or support for fuzzgrind meant that, despite further efforts to diagnose the problem, we
were unable to establish even baseline functionality. Experiments aiming to use JPF were
aborted even earlier due to its dependencies on a large number of libraries that are no
longer supported.

Another set of experiments was conducted using klee. Unlike fuzzgrind, klee is
still undergoing active research (as of 2011). However this, combined with the fact that
it is built on top of 1lvm (a rapidly evolving compiler architecture), meant that there
were still some issues ensuring that the versions of the klee and 1llvm’s source were
compatible. Once it was compiled klee was used to fuzz the test programs. The first step
of this process was to compile the programs into 11vm’s byte code representation, with the
resulting binaries given as input to klee. In each case klee successfully identified all of
the possible code paths through the toy programs, provided examples of input that would
result in each code path being executed, and identified which paths represented flaws.

After establishing that k1lee could handle the basic test cases, attention was turned to
more complex examples. Two systems were selected as targets for this round of fuzzing.
The first was an open source PDF file viewer called MuPDF®. The second was a trusted
kernel developed as part of the Annex project(Grove et al. 2007). In both cases however,
problems were encountered while attempting to build an 11vm bytecode version of the
programs. This was due to inherent differences” in the build processes used by 11vm and
gce, with both projects designed to build using the latter. Unfortunately, in both cases,
the effort required to remedy the situation was deemed too great to proceed further.

The Peach framework proved to be a useful environment for fuzzing however it is
far from being a mature tool and required a lot of effort to achieve real-world goals.
Peach required significant effort to install and run, with many dependencies on both the
Windows and Linux platforms. Once installed, there were several bugs in the current
(v2.3.8) release which limited or degraded functionality. Some of these were fixed in the
latest source which needed to be separately downloaded and patched. For example, there
was a bug with the Agent on Windows where it could not monitor CPU usage of the target

Shttp://www.mupdf.com
"In gce, the compiler can also control the linking process; this is not the case with 11vm

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

application correctly. Due to this problem, Peach simply launched the application for 5
seconds and if there was not a crash, it forcibly terminated the application, assuming no
faults were found. A patch for the Peach source fixed this problem by monitoring the CPU
usage of the target. If CPU usage dropped below a certain threshold for a certain period,
Peach assumed that the target had finished processing the input and forcibly terminated it.
This was not an effective solution as applications often detected a problem with the input
document and prompted the user for action before continuing to load it. This process was
interrupted by the forcible kill. There was some functionality in Peach to detect pop ups
of the target application and acknowledge them, however it was not mature enough to
work in most cases.

As Peach was developed in python, it was possible to work around these problems by
fixing and enhancing the source. By doing this, it was possible to achieve some meaningful
results using Peach as a starting point.

A common characteristic of the three commercial fuzzers discussed in Appendix B is
the possession of sizable protocol libraries, especially of network protocols. The availability
of these libraries is one characteristic that sets the commercial fuzzers apart from the open-
source ones (with support being another); the very high cost of the software and services
reflect this utility advantage.

UNCLASSIFIED 21

DSTO-TN-1043 UNCLASSIFIED

22

7 Conclusions

7.1 The State of the Art

Traditionally fuzzing has been black-box whereas static analysis has been white-box. Both
areas are trending towards grey-box as a result of the increasing availability of tools to
support binary analysis. The techniques used to generate semi-valid data inputs are
becoming more sophisticated. These include the use of genetic algorithms or context
free grammars instead of static techniques such as templates). Modern fuzzers are able to
understand better the internal characteristics of programs, as they can apply techniques
such as the static analysis of functions with a binary and the tracking of the code execution
graph within a running program. Whilst early fuzzers were unsophisticated with their
choice of data, a modern fuzzer restricts the search space of the data it presents, eschewing
invalid data (such as data with incorrect checksums) for semi-valid data, and also favours
cases to test boundary conditions. As a result, a modern fuzzer may be many times more
computationally efficient than a classical fuzzer.

The last ten years have also seen the proliferation of open source fuzzing tools and
related frameworks. Our experience found that many of these were immature or hard
to use. Recent times have also seen the adoption of fuzz-based software testing in many
commercial software teams in turn giving rise to commercially supported fuzzing products.
These trends seem likely to continue and will reduce the effort required to develop a fuzzer
for new systems. The Fuzzing email list shows that the trend for the last five years is
toward generators over mutators.

7.2 Fuzzing in the Future

The commercial fuzzers show a trend towards use of protocol modellers, with increasing
numbers of protocols being available in their libraries. It appears that this is still a
fruitful avenue for fuzzer development, and it is expected that this effort will continue. It
is difficult for open source fuzzers to compete with the commercial fuzzers in this respect,
as construction of a comprehensive protocol library within a single framework is better
matched to a paid effort than a volunteer one. Any open-source analog of this effort is
likely to come from the Metasploit community (which is a general purpose framework
which supports fuzzing modules, rather than a fuzzing framework per se).

We forecast a continued trend towards grey-box fuzzing, including improvements in
fuzzer’s ability to affect the SUT and to construct feedback loops between the monitoring
system and fuzz generator components. The use of symbolic execution techniques and
code execution graph analysis, logically coupled with even basic Al techniques (such as
graph based searching) are likely to lead to the construction of an automated target
exploration /exploitation toolkit in the next half decade. Acceptance of fuzzing as a white-
box technique in the software quality community (along with negative testing generally)
is expected to grow.

Use of virtualisation technology is expected to grow - not only for massively paral-
lel/distributed fuzzing (using Cloud resources), but also for instrumentation of virtual

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

processors and for the use of snapshots to rapidly roll back machine state and compare
between machines. Utilising cloud computing to conduct fuzzing is expected to be a cheap
method of deploying a very very large number of fuzz machines for a short period of time.
A distributed monitoring and reporting system would be required for this endeavour.

One possible area under-explored by previous fuzzers is the notion of time. Although
some protocol based fuzzers may include some knowledge of time-based state changes, it is
possible that fuzzing the timing of input data may cause race conditions that uncover many
instances of program failure, especially as programming models trend towards greater use
of parallelism and distributed computation.

Classical fuzzers relied on program failure to determine fuzz success. Grey-box tech-
niques allowed instrumentation of the execution flow of the SUT. We expect that the
monitoring systems will be improved to detect other classes of program flaws, i.e. not
just buffer overflows and memory allocation problems, but also logical (branch) errors,
protocol flaws (when coupled with a good protocol modeller), and security violations such
as granting unauthorised access.

UNCLASSIFIED 23

DSTO-TN-1043 UNCLASSIFIED

24

Appendix A Literature Survey

Automatic Generation of Test Cases (Hanford, 1970)

Hanford describes the Syntax Machine, a tool developed to automatically test the syntax
and lexical analysis components of a compiler. Given a definition of the grammar accepted
by the compiler, the Syntax Machine can generate three classes of source code suitable for
evaluating different aspects of the compiler’s behaviour. In its standard mode of operation
the Syntax Machine generates random programs that are well formed with respect to
syntactic and lexical requirements of the language. In another mode the Syntax Machine
is also able to systematically generate programs with all forms of specific components of
the grammar. The final operational mode deliberately incorporates syntactical and lexical
errors into the generated code. In all cases, the fact that the correct result for the program
is unknown prevents the Syntax Machine from being able to detect errors in later stages
of the compilation process.

The grammar accepted by the Syntax Machine is based on a Backus-Naur Form (BNF)
context free grammar (Backus 1959). As most programming languages are not context-
free, the BNF is extended to create what the author calls a dynamic grammar. A dynamic
grammar extends the BNF in two important ways. The first extension allows production
rules to be added dynamically to the grammar that the Syntax Machine is given. The
second extension allows for not — rules which are used to add constraints that can block
specific productions just before they are committed. An example of where both of these
rules can be applied is with the rule for producing a variable declaration. Each time the
rule is used, it adds a production rule into the grammar such that the newly declared
variable can be produced wherever a variable name is required. Further, declaration rules
can also use a not-rule to prevent re-declaration of a variable with a name that has already
been used.

An Empirical Study of the Reliability of UNIX Tools (Miller,
Fredriksen & So, 1990)

While connected to their university workstation via a dial-up line, one of the authors
noticed that line noise was generating frequent spurious characters, often including char-
acters not generated by keyboard input. Further, these characters were interfering with
his ability to use the system, not only adding garbage characters to his input, but also
crashing many of the UNIX programs he was attempting to use. This scenario inspired
an audit, looking for similar flaws in various UNIX utilities on a variety of UNIX flavours.
The tests covered two kinds of utility, programs that accept input from stdin and inter-
active programs that accept input from a console. After completing the audit it was found
that in six versions of UNIX, between 24.5% and 33.3% of the utilities tested failed at
least one test.

Tests were performed using two tools, fuzz-generator and ptyjig. fuzz-generator
creates an unstructured stream of random bytes, writing them to stdout. The fuzz gen-
erator has an option to include non-printable characters in its output, and another option

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

to include zero bytes. Testing an application that reads from stdin is as simple as piping
the output from the fuzz-generator into the program. Testing an interactive program,
on the other hand, requires the use of ptyjig to create a pseudo-terminal, to which the
target utility can attach. Input from the fuzz-generator is then fed to ptyjig which
turns the input into random key-strokes from the psuedo-terminal.

Fuzz Revisited: A Re-examination of the Reliability of UNIX

Utilities and Services (Miller, Koski, Pheow, Maganty, Murthy,

Natarajan & Steidl, 1995)

Five years after the publication of (Miller, Fredriksen & So 1990) the authors re-evaluated
the reliability of a number of core UNIX services. The original paper discussed the use of
random input to test the robustness of command line and console based utilities. Tests
in this paper were extended to include the handling of failed memory allocation calls, as
well as to UNIX’s network services and X-Windows applications and servers. Despite the
free availability of the fuzz testing tools and advisories sent to the software vendors the
authors found that many of the flaws uncovered in the original paper remained unpatched.
While many X-Applications were found to contain errors, no flaws were discovered in any
of the network services or X-Servers tested.

The first round of console testing was again performed using the fuzz generator and
ptyjig programs from the original paper (see above). Testing of networking services was
made possible through the use of a new utility, called portjig, which established a socket
connection to the service over which it forwarded input provided by the fuzz generator.
Another new tool, zwinjig, was developed to interpose between an X-Windows server
and an X-Windows application. When testing X-Windows applications zwinjg was used
to generate four different kinds of random data stream. Type one data streams consist
of purely random data. Type two streams distort legitimate messages sent between the
server and application. Type three streams randomly injected well formed events into
communications from the server to the application with random sequence numbers, time-
stamps and payloads. Type four streams are similar to type three streams except that
the events injected into the stream correctly account for details like sequence numbers
and window geometry, making them logically indistinguishable from legitimate events.
The final tool developed was [ibjig, which could be used to intercept calls to functions
within the C standard library. In this case libjig was used to intercept calls to the memory
allocation function malloc, at which point it would randomly either simulate an allocation
failure by returning NULL or pass control to the original function and return the results.

An Empirical Study of the Robustness of Windows NT Ap-
plications Using Random Testing (Forrester & Miller, 2000)

The third publication related to the fuzzing work at UW-Maddison applies the fuzzing ap-
proach to testing a suite of Windows applications. Much like X-Windows, the application
inputs consist of a series of events, to which the application is expected to respond. Two
broad classes of events were identified for fuzzing purposes, Win32 messages and system

UNCLASSIFIED

25

DSTO-TN-1043 UNCLASSIFIED

26

Table 1: Windows NT Fuzzing Failure Rates

SendMessage | PostMessge | Keyboard & Mouse
Crashes 24 (72.7%) | 30 (90.9%) 7 (21.2%)
Hangs 3 (9.0%) 2 (6.0%) 8 (24.2%)

[Total | 27 (81.7%) [32 (96.9%) | 15 (45.4%) |

events. A tool, once again called fuzz, was developed capable of generating random events
from these two classes and used to test the application suite.

Three kinds of fuzz testing were used to test the application suite. Both the first and
second testing scenarios sent randomly generated Win32 Messages to the target applica-
tion. These messages combined a random valid message type with randomly generated
values for the message parameters. When a Win32 Message is given to an application it
can be done using either the asynchronous SendMessage function, which was used in the
first testing scenario, or via the synchronous PostMessage function which was used for the
second scenario. The third testing scenario hooks into the system event queue to mimic
random keyboard and mouse events.

Once again fuzz testing was sufficient to yield impressive results. In total thirty-three
applications were tested under each of the scenarios, none of which was found to be robust
under all of the three testing scenarios. The number of applications that crashed and hung
are summarised in the table below.

Automated Vulnerability Analysis: Leveraging Control Flow
for Evolutionary Input Crafting (Sparks, Embleton, Cun-
ningham & Zou, 2007)

The approach described in this paper uses the combination of a partially defined input
structure and a genetic algorithm with an evolutionary heuristic that is intended to derive
inputs that will result in a control flow that reaches a target code segment. The approach
is designed to improve on both the code coverage and depth of analysis in comparison
with a random fuzzer.

Analysis began with a tester supplied Context Free Grammar which was used for input
construction, and the extraction of the control flow graph from the target’s binary image
using a tool like IDA Pro®. The tester then identified one of the nodes within the control
flow graph as the target node. The graph was then simplified, collapsing all transitions
to a state from which the target node could not be reached into a single transition to a
generic rejection state. Further, given that once the target state had been reached any
further transitions could be ignored, all transitions from the target node are replaced with
transitions to back to the target node. The simplified graph was then used to generate
an absorbing Markov Model in which the transition probabilities corresponded to the
likelihood of the transition based on random input. The PaiMei framework? was then

Shttp://www.hex-rays.com/products/ida/index.shtml
“http:/ /www.openrce.org/downloads/details /208 /PaiMei-Reverse-Engineering-Framework

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

used to monitor the execution of the target program as it processed input, yielding the
sequence of state transitions made. Once a generation of inputs have been processed, the
probabilities within the Markov Model were updated and the fitness of each input was
calculated. The fitness value was defined as the inverse of the product of the probabilities
for the transitions within the model, and was intended to favour inputs that exercised less
common transitions within the control flow graph. Once the inputs used in a given round
had been ranked, the evolution step used single point cross over, elitism, insertion, deletion
and point mutations to generate the next round of inputs. However, the evolution process
was not directly applied to the inputs. Instead, because the inputs were generated by a
grammar it was possible to represent any input with a sequence of numbers, where the
n’th number corresponded to the production rule applied in the n’th step of generating the
input. The evolutionary process targeted these number sequences instead of the inputs
themselves, an approach known as Grammatical Evolution (Ryan, Collins and O’Neill
1998).

Revolutionizing the Field of Grey-box Attack Surface Testing
with Evolutionary Fuzzing (DeMott, Enbody & Punch, 2007)

The Evolutionary Fuzzing System (EFS) is designed to learn the input protocol that
the target interface uses while fuzzing that interface. EFS’s ability to learn protocols is
based on the use of a genetic programming approach that attempts to evolve a collection
of communication sessions which combine to maximise code coverage within the tested
system. The authors propose that one benefit of an evolution based approach is that it
can automatically test for vulnerabilities at different depths within the system, proceeding
deeper and deeper into the system as it better learns the protocol.

EFS is built using both the General Purpose Fuzzer (GPF) and the PaiMei reverse
engineering framework. The PaiMei framework is used to analyse the target software’s
binary code to locate functions and basic blocks and to attach to the running process and
use breakpoints to monitor execution flow. GPF is then used to randomly generate a set
of initial sessions, possibly seeded with some limited a priori knowledge of the protocol.
The sessions are then grouped together into a set of pools and the first round of evolution
starts. Each round of evolution begins by presenting each of the sessions within the pools
to the target program for processing, yielding a report of the resultant execution flow
from PaiMei. The reported execution flows are then used by the fitness functions in both
intra-pool evolution, which assigns higher fitness values to sessions with an execution flow
that includes more basic blocks, and inter-pool evolution process, which considers pools
as a collection of basic blocks touched and prefers those pools that collectively touch more
basic blocks that are not touched by any other pool. In both evolutionary steps elitism
is used to preserve the top ranked session / pool respectively. The remaining candidates
are then run through a cross over process, which favours genes from the higher ranked
candidates, and also run through a mutation process.

A July 2009 review of the system (Alverez 2009) states that “the code coverage ap-
proach is extremely poor and the pathflows approach is very time consuming. It heavily
depends on the implementation how effective it will be in the shortest amount of time.”

UNCLASSIFIED

27

DSTO-TN-1043 UNCLASSIFIED

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs (Cadar, Dunbar & En-
gler, 2008)

The authors discuss a new tool called KLEE which uses symbolic execution to analyse
programs and automatically generate system input sets that achieve high levels of code
coverage. KLEE is specifically designed to support the testing of applications that interact
with their runtime environment. KLEE was used to test the GNU Coreutils suite of
applications, which form the basis of the user environment on many different Unix like
systems. Similar tests were also completed for the BusyBox suite of applications for
embedded environments. Finally KLEE was used to test the HiStar kernel. KLEE’s
symbolic execution engine accepts programs that have been compiled to Low Level Virtual
Machine (LLVM) byte code which it then symbolically executes with two goals. First, it
attempts to touch every line of executable code in the program. Second, at each potentially
dangerous operation, such as memory dereferencing, if any of the possible input values can
cause an error.

Automated Whitebox Fuzz Testing (Godefroid, Levin, Mol-
nar et al., 2008)

The Scalable, Automated, Guided Execution (SAGE) fuzzer uses a novel algorithm, called
generational search, to generate sets of system input in a way that is intended to improve
the fuzzing of applications that accept highly structured input like compilers and inter-
preters with large input files. Under generational search a symbolic execution engine is
used to collect the path constraints for the execution flow followed when processing a seed
input file. These constraints are then used to identify the next generation of potential
inputs. For each constraint in the path the constraint is negated and combined with the
constraints that occur before it. If the resulting set of constraints remains solvable, a new
system input set is generated. This input set is used to test the SUT. In addition to testing
the SUT each test case is also scored based on the increase in code coverage it achieved,
and stored in a pool of potential seeds files. After all of the input sets for a set of path
constraints have been generated, the candidate with the highest score is selected from the
pool of potential seeds and the process begins again using that file as the seed.

SAGE discovered numerous vulnerabilities, including a remote execution vulnerability
in the processing of cursor animation files that had been originally been missed despite the
extensive in house use of fuzzers with knowledge of the .ANI file format(Howard 2007).
Over two ten hour sessions, each seeded with a different input file, SAGE found 43 crashes
within Microsoft Office 2007.

Grammar-based Whitebox Testing (Godefroid, Kiezun & Levin,
2008)

Experience revealed that the effectiveness of the SAGE fuzzer (see above) was limited with
respect to testing applications that process highly structured inputs. Such applications

28 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Table 2: Effectiveness of Different Fuzzer Types

strategy number || % total % lexer % parser % code generator
of tests || coverage || reach | coverage || reach | coverage || reach | coverage

black-box 8658 14.2 99.6 24.6 99.6 24.8 17.6 52.1

grammar-based 7837 11.9 100 22.1 100 24.1 72.2 61.2

black-box

white-box 6883 14.7 99.2 25.8 99.2 28.8 16.5 53.5

white-box + 3086 16.4 100 354 100 39.2 15.5 53.0

tokens

grammar-based 2378 20.0 100 24.8 100 424 80.7 81.5

white-box

typically process input in stages, for example the lexer and parser stages of a compiler, and
SAGE’s analysis essentially became trapped exploring the vast number of control flows in
these early stages. In an attempt to facilitate the fuzzing of deeper components of such
systems SAGE was extended to incorporate knowledge of the grammar accepted by the
system. This knowledge was used in two ways. Firstly, the satisfiability test used to vali-
date potential system input sets was extended to incorporate grammar based constraints
along with the path based constraints derived from symbolic execution. Secondly, knowl-
edge of the grammar allowed the fuzzer to generate lexically valid tokens. Both of these
enhancements allowed the significant levels of pruning to occur with in the early stages of
the search tree, thus facilitating the testing of deeper regions of the system.

The resulting system was used to test the JavaScript interpreter in Internet Explorer
7 (IE7). Rather than discussing any vulnerabilities that were found the analysis of the
effectiveness of the approach focused on the relative levels of coverage and depth reached
in relation to other fuzzing approaches. Several fundamental approaches were used to fuzz
the IE7’s JavaScript engine for two hours and the results, which are reproduced in the
table below, show that the grammar-based white-box approach yielded the best results in
both total coverage and reach.

Experiences with Model Inference Assisted Fuzzing (Viide,
Helin, Laakso, Pietikdinen, Seppanen, Halunen, Puupera &
Roning, 2008)

The paper’s authors start with the hypothesis that, to efficiently test a program the input
test data must have a structure that is approximately correct. One existing approach to
achieving this is to randomly mutate existing valid inputs. However, without an under-
standing of the data’s structure, the level of mutation can be severely limited. The idea
of model inference assisted fuzzing is intended to address this problem by inferring the
data’s structure from a set of training inputs.

Rather than adopting one of several existing systems for structural inference (Beddoe
2005, Larsson & Moffat 1999, Cui, Kannan & Wang 2007, Lehman & Shelat 2002) the
author’s opted to construct their own. Initial work started with a structure definition
language that, whilst flexible and powerful, was not suitable for a lightweight inference

UNCLASSIFIED

29

DSTO-TN-1043 UNCLASSIFIED

30

process. The authors found that using a subset of the language’s expressive power, equiv-
alent to that of a context free grammar, offered a good balance between expressiveness
and ease of inference.

To test the approach the authors attempted to infer a grammar for ten different file
compression formats'®. The resulting grammars were then fed into a reverse parser to
generate a collection of test inputs. In addition to the fuzzing inherent in the structure
inference process, the reverse parser also introduces random mutations to the grammar
as it is used. The resulting files were then used to test five anti-virus programs, finding
multiple flaws in four of the five programs.

Taint-based Directed Whitebox Fuzzing (Ganesh, Leek & Ri-
nard, 2009)

The BuzzFuzz tool described in this paper is a file fuzzing tool that uses dynamic taint-
tracing (Newsome and Song 2005), a set of key points of interest within the program, and
a pre-existing collection of legitimate input files to drive a fuzzing process that targets
those points. The fuzzing process uses the results of the dynamic taint analysis process in
an attempt to determine which regions of each legitimate file affect the values used at the
program’s key points so that it can focus fuzzing efforts on those regions of the file. The
main intended benefit of this approach is an ability to fuzz the deeper “core-logic” of the
system as compared to the file parsing logic which is normally tested by a fuzzer.

Given the source code for the system being tested, the set of key points and collection
of input files, BuzzFuzz starts by annotating the source code with calls to the BuzzFuzz
library. These calls allow BuzzFuzz to track for each calculation which input bytes affected
the result along with the type information. The instrumented version of the program is
then run on each of the pre-existing input files, which generates a set of reports listing
the input bytes and their types that influence the values used at each key point. Each
input file and its associated taint trace report are then fed into the directed fuzzer to
generate fuzzed output files, which are then run through the non-instrumented version of
the program for testing.

Configuration Fuzzing for Software Vulnerability Detection
(Dai, Murphy & Kaiser, 2010)

This paper describes a system that fuzzes the run-time configuration of a program. The
approach is based on the premise that different system states can expose a different subset
of implementation flaws within a system. The resulting fuzzer builds on the concepts of
In Vivo Software Testing (Murphy, Kaiser, Vo and Chu 2009), which support continued
testing of a system even when deployed. One idea behind the use of an In Vivo approach
is that it allows the system to be tested against the diverse range of real world inputs
without requiring the development of a second fuzzer to generate the input with which to
fuzz the system.

1Oace, arj, bz2, cab, gz, lha, rar, tar, zip, and zoo

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

The implementation described in the paper uses a white-box approach that starts
with the tester identifying a set of configuration variables and settings within the system’s
source code. Once identified this information is used to generate a fuzz-config function,
which when called randomises the system’s configuration. In the next step the tester
annotates the selection of functions they have chosen as the instrumentation points for the
configuration fuzzing process. For each annotated function the pre-processor emits three
functions. The first is simply the original function renamed to -function. The second is
a wrapper function with the name of the original function. The wrapper function merely
calls fork () to duplicate the process. In the parent process the function is called, while
in the child process control is passed to the third function generated by the pre-processor
test-function. The code generated for test-function is another wrapper where the call to
the original function (now renamed) is preceded by a call to fuzz-config() and followed
by a call to test-invariants(). The test-invariants() function, which is supplied
by the tester, checks for violations of any invariants that should hold, including security
properties.

TaintScope: A Checksum-Aware Directed Fuzzing Tool for
Automatic Software Vulnerability Detection (Wang, Wei, Gu
& Zou, 2010)

This paper continues the work by a number of authors on dynamic taint analysis. Three
of the four authors are based in China and the work is funded by a grant from the Chinese
NDRC. Taintscope is a modern fuzzer, employing symbolic execution and taint analysis,
however it is a proof-of-concept rather than a general purpose fuzzer at this point, targeting
code that generates checksums. Nothing would prevent this work from being generalised.
The prototype Taintscope is a file based fuzzer.

The program has its own debugger (“Execution Monitor”) and instruments the SUT,
examining each conditional jump instruction. It uses a simple heuristic to identify poten-
tial checksum code and follows it with deeper analysis to confirm this hypothesis. Data
input into the system is tagged to identify “hot bytes” (which are definable security rel-
evant bytes such as length fields in malloc and strcpy calls). Taintscope’s fuzzing effort
is directed at these hot bytes, and contains a number of “attack heuristics” for these hot
bytes. Data protected by checksums can have the checksum code disabled by rewriting the
branch instructions, although Taintscope also records the execution traces of the checksum
algorithm, regenerates the relevant checksum data and writes them into the malformed
input file for subsequent replay. Checksum data is handled as symbolic data; for speed
most of the data input file is treated as concrete data.

Unlike BuzzFuzz, Taintscope does not need access to the source code to perform its
taint analysis. It is a grey/black-box tool.

UNCLASSIFIED 31

DSTO-TN-1043 UNCLASSIFIED

32

Finding and Understanding Bugs in C Compilers (Yang, Chen,
Eide & Regehr, 2011)

This paper describes the development of, and experiences using, Csmith. Csmith is a
randomised test generator designed to improve the quality of C compilers. One of the key
design considerations in the development of Csmith was the desire to focus testing on the
deeper components of the compiler, with an emphasis on the logic for code generation and
optimisation. Satisfying this goal both placed stringent constraints on the generation of
input sets and also required the use of non-standard techniques for flaw detection.

Each test set generated by Csmith is a randomly generated C source file that computes
a single value checksum, which by default is printed as the final step in main(). Prior to
testing, the correct value for checksum is unknown, so the testing process can’t validate
the result using a priori knowledge. Instead, the same test set is compiled with multiple
compilers, and the results obtained by executing resulting binaries are compared. If the
results are the same, then the compilers are deemed to have worked correctly. If more
than one result is given then at least one of the compilers contains a flaw.

In order to ensure that there can only be a single valid result Csmith takes care to
generate C source code that is free of both undefined and platform dependent behaviour.
One example of undefined behaviour is that the result of performing bitwise operations
on signed integers isn’t defined within the C standard. The differences in the number of
bytes used to represent the int type is an example of platform dependent behaviour. In
total one hundred and fourteen types of such behaviour were identified that needed to be
avoided.

Csmith’s code generation process doesn’t take any steps to ensure that the resulting
program will terminate in the the time allotted for testing. The end result is that ap-
proximately ten percent of the programs generated apparently don’t terminate. In the
case of different behaviours with respect to program termination it can’t be conclusively
determined that an error has been found, but it is a useful precursor to suggest further
investigation.

Using Csmith over a span of three years Yang, Chen, Eide & Regehr (2011) were able
to find errors in each of the compilers tested, including both open source and commercial
products. In total three hundred and twenty-five (325) previously unknown compiler bugs
were reported to vendors, mostly in the middle end code generation and optimisation
stages.

AEG: Automatic Exploit Generation (Avgerinos, Cha, Hao
& Brumley, 2011)

Other tools have focused solely on the discovery of errors, This work attempts to discover
which flaws are exploitable with respect to control flow hijacking and to craft an exploit
that creates a shell.

UNCLASSIFIED

AHTAISSVTONN

€

Appendix B Tools & Frameworks

Table 3: Table of Fuzzing Tools and Frameworks

Product Name

White/Grey/Black

Generation or Mutation

Target Interface

Failure Detection

Comments

Codenomicon Black, White & Grey | Generation from Test Cases Network primarily | Debugger and Oracle Commercial Product, has vulnerability library and
DEFENSICS modes available and protocol plugins, but also Files plugins for 200+ protocols
(commercial) mutation based on packet
captures
BeStorm Black-box Generation, via protocol Network Debugger; also has a
(commercial) specifiers monitoring component for
SUT
MuDynamics Black-box Generation, via protocol Network only Not clear. Seems to be able Uses XML templats and claims to be able to fuzz
(commercial) modules; Mutation from to interroperate with third anything expressible in XML.
network captures party test equipment (e.g.
Agilent)
SPIKE Black-box Generation from Templates Network (SpikeFile | None - provide your own One of the early Black Hat fuzzers. Simple and
and rules for files) debugger powerfull. Allowed data to be handled as blocks
The Art of Black-box Mutation from pcap data Network None - provide your own GUI interface made network fuzzing accessible. Now
Fuzzing fields debugger Defunt
General Purpose | Black-box Mutation of network pcap Network, also File | Use of debugger Notable for spawning EFS. Mutation can be quite

Fuzzer

smart due to packet parsing & tokenizing / protocol
analysis

Evolutionary
Fuzzing System

Greybox, when
coupled with PaiMai
reverse engineering
tool

Mutation

File

As for GPF

Uses Genetic Algorithm for data generation, static
analyser for binary analysis/coverage determination
and identification of vulnerable structures. Uses code
coverage tool

Peach Blackbox Generation and Mutation Network and File Monitor agent and Remote Monitoring Agent monitors for crashes. Can
from XML protocol WindowsDebugEngine resume search space from/around crashes. Has code
descriptions coverage tool. XML syntax has learning curve. Is

capable of Constraint based fuzzing

Sulley Blackbox Generation and Random Network and File Crash monitor and Post Evolutionary fuzzer which takes successful features
Mutations Mortem analysis from previous systems. Has debugger monitor, crash

restore, data block handling, attack library etc
Flashboom Blackbox Generator Invocation Execution watchdog & XML | Fuzzes only a specific native interface function in
Parameters via network socket (status) Adobe Flash. A specific tool, not a framework
Browser/Flash

Spider Pig Blackbox Generator File and Invocation | Debugger Fuzzes Javascript used within PDF files. Brute force
Parameters random generator. Single purpose tool not extensible

AHIAISSVTIONN

EVOT-NL-OLSd

DSTO-TN-1043 UNCLASSIFIED

34

B.1 Codenomicon DEFENSICS (2001—-present)

Codenomicon'! can use pre-defined test cases. It also has a vulnerability library and the

ability to generate semi-valid cases based on pcap network capture. It also has “mini-
simulation” support, which allows data generation based on Java rules written to describe
both the data semantics and the communication (syntax and behaviour) between entities.
Codenomicon is a commercial product and claims to have protocol support for 200+
network protocols. It is a commercialisation of the PROTOS program (from the Secure
Programming Group, University of Oulu Finland).

B.2 beStorm and Mu Dynamics

These two are commercial fuzzers. They are both black fuzzers of network protocols, and
have the ability to generate network traffic using protocol modules. Mu Dynamics'? is
XML based and can generate traffic based on XML specifications. Both systems provide
some information about their fuzz generator, but lack technical information regarding the
rest of the system. It is not possible to comment further about the capability claims in

their marketing literature.

B.3 SPIKE (2001-present)

SPIKE '3 is a framework which allows a user to specify an expected protocol using simple
templates. It provides an API for generation of traffic against those templates. For ex-
ample an expected transaction could be specified as fields and data blocks, and the fields
could be incremented and iterated. The framework provided basic socket and memory
allocation support. It was very popular because of the simplicity of its internal represen-
tation; this simplicity still allowed a great deal of expressiveness. It is an early example of
a brute-force generation based fuzzer.

B.4 Valgrind (2004—present)

Valgrind runs the SUT in a synthetic processor and monitors every memory allocation,
deallocation and memory access. It hooks the dynamic loader and replaces the malloc
library call with accesses to itself. (Nethercote & Seward 2007)

B.5 The Art Of Fuzzing (TAOF) (2006—2009)

The Art of Fuzzing 4 was a Python based generation fuzzer used primarily for network
transactions. It provided a simple GUI interface and the specification of fields and data
types within a network capture. It is now defunct, with no activity since 2009. The code
has been abandoned in Sourceforge and the website is offline.

"http://www.codenomicon.com/
2http://www.mudynamics.com
Bhttp://www.immunitysec.com /resources-papers.shtml
Y“http:/ /sourceforge.net/projects/taof/

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

B.6 Peach (2006—present)

Peach® is a modern cross platform fuzzer which performs both generation and mutation.
The user generates a series of XML files (called “Pits”) which describes the protocol and
how to run the test. (A number of pre-written pits are available). Each pit can take in user
supplied data blocks as a starting point and can specify fields to be fuzzed for particular
file types. A number of “transformers” have been defined on data object or custom ones
can be defined. Peach can also automatically recalculate checksums if required. Further
XML blocks describe the state transitions of the system to be modelled. Peach is notable
for its remote monitoring agent that examines when/if the program has crashed and can
log and resume testing from that point. Its XML based code is powerful but harder to
learn than SPIKE, for example.

Peach is a maturing product still under active development. The current version 2.3.8
will soon be replaced by version 3 which is a rewrite from the ground up to take advantage
of the .NET platform (using mono for cross-platform support). Development has been
focused on the Windows platform and currently some of the functionality does not work
(or operates in a degraded way) on Linux.

Peach is being used to detect exploits in the real world but most of the work is behind
closed doors. Peach has been used to find a Denial-Of-Service exploit in SolarWinds TFTP
server'® and various potential exploits in Microsoft Office and Oracle OpenOffice!” 18.

B.7 General Purpose Fuzzer (GPF) (2007—present)

GPF' had the facility to capture network traffic from pcap and construct a protocol
description. Users generated traffic variations based on this traffic. It was extensible.
Fuzzing options ranged from pure random to protocol tokenisation. It was extended into
the Evolutionary Fuzzing System (EFS) which used a Genetic Algorithm to generate the
semi-valid data. It does not require source code, but statically pre-analyses the binary to
identify function addresses and structures. The system used a debugger to monitor the
coverage of the code within the system and the fitness function of the GA was based on
this coverage metric. EFS is classed as a Grey-Box solution due to its debugger metric
system.

B.8 Sulley (2008—present)

Sulley?® adopts some ideas from the previous tools but is an evolutionary tool that aims to
be easier to use. It is capable of accepting pcap and replaying it. It uses data blocks and
simple primitives as per SPIKE, with checksum support for these blocks. It supports reuse
of complex code objects and can model complex state machines. It uses the PaiMai/PyDBg

http://peachfuzzer.com/

Yhttp://www.nullthreat.net /2011/01/fuzzing-with-peach-running-fuzz-part-3.html
Yhttp:/ /www.cert.org/blogs/certec/2011/04/office_shootout_microsoft_offi.html
http:// dankaminsky.com/2011/03/11/fuzzmark/

Yhttp: / /www.vdalabs.com/tools/efs_gpf.html

2Ohttp:/ /www.fuzzing.org/wp-content / Amini-Portnoy-BHUS07.zip

UNCLASSIFIED

35

DSTO-TN-1043 UNCLASSIFIED

36

process for establishing code coverage (as per EFS) and the debugger monitor and restore
concept from Peach (but using a VMWare snapshot method).

B.9 Flashboom (2009)

Flashboom?! is a simple, single function Adobe Flash fuzzing tool. It focuses on a specific
undocumented function, ASNative, to operate. It is aimed at locating errors in the Adobe
Flash Player. Flashboom compiles an Adobe Flash file that tests the undocumented Flash
ASNative() function??. This undocumented function provides direct access to the internal
function table within a Flash Player instance. A fuzzing server(in the form of a Ruby
script, provided) calls out to the compiled flash file, calling the ASNative function with
different malformed arguments. The flash file executes the function call and responds.
Should a crash occur, the sent argument is retrievable and the Flash debuggers attached
to the web browser can pinpoint the error. Flashboom was developed by H.D.Moore.

B.10 Spider Pig (2010—present)

Spider Pig?3 is a relatively simple single purpose Javascript fuzzer for PDF readers. The
user specifies the Javascript functions for testing and Spider Pig creates PDFs containing
multiple instances of this fuzzed content. The user must then independently run these
fuzzed documents in a PDF reader with appropriate debugging. Spider Pig is not a
framework and is not easily expandable.

2http://blog.metasploit.com/2009/01 /fuzzing-flash-for-fun-asnative.html
22http:/ /osflash.org/flashcoders /undocumented /asnative
Zhttp://code.google.com/p/spiderpig-pdffuzzer

UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

Appendix C Experimental Results

C.1 Peach

The following XML file is a simple example of a Peach pit to fuzz Microsoft Word 2003
on Windows XP. It generates a mutated .doc file on disk and launches Word to load it.
Fuzzing runs continuously and is monitored by the standard Peach Agent running in a
separate process.

word-peach-doc.xml:

<?xml version="1.0" encoding="utf-8"7>
<Peach version="1.0" author="DSTO-DRJG" description="MS Word 2003 fuzzing definition">

<I--
A simple MS word document fuzzing definition.
Mutates a sample MS word document file and passes it to MS word.
Each word document file is named differently to avoid problems with Microsoft’s
automatic document recovery algorithms. This functionality requires changes to
the Peach source code.

-—=>

<!-- TImport defaults for Peach instance -->

<Include ns="default" src="file:defaults.xml" />

<!-- Define the basic structure of the html file -->
<DataModel name="RootDataModel">

<Block name="Blockl">

<Blob valueType="hex" value="DO CF 11 EO A1l B1 1A E1 00 00 00 00 00 00 00 00
. hex dump of existing word document to be mutated ...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00"/>

</Block>

</DataModel>

<!-- Define how to run a single test —-—>
<StateModel name="State" initialState="Statel">
<State name="Statel">

<!-- Run the RootDataModel to generate the output file -->
<Action type="output">
<DataModel ref="RootDataModel"/>
</Action>
<!-- Close the output file -->
<Action type="close"/>

<!-- Launch the file consumer -->
<Action type="call" method="DoTheFuzzTestNow"/>
</State>
</StateModel>

UNCLASSIFIED 37

DSTO-TN-1043 UNCLASSIFIED

<!-- Define an agent to monitor the testing -->
<Agent name="LocalAgent">
<Monitor class="debugger.WindowsDebugEngine">
<Param name="CommandLine" value="C:/Program Files/Microsoft0ffice2003/0FFICE11/
winword.exe C:/Dev/Peach-2.3.8-src/fuzz-word/input/FuzzTest-%d.doc" />
<Param name="StartOnCall" value="DoTheFuzzTestNow" />
<Param name="SymbolsPath" value="C:/WINDOWS/symbols" />
</Monitor>
<Monitor class="gui.PopupWatcher">
<Param name="WindowNames" value="Microsoft O0ffice Word" />
<Param name="CloseWindows" value="true" />
<Param name="TriggerFaults" value="false" />
</Monitor>
<Monitor class="process.PageHeap">
<Param name="Executable" value="winword.exe"/>
</Monitor>
</Agent>

<!-- Define the test -->

<Test name="FuzzTest">
<Agent ref="LocalAgent"/>
<StateModel ref="State"/>

<!I-- Define the publisher to write to file -->
<Publisher class="file.FileWriterLauncher">
<Param name="filename" value="C:/Dev/Peach-2.3.8-src/fuzz-word/input/
FuzzTest-%d.doc" />
<Param name="debugger" value="true"/>
</Publisher>
</Test>

<!-- Define what to run -->
<Run name="DefaultRun">
<Test ref="FuzzTest" />

<!-- Define a logger to write to disk -->
<Logger class="logger.Filesystem">
<Param name="path" value="C:/Dev/Peach-2.3.8-src/fuzz-word/logs" />
</Logger>
</Run>
</Peach>

To start Peach:

peach.bat word-peach-doc.xml

38 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

The Peach logger outputs a basic log file which lists the tests which detected faults. The
following test was started at 9:17 and detected two faults before being forcibly terminated
at 11:50 using the task manager.

status.txt:

Peach Fuzzer Run

Command line: peach.py fuzz-word\word-peach-doc.xml
Date of run: Thu Jul 07 09:17:28 2011

SEED:

Pit

1309994983 .45

File: word-peach-doc.xml

Run name:

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

07
07
07
07
07
07
o7
o7
o7
o7

DefaultRun

09:
09:
09:
09:
10:
10:
10:
11:
11:
11:

17:
17:
17:
17:
10:
12:
58:
50:
50:
50:

30
30
30
30
50
50
40
45
47
47

2011:
2011:
2011:
2011:
2011:
2011:
2011:
2011:
2011:
2011:

Test starting: FuzzTest

On test variation # 1

Fault was detected on test 255
Fault was detected on test 267
On test variation # 512

Fault was detected on test 773
FORCED EXIT OR CRASH!

Last test #: 773

The basic log file is useful as a first pass check and additional log files provide more
detail on any detected faults. The test above produced the following directory structure
of files:

Peach-2.3.8-src

+-—-fuzz-word

+--logs

+--word-peach-doc.xml_2011Jul06234728
| status.txt

+--Faults

+--AgentConnectionFailed

+-=-773
data_1_output_Named_32.txt
data_2_call_Named_34.txt

UNCLASSIFIED 39

DSTO-TN-1043 UNCLASSIFIED

I
+--UNKNOWN_TaintedDataControlsBranchSelection_0x19050c05_0x313f0c36
I
+--255
| data_1_output_Named_32.txt
| data_2_call_Named_34.txt
| LocalAgent_StackTrace.txt
+--267
data_1_output_Named_32.txt
data_2_call_Named_34.txt
LocalAgent_StackTrace.txt

The results of each Peach run are logged in a separate timestamped directory containing
the “status.txt” file. If any faults are detected a directory is created for each unique fault,
and within this another directory for each test that caused that specific fault along with
input files and stack traces. This is helpful because you can easily compare different inputs
which resulted in the same fault.

The following “LocalAgent_StackTrace.txt” file explains the detected fault from test
267 in more detail. The following output from Microsofts ”!exploitable” tool suggests
that this a potentially exploitable fault as data from the faulting address is later used to
determine whether or not a branch is taken.

Microsoft (R) Windows Debugger Version 6.12.0002.633 X86
Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: C:/Program Files/MicrosoftOffice2003/0FFICE11/winword.exe C:/Dev/
Peach-2.3.8-src/fuzz-word/input/FuzzTest-267.doc
Symbol search path is: C:/WINDOWS/symbols
Executable search path is:
ModLoad: 30000000 30bb1000 winword.EXE
ModLoad: 7c900000 7c9b2000 ntdll.dll
l.
0 id: 9f4 create name: winword.EXE
<Snip>

INSTRUCTION_ADDRESS:0x0000000030caf542

INVOKING_STACK_FRAME: O

DESCRIPTION:Data from Faulting Address controls Branch Selection

SHORT_DESCRIPTION:TaintedDataControlsBranchSelection

CLASSIFICATION:UNKNOWN

BUG_TITLE:Data from Faulting Address controls Branch Selection starting at mso!MsoCchWz
Len+0x0000000000000012 (Hash=0x19050c05.0x313f0c36)

EXPLANATION:The data from the faulting address is later used to determine whether or not
a branch is taken.!msec.exploitable -m

IDENTITY:HostMachine\HostUser

<Snip>

40 UNCLASSIFIED

UNCLASSIFIED DSTO-TN-1043

References

Aitel, D. (2002) http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-
spike.ppt.

Alverez, S. (2009) Commercial fuzzer and open source comparison,
http://wuw.whitestar.linuxbox.org/pipermail/fuzzing/2009-July/000556.html.

Avgerinos, T., Cha, S., Hao, B. & Brumley, D. (2011) Aeg: Automatic exploit generation,
NDSS.

Backus, J. (1959) The syntax and semantics of the proposed international algebraic lan-
guage of the zurich acm-gamm conference, Proceedings of the International Comfer-
ence on Information Processing, 1959 .

Beddoe, M. (2005) Network protocol analysis using bioinformatics algorithms.

Cadar, C., Dunbar, D. & Engler, D. (2008) Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs, in Proceedings of the 8th USENIX
conference on Operating systems design and implementation, USENIX Association,
pp- 209-224.

Cui, W., Kannan, J. & Wang, H. (2007) Discoverer: Automatic protocol reverse engi-
neering from network traces, in Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, USENIX Association, p. 14.

Dai, H., Murphy, C. & Kaiser, G. (2010) Configuration fuzzing for software vulnerability
detection, in 2010 International Conference on Awvailability, Reliability and Security,
IEEE, pp. 525-530.

DeMott, J., Enbody, R. & Punch, W. (2007) Revolutionizing the field of grey-box attack
surface testing with evolutionary fuzzing, BlackHat and Defcon .

Forrester, J. & Miller, B. (2000) An empirical study of the robustness of windows nt
applications using random testing, in Proceedings of the 4th conference on USENIX
Windows Systems Symposium-Volume 4, USENIX Association, pp. 6-6.

Ganesh, V., Leek, T. & Rinard, M. (2009) Taint-based directed whitebox fuzzing, in Pro-
ceedings of the 31st International Conference on Software Engineering, IEEE Com-
puter Society, pp. 474-484.

Godefroid, P. (2010) From blackbox fuzzing to whitebox fuzzing towards verification,
http://selab.fbk.eu/issta2010/download/slides/Godefroid-Keynote-ISSTA2010.pdf.

Godefroid, P., Kiezun, A. & Levin, M. (2008) Grammar-based whitebox fuzzing, in ACM
SIGPLAN Notices, Vol. 43, ACM, pp. 206-215.

Godefroid, P., Levin, M., Molnar, D. et al. (2008) Automated whitebox fuzz testing, in
Proceedings of the Network and Distributed System Security Symposium, Citeseer.

Grove, D., Murray, T., Owen, C., North, C., Jones, J., Beaumont, M. & Hopkins, B. (2007)
An overview of the annex system, in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, IEEE, pp. 341-352.

UNCLASSIFIED 41

http://www.whitestar.linuxbox.org/pipermail/fuzzing/2009-July/000556.html
http://selab.fbk.eu/issta2010/download/slides/Godefroid-Keynote-ISSTA2010.pdf

DSTO-TN-1043 UNCLASSIFIED

Hanford, K. (1970) Automatic generation of test cases, IBM Systems Journal 9(4), 242
257.

Howard, M. (2007) Lessons learned from the animated cursor security bug.

Kaksonen, R. (2001) A Funtional Method for Assessing Protocol Implementation Security,
VTT, Technicial Research Centre of Finland.

Larsson, N. & Moffat, A. (1999) Offline dictionary-based compression, in dcc, Published
by the IEEE Computer Society, p. 296.

Lehman, E. & Shelat, A. (2002) Approximation algorithms for grammar-based compres-
sion, in Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete al-
gorithms, Society for Industrial and Applied Mathematics, pp. 205-212.

Microsoft (2011) Security Development Lifecycle: SDL Process Guidance, Microsoft.

Miller, B., Fredriksen, L. & So, B. (1990) An empirical study of the reliability of unix
utilities, Communications of the ACM 33(12), 32-44.

Miller, B. P. (1988) Cs 736 project list.

Miller, B. P., Koski, D., Pheow, C., Maganty, L. V., Murthy, R., Natarajan, A. & Steidl,
J. (1995) Fuzz revisited: A re-examination of the reliability of UNIX wutilities and
services, Technical report.

Muniz, S. & Ortega, A. (2011) Fuzzing and debugging cisco ios.
Myers, G. J. (2004) The Art of Software Testing 2nd Ed, John Wiley and Sons.

Nethercote, N. & Seward, J. (2007) Valgrind: A framework for heavyweight dynamic
binary instrumentation, in Proceedings of ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), San Diego, California,
USA, June 2007, Association for Computing Machinery.

Roning, J., Laakso, M., Takanen, A. & Kaksonen, R. (2002) Pro-
tos - systematic approach to eliminate software vulnerabilities,
http:/ /www.ee.oulu.fi/research/ouspg/PROTOS_MSR2002-protos.

Sparks, S., Embleton, S., Cunningham, R. & Zou, C. (2007) Automated vulnerability
analysis: Leveraging control flow for evolutionary input crafting, in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, IEEE, pp. 477
486.

Sutton, M. & Greene, A. (2005) The art of file format fuzzing,
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sutton-greene.pdf.

Takanen, A. (2009a) Commercial fuzzer and open source fuzzer comparison,
http://www.whitestar.linuxbox.org/pipermail/fuzzing/2009-July/000552.html.

Takanen, A. (2009b) Fuzzing: the past, the present and the future, Symposium sur la
securite des technologies de I'information et des communications.

42 UNCLASSIFIED

http://www.whitestar.linuxbox.org/pipermail/fuzzing/2009-July/000552.html

UNCLASSIFIED DSTO-TN-1043

Takanen, A., Demott, J. D. & Miller, C. (2008) Fuzzing for Software Security and Quality
Assurance, Artech House.

Viide, J., Helin, A., Laakso, M., Pietikdinen, P., Seppénen, M., Halunen, K., Puuperi,
R. & Roning, J. (2008) Experiences with model inference assisted fuzzing, in Proceed-
ings of the 2nd conference on USENIX Workshop on offensive technologies, USENIX
Association, pp. 1-6.

Wang, T., Wei, T., Gu, G. & Zou, W. (2010) Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection, in Proceedings of the 31st
IEEE Symposium on Security and Privacy, IEEE, pp. 497-512.

Wood, D., Gibson, G. & Katz, R. (1990) Verifying a multiprocessor cache controller using
random test generation, Design & Test of Computers, IEEE T(4), 13-25.

Yang, X., Chen, Y., Eide, E. & Regehr, J. (2011) Finding and understanding bugs in ¢
compilers.

UNCLASSIFIED

43

DSTO-TN-1043 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

44 UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION L. CAVEAT/PRIVACY MARKING
DOCUMENT CONTROL DATA

2. TITLE 3. SECURITY CLASSIFICATION
Fuzzing: The State of the Art Document (U)

Title (U)

Abstract (U)
4. AUTHORS 5. CORPORATE AUTHOR
Richard McNally, Ken Yiu, Duncan Grove and | Defence Science and Technology Organisation
Damien Gerhardy PO Box 1500

Edinburgh, South Australia 5111, Australia
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TN-1043 015-148 Technical Note February, 2012
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR | 11. No. OF PAGES 12. No. OF REFS
2011/1216182/1 | 07/343 DSTO 43 37
13. URL OF ELECTRONIC VERSION 14. RELEASE AUTHORITY
http://wuw.dsto.defence.gov.au/ Chief, Command, Control, Communications and

publications/scientific.php Intelligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Fuzzing
Automated Vulnerability Discovery
Computer Security

19. ABSTRACT

Fuzzing is an approach to software testing where the system being tested is bombarded with test cases
generated by another program. The system is then monitored for any flaws exposed by the processing
of this input. While the fundamental principles of fuzzing have not changed since the term was first
coined, the complexity of the mechanisms used to drive the fuzzing process have undergone significant
evolutionary advances. This paper is a survey of the history of fuzzing, which attempts to identify
significant features of fuzzers and recent advances in their development, in order to discern the current
state of the art in fuzzing technologies, and to extrapolate them into the future.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Authors
	Contents
	Glossary
	Introduction
	The Evolution of Fuzzing
	Fuzzing at University of Wisconsin-Madison
	Fuzzing UNIX
	Fuzzing Revisited

	Wider Adoption

	Fuzzer Concepts
	Anatomy of a Fuzzer
	Fuzzer Terminology

	The Case for Fuzzing
	Why Fuzz?
	Strengths and Weaknesses of Classical Fuzzing

	A Description of Fuzzer Types
	Fuzz Generators
	Delivery Mechanisms
	Classical Monitoring Systems
	Modern Fuzzers

	Experiences
	Conclusions
	The State of the Art
	Fuzzing in the Future

	Literature Survey
	Automatic Generation of Test Cases
	An Empirical Study of the Reliability of UNIX Tools
	A Re-examination of the Reliability of UNIX Utilities and Services
	The Robustness of Windows NT Applications Using Random Testing
	Leveraging Control Flow for Evolutionary Input Crafting
	Grey-box Attack Surface Testing with Evolutionary Fuzzing
	KLEE: Unassisted Generation of for Complex Systems Programs
	Automated Whitebox Fuzz Testing
	Grammar-based Whitebox Testing
	Experiences with Model Inference Assisted Fuzzing
	Taint-based Directed Whitebox Fuzzing
	Configuration Fuzzing for Software Vulnerability Detection
	TaintScope: Checksum-Aware Directed Fuzzing
	Finding and Understanding Bugs in C Compilers
	Automatic Exploit Generation

	Tools & Frameworks
	Codenomicon DEFENSICS (2001–present)
	beStorm and Mu Dynamics
	SPIKE (2001–present)
	Valgrind (2004–present)
	The Art Of Fuzzing (TAOF) (2006–2009)
	Peach (2006–present)
	General Purpose Fuzzer (GPF) (2007–present)
	Sulley (2008–present)
	Flashboom (2009)
	Spider Pig (2010–present)

	Experimental Results
	Peach

	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

