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Abstract

Motivated by the increasing dependence of many systems on battery energy, we study the problem of optimally controlling how to
discharge and recharge a non-ideal battery so as to maximize the work it can perform over a given time period and still maintain
a desired final energy level. Modeling a battery as a dynamic system, we adopt a Kinetic Battery Model (KBM) and formulate
a finite-horizon optimal control problem when recharging is always feasible under the constraint that discharging and recharging
cannot occur at the same time. The solution is shown to be of bang-bang type with the property that the battery is always in
recharging mode during the last part of the interval. When the length of the time horizon exceeds a critical value, we also show
that the optimal policy includes chattering. Numerical results are included to illustrate our analysis. We then extend the problem to
settings where recharging is only occasionally feasible and show that it can be reduced to a nonlinear optimization problem which
can be solved at least numerically.
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1 Introduction

With the increasing importance of energy management in
wireless environments, batteries are playing a critical role in
fields such as consumer electronics, public transportation,
and military applications. The same is true for energy-aware
systems encountered in robotics, mobile sensor networks
and embedded computer systems. Systems of this kind have
been studied through techniques such as Dynamic Voltage
Scheduling (DVS) [27,21,14] where a battery is often mod-
eled as a queueing system with the possibility of recharging
[12]. In these studies, it is normally assumed that the bat-
tery is ideal, i.e., it maintains a constant voltage throughout
the discharge process and a constant capacity for all dis-
charge profiles, which is not generally true. To date, most
batteries are electro-chemical with complex dynamics char-
acterizing nonlinear discharge behaviors [6,20]. In fact, the
energy amount delivered by the battery heavily depends on
the discharge profile and it is generally not possible to ex-
tract all the capacity stored in the battery [19]. This is due
to the rate capacity effect [7] that leads to the loss of capac-
ity with increasing load current and to the recovery effect
[15] which would make the battery appear to regain portions
of its capacity after some resting time. Therefore, in order
to optimize the use of battery power, it is necessary to take
these factors into account which incurs significant compu-
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tational complexity for the purpose of real-time power con-
trol. Thus, to use an efficient battery model in energy-aware
systems requires a combination of accuracy and speed in ex-
pressing battery discharge behaviors under various profiles.

In early models, the electrochemical processes in a bat-
tery were described by partial differential equations (PDE)
[9],[19]. Other efforts include an approximate Single Par-
ticle Model [5],[17,23] and a diffusion-based model [24]
transformed into an equivalent linear state space model
[28], which facilitates energy optimization but is still
computation-intensive [22],[1]. More recent work [4] takes
advantage of renewable energy in optimal power flow prob-
lems, but a battery is still modeled as a simple linear system.
A Kinetic Battery Model (KBM) was originally proposed
to provide a fast and comprehensive battery model for
embedded systems [13]. It takes into account not only the
recovery effect, but also the rate capacity effect. The modi-
fication of the KBM in [22] enhances model accuracy while
still preserving computational speed. More recently, the
KBM was introduced in a lifetime maximization problem
for wireless sensor networks [18], revealing its applicability
to large-scale systems, and to introduce [25] the optimal
control problem we will analyze in what follows.

In this paper, we use the KBM to formulate a state-
constrained optimal control problem with the added feature
of a battery recharging capability. We seek to maximize
the work performed by the battery over a given time in-
terval [0, T ] with the requirement that its energy is at a
desired level at the end of this interval. Our motivation
comes from several application areas, including (i) mo-
bile battery-based robotic systems which must periodically
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interrupt operation for recharging purposes; (ii) wireless
sensor nodes, which must also be periodically recharged,
sometimes through standard power sources or possibly
energy harvesting from sources such as solar, wind or vi-
brations [2]; and (iii) Electric Vehicles, where the emerging
“smart grid” provides considerable flexibility for control-
ling the timing of recharging intervals in between usage
of the vehicle [8]. In many such applications, the desired
performance is directly controlled by the discharge rate of
the battery through DVS techniques mentioned earlier. By
controlling the discharge and recharge rates, we derive an
optimal policy shown to be of bang-bang type with the
property that the battery is always in recharging mode dur-
ing the last part of the interval and there is an optimal time
to switch from discharging to recharging, within the con-
straints of the problem. We extend the analysis to settings
where recharging is only occasionally feasible in some given
time intervals contained within [0, T ] (e.g., during sunlight
intervals for solar recharging). We show that this can be
reduced to a nonlinear parametric optimization problem,
which can be efficiently solved at least numerically.

In Section 2, we briefly review the basics of battery dynamics
and propose a modified KBM to include a recharging capa-
bility. In section 3, a battery output maximization problem
is formulated, structural properties of the optimal solution
are derived, and a full solution is provided using a standard
optimal control approach. Numerical examples are included
to illustrate the properties of the optimal solution. In Sec-
tion 4 we study an extension with a three-interval optimal
control problem where recharging is possible in only one of
them and derive a solution. Finally, conclusions and further
research directions are described in section 5.

2 Battery Model

An electrochemical battery cell consists of an anode, a cath-
ode and the electrolyte that separates the two electrodes.
The electric current derives from the electrochemical reac-
tions occurring at the electrode-electrolyte interface. The
two important effects [22] that make battery performance
nonlinear (unlike an ideal linear battery model) and sensi-
tive to the discharge profile are: (i) the Rate Capacity ef-
fect, and (ii) the Recovery effect. The battery lifetime relies
on the availability and reachability of active reaction sites
in the cathode. When the load current goes high, the devi-
ation of the concentration of active reaction sites from the
average increases, thus resulting in a lower state of charge
as well as less cell voltage, compared with the battery un-
der a low load current. This phenomenon is called Rate Ca-
pacity Effect [7]. On the other hand, the diffusion process
could compensate for the depletion of the active materials
taking place during the current drain, which results in volt-
age recovery after resting. This nonlinearity in the battery
is termed the Recovery Effect [15].

The KBM, which was originally proposed in [13], models the
battery as two wells of charge, as shown in Fig. 1 (except for
the input h(t)). The available-charge well (R-well) directly
supplies electrons to the load while the bound-charge well
(B-well) only supplies electrons to the R-well. The energy
levels in the two wells are denoted by r(t) and b(t) respec-
tively. The rate of energy flow from the B-well to the R-well

is k(b(t)−r(t)), where k depends on the battery characteris-
tics. The output u(t) is the workload of the battery at time
t. The battery is said to be depleted when r(t) becomes 0.

Fig. 1. Kinetic Battery Model modified to include recharging

Since we are interested in a battery with rechargeability
capabilities, we modify the KBM by adding a controllable
input flow h(t). For the sake of generality, we distribute the
inflow h(t) to both wells by adding a constant coefficient β
(0 ≤ β ≤ 1), as seen in Fig. 1. The resulting model is given
by

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t)− r(t))

ḃ(t) = c2(1− β)h(t)− k(b(t)− r(t))

where c1 and c2 are battery-specific influencing factors for
the discharge outflow u(t) and the recharge inflow h(t) re-
spectively; since, in general, a battery discharges faster than
it can recharge, we assume c1 > c2 ≥ 0 where the special
case c2 = 0 simply means the battery is not rechargeable.
Empirical evidence for the accuracy of the KBM is provided
in [22] in terms of capturing the recovery and rate capacity
effects, which are the basic phenomena affecting the solu-
tion of the optimal control problem we will consider next.
However, finding alternative simple and accurate models for
non-ideal batteries remains a crucial research topic.

3 Output Maximization Problem

We will start with the assumption that the option to
recharge the battery is always available over [0, T ]; this will
be relaxed in Section 4 where this option will be available
only occasionally. Thus, we seek to control the discharging
and recharging processes so as to maximize the battery
output over a finite time interval [0, T ]. Note that the con-
tinuous operation of a battery is broken down into periods
of length T rather than considering the infinite future. This
provides the ability to periodically return the total battery
charge to a desired level and to control battery performance
over individual cycles. Then, the objective of our problem is

min
(u(t),h(t))∈U

−qT = −
∫ T

0

u(t)dt (1)
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where qT is the total output over [0, T ] and U is a feasible
control set defined as

U = {(u, h) ∈ R2 : 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1, u(t)h(t) = 0}
(2)

The constraint u(t)h(t) = 0 restricts the discharge and
recharge processes so that they cannot occur simultaneously.
This requirement is application-dependent and may be re-
laxed as shown later, but we consider the problem in the
presence of this constraint for the sake of generality. The op-
timization problem in (1)-(2) is subject to the dynamics of
the state variables r(t) and b(t) in the KBM described in the
previous section with appropriate constraints and boundary
conditions as follows:

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t)− r(t)) (3)

ḃ(t) = c2(1− β)h(t)− k(b(t)− r(t)) (4)
r(T ) = r(0) (5)
0 ≤ r(t) ≤ B, t ∈ [0, T ] (6)
0 ≤ b(t) ≤ B, t ∈ [0, T ] (7)

The boundary condition (5) reflects the requirement to end
a battery operating cycle of length T with the same en-
ergy level as the initial one, so as to exercise periodic con-
trol allowing the battery to be used over a potentially infi-
nite horizon, as mentioned above. Alternatively, we may set
r(T ) = rf for any given rf ≥ 0, adding flexibility without af-
fecting the analysis that follows. The constraints (6) and (7)
capture the physical limitations of the battery which must
maintain a non-negative available-charge well level through-
out the interval [0, T ] while not exceeding an upper bound
in each well level.

Before proceeding with a solution to the problem above, the
following lemma establishes simple properties of the KBM
state dynamics (proofs of all lemmas can be found in [26].)

Lemma 1: Regarding the state bounds:

(1) b(τ) = 0 for any τ ∈ (0, T ] if and only if b(0) = r(0) = 0
and u(t) = h(t) = 0 for all t ∈ [0, τ ]; otherwise b(τ) >
0.

(2) If β = 0 (β = 1), then r(τ) = B (b(τ) = B) for
any τ ∈ (0, T ] if and only if b(0) = r(0) = B and
u(t) = h(t) = 0 for all t ∈ [0, τ ]; otherwise r(τ) < B
(b(τ) < B).

(3) r(τ) = b(τ) = B for any τ ∈ (0, T ] if and only if
b(0) = r(0) = B and u(t) = h(t) = 0 for all t ∈ [0, τ ];
otherwise either r(τ) < B when b(τ) = B or b(τ) < B
when r(τ) = B.

Remark 1: Given (1), it is obvious that u(t) = 0 is not an
optimal solution, therefore an optimal trajectory is always
characterized by: 1) b(t) > 0; 2) r(t) < B (b(t) < B) if β = 0
(β = 1); 3) r(t) < B (b(t) < B) when b(t) = B (r(t) = B)
for t ∈ (0, T ].

We begin by analyzing the unconstrained case in which (6)
and (7) are relaxed. We will then extend the analysis to
incorporate these constraints.

Unconstrained case. In this case, the optimal state trajec-
tory consists of an interior arc over the entire interval [0, T ].

Let x(t) = (r(t), b(t))T and λ(t) = (λ1(t), λ2(t))T denote
the state and costate vector respectively. The Hamiltonian
for this problem is

H(x, λ, u, h) = −u(t) + λ1ṙ(t) + λ2ḃ(t)
= [−c1λ1(t)− 1]u(t) + c2[βλ1(t) + (1− β)λ2(t)]h(t)
+ k[λ1(t)− λ2(t)][b(t)− r(t)] (8)

Note that we do not incorporate the constraint u(t)h(t) = 0
into the Hamiltonian for the time being. Omitting function
arguments for simplicity, the corresponding Lagrangian is:

L = H + µeuh + µ1(u− 1)− µ2u + µ3(h− 1)− µ4h

where µi, i = 1, . . . , 4 and µe are the multipliers corre-
sponding to the constraints 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1 and
u(t)h(t) = 0 respectively. The multipliers µi satisfy µi ≥ 0,
i = 1, . . . , 4, and the complementary slackness conditions:

µ1(u− 1) = 0, µ2u = 0, µ3(h− 1) = 0, µ4h = 0

The costate (Euler-Lagrange) equations λ̇ = −∂L
∂x give{

λ̇1(t) = k(λ1(t)− λ2(t))

λ̇2(t) = −k(λ1(t)− λ2(t))
(9)

and, due to (5), we must satisfy λ(T ) = ∂Φ(x(T ))
∂x where

Φ(x(T )) = ν[r(T ) − r(0)] and ν is an unknown multiplier,
so that

λ1(T ) = ν, λ2(T ) = 0 (10)
Solving (9) with the boundary conditions (10), we get

λ1(t) =
ν

2
[1 + e2k(t−T )], λ2(t) =

ν

2
[1− e2k(t−T )] (11)

Looking at (8), let us define the switching functions s1(t)
and s2(t) corresponding to u(t) and h(t):

s1(t) = −c1λ1(t)− 1, s2(t) = c2[βλ1(t) + (1− β)λ2(t)]
(12)

and apply the Pontryagin minimum principle:

H(x∗, λ∗, u∗, h∗) = min
(u,h)∈U

H(x, λ, u, h) (13)

where u∗(t), h∗(t), t ∈ [0, T ), denote the optimal controls.
We can then see that

u∗(t) =

{
1 s1(t) < 0

0 s1(t) > 0
, h∗(t) =

{
1 s2(t) < 0

0 s2(t) > 0
(14)

where the singular case with s1(t) = s2(t) = 0 is excluded,
since, by (11)-(12), the monotonicity of s1(t) and s2(t)
makes it impossible to have s1(t) = s2(t) = 0 for any inter-
val of finite length. In addition, the case u∗(t) = h∗(t) = 0
can be immediately excluded based on the following ob-
servation. If s2(t) > 0 in (14), then h∗(t) = 0; in addition,
by (11)-(12), we must have ν > 0, which in turn implies
λ1(t) > 0. It follows that s1(t) = −c1λ1(t) − 1 < 0,
implying that u∗(t) = 0 cannot be optimal, therefore,
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u∗(t) = h∗(t) = 0 is not an optimal control pair. If, on the
other hand, s2(t) < 0, then h∗(t) = 0 cannot be optimal
and u∗(t) = h∗(t) = 0 cannot be an optimal control pair.

Recall that the constraint u(t)h(t) = 0 was not included in
(8). Since we have established that u∗(t) = h∗(t) = 0 may
be excluded, it follows that h∗(t) = 1 − u∗(t) and we can
rewrite H(x, λ, u, h) with h(t) = 1− u(t) without affecting
the optimality conditions:

H(x, λ, u, h) = (−c1λ1 − 1− c2[βλ1 + (1− β)λ2])u

+ c2[βλ1 + (1− β)λ2] + k(λ1 − λ2)(b− r)

We now define a new switching function

σ(t) = −c1λ1(t)− 1− c2[βλ1(t) + (1− β)λ2(t)] (15)

which, using (11), becomes

σ(t) = −ν

2

[
(c1 + c2) + (c1 − (1− 2β)c2)e2k(t−T )

]
− 1

(16)
Note that since c1 > c2 and |1−2β| ≤ 1, the bracketed term
in (16) is positive. Then, the optimal control on an interior
arc is {

u∗(t) = 0, h∗(t) = 1 if σ(t) > 0

u∗(t) = 1, h∗(t) = 0 if σ(t) < 0
(17)

where the singular case σ(t) = 0 can be excluded for the
same reason that the case s1(t) = s2(t) = 0 was excluded.
The optimal solution in (17) is a simple bang-bang control
with a switch occurring when (and if) σ(t) changes sign for
some t ∈ [0, T ). In view of (16), let us consider two cases
regarding the sign of the unknown constant ν.

First, suppose ν ≥ 0, in which case σ(t) < 0 for all t ∈
[0, T ]. It follows from (17) that u∗(t) = 1, h∗(t) = 0 for all
t ∈ [0, T ]. Using these values in (3)-(4), we can solve the two
state equations with the added condition r(T ) = r(0) in (5)
and obtain the following equation which must be satisfied
by r(0), b(0) and T :

−c1

2
T +

1
2
[b(0)− r(0)− c1

2k
](1− e−2kT ) = 0 (18)

Clearly, (18) cannot be satisfied for arbitrary r(0), b(0), T
and constitutes a special case of little or no interest. Thus,
in the sequel we concentrate on the remaining case where
ν < 0. We can then have either σ(t) > 0 or σ(t) < 0 for
t ∈ [0, T ] and there are two possible cases to consider:

Case 1 : σ(t) < 0 for all t ∈ [0, T ]. This case results in the
exact same analysis as ν ≥ 0 above and can only hold if (18)
is satisfied which is only true for specific r(0), b(0), T and,
hence, of little or no interest.

Case 2 : σ(t) < 0 for t ∈ [0, ts) and σ(t) > 0 for t ∈ (ts, T ],
where ts is a switching time. Since ν < 0 and recalling that
c1 > c2, observe in (16) that σ(t) is monotonically increas-
ing, so if σ(t) > 0 this must happen in an interval that
ends at T , thus justifying the assertion that σ(t) > 0 for

t ∈ (ts, T ]. It then follows from (17) that

u∗(t) =

{
1 t ≤ ts

0 t > ts
, h∗(t) =

{
0 t ≤ ts

1 t > ts
(19)

where ts can be obtained by solving the state equations:{
ṙ(t) = −c1 + k(b(t)− r(t))

ḃ(t) = −k(b(t)− r(t))
for t ∈ [0, ts]{

ṙ(t) = c2β + k(b(t)− r(t))

ḃ(t) = c2(1− β)− k(b(t)− r(t))
for t ∈ (ts, T ]

with r(T ) = r(0), r(t−s ) = r(t+s ), and given r(0), b(0).
Following some straightforward calculations, the switching
time ts is obtained as the root of

c1 + c2

2
ts +

b(0)− r(0)− c1
2k

2
(e−2kT − 1)

+
c1 − c2(1− 2β)

4k
(e−2k(T−ts) − 1)− c2

2
T = 0 (20)

Remark 2: If c2 = 0 (i.e., no recharging is possible), then
u(t) is the only control variable. Our analysis still fully ap-
plies with c2 = 0 in (20). In this case, the battery is dis-
charged at full rate over [0, ts] and remains idle over (ts, T ]
while the R-well in the battery is replenished through the
B-well because of the battery’s recovery effect (see Fig. 1).

Further, assuming that b(0) < B, we can easily see that (7)
is not relevant over the interval [0, ts) and we can proceed
to analyze whether the constraint r(t) ≥ 0 in (6) may be-
come active depending on the value of T , given the values
of r(0), b(0), c1, c2. Let t∗s be the switching time of the criti-
cal case r(t∗s) = 0. Since we can solve the state equation (3),
setting r(t∗s) = 0 allows us to obtain t∗s as the root of the
equation:

r(0)− c1

2
t∗s −

1
2
[b(0)− r(0)− c1

2k
](e−2kt∗s − 1) = 0 (21)

Moreover, we can determine the associated critical value T ∗

by solving (3) over (t∗s, T ] with r(t∗s) = 0 and r(T ∗) = r(0),
leading to the equation:

1
2
[b(0)− r(0)− c1t

∗
s −

c2(1− 2β)
2k

][1− e−2k(T∗−t∗s)]

+
c2

2
(T ∗ − t∗s)− r(0) = 0 (22)

If T ≤ T ∗ (obtained through (22)), then the optimal solu-
tion is the one derived from the unconstrained problem we
have analyzed up to this point. If T > T ∗, then it is neces-
sary to consider the constraint (6) and we expect that part
of the optimal state trajectory must include one or more
boundary arcs. In addition, the constraint (7) may also be-
come active in this constrained optimal trajectory. Next, we
consider the constrained case with r(t) ≥ 0.

Constrained case: r(t) ≥ 0. Given that we can character-
ize whether this constraint is active or not by checking the
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condition T ≤ T ∗ with T ∗ obtained through (22), we will
now assume that the given interval satisfies T > T ∗, i.e.,
r∗(t) = 0 for some t ∈ (0, T ). If this happens, given that
r(T ) = r(0) > 0, then the final part of the optimal state
trajectory r∗(t) must be such that r∗(t) > 0, t ∈ (tl, T ], over
an interior arc that starts at some tl such that

tl = sup{t : t ∈ (0, T ), r∗(t) = 0} (23)

We now employ the indirect adjoining approach [10] to
deal with the constrained optimal control problem under
r(t) ≥ 0. The Hamiltonian is still the same as (8), but the
Lagrangian is modified to incorporate the state constraint
as follows:

L = H + η1(t)Ṡ1(x(t)) + µeu(t)h(t) + µ1(u(t)− 1)
− µ2u(t) + µ3(h(t)− 1)− µ4h(t) (24)

where S1 : R2 → R is a function assumed to be analytic,
which in our case is S1(x(t)) = −r(t) ≤ 0, and η1(t) is an
associated multiplier satisfying η1(t) ≥ 0, η1(t)S1(x∗(t)) =
0, η̇1(t) ≤ 0. Then, using the state dynamics (3), we get

Ṡ1(x(t)) = c1u(t)− c2βh(t)− k(b(t)− r(t))

Given the introduction of η1(t), the costate equations λ̇ =
−∂L

∂x become{
λ̇1(t) = k[λ1(t)− λ2(t)− η1(t)]

λ̇2(t) = −k[λ1(t)− λ2(t)− η1(t)]

with the same boundary conditions as (10). Thus, when
the state belongs to an interior arc, η1(t) = 0 and it does
not affect the costate equations. However, when the state
is on a boundary arc, i.e., r(t) = 0, then η1(t) becomes
some function dependent on λ(t). The determination of η1(t)
follows from the solution of ∂L

∂u = 0 and ∂L
∂h = 0.

Proceeding backward in time from T , as already argued, the
optimal solution consists of an interior arc (tl, T ]. The first
question we need to address is whether this interval includes
a switching time ts such that σ(ts) = 0, ts ∈ (tl, T ]. The
following lemma provides an important property that will
allow us to show this is not possible.

Lemma 2: Let t1 ∈ (0, T ) be such that u(t1) = 1 and
ṙ(t1) > 0 regardless of h(t). Then, under (u(t), h(t)) ∈U,
ṙ(t) > 0 for all t ∈ [0, t1].

Now, let us assume there exists a switching time ts ∈ (tl, T ].
Since σ(t) > 0 for t ∈ (ts, T ], it follows from (17) that
u∗(t) = 0, h∗(t) = 1 for t ∈ (ts, T ], therefore u∗(t) =
1, h∗(t) = 0 for t ∈ (tl, ts]. Since r(tl) = 0 and r(ts) > 0,
there exists some t1 ∈ (tl, ts] such that ṙ(t1) > 0. Thus,
Lemma 2 applies and we conclude that ṙ(t) > 0 for all
t ∈ [0, t1]. This implies that ṙ(t) > 0 for some t < tl and
since r(tl) = 0 we must have r(t) < 0, hence violating the
constraint r(t) ≥ 0. Consequently, there can be no sign
switch in σ(t) for t ∈ (tl, T ] and the optimal control over
the entire ending interior arc (tl, T ] is

u∗(t) = 0, h∗(t) = 1, t ∈ (tl, T ] (25)

Next, we consider the interval preceding the ending interior
arc in order to determine the optimal trajectory for t ≤
tl. There are two possible cases: (i) there is a finite-length
boundary arc ending at tl, and (ii) the preceding arc is also
an interior arc and tl is a contact point. Here, we define a
“contact point” tc ∈ (0, T ) to be such that r(tc) = 0 and
r(t) > 0 for t 6= tc in a neighborhood of tc [16]. We study
each of these cases next with the aid of one more lemma
regarding any finite-length boundary arc [ten, tex].

Lemma 3: If there exists a finite-length boundary arc
[ten, tex], ten < tex, r(t) = 0 for all t ∈ [ten, tex], then

0 <
kb(t)
c1

< 1, t ∈ (ten, tex]

Case 1 : There exists a finite-length boundary arc [tb, tl] end-
ing at tl with r(tl) = 0. In this case, ṙ(t) = 0, t ∈ (tb, tl).
It follows from (3) and the constraint u(t)h(t) = 0 that the
control on this boundary arc is ub(t) = kb(t)

c1
and hb(t) = 0

for t ∈ (tb, tl). Moreover, to satisfy the Pontryagin principle,
the Hamiltonian H(x, λ, u, h) must satisfy:

H(x∗, λ∗, ub, 0) ≤ min
0≤h≤1

H(x∗, λ∗, 0, h) (26)

H(x∗, λ∗, ub, 0) ≤ min
0≤u≤ kb(t)

c1

H(x∗, λ∗, u, 0) (27)

In addition, to account for a possible costate discontinuity
at t = tl, the following condition must be satisfied [3]:

λ(t−l ) = λ(t+l ) + π · ∂S1

∂x
(tl)

where π = (π1(t), π2(t))T ≥ 0 is a multiplier. In view of
S1(x(t)) = −r(t) in our case,

λ1(t−l ) = λ1(t+l )− π1, λ2(t−l ) = λ2(t+l ) (28)

Since ν < 0 and (11) applies at t+l , we have λ1(t+l ) < 0,

λ2(t+l ) < 0, therefore, λ1(t−l ) < 0, λ2(t−l ) < 0. Using this
fact along with (8) in (26) gives

(−c1λ1(t−l )− 1) ·
kb(t−l )

c1
≤ c2[βλ1(t−l )+ (1−β)λ2(t−l )] ≤ 0

The rightmost equality can only hold when c2 = 0. Since,
by Lemma 3, 0 < kb(t)

c1
< 1 for all t on the boundary arc, it

follows that

−c1λ1(t−l )− 1 ≤ c2[βλ1(t−l ) + (1− β)λ2(t−l )] (29)

Furthermore, recall that σ(t) ≥ 0 applies to the ending
interior arc, i.e., σ(t+l ) ≥ 0, so that

−c1λ1(t+l )− 1 ≥ c2[βλ1(t+l ) + (1− β)λ2(t+l )] (30)

which, combined with (28) and the fact that π1 ≥ 0, gives

−c1λ1(t−l )− 1 ≥ c2[βλ1(t−l ) + (1− β)λ2(t−l )] (31)
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which contradicts (29) unless c2 = 0. Consequently, this
case is only feasible for the special case c2 = 0 (implying
that there is no recharging capability.)

Case 2 : tl is a contact point. In this case, the preceding
arc is also an interior arc, say (tk, tl). Therefore, recall-
ing the constraint u(t)h(t) = 0, there are three possible
cases regarding u∗(t−l ), h∗(t−l ): u∗(t−l ) = 1, h∗(t−l ) = 0 or
u∗(t−l ) = 0, h∗(t−l ) = 1 or u∗(t−l ) = h∗(t−l ) = 0. How-
ever, given that tl is a contact point and r(t) is continu-
ous, we have ṙ(t−l ) ≤ 0, r(t−l ) = 0, and since b(t−l ) > 0 by
Lemma 1, it follows from (3) that u(t−l ) > 0, which excludes
u∗(t−l ) = 0. Therefore, the only feasible case is u∗(t−l ) = 1,
h∗(t−l ) = 0 and, in view of (25), tl is a switching point. Next,
there are two cases regarding the existence of any additional
control switch in (tk, tl).

First, consider the case that there is no switch in (tk, tl).
Then, u∗(t) = 1, h∗(t) = 0 throughout t ∈ (tk, tl). If tk > 0
and since r(tk) = 0, there must exist some t1 ∈ [tk, tl) such
that ṙ(t1) > 0. Now Lemma 2 applies and rules out this
case by the same argument used above to exclude u∗(t) = 1,
h∗(t) = 0 on the ending interior arc. Consequently, tk = 0,
which would make the optimal control:{

u∗(t) = 0, h∗(t) = 1 t ∈ (tl, T ]

u∗(t) = 1, h∗(t) = 0 t ∈ [0, tl]

This is identical to the critical case we identified in the un-
constrained case requiring that T = T ∗ in (22) and that
tl = t∗s in (21). Thus, it cannot be satisfied in general, since
we assume that T > T ∗, and this possibility is excluded.

This leaves only the second possible case, i.e., that there ex-
ists a control switch in (tk, tl), in addition to the one at tl.
Recalling that an interior arc starts at tl, note that (30) ap-
plies and allowing for a possible discontinuity of the costates
at the contact point, (28) still holds leading to (31). On the
other hand, since (tk, tl) is also an interior arc, the Hamil-
tonian is given by (8) and, recalling that u∗(t−l ) = 1, this
implies that −c1λ1(t−l )− 1 ≤ c2[βλ1(t−l ) + (1− β)λ2(t−l )].
Comparing this with (31), we conclude that

−c1λ1(t−l )− 1 = c2[βλ1(t−l ) + (1− β)λ2(t−l )] (32)

It follows from (28) and π1 ≥ 0 that (30) can only be satisfied
as an equality with π1 = 0, i.e., the costates λ1(t), λ2(t) are
both continuous at t = tl and, since (tk, tl) is an interior arc,
(11) continues to apply, hence (16) also applies. Recalling
that ν < 0 and c1 > c2, one can easily see in (16) that
σ(t) is monotonically increasing regardless of β. In view of
(32), this implies that σ(t) < 0 for t < tl and there can be
no further switch in (tk, tl). Consequently, this possibility
is excluded as well, leading to the conclusion that tl cannot
be a contact point in addition to the fact that it can also
not be the end of a boundary arc with r(t) = 0 over some
interval with t ≤ tl.

We can now conclude that an optimal trajectory always
includes a terminal interior arc over (tl, T ] with u∗(t) = 0,
h∗(t) = 1 for all t ∈ (tl, T ] and r(tl) = 0. However, there

can be no boundary arc ending at tl nor can tl be a contact
point. We can further show that there exists no boundary arc
satisfying r(t) = 0 over any segment of an optimal trajectory
nor can there exist a contact point anywhere in [0, T ]. This is
established in Theorem 1 with the aid of the following lemma
and leads to the conclusion that the optimal trajectory when
T > T ∗ includes an interval over which the control variables
chatter until the terminal arc over (tl, T ] takes place. Lemma
4 is used to extend the argument made under Case 1 above
to exclude finite-length boundary arcs, while the argument
for excluding contact points is the same as the one in Case
2 above.

Lemma 4: Let [τ, T ), τ ≥ 0, be an interval over which an
optimal trajectory contains no finite-length boundary arc.
Then,

λ1(t) < λ2(t) < 0 for all t ∈ [τ, T )
Moreover, λ1(t) is monotonically decreasing and λ2(t) is
monotonically increasing for all t ∈ [τ, T ].

Theorem 1: Suppose T > T ∗, i.e., the constraint r(t) ≥ 0
is active on the optimal trajectory. There exists no finite-
length boundary arc nor any contact point on the optimal
trajectory when c2 > 0.

Proof : We first prove there can be no finite-length boundary
arc. Assuming there exists at least one finite-length bound-
ary arc in the optimal trajectory, we consider the last one,
i.e., r(t) = 0 for t ∈ [ten, tex], ten < tex, and there exists
no finite-length boundary arc in (tex, T ]. Under these con-
ditions, Lemma 4 applies over (tex, T ), i.e.,

λ1(t) < λ2(t) < 0, t ∈ (tex, T ) (33)

Now if the boundary arc [ten, tex] is part of the optimal
trajectory, then the Hamiltonian H(x, λ, u, h) must satisfy
(26) and (27). Thus, (26) at t−ex implies that

min
0≤h≤1

c2[βλ1(t−ex) + (1− β)λ2(t−ex)]h(t−ex)

≥ (−c1λ1(t−ex)− 1) · kb(t−ex)
c1

(34)

Accounting for possible discontinuities in λ1(t), λ2(t) at t =
tex, it follows from (28) and (33) that

λ2(t−ex) = λ2(t+ex) < 0

and (34) becomes:

(−c1λ1(t−ex)−1)· kb(t−ex)
c1

≤ c2[βλ1(t−ex)+(1−β)λ2(t−ex)] < 0

Moreover, since, by Lemma 3, on the boundary arc we have
0 < kb(tex)

c1
< 1, we get

−c1λ1(t−ex)− 1 < c2[βλ1(t−ex) + (1− β)λ2(t−ex)] (35)

In the interior arc (tex, T ], in view of (8) and (33), h∗(t) = 1
and the possibility of u∗(t) = h∗(t) = 0 can be excluded.
Further, there is no finite-length boundary arc in (tex, T ].
We can thus set h(t) = 1 − u(t) for t ∈ (tex, T ] and use
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the switching function σ(t) = −c1λ1(t)− 1− c2λ2(t). This
implies that the optimal control for t ∈ (tex, T ] is either
u∗(t) = 1, h∗(t) = 0 or u∗(t) = 0, h∗(t) = 1. Since r(tex) = 0
and the last boundary arc ends at tex, then ṙ(t+ex) ≥ 0,
which, from (3), requires u∗(t+ex) ≤ kb(tex)

c1
< 1. Therefore,

u∗(t+ex) = 0, h∗(t+ex) = 1, which results in

σ(t+ex) = −c1λ1(t+ex)− 1− c2[βλ1(t+ex)+ (1−β)λ2(t+ex)] ≥ 0

Using (28) and the inequality above, we get:

− c1λ1(t−ex)− 1− c2[βλ1(t−ex) + (1− β)λ2(t−ex)]
= −c1λ1(t+ex) + c1π1 − 1− c2[βλ1(t+ex) + (1− β)λ2(t+ex)]
+ c2βπ1 ≥ 0 (36)

which implies that

−c1λ1(t−ex)− 1 ≥ c2[βλ1(t−ex) + (1− β)λ2(t−ex)]

contradicting (35). Consequently, there is no finite-length
boundary arc in the optimal trajectory for the constrained
optimal control problem.

We now show that there can be no contact point. We have
already shown that there exists a terminal interior arc that
starts at some tl defined in (23). Since there can be no finite-
length boundary interval, tl could only be a contact point.
However, this possibility was also excluded in our analysis
of the constrained case in Section 3.2.2. The same argument
can be used for any other possible contact point tc, since it
must be preceded and followed by an interior arc and since
Lemma 4 applies over [0, T ) precluding any control switch
other than the one at tl. �

In practice, chattering is clearly undesirable and it prevents
us from keeping track of the optimal state trajectory b∗(t)
and, therefore, the evaluation of at least the start time of
the final interior arc during which the battery is charging.
The obvious way to avoid chattering is to select an interval
length T such that T ≤ T ∗, specified through (22), if the
problem setting allows it, e.g., if one wishes to control the
long-term behavior of the battery over periods whose length
is T . To summarize, the optimal control solution for the
general case with c2 > 0 is described by

u∗(t) = 1, h∗(t) = 0, t ∈ [0, tj)

u∗(t) = uch, h∗(t) = hch t ∈ [tj , tl]

u∗(t) = 0, h∗(t) = 1, t ∈ (tl, T ]

(37)

where uch and hch are unspecified values corresponding to
the chattering interval [tj , tl]. The final step is to determine
the two critical times tj and tl. The former is analytically
obtained by simply solving the state equations (3)-(4) with
given initial conditions r(0), b(0) and u(t) = 1, h(t) = 0 for
t ∈ [0, tj) with r(tj) = 0. This results in the equation

r(0)− c1

2
tj −

1
2

[
b(0)− r(0)− c1

2k

]
(e−2ktj − 1) = 0 (38)

which can be solved for tj . On the other hand, determining
tl by a similar approach is not possible. This is because

chattering prevents us from keeping track of b(t) over [tj , tl],
hence b(tl) is unknown. Thus, we cannot fully solve (3)-(4)
to determine tl such that r(tl) = 0 knowing only that r(T ) =
r(0), but not b(T ). What we can make use of, however, is
the fact that tl is such that ṙ(tl) > 0 while ṙ(t−l ) ≤ 0.
The optimal solution can still be obtained by numerical
techniques.

Remark 3: In the special case c2 = 0, we have u∗(t) =
kb(t)

c1
for the optimal solution on the boundary, while h(t) is

irrelevant since it only affects the system through c2h(t) in
(4). The optimal solution becomes

u∗(t) = 1, t ∈ [0, tj)

u∗(t) = kb(t)
c1

, t ∈ [tj , tl]

u∗(t) = 0, t ∈ (tl, T ]

(39)

Constrained case: 0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B. We begin
by observing that in the special case c2 = 0, (3)-(4) imply
r(t) < B, b(t) < B, t ∈ [0, T ] regardless of the control.
Thus, we consider only c2 > 0. Moreover, according to Re-
mark 1, the constraints b(t) ≤ B and r(t) ≤ B cannot be
active simultaneously in the optimal solution. We now allow
all constraints 0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B to become active
on an optimal trajectory. The analysis is similar to the un-
constrained case and the constrained case with only r(t) ≥ 0
active, and the only difference arises if in the terminal inte-
rior arc (where r(t) and b(t) are increasing) the constraint
b(t)−B ≤ 0 (r(t)−B ≤ 0) becomes active. If this happens,
then the Hamiltonian is minimized by h∗(t) = k(B−r(t))

c2(1−β)

(h∗(t) = k(B−b(t))
c2β ) rather than h∗(t) = 1. Thus, omitting

derivation details, we can determine the full solution to the
case with all the state constraints active as:

u∗(t) = 1, h∗(t) = 0, t ∈ [0, tj)

u∗(t) = uch, h∗(t) = hch t ∈ [tj , tk]

u∗(t) = 0, h∗(t) = 1, t ∈ (tk, tl)

u∗(t) = 0, h∗(t) = k(B−r(t))
c2(1−β) (k(B−b(t))

c2β ), t ∈ [tl, T ]
(40)

An example where all constraints become active at some
points over [0, T ] is shown in Fig. 2. The optimal objective
is q∗T = 8.8243. The solution was obtained using the generic
numerical solver Tomlab/PROPT [11] and it can be seen
to be consistent with (40). Finally, we need to point out
that once chattering occurs, we lose track of the value of
b(t), which prevents us from analytically obtaining tk, tl. As
already mentioned, the obvious way to avoid chattering is
to select an interval length T such that T ≤ T ∗, specified
through (22).

Remark 4: From an implementation standpoint, the opti-
mal control switching structure in (19) or (40) is very sim-
ple. However, determining the exact value of switching times
such as ts in (20), requires knowledge of the battery charac-
teristics expressed through c1, c2, β and k. Measuring these
values may not be an easy task and involves a model identi-
fication process which represents a research effort parallel to
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Fig. 2. Optimal solution under r(0) = 100, b(0) = 120, c1 = 30,
c2 = 10, k = 0.05, β = 0, T = 40, B = 150 with the constraints
r(t) ≥ 0 and b(t) ≤ B..

the one of optimal discharging and recharging control. Al-
ternatively, knowing the optimal control structure one may
empirically obtain the optimal value of ts (or other switch-
ing times) by using a known type of battery so that this
value applies to all batteries of this type characterized by
parameters c1, c2, β and k; this can be done without any
explicit knowledge of the parameter values.

Solution with u(t)h(t) = 0 relaxed. When the constraint
u(t)h(t) = 0 is relaxed, the Hamiltonian in (8) is unaf-
fected, but the Lagrangian no longer includes the term
µeu(t)h(t). In addition, the admissible control set becomes
U
′

= {(u, h) ∈ R2 : 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1}. The ap-
proach is exactly the same as before and the solution can
be categorized for each of the four cases: (i) unconstrained,
(ii) constrained case with r(t) ≥ 0, (iii) constrained case
with b(t) ≤ B (r(t) ≤ B), and (iv) constrained case with
0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B. In the unconstrained case, the
analysis is exactly the same. In the constrained cases, the
only difference arises when the state constraints are active,
where it is no longer required that one of u(t) and h(t) be
zero. The analysis is again the same and we omit details to
give directly the optimal solution as follows:

u∗(t) = 1, h∗(t) = 1, t ∈ [0, tj)

u∗(t) = kb(t)+c2β
c1

, h∗(t) = 1 t ∈ [tj , tk]

u∗(t) = 0, h∗(t) = 1, t ∈ (tk, tl)

u∗(t) = 0, h∗(t) = k(B−r(t))
c2(1−β) (k(B−b(t))

c2β ), t ∈ [tl, T ]
(41)

Since there is no chattering now, tj , tk, tl can be determined
numerically.

4 Output Maximization with Partial Recharge-
ability

In this section, we extend our analysis to cases where
rechargeability is not always available; in particular, we
consider cases where a battery may be recharged only over
a given interval [a1, a2] ⊂ [0, T ]. This arises, for instance,
in cases where a device employs a solar cell and recharging
is possible only during daylight or known intervals with
expected light availability; similarly, electric cars may only
be recharged during intervals where it is known that they

are not needed for transportation. In general, [0, T ] can be
partitioned into alternating availability and unavailability
intervals. We will limit ourselves here to three such inter-
vals; it will be clear that a generalization is conceptually
straightforward. The problem we consider is formulated as
follows:

min
(u(t),h(t))∈U

−qT = −
∫ T

0

u(t)dt (42)

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t)− r(t)) (43)

ḃ(t) = c2(1− β)h(t)− k(b(t)− r(t)) (44)
r(T ) = r(0) (45)

0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B, t ∈ [0, T ] (46)
c1 > c2 (47)

U = {(u, h) ∈ R2 : 0 ≤ u(t) ≤ 1, u(t)h(t) = 0, t ∈ [0, T ]
(48)

0 ≤ h(t) ≤ 1, t ∈ [a1, a2], h(t) = 0, t ∈ [0, a1) ∪ (a2, T ]}

Compared to the fully available rechargeability case in (1)-
(7), the only difference here is in the admissible control set.
To solve it, we proceed by decomposing it into three sub-
problems:

min
(u(t),h(t))∈Ui

−qi = −
∫ ai

ai−1

u(t)dt (49)

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t)− r(t))

ḃ(t) = c2(1− β)h(t)− k(b(t)− r(t))
r(ai) = r̄i

0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B, t ∈ [ai−1, ai]
i = 1, 2, 3

where U1 = U3 = {(u, h) ∈ R2 : 0 ≤ u(t) ≤ 1, h(t) = 0}
and U2 = {(u, h) ∈ R2 : 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤
1, u(t)h(t) = 0}; a0 = 0, a3 = T and r̄3 = r(T ) = r(0). If
r̄1, r̄2 are assumed known, then each subproblem is equiva-
lent to our original problem (1)-(7) while case i = 1 and 3
correspond to the simpler special case with c2 = 0 which we
discussed in Remarks 2, 3. Therefore, the solution boils
down to the determination of r̄1, r̄2. To avoid the compli-
cation brought about by chattering, we will consider the
case where the constraint r(t) ≥ 0 never becomes active. It
will become clear that the possibility of chattering does not
change the essence of the solutions obtained.

Fig. 3. Solution structure in partial rechargeability problem

Based on the solution to problem (1)-(7) that we have ob-
tained, the optimal solution structure corresponding to each
subproblem (49) is known. In particular, for subproblem 1
and 3, Remark 2 applies to (19), i.e., for t ∈ [ai−1, ai), i =
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1, 3

u∗(t) =

{
1 t ∈ [ai−1, si]

0 t ∈ [si, ai)
, h∗(t) = 0

where si are the switching times. For subproblem 2, the op-
timal controls are given by (19) with some switching time
s2 ∈ [a1, a2). Fig. 3 illustrates this optimal solution struc-
ture for the problem. Therefore, the objective function in
(42) can be written as

J(s1, s2, s3) ≡
3∑

i=1

∫ ai

ai−1

u(t)dt =
3∑

i=1

si − a1 − a2 (50)

since u∗(t) = 0 in the intervals [s1, a1), [s2, a2), and [s3, T ).
It follows that the determination of r̄1, r̄2 can be replaced by
the determination of the optimal switching times s1, s2, s3.
Using (19) as the optimal solution in the state equations
(43), (44) and solving these equations over an interval [t0, tf ]
gives:

r(tf ) =
c2

2
(tf − ts)−

b(t0)− r(t0)− c1
2k

2
(e−2k(tf−t0) − 1)

+ r(t0)−
c1

2
(ts − t0)−

c1 − c2(1− 2β)
4k

(e−2k(tf−ts) − 1)

(51)

b(tf ) =
c2

2
(tf − ts) +

b(t0)− r(t0)− c1
2k

2
(e−2k(tf−t0) − 1)

+ b(t0)−
c1

2
(ts − t0) +

c1 − c2(1− 2β)
4k

(e−2k(tf−ts) − 1)

(52)

where setting c2 = 0 recovers the cases corresponding to
subproblems 1 and 3 as already discussed and ts is the con-
trol switching time in [t0, tf ]. Thus, over [0, a1), (51)-(52)
apply with t0 = 0, tf = a1, ts = s1, and c2 = 0 and yield
r(a1), b(a1) as a function of s1 and the known initial con-
ditions r(0), b(0). Similarly, over [a1, a2), (51)-(52) apply
with t0 = a1, tf = a2, ts = s2 and yield r(a2), b(a2) as a
function of s2 and r(a1), b(a1). Finally, over [a2, T ), (51)-
(52) apply with t0 = a2, tf = T, ts = s3, and c2 = 0 and
yield r(T ) = r(0) and b(T ) as a function of s3 and r(a2),
b(a2). Focusing on r(T ) we can combine all these equations
and chain them together to obtain a relationship that the
switching times si, i = 1, 2, 3, must satisfy:

h(s1, s2, s3) = −b(0)− r(0)
2

− c2

2
(a2 − s2) +

c1

2
(s1 + s2

− a1 + s3 − a2) +
c2(1− 2β)

4k
[e−2k(T−a2) − e−2k(T−s2)]

+
1
2
[b(0)− r(0)− c1

2k
]e−2kT +

c1

4k
[e−2k(T−s1) − e−2k(T−a1)

+ e−2k(T−s2) − e−2k(T−a2) + e−2k(T−s3)] (53)

where r(0), b(0) are known. In addition, the variables si sat-
isfy:

0 ≤ s1 ≤ a1, a1 ≤ s2 ≤ a2, a2 ≤ s3 ≤ T (54)

We can now see that problem (42)-(48) reduces to the mini-
mization of −J(s1, s2, s3) in (50) subject to the constraints

above, i.e.,

min
si

−J(s1, s2, s3) = −
3∑

i=1

si + a1 + a2 (55)

s.t. (53) and (54)

To solve this nonlinear optimization problem, the Kuhn-
Tucker conditions help us narrow the optimal solution down
to the cases where (i) s∗1 ∈ (0, a1), s∗2 = a1, s∗3 = a2 and (ii)
s∗1 = a1, with s∗2, s∗3 limited to six other possible cases. We
omit the derivation details, which can be found in [26]. To
summarize, this procedure allows us to obtain the optimal
solution (s∗1, s

∗
2, s

∗
3) from which the optimal control of the

original problem is fully specified. Figure 4 shows an exam-
ple of an optimal solution with s∗1 ∈ (0, a1), s∗2 = a1, s

∗
3 = a2

and the associated parameter settings. In this case, follow-
ing the solution procedure above we obtain s∗1 = 5.473,
s∗2 = 10, s∗3 = 30, shown as blue lines in the figure. Thus,
the battery is initially discharged at its maximal rate until
t = 5.473, and then idles until t = a1 = 10. Since this is also
the optimal switching time to recharge, the battery is fully
recharged until t = a2 = 30 and then idles for the remainder
of [0, T ]. The period over which the battery is recharging is
identified by two red lines.

Fig. 4. Optimal solution of partial rechargeability problem with
r(0) = b(0) = 300, c1 = 30, c2 = 10, k = 0.05, β = 0, a1 = 10,
a2 = 30 and T = 40

5 Conclusions and Future Work

We have used a Kinetic Battery Model (KBM) to study
the problem of optimally controlling how to discharge and
recharge a non-ideal battery so as to maximize the work it
can perform over a given time period [0, T ] and still main-
tain a desired final energy level. Under the assumption that
the battery can be recharged at any time in [0, T ], the solu-
tion to this problem is shown to be of bang-bang type with
the battery always in recharging mode during the last part
of the interval. When T > T ∗, where T ∗ is some critical
value we can explicitly determine, the optimal policy was
shown to include chattering, unless we relax the constraint
that recharging is only possible when discharging is inac-
tive. When rechargeability is only feasible at certain inter-
vals within [0, T ], we have studied a three-interval optimal
control problem and shown that it can be transformed into
a nonlinear optimization problem we can explicitly solve.
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This line of research opens up a number of questions and
open problems. First of all, finding a good modeling frame-
work for non-ideal batteries remains a challenge given that
it must be sufficiently accurate while still suitable for real-
time control. Although the KBM is an attractive model, al-
ternatives to it have also been proposed, as mentioned in
the Introduction, and it is fair to ask whether our optimal
control analysis applies to such models. To address this is-
sue, we have used the model proposed in [28] and compared
the optimal control policy we have derived in (19) to various
alternatives. We have found that (19) outperforms these al-
ternatives for a number of examples, but a rigorous analysis
is still lacking to confirm that the optimal control structure
we have found applies to other battery models. Along sim-
ilar lines, if an explicit solution is to be found, the battery
parameter values are required, which entails a model iden-
tification process; this is the subject of ongoing research.
Future work involves extending the partial rechargeability
case in Section 4 to settings where the recharge-feasible in-
tervals are stochastic in nature (e.g., for solar recharging).
Moreover, we are interested in cases where a battery pro-
cesses discrete tasks, as opposed to modeling its operation
through flows. Finally, we are exploring systems (e.g., wire-
less networks) whose components are battery-based and we
can control their local discharging and recharging patterns
with the goal of optimizing some system-wide objective.
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