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Embedded System Migration To MulticoreEmbedded System Migration To Multicore
• Over time, as systems absorb capability, software grows & 

demand for processor capacity increasesdemand for processor capacity increases
– Same holds as systems & subsystems are consolidated onto 

common computing platforms

• In the past, CPU/clock acceleration met need

• Currently, further CPU acceleration requires prohibitively 
expensive increase in power, heat/cooling, surface area

• As a result, performance improvement requires adding 
CPUs (cores)CPUs (cores)
– Number of cores per chip now doubles every 18-24 months
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The Embedded Software Problem
• Where a single core will always sustain a system’s 

software, multicore migration will have low impact

• Where clock speed is reduced to cut power, size, cost, … 

• … or system absorbs features that consume available 
processor capacity, … 

• … it becomes increasingly less likely that a single CPU will 
support all of a system’s softwaresupport all of a system s software  
– It can no longer run as a sequential monolith and must be split into 

multiple tasks running in parallel on separate cores

Sequential systems with high cohesion may produce 
tightly coupled & highly problematic parallel tasks
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tightly coupled & highly problematic parallel tasks



Multicore Impact – Software Parallelism
Add CPUs with growth

(maintain CPU speed power heat)
Add slower CPUs with growth 

(SWAP constrained)
Increase CPU Speed with growth

(increase CPU power heat)
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As system capability grew, 
CPU speed grew with it

As system capability grows, software must be 
split into parallel tasks running on separate CPUs



Amdahl’s Limit: Adding Cores Helps Only If
25

Amdahl s Limit: Adding Cores Helps Only If 
Software Can Run in Parallel

speedup = 1/((P/N)+S)

20 % parallel 
code

speedup = 1/((P/N)+S)
N = # cores
P = % parallelizable code
S = % sequential code 
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Software Parallelism
• Application parallelism – independent applications run in 

parallel on separate coresparallel on separate cores

• Data parallelism – loops, repetitive manipulations of large 
datasets: identical code is vectored to multiple cores
– e.g., driving segments of a display, matrix arithmetic 

• Task parallelism – time-driven or event-driven tasks 
executed in parallel on separate cores 
– e.g., sequential math, complex logic, processing independent I/O 

ports, resource/sensor management 

Much of embedded software is susceptible only to task 
parallelism
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Task-Parallel Software Requires More EffortTask Parallel Software Requires More Effort

• Find potential parallelism in architectures & designs

• Enforce correct execution sequence among tasks

• Assign tasks to cores 

• Balance processing/communication load among cores, 

• Manage message passing & shared memory access• Manage message passing & shared memory access

• Determine/implement failure recovery mechanismp y
– As cores added & scale approaches nanometer level, hardware 

runtime failure rate greatly increases
Redundancy may not be cost effective in meeting reliability spec
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– Redundancy may not be cost effective in meeting reliability spec



Task-Parallel Software Requires More Effortq
• Integrate a multitasking system across multiple cores 

Suspend/resume tasks maintain required task execution sequence– Suspend/resume tasks, maintain required task execution sequence

• Optimize, debug, verify code across multiple cores 

• Find, resolve race, deadlock, livelock

• Find, eliminate performance bottlenecks

• Minimize parallelism overhead (e.g., context switching) 

O ti i i /b• Optimize main memory/bus access among cores

• Etc. …
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Etc. … 



Software Development Problemp
• Available tools typically apply to data parallelism and server 

applicationspp

• Tools for developing task-parallelism are for the most part 
till i d l t i l l lstill emerging – development is largely manual
– Available tools are limited in scope/application & effectiveness, or 

require significant annotations in the source code

• Result is that mapping sequential code onto embedded 
multicore chips is time consuming and error pronemulticore chips is time-consuming and error-prone 
– It may produce highly coupled  tasks with significant problems in 

task-sequencing, shared-data access, and message passing

At least initially, software development productivity 
could decline significantly
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Mitigation - Trainingg g
• Typically, embedded software engineers have little 

experience developing parallel softwareexperience developing parallel software
– Few subsystems in the past required multiple processors, and many 

of those involved independent functions with little coupling  

• Training needs
Architecting designing implementing verifying parallel software– Architecting, designing, implementing, verifying parallel software

– Developing multitasking systems & using a multi-tasking RTOS
– Developing shared memory systems, detecting race, deadlock, 

li l k i l d b l ilivelock, message passing, load balancing
– Designing task synchronization, time-correlating test data
– Developing lightweight autonomic mechanism to meet reliability p g g g y

spec – e.g., without prohibitively expensive redundancy
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Mitigation – Migration Planningg g g
• Assume CPUs will get slower as more are added to a 

single chipg p

• Move single processor software to single core of target chip 
& d t i h i f& determine change in performance
– Plan accordingly for near-term, long-term

• Move software monoliths to singe core, where possible, but 
plan for deconstructing it into parallel tasks

• Where available,  move those with multiprocessor software 
development experience to multicore migration teamp p g

• Exploit research, prototypes at I/UCRCs, UARCs, FFRDCs
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AcronymsAcronyms
• CPU – Central Processing Unit

• SWAP – Size, Weight, and Power

• I/O – Input & Output

• RTOS – Real-Time Operating System

• I/UCRC Industry/University Cooperative Research Center• I/UCRC – Industry/University Cooperative Research Center

• UARC – University-Affiliated Research Centery

• FFRDC – Federally Funded Research/Development Center
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