
Potential Issues and Mitigation
in Migrating Embeddedin Migrating Embedded
Systems to MulticoreSyste s to u t co e

Redge Bartholomew

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Potential Issues and Mitigation in Migrating Embedded Systems to
Multicore

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rockwell Collins,400 Collins Road N.E.,Cedar Rapids,IA,52498

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Embedded System Migration To MulticoreEmbedded System Migration To Multicore
• Over time, as systems absorb capability, software grows &

demand for processor capacity increasesdemand for processor capacity increases
– Same holds as systems & subsystems are consolidated onto

common computing platforms

• In the past, CPU/clock acceleration met need

• Currently, further CPU acceleration requires prohibitively
expensive increase in power, heat/cooling, surface area

• As a result, performance improvement requires adding
CPUs (cores)CPUs (cores)
– Number of cores per chip now doubles every 18-24 months

2

The Embedded Software Problem
• Where a single core will always sustain a system’s

software, multicore migration will have low impact

• Where clock speed is reduced to cut power, size, cost, …

• … or system absorbs features that consume available
processor capacity, …

• … it becomes increasingly less likely that a single CPU will
support all of a system’s softwaresupport all of a system s software
– It can no longer run as a sequential monolith and must be split into

multiple tasks running in parallel on separate cores

Sequential systems with high cohesion may produce
tightly coupled & highly problematic parallel tasks

3

tightly coupled & highly problematic parallel tasks

Multicore Impact – Software Parallelism
Add CPUs with growth

(maintain CPU speed power heat)
Add slower CPUs with growth

(SWAP constrained)
Increase CPU Speed with growth

(increase CPU power heat)

MulticoreSingle CPU (past)
Multicore Impact Software Parallelism

Software Processor

(maintain CPU speed, power, heat)

Software Processor Software Processor

(SWAP constrained)
(reduce CPU size, power, heat)

(increase CPU power, heat)

code code codeCPU CPU CPU

ro
w

th

code code codeCPU CPU CPU

CPU

pa
bi

lit
y

gr

code
code

code

code code

code code
CPU

CPU

CPU

CPU

CPU

CPU

sy
st

em
 c

a

code
code code

code code

code code

CPU

CPU
CPU
CPU CPU

CPU
CPU

CPU

s code
code code

code code

code code

CPU CPU

CPU
CPU

CPUCPU
CPU

CPU

4

As system capability grew,
CPU speed grew with it

As system capability grows, software must be
split into parallel tasks running on separate CPUs

Amdahl’s Limit: Adding Cores Helps Only If
25

Amdahl s Limit: Adding Cores Helps Only If
Software Can Run in Parallel

speedup = 1/((P/N)+S)

20 % parallel
code

speedup = 1/((P/N)+S)
N = # cores
P = % parallelizable code
S = % sequential code

15

du
p

25%
50%
75%

codeq

10Sp
ee 75%

90%
95%

5

0

1 2 4 8 16 32 64 12
8

25
6

51
2

02
4

04
8

09
6

19
2

38
4

76
8

53
6

5

1 2 4 8 16 32 65

Number of Cores

Software Parallelism
• Application parallelism – independent applications run in

parallel on separate coresparallel on separate cores

• Data parallelism – loops, repetitive manipulations of large
datasets: identical code is vectored to multiple cores
– e.g., driving segments of a display, matrix arithmetic

• Task parallelism – time-driven or event-driven tasks
executed in parallel on separate cores
– e.g., sequential math, complex logic, processing independent I/O

ports, resource/sensor management

Much of embedded software is susceptible only to task
parallelism

6

Task-Parallel Software Requires More EffortTask Parallel Software Requires More Effort

• Find potential parallelism in architectures & designs

• Enforce correct execution sequence among tasks

• Assign tasks to cores

• Balance processing/communication load among cores,

• Manage message passing & shared memory access• Manage message passing & shared memory access

• Determine/implement failure recovery mechanismp y
– As cores added & scale approaches nanometer level, hardware

runtime failure rate greatly increases
Redundancy may not be cost effective in meeting reliability spec

7

– Redundancy may not be cost effective in meeting reliability spec

Task-Parallel Software Requires More Effortq
• Integrate a multitasking system across multiple cores

Suspend/resume tasks maintain required task execution sequence– Suspend/resume tasks, maintain required task execution sequence

• Optimize, debug, verify code across multiple cores

• Find, resolve race, deadlock, livelock

• Find, eliminate performance bottlenecks

• Minimize parallelism overhead (e.g., context switching)

O ti i i /b• Optimize main memory/bus access among cores

• Etc. …

8

Etc. …

Software Development Problemp
• Available tools typically apply to data parallelism and server

applicationspp

• Tools for developing task-parallelism are for the most part
till i d l t i l l lstill emerging – development is largely manual
– Available tools are limited in scope/application & effectiveness, or

require significant annotations in the source code

• Result is that mapping sequential code onto embedded
multicore chips is time consuming and error pronemulticore chips is time-consuming and error-prone
– It may produce highly coupled tasks with significant problems in

task-sequencing, shared-data access, and message passing

At least initially, software development productivity
could decline significantly

9

could decline significantly

Mitigation - Trainingg g
• Typically, embedded software engineers have little

experience developing parallel softwareexperience developing parallel software
– Few subsystems in the past required multiple processors, and many

of those involved independent functions with little coupling

• Training needs
Architecting designing implementing verifying parallel software– Architecting, designing, implementing, verifying parallel software

– Developing multitasking systems & using a multi-tasking RTOS
– Developing shared memory systems, detecting race, deadlock,

li l k i l d b l ilivelock, message passing, load balancing
– Designing task synchronization, time-correlating test data
– Developing lightweight autonomic mechanism to meet reliability p g g g y

spec – e.g., without prohibitively expensive redundancy

10

Mitigation – Migration Planningg g g
• Assume CPUs will get slower as more are added to a

single chipg p

• Move single processor software to single core of target chip
& d t i h i f& determine change in performance
– Plan accordingly for near-term, long-term

• Move software monoliths to singe core, where possible, but
plan for deconstructing it into parallel tasks

• Where available, move those with multiprocessor software
development experience to multicore migration teamp p g

• Exploit research, prototypes at I/UCRCs, UARCs, FFRDCs

11

AcronymsAcronyms
• CPU – Central Processing Unit

• SWAP – Size, Weight, and Power

• I/O – Input & Output

• RTOS – Real-Time Operating System

• I/UCRC Industry/University Cooperative Research Center• I/UCRC – Industry/University Cooperative Research Center

• UARC – University-Affiliated Research Centery

• FFRDC – Federally Funded Research/Development Center

12

