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Research Results 

Effective adaptive protocols for packet radio networks require information that can be obtained from 
statistics that are derived in the receiving radio during the reception of each packet. The design and 
evaluation of cross-layer protocols that use such statistics typically require numerous simulations of 
the network, and each simulation of the network has numerous embedded simulations of each 
radio's demodulator and decoder. The embedded simulations of the decoder are especially 
computationally intensive if the radios employ iterative decoding. We developed methods for the 
direct generation of receiver statistics that avoid the time-consuming embedded simulations and 
accelerate the process of designing, developing, and evaluating adaptive cross-layer protocols [3]. 
The required statistics are modeled as random variables that can be generated quickly, yet their 
distributions approximate the distributions of the actual receiver statistics. The method is illustrated 
in [3] for an adaptive transmission protocol in a network of packet radios that employ turbo product 
codes with soft-decision iterative decoding. Our method for the direct generation of receiver 
statistics provides even greater benefits in the design and evaluation of higher-layer protocols that 
employ physical-layer information. 

In a dynamic spectrum access network that has primary or high-priority users and secondary or 
low-priority users, the secondary users must monitor the frequency band in which they are 
communicating so that they can determine when the primary user has begun transmission. 
Traditional sensing methods require the transmitters of the secondary users to be silent while 
spectrum monitoring is performed, which greatly decreases the communications efficiency of the 
secondary network. In [5], we employ receiver statistics to perform spectrum monitoring while the 
receiver is demodulating and decoding a packet, so that it is not necessary to silence the secondary 
transmitters. The new techniques for spectrum monitoring while communicating also offer the 
promise of more prompt detection of an emerging transmission by a primary user, thereby reducing 
disruption to the primary network. 

Estimates of the signal-to-noise ratio (SNR) are employed by many protocols and processes in 
direct-sequence (DS) spread-spectrum packet radio networks, including soft-decision decoding, 
adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have 
introduced and evaluated SNR estimators that employ receiver statistics that are obtained during 
demodulation (see [1], [2], and [4] for details). One of our estimators [1] combines the well-known 
signal-to-noise-variance (SNV) estimator, which works well for large values of SNR, with a new 
estimator based on the post-detection signal quality (PDSQ) statistic, which works especially well 
for smaller values of SNR. 

In [6] we described and evaluated new decoding techniques that will increase the probability of 
successful decoding in packet radio systems. The proposed soft-decision decoding metric is 
derived from receiver statistics that are obtained during demodulation in a binary CDMA receiver. 
We investigated several methods to apply the proposed metric to the demodulator's soft-decision 
decision outputs prior to decoding. Our soft-decision decoding techniques are designed to mitigate 
the effects of interference from other signals in the frequency band. We compare the performance 
of our proposed metric with the performance of the log-likelihood ratio (LLR) metric, which 
requires that the mean signal level and noise variance are known for each bit position. Rather than 
attempt to estimate these parameters directly, our metric uses demodulator statistics and thus does 
not require the pilot symbols or training sequences that are typically necessary for parameter 
estimation in an LLR-based metric. 

We presented in [7] a low-complexity adaptive multicast transmission protocol that compensates 
for time-varying propagation losses in a packet radio network by adjusting the modulation and 



coding. Simple receiver statistics furnish the necessary control information for the adaptive 
protocol, so channel estimation, training, and pilot symbols are not required. We evaluated the 
protocol's throughput performance on time-varying channels and we showed that the throughput of 
our practical protocol is nearly as good as the throughput of hypothetical ideal protocols that are 
given perfect channel-state information. Adaptive multicast transmission in a packet radio network 
requires that the source be provided with feedback from all destinations; however, it is not feasible 
for all destinations to send packet-by-packet replies. Our low-complexity adaptive multicast 
transmission protocol gives good performance, even if it must rely on round-robin reporting from 
only one destination per packet. 

Spectrum access protocols permit secondary users to utilize frequency bands when the bands are 
not in use by the primary owners. To determine if a frequency band is in use, spectrum sensing 
techniques (e.g., energy detection or feature detection) are employed by the secondary radios. Such 
techniques require that the secondary radios cease transmitting in the band during spectrum sensing 
periods. In [8] we proposed and evaluated a technique whereby cognitive radios that are secondary 
users of a frequency band monitor the band for the emergence of primary signals while they are 
communicating with other secondary radios. Our approach permits more efficient use of spectrum 
by the secondary network, which results in increased channel utilization and spectral efficiency. 

New protocols for channel access and adaptive spreading are described and evaluated for use in 
direct-sequence spread-spectrum (DS-SS) packet radio networks in [9]. A channel-access protocol 
is developed to provide efficient use of the frequency band by multiple DS-SS signals, and we 
investigated the tradeoff between the additional capacity obtained from frequency reuse and the 
detrimental effects of co-channel interference caused by multiple simultaneous transmissions in the 
frequency band. We also developed a protocol that adapts the spreading factor of each DS-SS 
signal to compensate for changes in channel conditions that occur from packet to packet. Although 
the two protocols operate in different layers of the protocol stack, each relies on the same receiver 
statistic, which is a demodulator statistic. We demonstrate that the protocols work together to 
achieve significant performance gains over protocols that do not employ adaptive spreading or do 
not control spectrum reuse efficiently. 

In orthogonal frequency division multiplexing (OFDM) systems, a transmission method known as 
power loading can improve performance. Power loading algorithms process channel state 
information to determine the power distribution that optimizes or improves the performance of 
OFDM reception. Most previous investigations of power loading are for OFDM systems that do 
not use error-control coding. However, their objective of minimizing the bit error probability at the 
demodulator output does not minimize the packet error probability when error-control codes are 
used, and the packet error probability is the error probability of importance in packet transmission 
systems. Especially since modern OFDM systems use error-control coding, the utility of the 
previous results is questionable. Furthermore, the power loading algorithms that minimize the bit 
error probability use approximations for the error probability that are not accurate for the signal-to- 
noise ratios of interest in packet radio systems that employ error-control coding. In [10], we 
investigated half-duplex tactical packet communications with OFDM modulation, error-control 
coding, and iterative decoding. We examined the adaptation of the code rate and subcarrier 
modulation (without power loading) as an alternative to reliance on power loading. We employed a 
combination of analysis and simulation to determine the effect of power loading on the binary 
symbol error probability at the demodulator output, the packet error probability at the decoder 
output, and the throughput of the packet radio system. Our conclusion is that adaptation of the 
coding and modulation provides a higher throughput and gives more robust performance than can 
be obtained from power loading. We also determined that power loading does not improve 
performance if it is added to a system that uses adaptive coding and modulation. 



In [11] we provide techniques that permit secondary radios to monitor the spectrum that is shared 
with primary users without having the secondary radios cease transmission. Traditional spectrum 
sensing requires the secondary radios to refrain from communicating while they check for the 
emergence of primary signals. We proposed and evaluated methods by which the secondary radios 
can continue their communications while simultaneously monitoring the band to detect any 
transmissions that are initiated by the primary radios. Our methods for spectrum monitoring 
supplement traditional spectrum sensing and improve the communications efficiency of the 
secondary radios. Greater spectral efficiency is obtained by the secondary network, because our 
protocols reduce the frequency with which traditional spectrum sensing must be performed. If the 
receiver statistics suggest that a transmission from a primary user may have emerged, then the 
secondary user's session is suspended temporarily while more accurate traditional spectrum sensing 
is employed. The use of our spectrum monitoring protocol also decreases the time required to 
detect the emergence of the primary signal. 

Our results indicate that spectrum monitoring based on the receiver's error count by a single 
secondary receiver will not be adequate if the primary signal is very weak. Instead, either 
cooperative monitoring among multiple geographically distributed secondary receivers or a 
combination of spectrum monitoring and traditional spectrum sensing must be employed. Because 
of the very low complexity of our methods for spectrum monitoring and the potential benefits they 
provide in terms of earlier detection of a primary signal and increased throughput in the secondary 
network, we believe that spectrum monitoring should be employed even in systems that rely 
primarily on traditional spectrum sensing. This suggests that the integration of spectrum 
monitoring and spectrum sensing is an important area for future research. Some preliminary 
results on the integration of monitoring and sensing are given in [8]. 

Our protocols in [11] for spectrum monitoring have backup modes for unanticipated circumstances. 
For example, if poor or highly variable channel conditions cause spectrum monitoring to produce 
several consecutive false alarms, then the protocol resorts to traditional spectrum sensing until the 
channel improves. Large variations in the receiver's error count, iteration count, or other receiver 
statistics provide one indication of time-varying disturbances on the channel, and they suggest that 
the backup mode should be employed temporarily. A return to smaller variations in the receiver 
statistics is an indication that spectrum monitoring during packet reception can be resumed in the 
secondary network. 
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