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Abstract 
 

     A study is presented of the optimal crossover duct location and width to obtain 

consistent branched detonation transition from one detonation tube to another.  On a 

Pulsed Detonation Engine (PDE) with detonation branching, the duct location at which 

the detonation crosses from one (primary) tube to a branched (secondary) tube impacts 

the number of successful detonations.  In this paper, a comparison is made of the effects 

of the location and width of the crossover duct for hydrogen, ethylene and an n-alkane.  

The crossover location is varied from the aft end of the detonation tube to the middle of 

the detonation tube while the crossover width is varied from 2.5 in to 0.5 in.  Detonation 

wave speeds are measured and compared to Chapman-Jouguet velocities in order to 

determine successful detonations.  Regardless of crossover location, all three fuels are 

demonstrated 100% of the time to transition between 2 in detonation tubes with a 

crossover width of 2 in.  With a mid-location crossover duct, all three fuels are 

demonstrated 100% of the time to transition detonations between 2 in detonation tubes 

with a crossover width between 1.75 in and 2.5 in.   
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DETERMINATION OF EFFECTIVE CROSSOVER LOCATION AND DIMENSIONS 

FOR BRANCHED DETONATION IN A PULSED DETONATION ENGINE 

I.  Introduction 

     A Pulsed Detonation Engine (PDE) makes use of unsteady supersonic combustion to produce 

thrust.  While most air breathing propulsion systems use a combustion process entailing steady 

deflagration in order to generate thrust, the PDE uses unsteady detonations to provide the 

desirable characteristics of constant volume combustion and high thermodynamic efficiencies.1 

     Similar technology in aeronautical applications was operational as early as 1944 on the 

German V-1 “Buzz Bomb” powered by pulse jet engines.2  This “flying bomb” was the precursor 

to today’s cruise missile and utilized an engine developed by Paul Schmidt, a German inventor, 

in 1928.  Schmidt’s work was based on Georges Marconnet’s 1908 French patent and V.V. 

Karavodin’s 1906 Russian patent.3   

     Regardless of the design used in an aeronautical engine, the desired result is thrust.  

Considering a perfect engine, that is, an engine in which drag is not accounted for, thrust may be 

defined as in Eq. (1)4. 

      (1) 

     A detonation is an attractive source of thrust in an engine owing to the exit velocity at which 

the detonation travels and the pressure difference between the exit and ambient conditions.  A 

PDE is also desirable for its scalability and versatile applicability at airspeeds ranging from low 

subsonic to high supersonic.5  PDEs offer the potential for high-performance from simple and 

efficient designs.6  

     The relevance of a PDE is based on its ability to harness and use the thrust produced by a 

detonation.  A detonation is a violent supersonic combustion event.  Composed of a shock wave 
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coupled to a combustion front, a detonation wave produces an overpressure in a constant volume 

process.  In contrast, a deflagration, the more common type of combustion, is subsonic and is 

often modeled as a constant pressure process.2   

     A detonation can be created in one of several ways, including the following three methods:  

using a low energy spark with subsequent Deflagration to Detonation Transition (DDT), using a 

pre-detonator, or applying a large amount of energy to cause direct initiation.  A variation of 

direct initiation, called a branched detonation or tube-to-tube initiation, utilizes one of the three 

methods mentioned to initiate a detonation in a primary detonation tube.  Tube-to-tube initiation 

then transfers the detonation to a secondary tube via a crossover duct.  The advantages and 

disadvantages of each of these methods have been previously documented.7 

     This research utilizes a PDE with detonation tubes open at one end and closed at the other end 

where the tube is connected to a source of fuel, oxidizer, and ignition.7  The engine cycle is 

divided into three equal phases:  fill, fire, and purge.  During the fill phase, the engine intake 

valves allow a pre-determined ratio of pre-mixed fuel and air to enter the detonation tube.  The 

fire phase begins with closure of the fill valves, isolating the combustion event from feed lines 

upstream of the valves.  A spiral in the primary detonation tube accelerates DDT.  The purge 

phase cools and clears the tubes and begins upon opening of the purge valves.   

     Throughout this research, the closed end of the detonation tube is the head of the tube while 

the open end of the detonation tube is the tail end of the tube.  Tube-to-tube initiation has been 

successfully shown using the detonation from the tail end of one tube into the head of another 

tube (tail-head)8, using the detonation from the tail end of one tube into the tail end of another 

tube (tail-tail), and using the detonation from the head of one tube into the head of another tube 

(head-head).9   
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     For a self-sustaining, continuous branching PDE, it is necessary to extract energy from on-

going detonation cycles to initiate subsequent detonation events.  The tube-to-tube initiation 

offers greater efficiency than the other methods of detonation initiation; however, maintaining 

the detonation through the crossover duct has proven to be challenging.10  As the detonation 

enters the crossover, the shock wave and combustion front begin to decouple.11 

     Assuming the detonation from the last tube in succession crosses over to ignite a detonation in 

the first tube, then with the exception of the DDT, all detonations are initiated with tube-to-tube 

initiation in a continuous branching PDE.9  Although a continuous branching PDE is not utilized 

in this research, the results regarding crossover location and width documented here should be 

applicable to the operation of a continuous branching PDE in the future.   

     In the tail-tail configuration shown in Fig. 1, tube-to-tube detonation initiation requires the 

detonation in the primary tube to reverse direction via the crossover duct. 

  

 
Figure 1. Detonation directions through multiple tubes connected by a crossover duct 

      

     Past experiments, however, showed that detonations could propagate through various 

crossover geometries and in directions different from that of the primary detonation wave.7, 12  
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This research examines at which location and width the crossover duct most consistently results 

in a viable detonation in the secondary tube. 
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II. Background and Theory 

1. Detonation Properties 

     Combustion occurs as a deflagration or a detonation.  A deflagration propagates subsonically 

away from the source of ignition through reactants; however, a detonation propagates 

supersonically.13   

     Figure 2 depicts a detonation wave within a control volume.  In a laboratory reference frame 

the detonation wave propagates from right to left with velocity, V, pressure, P, temperature, T, 

density, ρ, and Mach number, M.  Subscripts 1 and 2 denote reactants and products, respectively.  

In a reference frame fixed to the detonation wave, as shown in Fig. 2, the reactants enter the 

detonation wave from left to right at velocity, V1, as the products leave the detonation wave at 

velocity, V2.   

 

 
Figure 2. One-dimensional detonation wave in a constant area duct14 

      

     Table 1 lists the Mach numbers of the reactants and products as well as the ratios of properties 

across a typical detonation.14 
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Table 1. Standard detonation properties 
Property Detonation 

M1 5-10 
M2 1.0 

V2/V1 0.4-0.7 
P2/P1 13-55 
T2/T1 8-21 
ρ2/ρ1 1.7-2.6 

 

     As seen in Table 1, reactants travel supersonically at M1 with respect to the detonation wave.  

Products travel away from the detonation wave at M2, the local speed of sound.  Comparing the 

properties of products to reactants, a detonation wave produces a decrease in velocity and an 

increase in pressure, temperature and density of the products.  

     A detonation is composed of a shock wave coupled to a deflagration front.  The compression 

of reactants and subsequent high temperatures caused by the leading shock wave of a detonation 

initiate the detonation combustion process.  This combustion process is sustained as a result of 

the energy from the combustion.14  A shock wave, detonation, and deflagration are very 

different, however.  This is illustrated in Table 2 by the upstream and downstream Mach 

numbers and by the property ratios of the products and reactants across these three phenomena.  

The normal shock properties in Table 2 are for air with a ratio of specific heats equal to 1.4.  The 

detonation properties are the standard properties from Table 1.  The deflagration properties are 

for a methane-air mixture.14 

Table 2. Normal shock, detonation, and deflagration properties14 
Property Normal shock Detonation Deflagration 

M1 5.0 5-10 0.001 
M2 0.42 1.0 0.003 

V2/V1 0.20 0.4-0.7 7.5 
P2/P1 29 13-55 ~1 
T2/T1 5.8 8-21 7.5 
ρ2/ρ1 5.0 1.7-2.6 0.13 
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2. Detonation physics 

     In the following analysis14, flow properties and the equations of mass continuity and 

conservation of momentum and energy are utilized to describe the physics of a detonation.  

Equation (2) uses the internal energy per unit mass, e, to define enthalpy, h. 

 

 

 

Equation (3) is the ideal gas equation. 

 

 

 

Equations (4) – (6) are the equations for continuity of mass and conservation of momentum and 

energy respectively in a constant area duct.   
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Combining Eqs. (4) and (5) produces Eq. (7). 

 

     

     The plot of Eq. (7) in pressure – specific volume space is called a Rayleigh line.15  The slope, 

a, and the y-intercept, b, of each line can be calculated with Eqs. (8) and (9) respectively. 

 

 

 

 

 

    Point A in Fig. 3 represents a given P1 and ρ1.  The negative slope of the Rayleigh line plotted 

through point A in Fig. 3 steepens as the mass flux increases.  An infinite mass flux would pass 

vertically through point A, while zero mass flux would pass horizontally through point A.  

Between an infinite mass flux and zero mass flux all possible mass fluxes are included.  Neither 

a mass flux greater than infinity nor less than zero are possible, therefore, solutions for Rayleigh 

lines passing through the quadrants labeled I and II in Fig. 3 are not obtainable. 
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Figure 3. Rayleigh lines of increasing mass flux14 

 

     Two Rayleigh lines are plotted in Fig. 4 through point A and noted as the Upper and Lower 

Rayleigh lines.  As seen in Fig. 4 proceeding from point A, the Upper Rayleigh line illustrates a 

high mass flux and the pressure and density increases that are characteristic of a detonation.  The 

Lower Rayleigh line, however, illustrates a lower mass flux and the pressure and density 

decreases from point A that are characteristic of a deflagration.  In Fig. 4 the pressure decrease 

from point A to point L is small.  Deflagrations are often modeled as constant pressure processes 

due to a small change in pressure. 

 

 



10 

 
Figure 4. Hugoniot curve and Rayleigh lines14,16 

 

      

     Using the definitions in Eqs. (2) and (3) and combining Eqs. (4) – (6) produces Eqs. (10) and 

(11).2 

 

 

     

 

     

     Equations (10) and (11) are the Hugoniot equations.  The Hugoniot curve is plotted as the 

solid line in Fig. 4.  A physically possible end state must satisfy the equation of the Rayleigh line 

(Eq. (7)) and the Hugoniot equations (Eqs. (10) and (11)).  Proceeding from P1 and ρ1 at point A, 

the intersection of the Hugoniot curve and the Rayleigh line indicates possible end states in 

) 
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regions I through IV in Fig 4.  Region V indicates an area with an unrealizable mass flux and 

therefore a physically impossible end state. 

     Point U in Fig. 4 is the Upper Chapman-Jouguet Point, named after the men who 

independently discovered, in the late 19th and early 20th centuries respectively, that a detonation 

sustaining itself is found where the Rayleigh line falls tangent to the Hugoniot curve.  Chapman 

also noted that the velocity of the detonation is at a minimum at this upper tangent point.13  At 

the Upper Chapman-Jouguet point, the detonation velocity is referred to as the Chapman-Jouguet 

velocity (VCJ).17  When the velocity is greater than the minimum, there are strong and weak 

detonation solutions as shown in regions I and II of Fig. 4.13   

     Although in theoretical analysis one often assumes one-dimensional detonation waves for 

simplification, detonations are complex three-dimensional structures composed of triple shock 

waves.  The intersection of the Mach-stem, incident and reflected shocks is known as the triple 

point and is seen near a wall in Fig. 5.18  The Mach stem is stronger than the incident shock.  The 

reflected shock wave extends into the reactants in the direction that the detonation is traveling.13   

 

 
Figure 5. Intersection of detonation incident shock,  

reflected shock and Mach stem at triple point18 
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     The velocity of the detonation varies along these shock waves as the detonation propagates 

and the shock waves interact.  At the triple point, the detonation velocity reaches its maximum.  

The velocity then decreases along the three shock waves until they intersect again and the local 

detonation velocity increases.  A successful detonation is sustainable within 30% of the 

theoretical VCJ as the detonation velocity constantly decreases and increases along the shock 

waves.7 

3. Cell size 

     The triple points move and interact in a distinctive pattern throughout a detonation.  The triple 

point pattern is observable after a detonation passes through a tube coated with soot.13,18  The 

triple point removes soot from the detonation and leaves behind a diamond shape with a 

characteristic cell width dimension, λ, unique to the reactants, as seen in Fig. 6.  

 

 

Figure 6. Detonation cell width9 

      

     The cell width is a characteristic length scale of a detonation.  The larger the cell width, the 

more distance is required for DDT.12  Also, Fievisohn showed that strong reflections caused 

detonation reinitiation.19  Figure 7 shows the transverse wave intersections and cell structure 

reestablish on the right after strong reflections off the obstacle in the center of the figure and off 

the wall reinitiate the detonation. 
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Figure 7. Detonation cell structure reestablishes after interaction with obstacle  

 

     A substantial amount of experimental data is available showing the detonation cell widths for 

most of the common fuel-oxidizer mixtures.13    Cell width has been shown to vary as a function 

of equivalence ratio as in Fig. 8. 

 
Figure 8. Cell size variation with equivalence ratio.18 

 

     Another useful characteristic length scale of a detonation is the critical tube diameter.13  The 

critical tube diameter, dc, is the minimum diameter from which a planar detonation confined in a 

tube can successfully transition into an unconfined area.13  Zeldovich has shown that while a 

confined detonation propagates in a plane, the planar detonation transitions, or diffracts, into an 

unconfined area and propagates spherically.13  Transitioning from a confined area into an 

unconfined area occurs during this research, for example, upon exiting a detonation tube or 

CH4 
C4H10 
C3H8 
C2H6 

C2H4 
H2 
C2H2 
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entering the crossover duct in a branched detonation.  Zeldovich showed that a diffracting 

detonation wave propagating across a change in area will not propagate from a tube having a 

diameter less than dc.20  Instead, the shock wave and combustion front of the detonation decouple 

and do not recombine without intervention or a change in conditions.  

     A diffracting detonation from a tube with a diameter greater than dc is known as supercritical.  

A supercritical detonation will successfully propagate naturally into the unconfined area.  From a 

tube with a diameter less than dc, a diffracting detonation is known as subcritical.  The shock 

wave and combustion front of the subcritical detonation will decouple and not reinitiate 

naturally.  From a tube with a diameter equal to dc, a detonation is critical.  The shock wave and 

combustion front of the critical detonation will initially decouple, but will reinitiate naturally.  

These different phenomena are depicted in Fig. 9.21  

   

 
Figure 9. Supercritical, critical, and subcritical detonation diffractions 

      

a) Supercritical   b) Critical  c) Subcritical 
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     Furthermore, cell width is related to the critical tube diameter as determined by Mitrofanov 

and Soloukhinin and noted by multiple authors as in Eq. (12) for a circular tube and in Eq. (13) 

for a planar channel.18,20 

 

 

 

 

 

     The crossover section in this research uses planar channels to facilitate Schlieren photography 

of the detonation as explained in Section III. 

     Critical tube diameter has also been shown to vary with equivalence ratio as shown in Fig. 10. 

 

 
Figure 10. Critical tube diameter variation with equivalence ratio18 
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     Table 3 shows the cell sizes used in this research.  As a point of reference, this research 

utilizes detonation tubes of 2 in (50.8 mm).  The detonations are expected to be subcritical as 

they diffract from the tube based on Eq. (13). 

 

Table 3. Pertinent fuels and cell sizes 
Fuel Equivalence 

Ratio 
Cell Size, λ 

(mm) 
Critical tube diameter, dc 

(mm) 
Actual tube diameter 

(mm) 
Hydrogen 1 8 80 50.8 
Ethylene 1.3 26.5 265 50.8 
n-Alkane 1.1 50-70 500-700 50.8 

 
 

4. Previous Research 

     In recent experiments by Nielsen, the crossover geometry was varied in a tail-tail setup in 

order to find the configuration that provided the most consistent branched detonation.7  Based on 

Nielsen’s results with hydrogen, the “D” geometry, with a convex surface in the direction of the 

primary tube flow and a flat surface facing the flow in the primary tube, consistently reinitiated a 

detonation in the secondary tube7 (Fig. 11).  

 

 
Figure 11. Crossover duct showing “D” geometry and flow direction 
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     Additionally, Nielsen’s experiments illustrated one of the challenges with the tail-tail 

configuration:  When the engine valves close after filling the primary detonation tube with fuel 

and air, the mixture continues moving aft.  As the volume of the fuel-air mixture expands, the 

pressure drops causing the flow in the tube to reverse direction.  In the tail-tail configuration 

when the flow reverses, the local equivalence ratio in the crossover duct decreases due to 

entrainment of the ambient air.7  This can be seen in Figs. 12 and 13. 

 

 
Figure 12. Tail-tail crossover with fuel-air mixture moving aft as intake valves close 

 

 
Figure 13. Tail-tail crossover illustrating entrainment of  

ambient air as lower pressure causes flow reversal 
      

     The leaned-out equivalence ratio leads to inconsistent reinitiation after decoupling in the 

crossover duct.7  He successfully reduced those inconsistencies by placing a nozzle over the open 
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end of the primary tube to force fuel and air through the crossover duct and into the secondary 

detonation tube.7  Nielsen settled on a “D” geometry, but with a) only a single filling tube, b) 

only a hydrogen-air mixture and c) with a nozzle on the tail end of the primary tube.  The current 

experiment removes the constraints in a, b and c, and includes testing with hydrocarbon fuels.   

5. Research Objectives 

     This research reports on three main objectives. The first objective of this research is to apply 

Nielsen’s findings regarding crossover geometry to a configuration with two tubes.  As a 

continuous branching PDE would actually fill multiple tubes, this research looks at the more 

practical case of filling the crossover duct by means of two tubes with a hydrogen-air mixture, an 

ethylene-air mixture, and an n-alkane-air mixture with none of the two-tube tests having the 

nozzle on the tail end of the primary detonation tubes.  The second objective is to exploit the 

potential of the “D” geometry by testing it with varied crossover widths in search of an optimal 

width.  The final objective is to address the entrainment of ambient air into the crossover duct in 

the tail-tail location by varying the location of the crossover from a tail-tail location to a new 

location in the center of the detonation tube.  This location will be referred to as a mid-mid tube-

to-tube detonation initiation.  Sketches of the two configurations can be seen in Figs. 14 and 15. 

 

 
Figure 14. Two-tube tail-tail crossover configuration. 
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Figure 15. Two-tube mid-mid crossover configuration. 
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III.  Methodology 

1. Facility 

     Experiments were performed in the Detonation Engine Research Facility (DERF) of the 

Advanced Concepts Group within the Air Force Research Laboratory at Wright-Patterson Air 

Force Base, Ohio.  This facility includes a test cell of over 750,000 cubic feet and a control 

room, surrounded by reinforced concrete, where systems are controlled remotely, testing is 

monitored and data acquisition systems are run.22  The PDE in this study employs a General 

Motors Quad 4, Dual Overhead Cam cylinder head for filling the tubes with a fuel-air mixture.  

The engine head can be seen at the top of Fig. 16.  The openings where the cylinder head would 

mount to four cylinders in an internal combustion engine are numbered sequentially from the left 

in Fig. 16.  Also in Fig. 16, tubes 2 and 4 are shown mounted to the cylinder head in the two-tube 

configuration. 

 

  
Figure 16. Two-tube setup looking forward from the tail end of the crossover section 

      

Engine head 

1         2         3         4

  

Secondary tube Primary detonation tube 
containing spiral 
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     Each detonation tube has two valves to fill the tube with a fuel-air mixture and two valves to 

purge the tube with air.  The primary detonation tube uses a spark plug in the cylinder head to 

ignite the fuel-air mixture.  The resulting deflagration accelerates across the DDT spiral and 

transitions to a detonation.  The length of the DDT spiral varies according to the fuel being 

tested.  The lengths of the DDT spirals used in this research for hydrogen, ethylene, and an n-

alkane are 18, 24, and 48 in respectively.  In Eq. (14) the definition of fill fraction helps to 

determine the volume of fuel-air mixture to be used.  The ratio of the volume of fuel-air mixture 

to the volume of the detonation tube, less the DDT spiral volume, equals the desired fill fraction. 

 

 

       

     Similarly, the volume of purge air to be used is determined by the desired purge fraction as 

defined in Eq. (15). 

 

 

    

     Equivalence ratio is defined in Eq. (16). 
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     Fill fraction, purge fraction, and equivalence ratio are all controlled remotely in the test 

facility control room.  For each run, a fill fraction equal to unity and a purge fraction equal to 0.5 

was used.  The equivalence ratio was varied to find an equivalence ratio close to unity and which 

would consistently produce detonations for the given fuel and crossover location.  For hydrogen 

and ethylene, equivalence ratios of unity and 1.3 respectively were used with both the tail-tail 

and mid-mid configurations.  For the n-alkane, however, the mid-mid configuration more 

consistently produced detonations at a lower equivalence ratio than the tail-tail configuration as 

shown in Table 4. 

 

Table 4. Equivalence ratio variation between fuels and test configurations 
Fuel Configuration Equivalence Ratio 

Hydrogen Tail-Tail & Mid-Mid 1 
Ethylene Tail-Tail & Mid-Mid 1.3 
n-Alkane Tail-Tail 1.2 
n-Alkane Mid-Mid 1.1 

 

2. Test configurations      

     The detonation tubes used in this research are 2 inches in diameter and 4 feet in length.  While 

the PDE can handle up to four detonation tubes, this research used only two tubes.  The primary 

detonation tube contained a DDT spiral.  In Fig. 17, the primary detonation tube is connected to a 

crossover section that contains both a primary and secondary tube connected via a crossover 

duct.  The width of the crossover duct was varied from 0.5 in to 2.5 in.  The various test 

conditions used in this research are tabulated in Tables 8-10 in Section IV.   
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Figure 17. Diagram of crossover section 

 

     The two-tube configuration, as the name implies, has two detonation tubes extending from the 

engine head to the crossover section.  The two-tube configuration in this research used tubes 2 

and 4 as numbered in Fig. 16.  Both tubes are fueled and purged from the head end.   

     Figure 18 shows the numbered ion probes (1-10) used for measuring detonation wave speeds.       

 

 
Figure 18. Two-tube configuration with engine head on the left side and  

crossover section on the right.  Ion probes are numbered throughout. 

 

     The ion probes are spark plugs and are placed in pairs along the detonation tubes and around 

the crossover section.  The ion probes detect the passing of a combustion wave and allow for 

calculation of the detonation wave speed.  When the ion probes are charged with a voltage they 
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4 
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Tube adapter 
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are utilized as capacitors, storing energy until a combustion wave passes.  The ionized 

combustion wave closes the electrical circuit across the gap in the ion probe, thereby decreasing 

the circuit voltage.  The drop in voltage indicates the passing of the combustion wave.  The 

voltage drop and the time at which the voltage drops are recorded by the data acquisition system.  

The detonation wave speeds are calculated from the distance between paired ion probes divided 

by the difference in passing time:9 

 

 

      

   The resulting speed is compared with VCJ to determine if the combustion wave is traveling fast 

enough to be considered an actual detonation for the fuel of interest.14  It can thus be determined 

if a detonation has propagated to a region of interest within the test section.  This research used 

VCJ equal to the values in Table 5. 

Table 5. VCJ for fuels of interest23 
Fuel VCJ (m/s) 

Hydrogen 1971 
Ethylene 1850 
n-Alkane ~1750 

 
 

      The maximum number of available ion probe channels on the data acquisition system is 12.  

One channel records the spark used to ignite the fuel-air mixture.  Ion probe drops follow the 

spark signal in time (Fig. 19).  The observer uses the recorded spark signal as a benchmark in 

time to help identify at what time to begin looking for ion probe voltage drops.  If no ion probe 

drops are seen between spark signals, no combustion wave passing was recorded.  Four sparks 

were fired at 10 Hz for each run in order to observe multiple detonations without allowing too 
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many detonations to melt the polycarbonate windows in the crossover section used for Schlieren 

photography. 

 
Figure 19. PDE spark signals and ion probe voltage drops 

 

     The remaining 11 channels were divided into five pairs, as seen in Fig. 18.  Also seen in Fig. 

18 are the distances between pairs of ion probes.  Ten inches separate ion probe pairs on the 

detonation tubes.  There are 4.5 in between ion probe pairs on the half of the crossover section 

closest to the engine head.  There are 1.5 in between ion probe pairs on the half of the crossover 

section closest to the tail end.   

     The two-tube tests included the crossover in the tail-tail location and in the mid-mid location.  

Figure 20 shows the mid-mid location; the engine head is outside the picture to the left, and the 

tail end of both tubes is on the far right side of the picture. 

 

Spark signal 

Ion probe 
drops 
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Figure 20. Two-tube setup with crossover at mid-mid location 

     The two-tube configuration uses a tube adapter shown in Fig. 18 to reorient the flow from the 

horizontal detonation tubes into the vertical crossover duct.  This reorientation of the flow 

enables the observer to use Schlieren photography through the walls of the crossover section to 

see the detonation wave.   

     The crossover section is enclosed by 0.5 inch-thick polycarbonate on either side to allow 

Schlieren photography through the crossover duct.  Schlieren photography is used for two 

reasons.  First, Schlieren photography provides exceptional flow visualization.24  Schlieren helps 

in identifying a combined, or coupled, shock and combustion front, as seen in Fig. 21 with 

hydrogen and air.  Second, Schlieren photography helps in secondarily verifying detonation 

wave speed.7  From two consecutive digital images, the number of photo pixels that the wave 

moves is noted. The pixel spacing is computed from a known distance (e.g., the distance between 

detonation tubes).  The calculated wave movement in meters is divided by the frame time in 

seconds to find the wave speed as in Eq. (17). 

 

Secondary tube 

Primary tube 
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Figure 21. Schlieren photography illustrating the detonation of hydrogen and air at 15 
microsecond intervals, sequentially from left to right, top to bottom.  The shock and 

combustion fronts decouple through the crossover duct. 
 

     As seen in Fig. 21, the left-to-right running detonation in the primary tube diffracts at the 

crossover duct causing the shock wave and combustion front to begin decoupling.  With 2 in 

diameter detonation tubes and with the fuels and cell widths listed in Table 3, this is anticipated 

based on Eq. (13).  After the subcritical detonation diffracts into the crossover duct, the 

detonation is not expected to reinitiate naturally, as discussed in regards to Fig. 9.  Nielsen found 

the “D” geometry consistently reinitiated in the crossover duct with a hydrogen-air mixture as 

the shock wave and combustion front reflected off the flat portion of the geometry facing the 

flow and again reflected off the top of the secondary detonation tube.7  These reflections were 

sufficient to recouple the shock wave and combustion front and reinitiate the detonation.  Ideally, 

this reinitiation occurs in a short span of tube in order to effectively produce thrust in the 

secondary tube.   

     To determine whether detonations exist upstream and downstream of the crossover duct in the 

primary detonation tube, and to help determine if detonations reinitiate in the secondary tube, 

             Time: 0         Time: 15 μs                  Time: 30 μs          Time: 45 μs 

 

 

Time: 60 μs      Time: 75 μs                Time: 90 μs          Time: 105 μs 

 

 

 

Coupled 

  Decoupled 
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there are three regions of interest within the PDE system.  In Fig. 22, Region I is prior to the 

crossover where DDT occurs.  Region II is in the primary tube downstream of the crossover at 

the tail end of the tube.  Region III is in the secondary detonation tube where a detonation 

reinitiation should occur after decoupling in the crossover.  The Schlieren field-of-view captures 

Regions I and III only. 

 

 
Figure 22. The detonation regions of interest within the crossover section. 

 

3. Uncertainty 

     The uncertainty of a measured value quantifies the dispersion of the values measured for a 

particular parameter.  For a given probability, the actual value of the measured parameter lies 

within the uncertainty with a certain confidence.24  The two types of uncertainty are bias and 

precision.  Bias uncertainty, B, is constant and is calculated as the root sum square of the 

estimated sources of bias:24  
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     Precision uncertainty, p, varies randomly with repeated measurements of the same parameter.  

When repeated measurements were available, the precision uncertainty was calculated within 

95% probability using the standard deviation, σ:24  

 

 

 

     The overall uncertainty is equal to the root sum square of the bias and precision uncertainties: 

 

 

 

     For this research, an uncertainty analysis was conducted for the detonation wave speeds 

measured with the ion probes and the Schlieren photographs.  For the ion probe measurements, 

the two sources of bias uncertainty are the location of the ion probe and the arrival time of the 

detonation wave.9  The bias uncertainty in location, BΔx, is 2.5 x 10-4 in based on the fact that the 

holes for the ion probes were drilled on a mill with accuracy to 5.0 x 10-4 in.7  The bias 

uncertainty in arrival time, BΔt, has two sources of bias uncertainty:  ion probe response time and 

data sampling rate.  As shown by Hopper, the ion probe response time is 0.1 µs.9  The bias 

uncertainty in ion probe response time is therefore half the response time, or ±0.05 µs.9  The data 
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sampling rate is 1 MHz.  The bias uncertainty in the data sampling rate is therefore ±0.5 µs.  

Using Eq. (18), BΔt is estimated to be 0.502 µs.9   

     The only source of precision uncertainty that was considered for the ion probe measurements 

was the arrival time of the detonation wave.  The precision uncertainty in the arrival time of the 

detonation wave, pΔt, is dominated by the three dimensional effects of the detonation wave and 

was calculated by Hopper to be ±2.5 µs.9  For the ion probe measurement uncertainty 

calculation, the precision uncertainty in location, , is zero. 

     The overall bias and precision uncertainty in the wave speed are calculated as shown by 

Hopper using Eqs. (21) and (22).9 

 

 

          

 

 

     The values for Δx vary based on the distance between the ion probe pair of interest.  The 

values of Δt vary based on the VCJ of the fuel of interest.  The calculated values for Bws, pws, and 

Uws are tabulated in Table 6.  As seen in Table 6, wave speed uncertainty increases as the 

distance between ion probe pairs decreases. 
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Table 6. Bias, precision, and overall uncertainty for detonation  
wave speeds of multiple fuels and multiple ion probe pairs 

Distance 
between 

ion probes, 
Δx (in) 

Bias uncertainty, Bws (m/s) Precision uncertainty, Pws (m/s) Overall uncertainty, Uws (m/s) 

Hydrogen Ethylene n-
Alkane Hydrogen Ethylene n-

Alkane Hydrogen Ethylene n-
Alkane 

1.5 54.64 45.03 41.17 263.85 215.99 196.80 269.45 220.63 201.06 
4.5 17.61 15.48 13.72 84.94 74.34 65.60 86.75 75.93 67.02 

10.0 7.79 6.75 5.91 37.57 32.40 28.22 39.37 33.09 28.84 
 
 

     The following uncertainty analysis for the detonation wave speeds measured with the 

Schlieren photography is based on the analysis presented by Nielsen.7  BΔx is 1 pixel due to the 

difficulty determining exactly where the front of the detonation wave is in a given photograph.  

BΔt is ±1 μs due to the uncertainty of the time between frames.   pΔx is 0.5 pixels due to the 

human error associated with selecting the correct pixel.   The photography software showed no 

precision errors after reviewing the elapsed time between 100 frames.  Therefore, pΔt is assumed 

to be zero.  Using Eqs. (20) - (22) the bias, precision and overall uncertainties are calculated and 

tabulated in Table 7. 

 
Table 7. Bias, precision, and overall uncertainty for detonation  

wave speeds of multiple fuels using Schlieren photography 
Bias uncertainty, Bws (m/s) Precision uncertainty, Pws (m/s) Overall uncertainty, Uws (m/s) 

Hydrogen Ethylene n-Alkane Hydrogen Ethylene n-Alkane Hydrogen Ethylene n-Alkane 
145.11 137.28 133.41 35.27 35.27 35.27 149.33 141.73 137.99 

 
 

     As seen in Table 7, the uncertainty of the Schlieren photography in measuring detonation 

wave speeds is high.  This is not unexpected.  Schlieren photography is excellent for flow 

visualization, and is primarily used in this research to confirm that shock waves and combustion 

fronts are coupled.  Schlieren photography was not primarily used for measuring speed.  Due to 

the high uncertainty in wave speeds from the Schlieren photography, the ion probe data is used 

first, provided that voltage drops across the ion probes are noted for a given run.  If one or both 
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ion probes in a pair does not show a voltage drop for a given run, the Schlieren photography is 

used secondarily to confirm that a detonation is present by examining the photographs for shock 

waves coupled to combustion fronts and then to measure wave speed.  If only one ion probe 

shows a voltage drop typical of a detonation wave but the ion probe pair is not within the 

Schlieren field of view, the detonation wave is assumed, although no detonation wave speed is 

recorded for that region.  Figure 23 is a flowchart showing the conditions for using either ion 

probe data or Schlieren photography to calculate wave speeds. 

 

 
 

Figure 23. Wave speed data flowchart 
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IV.  Analysis and Results 

1. Test configuration 

     The two-tube tests include the crossover duct filled and purged by both the primary and 

secondary detonation tubes, a configuration that can be directly applied to a realistic operational 

application of detonation branching.  Both the tail-tail and mid-mid configurations were 

examined for each fuel-air mixture. 

     Each test shown in the following tables consisted of four sparks fired at 10 Hz at the indicated 

crossover width.  Firing four sparks at 10 Hz allowed multiple detonations to be observed during 

each run without concern for the detonations melting the polycarbonate windows used for 

Schlieren photography.  A successful detonation was considered approximately 70% of VCJ or 

greater to allow for some detonation wavespeed variation from the theoretical VCJ without 

considering the choked flame in the combustion products as a detonation.  The average 

successful detonation wave speed over the four sparks in each of the three regions of interest is 

shown in Tables 8-10.  Appendix A includes wavespeeds for each of the three regions after each 

spark was fired.  

2. Hydrogen tests 

     Table 8 shows the tabulated results for the hydrogen-air mixture in both the tail-tail and mid-

mid configurations at varying crossover widths.  Detonation wave speeds are also shown 

nondimensionalized by VCJ.  Ion probe number 10 (reference Fig. 18) in Region II did not 

register voltage drops during the hydrogen tests.  The voltage drops across ion probe number 9 in 

Region II were indicative of a detonation.  In accordance with the wave speed data flowchart 

(Fig. 23) these detonations were assumed to have occurred, although no Region II wave speed is 

recorded. 
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     Hydrogen was successful in producing detonations in all three regions in both the tail-tail and 

mid-mid configurations, as expected.  Hydrogen detonation velocities have been recorded within 

30% of stoichiometric VCJ at equivalence ratios as low as 0.4.23  The 2.5 in crossover width mid-

mid configuration test was repeated because the first test produced only two detonations across 

the four sparks.  The second test produced three detonations. 

      

Table 8. Hydrogen test results 

Fuel # 
Tubes 

Spiral 
Length 

(in) 

Equivalence 
Ratio 

Crossover 
width (in) Config 

Detonation Wave Speed 
(m/s) 

Nondimensional Detonation 
Wave Speed 

Region I Region III Region I Region III 
Hydrogen 2 18 1.0 2.50 Tail-

Tail 
1902 2305 .965 1.17 

Hydrogen 2 18 1.0 2.25 Tail-
Tail 

1909 2337 .969 1.19 

Hydrogen 2 18 1.0 2.00 Tail-
Tail 

1902 2247 .965 1.14 

Hydrogen 2 18 1.0 1.75 Tail-
Tail 

1902 2263 .965 1.15 

Hydrogen 2 18 1.0 1.50 Tail-
Tail 

1884 2284 .956 1.16 

Hydrogen 2 18 1.0 0.50 Tail-
Tail 

1902 2511 .965 1.27 

Hydrogen 2 18 1.0 2.50 Mid-
Mid 

1916 2156 .972 1.09 

Hydrogen 2 18 1.0 2.50 Mid-
Mid 

1909 2244 .969 1.14 

Hydrogen 2 18 1.0 2.25 Mid-
Mid 

1891 2213 .959 1.12 

Hydrogen 2 18 1.0 2.00 Mid-
Mid 

1909 2252 .969 1.14 

Hydrogen 2 18 1.0 1.75 Mid-
Mid 

1891 2333 .959 1.18 

Hydrogen 2 18 1.0 1.50 Mid-
Mid 

1905 2268 .967 1.15 

Hydrogen 2 18 1.0 0.50 Mid-
Mid 

1898 2587 .963 1.31 

 
 

     In Fig. 24, a hydrogen detonation is shown in a tail-tail configuration with a 2.5 in crossover 

width.  Frame 1 shows the coupled shock wave and combustion front in Region I.  The planar 

detonation in Region I is subcritical because the height of the planar channel in Region I (50.8 

mm) is less than the critical tube diameter for hydrogen (80 mm); therefore, the detonation 
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diffracts as it enters the crossover duct, decoupling the shock wave and combustion front.  The 

decoupled shock wave and combustion front are visible in frame 7 of Fig. 24.  As the shock 

wave and combustion front strike the opposing flat face of the crossover geometry in frame 8, 

they are recoupled.  The flash of visible light in frame 8 and subsequent detonation wave 

propagation in frame 9 indicate the strong reflection and detonation reinitiation respectively.  

The reinitiated detonation propagates spherically as if unconfined and quickly decouples as seen 

in frame 11.  In frame 12, the decoupled shock wave and combustion front are recoupled again 

as they strike the top of the secondary detonation tube with a strong reflection.  The reinitiated 

detonation wave in the secondary detonation tube interacts with the transverse shock wave 

present, enabling the detonation to propagate and exit the Schlieren field of view, as seen in 

frames 13-17.  More hydrogen detonation photographs are located in Appendix B. 

 

 
Figure 24. Detonation of hydrogen and air in a tail-tail configuration with 2.5 in crossover width, 

sequentially from left to right, top to bottom.  The detonation resulted in a  
successful Region III reinitiation.  
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     Figure 24 also shows several things that recur in many of the detonation photographs.  After 

the detonation reinitiates in the crossover duct in frame 8, the shock wave and combustion front 

recouple and propagate into the secondary detonation tube as labeled in frame 9.  The lower 

portion of the spherically propagating shock wave travels back into the primary detonation tube, 

starting in frame 9, where it reflects off the bottom of the tube in frame 15.  The shock wave is 

visible in frames 9-17 and labeled in frame 13.  Also visible in the photographs, is some high 

temperature sealant that has spread into the Schlieren field of view.  The sealant is labeled in 

frame 16.  Figure 25 shows an example of some sealant that would be visible within the 

Schlieren field of view.  The sealant was not observed to noticeably affect the flow as the effect 

was confined to the edges and did not significantly alter the bulk flow. 

 
 

 
Figure 25. High temperature sealant within the Schlieren field of view.  The sealant adheres the 

polycarbonate to the crossover geometry and keeps the high pressure  
flow from leaking around the crossover geometry. 

 

3. Ethylene tests 

     The ethylene test results are tabulated in Table 9 including detonation wave speeds 

nondimensionalized by VCJ.  As seen in Table 9, the first two tests were run at crossover widths 

of 2.5 in and equivalence ratio of 1.2.  During these tests there were no successful detonations in 

Sealant 
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Region II as indicated by the lack of detonation wave speed in Table 9.  Holding the crossover 

width at 2.5 in, the equivalence ratio was increased to 1.3.  The 2.5 in crossver width tests were 

repeated three times with the increased equivalence ratio.  Successful Region II detonations were 

observed during two of the three tests at 2.5 in and for all subsequent crossover widths.  The 

diffracting subcritical detonation may have had more difficulty reinitiating across a wider 

crossover duct from Region I to Region II particularly at the lower equivalence ratio.  As seen in 

Table 9, when the crossover width is decreased below 2.5 in and when the equivalence ratio is 

increased to 1.3, the detonation successfully transitions from Region I to Region II.   

     The 1.5 in mid-mid configuration test was repeated because the first test produced only one 

detonation across four sparks.  The second test produced two detonations.  The ethylene tests run 

in the tail-tail and mid-mid configurations with the crossover width at 0.5 in did not produce any 

successful Region III detonations.  Ethylene detonations with a crossover width of 0.5 in were 

not able to reinitiate in the secondary detonation tube because the reinitiation was limited to the 

crossover duct by the small crossover width as shown later. 
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Table 9. Ethylene test results 

Fuel # 
Tubes 

Spiral 
Length 

(in) 

Equivalence 
Ratio 

Crossover 
width (in) Config 

Detonation Wave Speed 
(m/s) 

Nondimensional Detonation 
Wave Speed 

Region 
I 

Region 
II 

Region 
III 

Region 
I 

Region 
II 

Region 
III 

Ethylene 2 24 1.2 2.50 Tail-
Tail 

2081 - 2099 1.12 - 1.13 

Ethylene 2 24 1.2 2.50 Tail-
Tail 

1940 - 1903 1.05 - 1.03 

Ethylene 2 24 1.3 2.50 Tail-
Tail 

1913 2437 2125 1.03 1.32 1.15 

Ethylene 2 24 1.3 2.50 Tail-
Tail 

2032 - 2116 1.10 - 1.14 

Ethylene 2 24 1.3 2.50 Tail-
Tail 

2078 2447 2303 1.12 1.32 1.24 

Ethylene 2 24 1.3 2.25 Tail-
Tail 

2006 2342 2152 1.08 1.27 1.16 

Ethylene 2 24 1.3 2.00 Tail-
Tail 

1982 2064 2170 1.07 1.12 1.17 

Ethylene 2 24 1.3 1.50 Tail-
Tail 

1880 2120 2018 1.02 1.15 1.09 

Ethylene 2 24 1.3 0.50 Tail-
Tail 

2063 1833 - 1.12 .991 - 

Ethylene 2 24 1.3 2.50 Mid-
Mid 

1969 2439 2174 1.06 1.32 1.18 

Ethylene 2 24 1.3 2.25 Mid-
Mid 

1925 2231 2171 1.04 1.21 1.17 

Ethylene 2 24 1.3 2.00 Mid-
Mid 

1681 2123 2208 .909 1.15 1.19 

Ethylene 2 24 1.3 1.75 Mid-
Mid 

1917 2123 2144 1.04 1.15 1.16 

Ethylene 2 24 1.3 1.50 Mid-
Mid 

1502 2005 1895 .812 1.08 1.02 

Ethylene 2 24 1.3 1.50 Mid-
Mid 

1947 2349 2152 1.05 1.27 1.16 

Ethylene 2 24 1.3 0.50 Mid-
Mid 

1954 1826 - 1.06 .987 - 

 
      

     Figure 26 shows an ethylene detonation in a tail-tail configuration with a 2.5 in crossover 

width.  More visible light is observed in the combustion of ethylene as compared to hydrogen.  

The ethylene detonation is initially coupled, then diffracts into the crossover duct and is labeled 

as decoupled in frame 7.  Strong reflections and subsequent detonation reinitiations within the 

crossover tube and at the top of the secondary detonation tube are labeled in frames 9 and 13 

respectively.  Frame 17 shows the detonation wave as it exits the Schlieren field of view.  The 

detonation that reinitiated at the top of the secondary detonation tube in frame 13 reflects 
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strongly in frame 17 off the bottom of the secondary detonation tube.  The reflection is labeled in 

frame 18.  Figure 26 also shows a common image in many of the detonation photographs.  Burn 

marks are left on the polycarbonate where the crossover geometry and polycarbonate meet.  The 

burn marks are visible in the Schlieren field of view when the crossover width is readjusted to a 

wider setting.  The visible burn marks at each crossover width setting of previous tests are labled 

in frame 1.   

 

 

 
Figure 26. Detonation of ethylene and air in a tail-tail configuration with 2.5 in crossover width, 

sequentially from left to right, top to bottom.  The detonation resulted in a  
successful Region III reinitiation.  

 
     Figure 27 shows an ethylene detonation in a tail-tail configuration with a 0.5 in crossover 

width.  All ethylene detonations with the 0.5 in crossover width failed to reinitiate in Region III 
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as noted inTable 9.  Frame 5 shows the detonation reinitiation in the crossover width.  Unlike 

reinitiations at larger crossover widths, the reinitiation at the 0.5 in crossover width occurs much 

lower on the crossover geometry.  The reinitiation reflects back off the “D” geometry in frame 6.  

It appears that the detonation emerging from the crossover width into the secondary detonation 

tube in frame 7 is unable to reinitiate at the top of the secondary detonation tube in frames 11 and 

12.  The strong reflection and reinitiation were limited to the crossover duct by the smaller 

crossover width.  A deflagration propagates through Region III and exits the Schlieren field of 

view.  The deflagration wave speed is noted in Table A-2 in Appendix A.  More ethylene 

detonation photographs are located in Appendix C. 

 

 
Figure 27. Detonation of ethylene and air in a tail-tail configuration with 0.5 in crossover width, 

sequentially from left to right, top to bottom.  The small crossover width limits the  
reinitiation to the crossover duct.  The detonation resulted in a failed  

Region III reinitiation.  
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4. n-Alkane tests      

     The n-alkane test results are tabulated in Table 10 including detonation wave speeds 

nondimensionalized by VCJ.  The voltage drops across ion probe number 9 (reference Fig. 18) in 

Region II were indicative of a detonation, although ion probe number 10 did not register voltage 

drops during the n-alkane tests.  In accordance with the wave speed data flowchart (Fig. 23) 

these detonations were assumed to have occurred although no Region II wave speed was 

recorded. 

     The n-alkane Region I detonation wavespeeds in Table 10 are lower than VCJ for all crossover 

widths in both the tail-tail and mid-mid configurations with the exception of the tail-tail 

configuration with 2.5 in and 1.5 in crossover widths.  The lower wavespeeds may be an 

indication in Region I that the n-alkane is taking more distance to transition to a detonation and 

has not fully accelerated to VCJ by Region I due to its large cell size.12   

     No successful Region III detonations were observed with the 0.5 in crossover in either the 

tail-tail or the mid-mid configuration.  Similar to ethylene, the n-alkane detonations do not 

transition through the crossover when the crossover width is decreased to 0.5 in.  The reinitiation 

is reflected off the crossover geometry within the smaller crossover duct and does not emerge 

into Region III as shown later. 

     The tail-tail configuration produced detonations at an equivalence ratio of 1.2 while the mid-

mid configuration produced detonations more consistently at an equivalence ratio of 1.1.  This 

may be an indication that the mid-mid configuration is able to run at a leaner equivalence ratio 

because it is not as affected by entrainment of the ambient air as the tail-tail configuration, 

however, this research did not extensively examine equivalence ratio variation. 
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Table 10. n-Alkane test results 

Fuel # 
Tubes 

Spiral 
Length 

(in) 

Equivalence 
Ratio 

Crossover 
width (in) Config 

Detonation Wave 
Speed (m/s) 

Nondimensional Detonation 
Wave Speed 

Region I Region III Region I Region III 
n-

Alkane 
2 48 1.2 2.50 Tail-

Tail 
1797 2311 1.03 1.32 

n-
Alkane 

2 48 1.2 2.25 Tail-
Tail 

1364 1668 .779 .953 

n-
Alkane 

2 48 1.2 2.00 Tail-
Tail 

1502 2077 .858 1.19 

n-
Alkane 

2 48 1.2 1.50 Tail-
Tail 

2059 1840 1.18 1.05 

n-
Alkane 

2 48 1.2 0.50 Tail-
Tail 

1566 - .895 - 

n-
Alkane 

2 48 1.1 2.25 Mid-
Mid 

1599 1545 .914 .883 

n-
Alkane 

2 48 1.1 2.00 Mid-
Mid 

1269 1797 .725 1.03 

n-
Alkane 

2 48 1.1 1.75 Mid-
Mid 

1685 2253 .963 1.29 

n-
Alkane 

2 48 1.1 1.50 Mid-
Mid 

1664 1544 .951 .882 

n-
Alkane 

2 48 1.1 2.50 Mid-
Mid 

1406 1642 .803 .938 

n-
Alkane 

2 48 1.1 0.50 Mid-
Mid 

1264 - .722 - 

 
 

     Like the hydrogen and ethylene tests, the n-alkane tests were initially run with the DDT spiral 

and spark in tube 4 (reference Fig. 16).  There was a problem, however, with one of the valves 

closing in tube 4, and detonations would not initiate in tube 4.  The DDT spiral and spark were 

switched into tube 2 in order to remedy the initiation failures.  As a result, the n-alkane 

detonation photographs depict the primary detonation tube on the top and the secondary 

detonation tube on the bottom.  The detonations proceed from top to bottom as opposed to 

proceeding from bottom to top as with hydrogen and ethylene.  Additionally, oil was sprayed 

through the leaking valve in tube 4 and covered the polycarbonate window.  The Schlieren light 

source must shine through the oil coated polycarbonate and as a result, the field of view in the 

Schlieren photographs is darker for the n-alkane detonations.  The overall quality of the n-alkane 
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photographs is lower.  More visible light is observed in the combustion of n-alkane as compared 

to hydrogen and ethylene. 

     Figure 28 shows an n-alkane detonation in the tail-tail configuration with 2.5 in crossover 

width.  The shock wave and combustion front decouple in frame 6.  Strong reflections and 

detonation reinitiations occur in frame 9 in the crossover width and in frame 13 at the bottom of 

the secondary detonation tube.  The detonation exits the Schlieren field of view in frames 17 and 

18.   

Figure 28. Detonation of an n-alkane and air in a tail-tail configuration with 2.5 in crossover 
width, sequentially from left to right, top to bottom.  The detonation resulted in a  

successful Region III reinitiation. 
 

     Figure 29 shows a decoupled n-alkane shock wave and combustion front in Region I (labeled 

in frame 1) that successfully reinitiates in Region III.  It appears in frames 1-6 that the shock 

wave and combustion front are coupling as the distance between the two decreases.  The 

coupling is incomplete in frame 6 as the wave diffracts into the crossover duct.  The strong 

reflections in frame 10 in the crossover duct and in frame 15 at the bottom of the secondary 

1 2 3 4 5 6 

7 8 9 10 11 

16 14 17 

12 

13 15 18 

Decoupled 

Reinitiation 

Reinitiation 

Detonation 



44 

detonation tube successfully initiate a detonation in Region III without a successful detonation in 

Region I.  The reinitiation in frame 11 likely helped recouple the detonation in Region II, 

although there is no video of Region II to show how the detonation recoupled.  The failed Region 

I detonation may be the result of the n-alkane deflagration taking more distance to transition to a 

detonation.  While the n-alkane deflagration was not completely transitioned to a detonation in 

Region I, it likely would have completely transitioned given more distance before the crossover 

duct.  The reinitiations in frames 10, 11 and 15 completed the transition resulting in detonations 

in Regions II and III. 

 
Figure 29. Detonation of an n-alkane and air in a mid-mid configuration with 2.0 in crossover 

width, sequentially from left to right, top to bottom.  A failed Region I detonation enters in frame 
1 and successfully reinitiates in Region III. 
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     The n-alkane detonations fail to reinitiate in Region III with the 0.5 in crossover width as 

shown in Table 10.  Figure 30 shows an n-alkane detonation with the 0.5 in crossover width.  

The reinitiation in frame 6 reflects off the “D” geometry in frame 7.  While frame 14 shows 

somewhat of a reflection at the bottom of the secondary detonation tube, it is too weak to 

reinitiate the detonation in Region III.  The strong reflections were limited to the crossover duct.  

More n-alkane detonation photographs are located in Appendix D. 

 

 Figure 30. Detonation of an n-alkane and air in a tail-tail configuration with 0.5 in crossover 
width, sequentially from left to right, top to bottom.  The small crossover width limits the 

strong reflections within the crossover resulting in a failed Region III reinitiation.  
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5. Region III detonations only   

     This research was primarily focused on the optimum crossover location and width to achieve 

branched detonation.  The analysis of Regions II and III considers only those runs which 

originated from a successful Region I detonation.  This is done in order to isolate the results as a 

function of crossover width and location and not as a function of the number of primary tube 

DDT attempts.  Region I detonations will be examined briefly later.  Each run at a particular 

crossover width noted in Tables 8 – 10 consisted of four sparks at 10 Hz in order to observe 

multiple detonations at each crossover width.  Figures 31-33 show the percentage of hydrogen, 

ethylene, and n-alkane Region III detonations respectively which reinitiate after decoupling in 

the crossover duct.  Data points are connected to show trends only and not to imply linear 

relationships where no data was recorded. 

  

 
Figure 31. Region III hydrogen detonations for tail-tail and mid-mid configurations 
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Figure 32. Region III ethylene detonations for tail-tail and mid-mid configurations  

 
Figure 33. Region III n-alkane detonations for tail-tail and mid-mid configurations  

 
      

     As seen in Fig. 31, regardless of crossover location or crossover width, hydrogen produced 

Region III detonations 100% of the time.  Hydrogen was expected to successfully produce 

Region III detonations in both the tail-tail and mid-mid configurations across various crossover 

widths.  As mentioned earlier, hydrogen detonates consistently even at low equivalence ratios.23 
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     In Fig. 32, there are no ethylene Region III detonations at the 0.5 in crossover for either the 

tail-tail or mid-mid configuration, however, Region III detonations occur 100% of the time for 

crossover widths of 1.5 in and greater.  Ethylene detonations do not successfully transition 

through the crossover when the crossover width is 0.5 in because the strong reflection does not 

propagate successfully into Region III as shown earlier.   

     In Fig. 33, the n-alkane Region III detonations do not occur at all at the 0.5 in crossover 

width, then steadily increase to 100% at the 1.75 in and 2.0 in crossover widths for the mid-mid 

and tail-tail configurations respectively.  The trend of increasing successful detonations with 

increasing crossover widths in Fig. 33 appears to suggest again that the smaller crossover widths 

are less conducive to detonation propagation.  At 0.5 inches the crossover width does not allow 

the reinitiated detonation to propagate into Region III.  

6. Region II detonations only 

     Figures 34-36 show the percentage of successful Region II detonations originating from a 

successful Region I detonation.  In Fig. 34, hydrogen detonates successfully in Region II 100% 

of the time for all crossover widths in both the tail-tail and mid-mid configurations.  Hydrogen 

again consistently detonates as expected regardless of varying conditions. 

     In Fig. 35, the ethylene Region II mid-mid configuration successfully detonates 100% of the 

time at each of the crossover widths.  The ethylene Region II tail-tail configuration, however, 

detonates 100% of the time at crossover widths of 0.5 in – 2.0 in, but successful detonations 

steadily decrease as the crossover width is increased up to 2.5 in.  It is possible that entrainment 

of ambient air decreases the number of successful detonations as the crossover width increases in 

the tail-tail configuration. 
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     Figure 36 shows that the n-alkane consistently detonated 100% of the time in Region II at 

each of the crossover widths.  The n-alkane tail-tail configuration does not appear to be affected 

by entrainment of the ambient air in Region II.  Strong n-alkane reflections off the corner of the 

crossover duct may have allowed the n-alkane detonation to successfully transition into Region 

II.19   

   

 
 

 
Figure 34. Region II hydrogen detonations for tail-tail and mid-mid configurations 
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Figure 35. Region II ethylene detonations for tail-tail and mid-mid configurations 

 

 
Figure 36. Region II n-alkane detonations for tail-tail and mid-mid configurations 
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occur in both regions.  Figures 37 – 39 show successful detonations in both Regions II and III 

originating from the same Region I detonation.     

 

 
Figure 37. Regions II and III hydrogen detonations for tail-tail and mid-mid configurations 

 
 

 
Figure 38. Regions II and III ethylene detonations for tail-tail and mid-mid configurations 
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Figure 39. Regions II and III n-alkane detonations for tail-tail and mid-mid configurations 
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     In Fig. 39, the n-alkane detonations increase as the crossover width increases, suggesting that 

at crossover widths of 0.5 in and 1.5 in, the smaller crossover width limits successful detonation 

reinitiations.  Figures D-5, D-6, D-10, and D-12 show crossover widths of 0.5 in and 1.5 in 

limiting n-alkane detonation reinitiations in Region III.   

     The n-alkane appears less affected than ethylene by entrainment of the ambient air at larger 

crossover widths.  As mentioned earlier, strong n-alkane reflections may have contributed to the 

high detonation success rate in Region II.  Both the tail-tail and mid-mid configurations produce 

detonations in Regions II and III equivalently at all crossover widths with the exception of 1.75 

in where there was no tail-tail configuration data.     

8. The PDE system 

     It is beneficial to define the PDE system in terms of inputs and desired outputs in order to 

establish a baseline for performance.  Figure 40 depicts the PDE system as viewed for purposes 

of this research. 

 
Figure 40. The PDE crossover system 

      

     As seen in Fig. 40, for every spark in the primary detonation tube there are two desired 

detonations:  one out the tail end of the primary detonation tube and one through the crossover 



54 

duct into the secondary detonation tube.  For every X, an optimal system would produce 100% 

Y1 and 100% Y2.  A figure of merit, defined as the sum of Y1% plus Y2%, is used as a baseline 

in order to compare the performance of the different configurations.  The desired figure of merit 

is 200. 

     Figure 41 compares the hydrogen figures of merit for both tail-tail and mid-mid 

configurations every time a spark was fired, regardless of a successful detonation in Region I.   

This research was primarily focused on the optimum crossover location and width to achieve 

branched detonation.  The analyses of Regions II and III considered only those runs which 

originated from a successful Region I detonation.  Analyzing Regions II and III in this manner 

isolates the results as a function of crossover width and location and not as a function of the 

number of primary tube DDT attempts.  Detonations did not occur in Region I 100% of the time, 

however.  Each run at a particular crossover width noted in Tables 8 – 10 consisted of four 

sparks at 10 Hz in order to observe multiple detonations at each crossover width.  Figure 42 

shows the percentage of Region I hydrogen detonations.  Comparing Figs. 41 and 42, it is clear 

that the hydrogen figure of merit is limited by successful Region I detonations at the 2.5 in 

crossover width in the mid-mid configuration. 

 



55 

 
Figure 41. Hydrogen figure of merit for tail-tail and mid-mid configurations 

 

 
Figure 42. Hydrogen Region I detonations for tail-tail and mid-mid configurations 
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configuration produced 100% detonations in Regions II and III more often than the tail-tail 

configuration.  While this research did not examine the variables affecting successful Region I 

detonations, the higher success rate of Region I detonations in the tail-tail configuration 

contributed to the higher tail-tail figure of merit.   

   

 
Figure 43. Ethylene figure of merit for tail-tail and mid-mid configurations 

 

 
Figure 44. Ethylene Region I detonations for tail-tail and mid-mid configurations 
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         Figure 39 shows that smaller crossover widths (0.5 in and 1.5 in) appear to limit successful 

n-alkane detonation propagation in both the tail-tail and mid-mid configurations.  The smaller 

crossover width likewise limits the figure of merit in Fig. 45.  There appears to be no correlation 

between Region I detonations and figure of merit for the n-alkane, as seen in Figs. 45 and 46.  As 

shown earlier, the n-alkane detonation can successfully reinitiate and propagate into another 

region without a Region I detonation.   

      

 
Figure 45. n-Alkane figure of merit for tail-tail and mid-mid configurations 
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Figure 46. n-Alkane Region I detonations for tail-tail and mid-mid configurations 

 

9. Crossover width 

     Figure 47 depicts the crossover width and detonation tube height. 

 

 
Figure 47. Depiction of crossover width, wcr, and detonation tube height, htd 
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The crossover ratio, rcr, is defined in Eq. (23). 

 

      (23) 

 

     For hydrogen and ethylene in the mid-mid configuration with a crossover ratio of 1.0, the 

Region III detonation reinitiates, recouples across the height of the secondary detonation tube 

and becomes planar in the case of hydrogen and nearly-planar in the case of ethylene before the 

detonations leave the Schlieren field of view.  The crossover ratio of 1 appears to reduce the 

distance in which the shock and combustion front recouple across the entire tube and become 

planar, possibly indicating a more efficient branched detonation and an optimal crossover ratio.  

Reinitiated planar detonations can be seen in Figs. 48 and 50 as compared to Figs. 49 and 51.  

Each pair of figures depicts a 13 µs interval.  A crossover width of 1.5 in is shown in Figs. 49 

and 51 as an example of the crossover ratio not equal to unity.  Crossover ratios less than unity 

were less consistent in producing successful detonation reinitiations. 

 

 
Figure 48.  Mid-mid configuration hydrogen-air detonation with 2.0 in crossover width 

reinitiates, recouples across the entire secondary detonation tube and becomes 
planar in secondary tube prior to leaving the visible section of the crossover 

 

Planar detonation exiting 
crossover field of view 
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Figure 49. Mid-mid configuration hydrogen-air detonation with 1.5 in crossover width reinitiates 

but is neither coupled across the entire secondary tube nor planar prior to leaving the visible  
section of the crossover  

 
 

 
Figure 50. Mid-mid configuration ethylene-air detonation with 2.0 in crossover width reinitiates, 

recouples across the entire secondary tube and becomes nearly-planar prior to leaving the  
visible section of the crossover 

 
 
 

Nearly-planar detonation 
exiting crossover field of view 

Detonation not planar as it exits the 
crossover field of view. 
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Figure 51. Mid-mid configuration ethylene-air detonation with 1.5 in crossover width reinitiates 

but is neither coupled across the entire secondary tube nor planar prior to leaving the  
visible section of the crossover  

 

     Figure 52 shows that the effects of crossover width on the distance required for a reinitiated 

planar n-alkane detonation are inconclusive due to the quality of the Schlieren photographs.   

 

 
Figure 52. Mid-mid configuration n-alkane-air detonation with 2.0 in crossover width.  It is not 

clear whether the detonation is planar or not due to the quality of the photograph. 
 

      

        

Detonation not planar as it exits the 
crossover field of view. 
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V.  Conclusions 

     This research reports on how crossover location and width affect tube-to-tube initiation in a 

PDE.  Branched detonations were observed in Regions II and III for a crossover width of 2.0 in 

regardless of crossover location.  For the mid-mid crossover location, branched detonations were 

observed 100% of the time for crossover widths of 1.75-2.5 in. 

1. Effects of crossover location 

     The mid-mid crossover location is more conducive to hydrocarbon branched detonation 

propagation than the tail-tail configuration.  The mid-mid location produces 100% detonations in 

Regions II and III with a crossover width between 1.75-2.5 in.  The mid-mid crossover is less 

affected than the tail-tail crossover location by the leaned-out equivalence ratio in the crossover 

section due to entrainment of the ambient air.  It will be important to note in the employment of 

multiple mid-mid crossover locations across multiple detonation tubes, that the crossovers should 

be alternating and offset from each other far enough that the branched detonation is able to 

reinitiate and begin traveling in the direction of the detonation tube before diffracting into 

another crossover duct.  Ensuring that the detonation has enough distance to reinitiate and begin 

traveling down the tube will avoid undesired detonation diffraction across multiple mid-mid 

crossover locations simultaneously. 

2. Effects of crossover width 

     Branched detonations propagate more successfully through crossover widths approximately 

equal to the detonation tube height.  Ethylene detonations occur in Regions II and III 100% of 

the time for crossover widths of 1.5-2.5 in for the mid-mid configuration.  A crossover width of 

2.25-2.5 in produces ethylene detonations in all three regions in the mid-mid configuration every 

time there was a spark.  The n-Alkane detonations occur in Regions II and III 100% of the time 
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for crossover widths of 2.0-2.5 in for either the tail-tail or the mid-mid configuration.  A 

crossover width of 2.5 in produces n-alkane detonations in all three regions in the mid-mid 

configuration for every spark. 

3. Future Work 

a. Crossover width 

     By repeating the tests in this research with multiple detonation tube sizes, the results could be 

used to validate the optimal crossover ratio.  Based on data from tests with multiple detonation 

tube sizes, the optimal crossover ratio that provides the most consistent branched detonation 

could be utilized in an application regardless of the size of the detonation tube. 

b. Thrust 

     Thrust measurements were not taken during this research.  It would be worth examining 

whether the tail-tail or mid-mid configuration has any effect on the amount of thrust produced. 

Additionally, the amount of thrust produced from the secondary detonation tube may be affected 

by the distance required for the reinitiated detonation to become planar, because a planar 

detonation may produce thrust more efficiently than a reinitiated detonation that is not yet planar.  

If the detonation becomes planar in a shorter distance, the amount of thrust produced from the 

secondary detonation tube may be greater.  Utilizing the ratio of crossover width to detonation 

tube height that results in the shortest distance required to produce a planar detonation may help 

maximize the thrust in the secondary detonation tube regardless of the detonation tube height.      

c. Region I detonations 

     This research focused on how crossover location and width affected branched detonations in 

Regions II and III.  As seen in the results, Region I detonations were not consistent.  Future 

testing could vary spiral length and tube size in order to isolate which combination of variables 
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produce consistent Region I detonations.  A spiral length and tube size that consistently produce 

Region I detonations combined with the crossover width and crossover location that consistently 

produce Region II and III detonations may be utilized in an overall best configuration to most 

consistently produce branched detonations.  

d. Ion probes 

     Due to the limited number of ion probe channels, this research did not use ion probes on the 

tail end of the secondary detonation tube.  Future tests may include these ion probes to ensure 

that the branched detonation is propagating out the tail end of the secondary detonation tube.  

Detonations that fail to successfully propagate out the tail end of the secondary detonation tube 

in either the tail-tail or mid-mid configuration would likely decrease the amount of thrust 

produced.  
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Appendix A. Summary of tests 

     Each run in Tables A-1 through A-3 consisted of 4 sparks at 10 Hz.  A dash mark in the wave 

speed column indicates a failed detonation attempt with no recorded wave speeds.  For the 

hydrogen and n-alkane tests, detonations in Region II were assumed in accordance with Fig. 23, 

although Region II detonation wave speeds were not recorded due to having only one good ion 

probe voltage drop. 
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Table A-1. Hydrogen test summary 
Run # Crossover width (in) Configuration Wave Speed (m/s) 

Region I Region III 
1 2.50 Tail-Tail 1924 2351 
   1895 2247 
   1895 2228 
   1895 2396 

2 2.25 Tail-Tail 1909 2351 
   1924 2228 
   1909 2351 
   1895 2419 

3 2.00 Tail-Tail 1895 2309 
   1924 2208 
   1909 2373 
   1881 2099 

4 1.75 Tail-Tail 1895 2288 
   1909 2309 
   1909 2170 
   1895 2288 

5 1.50 Tail-Tail 1895 2288 
   1881 2330 
   1881 2189 
   1881 2330 

6 0.50 Tail-Tail 1909 2048 
   1909 2540 
   1909 1971 
   1881 2396 

7 2.50 Mid-Mid 1909 2247 
   1924 2065 
   - - 
   - - 

8 2.50 Mid-Mid - - 
   1909 2267 
   1924 2048 
   1895 2419 

9 2.25 Mid-Mid 1881 2247 
   1909 2048 
   1895 2330 
   1881 2228 

10 2.00 Mid-Mid 1924 2015 
   1895 2267 
   1909 2396 
   1909 2330 

11 1.75 Mid-Mid 1895 2208 
   1909 2351 
   1895 2466 
   1867 2309 

12 1.50 Mid-Mid 1909 2288 
   1924 2351 
   1909 2208 
   1881 2228 

13 0.50 Mid-Mid 1909 2288 
   1895 3527 
   1909 2267 
   1881 2267 

 
 



67 

Table A-2. Ethylene test summary 
Run # Crossover width (in) Configuration Wave Speed (m/s) 

Region I Region II Region III 
1 2.50 Tail-Tail - - - 
   2081 488 2099 
   - - - 
   - - - 
2 2.50 Tail-Tail 2000 266 1673 
   - - - 
   - - - 
   1881 476 2134 
3 2.50 Tail-Tail 2000 276 2116 
   - - - 
   - - - 
   1827 2437 2134 
4 2.50 Tail-Tail - - - 
   2032 635 2116 
   - - - 
   - - - 
5 2.50 Tail-Tail 2152 352 2330 
   - - - 
   1968 2437 2351 
   2116 2457 2228 
6 2.25 Tail-Tail 2000 448 2189 
   1840 3175 2170 
   2330 1313 2099 
   1854 2540 2152 
7 2.00 Tail-Tail 2048 1537 2189 
   1854 2540 2208 
   2228 2116 2170 
   1801 2020 2116 
8 1.50 Tail-Tail 1763 2116 1806 
   1968 2241 2116 
   - - - 
   1909 2005 2134 
9 0.50 Tail-Tail - - - 
   1867 2721 907 
   1881 1313 984 
   2442 1465 686 

10 2.50 Mid-Mid 2099 2381 2170 
   1827 2721 2170 
   1968 2116 2170 
   1984 2540 2189 

11 2.25 Mid-Mid 1953 2381 2081 
   1909 1465 2247 
   2000 2540 2189 
   1840 2540 2170 

12 2.00 Mid-Mid - - - 
   - - - 
   1468 2005 2189 
   1895 2241 2228 

13 1.75 Mid-Mid - - - 
   - - - 
   2152 2241 2081 
   1682 2005 2208 

14 1.50 Mid-Mid - - - 
   1502 2005 1895 
   - - - 
   - - - 

15 1.50 Mid-Mid - - - 
   - - - 
   2267 2021 2170 
   1628 1524 2134 

16 0.50 Mid-Mid - - - 
   2170 1860 705 
   1739 1792 1226 
   - - - 
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Table A-3. n-Alkane test summary 
Run # Crossover width (in) Configuration Wave Speed (m/s) 

Region I Region III 
1 2.50 Tail-Tail - - 
   793 858 
   2091 2241 
   1503 2381 

2 2.25 Tail-Tail 339 1175 
   1524 1336 
   1275 2000 
   1203 374 

3 2.00 Tail-Tail 1785 2300 
   900 711 
   804 421 
   1220 1854 

4 1.50 Tail-Tail 2731 476 
   1387 1840 
   - - 
   - - 

5 0.50 Tail-Tail 1445 328 
   1544 328 
   1731 273 
   1544 236 

6 2.25 Mid-Mid 1814 1814 
   1258 1428 
   1020 782 
   1727 1393 

7 2.00 Mid-Mid 952 1716 
   1208 1854 
   1048 323 
   1329 1827 

8 1.75 Mid-Mid 1866 2152 
   - - 
   1905 3298 
   1284 1309 

9 1.50 Mid-Mid 944 799 
   1484 589 
   1011 457 
   1843 1544 

10 2.50 Mid-Mid 1205 1671 
   1344 1693 
   1731 1854 
   1344 1351 

11 0.50 Mid-Mid 1242 384 
   1222 374 
   - - 
   1329 402 
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Appendix B. Hydrogen detonation photographs 
     

Figure B-1. Hydrogen-air detonation in tail-tail configuration with 2.5 in crossover width 
resulting in a successful Region III reinitiation  

 
 
 

 
Figure B-2. Hydrogen-air detonation in tail-tail configuration with 2.25 in crossover width 

resulting in a successful Region III reinitiation  
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Figure B-3. Hydrogen-air detonation in tail-tail configuration with 2.0 in crossover width 

resulting in a successful Region III reinitiation 
  
 
 

 
Figure B-4. Hydrogen-air detonation in tail-tail configuration with 1.75 in crossover width 

resulting in a successful Region III reinitiation 
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Figure B-5. Hydrogen-air detonation in tail-tail configuration with 1.5 in crossover width 

resulting in a successful Region III reinitiation 
  
 
 

 
Figure B-6. Hydrogen-air detonation in tail-tail configuration with 0.5 in crossover width 

resulting in a successful Region III reinitiation 
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Figure B-7. Hydrogen-air detonation in mid-mid configuration with 2.5 in crossover width 

resulting in a successful Region III reinitiation   
 
 

 
Figure B-8. Hydrogen-air detonation in mid-mid configuration with 2.25 in  

crossover width resulting in a successful Region III reinitiation  
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Figure B-9. Hydrogen-air detonation in mid-mid configuration with 2.0 in crossover width 

resulting in a successful Region III reinitiation  
 
 

 
Figure B-10. Hydrogen-air detonation in mid-mid configuration with 1.75 in crossover width 

resulting in a successful Region III reinitiation  
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Figure B-11. Hydrogen-air detonation in mid-mid configuration with 1.5 in crossover width 

resulting in a successful Region III reinitiation  
 
 

 
Figure B-12. Hydrogen-air detonation in mid-mid configuration with 0.5 in crossover width 

resulting in a successful Region III reinitiation  
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Appendix C. Ethylene detonation photographs 

 

 
Figure C-1. Ethylene-air detonation in tail-tail configuration with 2.5 in crossover width resulting 

in a successful Region III reinitiation  
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Figure C-2. Ethylene-air detonation in tail-tail configuration with 2.25 in crossover width 

resulting in a successful Region III reinitiation 
  
 
 

 
Figure C-3. Ethylene-air detonation in tail-tail configuration with 2.0 in crossover width resulting 

in a successful Region III reinitiation  
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Figure C-4. Ethylene-air detonation in tail-tail configuration with 1.5 in crossover width resulting 

in a successful Region III reinitiation 
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Figure C-5. Ethylene-air detonation in tail-tail configuration with 0.5 in crossover width resulting 

in a failed Region III reinitiation  
 
 

 
Figure C-6. Ethylene-air detonation in mid-mid configuration with 2.5 in crossover width 

resulting in a successful Region III reinitiation  
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Figure C-7. Ethylene-air detonation in mid-mid configuration with 2.25 in crossover width 

resulting in a successful Region III reinitiation  
 
 
 

 
Figure C-8. Ethylene-air detonation in mid-mid configuration with 2.0 in crossover width 

resulting in a successful Region III reinitiation  
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Figure C-9. Ethylene-air detonation in mid-mid configuration with 1.75 in crossover width 

resulting in a successful Region III reinitiation  
 
 

 
Figure C-10. Ethylene-air detonation in mid-mid configuration with 1.5 in crossover width 

resulting in a successful Region III reinitiation  
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Figure C-11. Ethylene-air detonation in mid-mid configuration with 0.5 in crossover width 

resulting in a failed Region III reinitiation  
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Appendix D. n-Alkane detonation photographs 

     The DDT spiral and spark were switched into tube 2 in order to remedy initiation failures in 

tube 4 due to a valve that would not close properly.  As a result, the n-alkane detonation 

photographs depict the primary detonation tube on the top and the secondary detonation tube on 

the bottom.  The detonations proceed from top to bottom as opposed to proceeding from bottom 

to top as with hydrogen and ethylene.  Additionally, oil was sprayed through the leaking valve in 

tube 4 and covered the polycarbonate window.  As a result, the field of view in the Schlieren 

photographs is darker for the n-alkane detonations. 

 

 
Figure D-1. n-Alkane-air detonation in tail-tail configuration with 2.5 in crossover width 

resulting in a successful Region III reinitiation  
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Figure D-2. n-Alkane-air failed detonation in tail-tail configuration with 2.25 in crossover width 
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Figure D-3. n-Alkane-air detonation in tail-tail configuration with 2.25 in crossover width 

resulting in a successful Region III reinitiation  
 
 

 
Figure D-4. n-Alkane-air detonation in tail-tail configuration with 2.0 in crossover width 

resulting in a successful Region III reinitiation  
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Figure D-5. n-Alkane-air detonation in tail-tail configuration with 1.5 in crossover width 

resulting in a failed Region III reinitiation  
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Figure D-6. n-Alkane-air detonation in tail-tail configuration with 0.5 in crossover width 

resulting in a failed Region III reinitiation  
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Figure D-7. n-Alkane-air detonation in mid-mid configuration with 2.0 in crossover width 

resulting in a failed Region I detonation, but a successful Region III reinitiation 
  
 

 
Figure D-8. n-Alkane-air detonation in mid-mid configuration with 2.0 in crossover width 

resulting in a successful Region III reinitiation  
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Figure D-9. n-Alkane-air detonation in mid-mid configuration with 1.75 in crossover width 

resulting in a successful Region III reinitiation  
 
 

 
Figure D-10. n-Alkane-air detonation in mid-mid configuration with 1.5 in crossover width 

resulting in a failed Region III reinitiation  
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Figure D-11. n-Alkane-air detonation in mid-mid configuration with 2.5 in crossover width 

resulting in a successful Region III reinitiation 

 
Figure D-12. n-Alkane-air detonation in mid-mid configuration with 0.5 in crossover width 

resulting in a failed Region III reinitiation  



90 

Bibliography 

 
1 Wu, Y., Ma, F., and Yang, V.  “System Performance and Thermodynamic Cycle Analysis of 
Airbreathing Pulse Detonation Engines,” Journal of Propulsion and Power, 19: 556-567 (2003). 
 
2 Bussing, T. and Pappas, G.  “An Introduction to Pulse Detonation Engines,” AIAA Paper No. 
94-0263, 32nd Aerospace Sciences Meeting and Exhibit, Reno NV, 10-13 January 1994. 
 
3 Mindling, George.  U.S. Air Force Tactical Missiles.  Morrisville NC: Lulu.com Publishing, 
2008. 
 
4 Oates, Gordon C.  Aerothermodynamics of Gas Turbine and Rocket Propulsion.  Reston VA: 
American Institute of Aeronautics and Astronautics, 1997.  
 
5 Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer, D.W.  “Pulse Detonation Propulsion: 
Challenges, Current Status, and Future Perspective,” Progress in Energy and Combustion 

Science, 30: 545-672 (2004). 
  
6 Bussing, T. and Pappas, G.  "Pulse Detonation Engine Theory and Concepts," Progress in 

Astronautics and Aeronautics.  421-472. Reston VA: AIAA, 1996. 
 
7 Nielsen, Jeffrey M.  Detonation Propagation Through Ducts in a Pulsed Detonation Engine.  
MS Thesis, AFIT/GAE/ENY/11-M21.  Graduate School of Engineering and Management, Air 
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2011 (ADA540028). 
 
8 Panzenhagen, K.L.  Detonation Branching in a PDE with Liquid Hydrocarbon Fuel.  MS 
Thesis, AFIT/GAE/ENY/04-M13.  Graduate School of Engineering and Management, Air Force 
Institute of Technology (AU), Wright-Patterson AFB OH, March 2004 (ADA424361). 
 
9 Hopper, D.  Direct Initiation of Multiple Tubes by Detonation Branching in a Pulsed 

Detonation Engine.  Air Force Institute of Technology (AU), Wright-Patterson AFB OH, August 
2008 (ADB343653). 
 
10 Nielsen, J., King, P., Schauer, F., Stevens, C., Hoke, J.  “Detonation Propagation Through 
Ducts in a Pulsed Detonation Engine,” AIAA Paper No. 2011-585, 49th AIAA Aerospace 
Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando FL, 4-
7 January 2011. 
 
 
 



91 

 
11 Bartlma, F.  “The Propagation of Detonation Waves in Channels of Varying Cross-Section,” 
Journal of Fluid Mechanics, 218: 225-238 (1990). 
 
12 Gilbert, Jonathan M.  Direct Initiation of Multiple Tubes by Detonation Branching in a Pulsed 

Detonation Engine Using Hydrocarbon Fuels.  MS Thesis, AFIT/GAE/ENY/09-M09.  Graduate 
School of Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 2009 (ADB347686). 
 
13 Lee, John H.S.  The Detonation Phenomenon.  New York: Cambridge University Press, 2008. 
 
14 Turns, Stephen R.  An Introduction to Combustion:  Concepts and Applications.  Boston: The 
McGraw-Hill Companies, Inc., 2000. 
 
15 Zucker, Robert D.  Fundamentals of Gas Dynamics.  Chesterland OH: Matrix Publishers, Inc., 
1977. 
 
16 Helfrich, Timothy M.  Cycle Performance of a Pulse Detonation Engine with Supercritical 

Fuel Injection.  MS Thesis, AFIT/GAE/ENY/06-M14.  Graduate School of Engineering and 
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2006 
(ADA450884). 
 
17 Coleman, M.L.  Overview of Pulse Detonation Propulsion Technology.  CPTR 70.  Chemical 
Propulsion Information Agency, 2001. 
 
18 Kuo, Kenneth K.  Principles of Combustion.  Hoboken NJ: John Wiley & Sons, Inc., 2005. 
 
19 Fievisohn, Robert T.  Numerical Investigation of Predetonator Geometries for PDE 

Applications.  MS Thesis, AFIT/GAE/ENY/10-M10.  Graduate School of Engineering and 
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2010 
(ADA517597). 
 
20 Bartlma, F. and Schroeder, K.  “The Diffraction of a Plane Detonation Wave at a Convex 
Corner,” Combustion and Flame, 66: 237-248 (1986). 
 
21 Schultz, Eric.  Detonation Diffraction through an Abrupt Area Expansion.  PhD dissertation.  
California Institute of Technology, Pasadena CA, April 2000. 
 
 



92 

 
22 Schauer, F., Stutrud, J., and Bradley, R.  “Detonation Initiation Studies and Performance 
Results for Pulsed Detonation Engine Applications,” AIAA Paper No. 2001-129, 39th AIAA 
Aerospace Sciences Meeting & Exhibit, Reno NV, 8-11 January 2001. 
 
23 Schultz, E. and Shepherd, J.  Validation of Detailed Reaction Mechanisms for Detonation 

Simulation.  Explosion Dynamics Laboratory Report FM99-5.  Pasadena CA: Graduate 
Aeronautical Laboratories, February 2000. 
 
24 Tavoularis, Stavros. Measurement in Fluid Mechanics. Cambridge: Cambridge University 
Press, 2005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



93 

 
REPORT DOCUMENTATION PAGE  Form Approved  

OMB No. 0704–0188  
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
22-03-2012 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From — To) 
SEP 2010 – MAR 2012 

4. TITLE AND SUBTITLE  
Determination of Effective Crossover Location 
and Dimensions for Branched Detonation 
in a Pulsed Detonation Engine 

5a. CONTRACT NUMBER  
5b. GRANT NUMBER  
5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
Louis A. Camardo II, Maj, USMC 

5d. PROJECT NUMBER  
 
5e. TASK NUMBER  
5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way  
WPAFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
 
AFIT/GAE/ENY/12-M05 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
Attn: Dr. Frederick Schauer 
Air Force Research Laboratory 
Propulsion Directorate, Turbine Engine Division, Combustion 
Branch, Advanced Concepts Group 
Bldg 71A, D-Bay, 7th St. 
Wright Patterson AFB, OH 45433-7251 
DSN 785-6462, frederick.schauer@wpafb.af.mil 

10. SPONSOR/MONITOR’S ACRONYM(S)  
AFRL/RZTC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES      This material is declared a work of the U.S. Government and is not subject to 
copyright protection in the United States. 
14. ABSTRACT  
A study is presented of the optimal crossover duct location and width to obtain consistent branched detonation 
transition from one detonation tube to another.  On a Pulsed Detonation Engine (PDE) with detonation branching, 
the duct location at which the detonation crosses from one (primary) tube to a branched (secondary) tube impacts 
the number of successful detonations.  In this paper, a comparison is made of the effects of the location and width 
of the crossover duct for hydrogen, ethylene and an n-alkane.  The crossover location is varied from the aft end of 
the detonation tube to the middle of the detonation tube while the crossover width is varied from 2.5 in to 0.5 in.  
Detonation wave speeds are measured and compared to Chapman-Jouguet velocities in order to determine 
successful detonations.  Regardless of crossover location, all three fuels are demonstrated 100% of the time to 
transition between 2 in detonation tubes with a crossover width of 2 in.  With a mid-location crossover duct, all 
three fuels are demonstrated 100% of the time to transition detonations between 2 in detonation tubes with a 
crossover width between 1.75 in and 2.5 in. 
15. SUBJECT TERMS 
Detonation, Pulsed, Engine, Shock wave, Propagation, Cross-over, Wave speed, Combusion, 
Chapman-Jouguet, Schlieren, Reflection, Re-initiation 
16. SECURITY CLASSIFICATION OF:  
Unclassified 

17. LIMITATION 
OF ABSTRACT  
 
UU  
 

18. NUMBER 
OF PAGES  
 
 111 
 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Paul I. King 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

19b. TELEPHONE NUMBER (Include Area Code) 
(937)255-3636, ext 4628 

paul.king@afit.edu 

 
Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  


