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Abstract

Detecting attacks targeted against military and commercial computer networks is
a crucial element in the domain of cyber warfare. Intrusions, Denial of Service at-
tacks and Worm propogations are an ever present threat, and defending networks from
hostile action has become a top priority for both policy makers and network admin-
istrators. The traditional method of signature-based intrusion detection is a primary
mechanism to alert administrators to malicious activity. However, signature-based
methods are not capable of detecting new or novel attacks. In addition, increasing
networking line speeds is making it more difficult to monitor packets and detect mali-
cious signatures. Thus, signature-based ID is relegated to monitoring a small sample
of the total traffic, increasing the likelihood of malicious traffic entering the network
system without scrutiny.

Further characterizing traditional ID is the location from which it is performed,
resulting in network-based and host-based ID systems. Network-based ID has a broad
perspective enabling detection of attacks that are distributed in nature, but may not
protect individual systems effectively without incurring large bandwidth penalties
while collecting data from all hosts. Host-based ID has a comprehensive view of
local systems, but may not be able to detect distributed malicious activity effectively.
A multi agent design paradigm leverages the strengths of both network-based and
host-based ID methods.

While deep packet inspection is only possible on a small subset of messages, flow-
based metrics can be applied universally. Comprehensive analysis of a large percent-
age of network traffic is possible in real time, if a higher level of observation is used.

This method becomes extremely effective when analyzed from multiple points in the
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network. flow-based intrusion detection complements traditional signature-based 1D
systems.

This research continues development of a novel simulated, multiagent, flow-based
intrusion detection system called MFIRE. Agents in the network are trained to rec-
ognize common attacks, and share data with other agents to improve the overall
effectiveness of the system. A Support Vector Machine (SVM) is the primary classi-
fier with which agents determine if an attack is occurring. Agents are prompted to
move to different locations within the network to find better vantage points, and two
methods for achieving this are developed. One uses a centralized reputation-based
model, and the other uses a decentralized model optimized with stochastic search.
The latter is tested for basic functionality. The reputation model is extensively tested
in two configurations and results show that it is significantly superior to a system with
non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new net-
work defense capabilities, and should be considered for implementation in future cyber

warfare applications.
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MFIRE-2: A MULTI AGENT SYSTEM FOR FLOW-BASED
INTRUSION DETECTION USING STOCHASTIC SEARCH

I. Introduction

The Department of Defense is beginning a massive reduction in spending over the
next decade [11]. In spite of this, investment in cyberspace capabilities continues to
grow [11]. Thus, the DoD has outlined a strategy to invest in new capabilities to

maintain a decisive edge in all aspects of cyber:

Modern armed forces cannot conduct high-temp, effective operations with-
out reliable information and communication networks and assured access
to cyberspace and space. Today space systems and their supporting in-
frastructure face a range of threats that may degrade, disrupt or destroy
assets. Accordingly, DoD will continue to work with domestic and inter-
national allies and partners and invest in advanced capabilities to defend
its networks, operational capability and resiliency in cyberspace and space

[11].

Strategic Initiative 2 of the DoD Strategy for Operating in Cyberspace is to “em-
ploy new defense operating concepts to protect DoD networks and systems [2].” This
document highlights that a primary emphasis must be placed on protecting military
networks. As the DoD becomes more reliant on networking as a way to conduct op-
erations, so too do the stakes become higher. Malicious users and other powers con-
tinually push the boundaries of innovation to discover new vulnerabilities [27, 90, 30].
Intrusion detection in particular is a crucial element in this fight. The ability to de-
tect an active attempt to exploit a network is paramount. After all, no reaction can

be attempted if one does not know they are under attack in the first place.



1.1 Network Threats

Three major classes of network threats include [84]:

e Attacks that consume network resources, denying their use for legitimate pur-

poses

e Attacks that infiltrate systems, allowing attackers unauthorized access to system
resources, including sensitive data, data storage, privileged relationships with

other systems, and network connectivity

e Unauthorized vulnerability scans, providing attackers vital reconnaissance in

preparation for infiltrating activities

These three threats are mutually reinforcing. For example, a successful scan allows
an attacker to infiltrate networks with great stealth and precision; once in control of
multiple hosts, the attacker may use them to launch a distributed denial of service
attack on another target system or network. Alternatively, the attacker can use these
newly acquired assets to conduct further scans more efficiently / stealthily. As another
example, a clever attacker may launch a denial of service attack on a highly visible
service to divert the attention of security personnel from his infiltration activities.

Within these categories, many types of intrusion are recognized [62]:

Information Gathering—Network devices can be discovered and profiled in much
the same way as other types of systems. Attackers usually start with port scanning.
After they identify open ports, they use banner grabbing and enumeration to detect
device types and to determine operating system and application versions. Armed
with this information, an attacker can attack known vulnerabilities that may not be
updated with security patches.

Sniffing—Sniffing or eavesdropping is the act of monitoring traffic on the network

for data such as plaintext passwords or configuration information. With a simple



packet sniffer, an attacker can easily read all plaintext traffic. Also, attackers can
crack packets encrypted by lightweight hashing algorithms.

Spoofing—Spoofing is a means to hide one’s true identity on the network. To create
a spoofed identity, an attacker uses a fake source address that does not represent the
actual address of the packet. Spoofing may be used to hide the original source of
an attack or to work around network access control lists (ACLs) that are in place to
limit host access based on source address rules.

Session Hijacking—Also known as man in the middle attacks, session hijacking
deceives a server or a client into accepting the upstream host as the actual legitimate
host. Instead the upstream host is an attacker’s host that is manipulating the network
so the attacker’s host appears to be the desired destination.

Denial of Service—Denial of service denies legitimate users access to a server or
services. The SYN flood attack is a common example of a network level denial of
service attack. It is easy to launch and difficult to track. The aim of the attack is
to send more requests to a server than it can handle. The attack exploits a potential
vulnerability in the TCP/IP connection establishment mechanism and floods the
server’s pending connection queue.

Viruses, Trojan Horses, and Worms—A virus is a program that is designed to
perform malicious acts and cause disruption to the operating system or applications.
A Trojan horse resembles a virus except that the malicious code is contained inside
what appears to be a harmless data file or executable program. A worm is similar to
a Trojan horse except that it self-replicates from one server to another. Worms are
difficult to detect because they do not regularly create files that can be seen. They
are often noticed only when they begin to consume system resources because the
system slows down or the execution of other programs halt. The Code Red Worm is

one of the most notorious to afflict IIS; it relied upon a buffer overflow vulnerability



in a particular ISAPI filter. The success of these attacks on any system is possible
through many vulnerabilities such as weak defaults, software bugs, user error, and
inherent vulnerabilities in Internet protocols.

Footprinting—Examples of footprinting are port scans, ping sweeps, and NetBIOS
enumeration that can be used by attackers to glean valuable system-level information
to help prepare for more significant attacks. The type of information potentially
revealed by footprinting includes account details, operating system and other software
versions, server names, and database schema details.

Password Cracking—If the attacker cannot establish an anonymous connection
with the server, he or she will try to establish an authenticated connection. For this,
the attacker must know a valid username and password combination. Unchanged
default account names, and the use of blank or weak passwords makes the attacker’s
job even easier.

Arbitrary Code Execution—If an attacker can execute malicious code on the server,
the attacker can either compromise server resources or mount further attacks against
downstream systems. The risks posed by arbitrary code execution increase if the
server process under which the attacker’s code runs is over-privileged. Common vul-
nerabilities include weak IIS configuration and unpatched servers that allow path
traversal and buffer overflow attacks, both of which can lead to arbitrary code exe-
cution.

Unauthorized Access—Inadequate access controls could allow an unauthorized
user to access restricted information or perform restricted operations. Common vul-
nerabilities include weak IIS Web access controls, including Web permissions and

weak NTFS permissions.



1.2 Multiagent Intrusion Detection

Intrusion Detection Systems are often employed as gatekeepers for a local area
network. The principle focus of the system, whether host-based or network-based, is
to monitor local traffic for signs of malicious activity. Little or no effort is expended
to share the obtained information with another Intrusion Detection System (IDS).
Indeed, there is potential gain in compiling information over a much broader view of
the network. IDSs in different autonomous systems that share information with each
other would be much better placed to develop a collective view of threats progressing
accross the networks.

Taken from another viewpoint, if threats are unpredictable in their location, would
it not be beneficial to move the observing IDS to that point, rather than wait for the
attacker to strike on their own terms? To perform this task, we explore the concept of
a multi-agent IDS, in which individual agents are able to move throughout a network,
and share data to collectively determine if an attack is occurring.

Multi Agent Systems (MAS) for Intrusion Detection (ID) is not a new concept.
Herrero [40] summarizes several multi-agent IDSs, and lists some key areas where

MAS may be appropriate:

e The environment is open, highly dynamic, uncertain, or complex

e Agents are a natural metaphor—Many environments are naturally modeled as
societies of agents, either cooperating with each other to solve complex prob-

lems, or else competing with one-another.

e Distribution of data, control or expertise—A centralized solution is at best

extremely difficult or at worst impossible.

e Legacy systems—Technologically obsolete software but functionally essential to

an organization. One solution to this problem is to wrap the legacy components,



providing them with an “agent layer” functionality.

1.3 Goal and Objectives

The goal of this research is to continue the development of a scalable software
architecture for a multi-agent, flow-based intrusion detection system. The following

high-level objectives support this goal:

e Design and evaluate a multi-agent intrusion detection system using a Reputation

system

e Design and evaluate a multi-agent intrusion detection system using stochastic

search

The effectiveness of these two models is compared to the baseline stationary model.
Research results include an evaluation of the environment’s classification performance.
The main output of this research is an effective and efficient simulation environment

to conduct ongoing, flow-based intrusion defense experiments.

1.4 Approach

This research introduces a framework for conducting simulations of networks un-
der attack, and a multiagent system which is trained to detect threats. Individual
agents can be trained using various techniques, and tested in the simulator to vali-
date their effectiveness. The strength of the environment is its open object-oriented
nature, which allows agents and processes of any type to be instantiated. By keeping
standardized network and traffic models, one can test a wide variety of agents under
varying attack models, and qualitatively compare their performance.

A central feature of this framework is the movement of multiple agents within the

network, which allows the agents to find better vantage points for classifying an attack.



For this iteration of the design, we seek to compare the effectiveness of two distinct
models for attack identification. These models use the same underlying classifier,
but vary in the way that agents’ movement decisions are made. A reputation system
is used to allow a central controller to dictate agents’ movement decisions. For a
comparison, we also examine the case when agents are at a fixed random location and
no movement is allowed. Finally, the agents are allowed to move freely on their own,
with their behavior optimized using a genetic algorithm. Throughout this document,
these are known as the reputation model, and free-movement model, respectively.
This research follows from two previous efforts by Eric Holloway [41] and David
Hancock [37]. In particular, we seek to continue work by David Hancock which tests
the hypothesis that a flow-based, multi-agent network attack classifier can be made
more effective by employing a reputation system to govern agent mobility. We also
seek to include work inspired by Eric Holloway that created a self-organized multi-
agent network security system using Evolutionary Computation. The two environ-
ments created for these theses used fundamentally different approaches, and because
of this comparing results between the two is difficult. By taking the best elements of
both, a single integrated simulation environment can be created which allows a wide
variety of experiments to be run regarding multi-agent flow-based intrusion detection.
This research includes executing initial baseline experiments to test our combined ap-

proach, and we demonstrate the potential usefulness of such an environment.

1.5 Thesis Overview

This chapter frames the problem and introduces an approach to solving it. Chap-
ter II explores the concepts involved in realizing this approach, including threat mod-
eling, flow-based ID, and evolutionary computation. Chapter III details the design of

our multi agent system called MFIRE-2. Chapter IV presents the experimental per-



formance analysis of MFIRE-2. Chapter V concludes with a summary of the research
impact and opportunities for future research.

Results from two experiments demonstrate that MFIRE’s Reputation system al-
lows the agents to find vantage points in the network that increase the system’s
classification accuracy. In addition, the process of using an alternate model for agent
movement is explored. Stochastic search provides a method for agents to optimize a
local movement actuator, so that movement is decentralized, and no longer tied to a
central Reputation scheme.

An important contribution of this thesis is the developed network simulation envi-
ronment, MFIRE-2, which provides a scalable, object-oriented framework to execute
network threat analysis using robust multiagent, flow-based techniques. This environ-
ment supports not only the investigation of the subject multi agent system, but may
be used for other network research investigations as well where the level of abstraction

is suitable for the purpose.



II. Background

This investigation focuses on a subset of network-based attacks. Specifically, it
focuses on the challenge of recognizing that a flow-based attack is taking place. This
chapter prepares for that challenge by discussing first the concepts and current re-

search in critical areas relevant to the flow-based attack classification system.

2.1 Network Topology and Routing

The Internet is a network of nodes, comprised of sub-networks. The collection of
routers and other networked devices under the same administrative control is called
an Autonomous System (AS), and gateway routers are responsible for forwarding
traffic to and from other autonomous systems. Although each AS may handle traffic
internally in unique ways, all rely on a common backbone networking protocol for
inter-autonomous system routing called Border Gateway Protocol (BGP). See [54]
for an overview of autonomous systems and BGP.

Two primary modeling concepts within this domain are topology and traffic. With
a firm grasp of these principle aspects, we can devise a system that achieves a good
balance between efficiency and accuracy. Simulation provides a safe and robust envi-
ronment to test our approach and gain greater confidence in its defense characteristics.

As yet, there is no golden bullet for internet topology modeling. However, Spatharis
et al. present a well-balanced approach called the Controlled Distance (CD) Model
[82]. This model balances two key aspects topology: commonly used power-law mod-
els, as found in [26]; and a general approach to “rely on domain knowledge and
exploit the details that matter when dealing with a highly engineered system such as
the Internet” [92].

CD is an updated treatment of an earlier model called Fabrikant-Koutsoupias-



Papadimitriou (FKP), and the goal is to address the need for edges between nodes
that are not quite leaves, nor particularly central, but are of intermediate centrality.
As each node i is added to the network and linked to the node j, a second edge is

attached from j to another node k& minimizing

ming{a - d;i, + ecc(k)} (1)

over all k such that the hop distance from j to k is at most a constant c. In this
equation, d;; is the Euclidean distance between the nodes and represents the “last
mile cost.” The relative importance of this objective is controlled via the weight
a. The second term is the eccentricity of j and captures the distance from j to the
center.

This model decreases the power law exponent while having high average degree
and several leaves. The authors of [82] declare this to be, in many ways, the “best
performing” of their models in achieving similarity to the Internet’s AS graph. This
model and various alternatives are packaged by the authors in the package TopGen.

Other topology generators include:

e Tiers [24]

e GT-ITM - Georgia Tech Internetwork Topology Models [14]

e Inet [94]

e nem [57]

e BRITE [61]

e GDTANG - Geographic Directed Tel Aviv University Network Generator [§]

e RealNet [19], [18]
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Figure 1. Probability density function for Pareto distribution, a = 1.0, b = 1.0

RealNet relies on publicly available datasets including BGP tables and traceroute
records, as does [28], but addresses some of the problems inherent in these datasets
and does not attempt to fit specific power-law-based statistics. For example, it gives
direct consideration to the IP-aliasing problem, whereby more routers may be inferred
than actually exist because each router has a different IP address for each of its inter-
faces. It also factors in likely policy relationships between neighboring autonomous
systems [37]. RealNet is promising but not available for the current research. In the
meantime, FKP/CD provides a reasonable approach.

In addition to modeling network topology, simulated internet traffic must also be
examined. A widely used model for packet routing is the Poisson model. Willinger
and Paxson [93] advocate against the Poisson model for better, more fractal-like traffic
distribution models [37]. For network traffic, a Pareto model may be preferred.

The Pareto model exhibits scale-invariant behavior [33]. It has a density function
P(X) = af;—li, x > b, which has a heavy tail [52]. Figure 1 shows an example for
a = 1.0, b = 1.0. Willinger and Paxson explain that this heavy tail accounts for
the fractal nature of aggregated network traffic [93]. To generate a random Pareto-
distributed sample, inverse transform sampling is used. Given a random variable U

drawn from the uniform distribution (0, 1), T, is Pareto-distributed [23], and given

11



2.2 Intrusion Detection Techniques

Intrusion Detection Systems fall into two pairs of categories: host-based or network-
based; and anomaly-based or signature-based.

A Host-based Intrusion Detection System (HIDS) consists of an agent on a host
that identifies intrusions by analyzing system calls, application logs, file-system mod-
ifications (binaries, password files, capability databases, access control lists, etc.) and
other host activities and state. In a HIDS, sensors usually consist of a software agent.
Some application-based IDS are also part of this category. An example of a HIDS is
OSSEC, developed by Daniel Cidd [20].

Conversely, a Network Intrusion Detection System (NIDS) is an independent plat-
form that identifies intrusions by examining network traffic and monitors multiple
hosts. Network intrusion detection systems gain access to network traffic by connect-
ing to a network hub, network switch configured for port mirroring, or network tap.
In a NIDS, sensors are located at choke points in the network to be monitored, often
in at network borders. Sensors capture all network traffic and analyze the content of
individual packets for malicious traffic. An example of a NIDS is Snort, developed
by Martin Roesch and maintained by Sourcefire Inc. [1].

An Anomaly-Based Intrusion Detection System works by detecting computer in-
trusions and misuse by monitoring system activity and classifying it as either normal
or anomalous. Typically, these systems begin by determining normal operating con-
ditions for bandwidth, protocols, ports and device connections. The classification is

based on heuristics or rules, rather than patterns or signatures, and will detect any

12



type of misuse that falls out of normal system operation. This opposes signature
based systems which can only detect attacks for which a signature has previously
been created.

In order to determine what is attack traffic, the system must be taught to recognize
normal system activity. This is most often accomplished with artificial intelligence
techniques, including neural networks and classifier systems. Another method, known
as strict anomaly detection, is to first define the normal usage of the system using a
strict mathematical model, and flag any deviation from this as an attack. CFEngine
developed by Mark Burgess has support for this technique [12], as well as RRDTool
by Tobi Oetiker [66].

Anomaly-based Intrusion Detection does have some short-comings, namely a high
false positive rate and the ability to be fooled by a correctly delivered attack. At-
tempts have been made to address these issues through payload-based techniques
used by PAYL [89] and MCPAD [69]. Signature-based systems have a very low false-
positive rate, but are more limited in the types of attacks they can detect. Novel
attacks which are designed to thwart signature-based systems may still be detectable
by an anomaly-based system.

Some terminology and important concepts for IDSs are as follows [91]:

o Alert/Alarm: A signal suggesting that a system has been or is being attacked.

True Positive: A legitimate attack which triggers an IDS to produce an alarm.

Fulse Positive: An event signaling an IDS to produce an alarm when no attack

has taken place.

False Negative: A failure of an IDS to detect an actual attack.

True Negative: When no attack has taken place and no alarm is raised.

13



2.3

Noise: Data or interference that can trigger a false positive.

Site policy: Guidelines within an organization that control the rules and con-

figurations of an IDS.

Site policy awareness: An IDS’s ability to dynamically change its rules and

configurations in response to changing environmental activity.

Confidence value: A value an organization places on an IDS based on past
performance and analysis to help determine its ability to effectively identify an

attack.

Alarm filtering: The process of categorizing attack alerts produced from an IDS

in order to distinguish false positives from actual attacks.

Attacker or Intruder: An entity who tries to find a way to gain unauthorized

access to information, inflict harm or engage in other malicious activities.

Masquerader: A user who does not have the authority to a system, but tries to

access the information as an authorized user. They are generally outside users.

Misfeasor: They are commonly internals who misuse their powers

Clandestine user: A user who acts as a supervisor and tries to use his privileges

so as to avoid being captured.

Flow-based Intrusion Detection

The traditional idea of a network flow, as defined in [95], is a unidirectional data

stream between two computer systems where all transmitted packets of this stream

share the following characteristics: IP source and destination address, source and

destination port, and IP protocol. Thus, all network packets sent from host A to
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Figure 2. Network flow

host B sharing the above mentioned characteristics form a flow. Every communica-
tion attempt between two computer systems triggers the creation of a flow, even if
no connection is established. In the simplest case, a complete flow is well-defined
when a complete flow set-up and tear-down are observed, as is the case with most
TCP communications. Complexity in any flow definition occurs when the set-up is
incomplete or tear-down is abnormal. UDP is notoriously troublesome because it is
connectionless protocol.

In addition to the above mentioned core characteristics, several other properties

of a flow can be conveyed, for instance:

e The number of packets which have been transferred
e The number of bytes which have been transferred
e The start or end time of a flow

e The disjunction of all TCP flags occurring in the flow

Figure 2 illustrates a bidirectional communication between two computers which
results in the creation of two flows. Host A is the initiator of the communication and
has the IP address 10.0.0.1. Host A sent several packets to host B which is assigned
the IP address 10.1.1.2. The source port of this communication is 4312 on host A
whereas the destination port is 80 on host B. All the network traffic is monitored by
the NetFlow router. The communication finally results in two unidirectional network
flows. The first flow (illustrated as grey squares) describes the communication from

A to B and the second flow (illustrated as white squares) from B to A.
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Winter [95] describes a technique to collect network flows on actual hardware, with
a commercial package called NetFlow. NetFlow runs on Cisco routers and collects
flow statistics which it sends to a central collector. A separate device can poll this
collector to run analysis on current flows in the network. MFIRE does not use live
network flows — instead all traffic is simulated. However the NetFlow architecture
provides a well-known framework for modeling flows, and this model is useful in our
discussions.

A useful set of real-world flow data and metrics is provided by Andrew Moore
[65]. Real network traffic was collected over a 24-hour period at a research facility
with approximately 1000 active workstations. Individual flows are constructed from
this data, and labeled as idle, interactive (two-way), or bulk (one-way). Only data
and metrics corresponding to the TCP protocol are collected; UDP and ICMP are
ignored. Flows are characterized into 249 metrics.

However, one does not need to observe a specific TCP connection or tear-down to
use flows. A microflow abandons such concepts in favor of observing traffic in a more
immediate fashion. This concept treats flows as a collection of packets to/from nodes,
but does not distinguish bi-directional flows; everything is treated as one-directional.
These flows are robust to incorrectly formatted TCP connections and tear-downs
because they do not rely on those actions for measurement. A disadvantage is that
microflows lose potentially useful information, including the cumulative time that a
connection has been established, or the amount of data sent since the beginning of
a connection. A good comparison between the usefulness of both approaches for the
ID problem is provided in [88].

In the environment used in this research, TCP is not specifically implemented;
rather everything behaves like UDP. Because of this, mircroflows are the obvious

choice. However, future work should examine the use of TCP and full connection-
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oriented flows.

2.4 Taxonomy of Attacks

This section introduces three common types of network attacks: distributed de-
nial of service, vulnerability Scans and worm propagation. We focus on attacks which
cause significant changes in traffic flows, since this is framework for the current re-

search. Background on other attacks can be found in [80].

2.4.1 Denial of Service Attacks.

Mirkovic [64] presents a comprehensive taxonomy of different DDoS attack types,
Figure 3. For this research, we concentrate on brute-force attacks, also called flood
attacks [83], although the MFIRE environment is capable of simulating any other
model. A flood attack involves malicious agents sending large volumes of traffic to
a victim system, to congest the victim system’s network bandwidth with IP traffic.
The victim system slows down, crashes, or suffers from saturated network bandwidth,
preventing access by legitimate users. Flood attacks can be executed using both User
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) packets.

Formal models for DDoS and their detection are proposed in the several articles.
[63] applied to DDoS detection the k-nearest neighbor (kNN) algorithm improved by
feature weighting and selection based on a genetic algorithm. Overall accuracy of
over 97% for known DDoS attacks is achieved, and over 78% in the case of unknown
attacks.

Scepanovic [76] focuses on the scenario in which a cluster-based filter is deployed
at the target network and serves for proactive or reactive defense. A game-theoretic
model is created for the scenario, making it possible to model the defender and

attacker strategies as mathematical optimization tasks. The model is based on the
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Figure 3. Taxonomy of DDoS Attack Mechanisms

continuous nonlinear knapsack problem. The experimental outcome shows the high
effectiveness of cluster-based filtering in proactive and reactive DDoS defense.

If the DoS attack can be detected eventually, a common question is why do we
need attack detection [68]7 There are three reasons for attack detection. First, if a
target can detect an attack before the actual damage occurs, the target can win more
time to implement attack reaction and protect legitimate users. Second, if attacks can
be detected close to attack sources, attack traffic can be filtered before it wastes any
network bandwidth. However, there is generally insufficient attack traffic in the early
stage of an attack and at links close to attack sources. Consequently, it is easy to
mistake legitimate traffic as attack traffic. Therefore, it is challenging to accurately
detect attacks quickly and close to attack sources. Finally, flash crowds are very
similar to DoS attacks, which can cause network congestion and service degradation.
However, flash crowds are caused by legitimate traffic, whereas DoS attacks caused

by malicious traffic. Hence, it is important to differentiate DoS attacks from flash

18



crowds so that targets can react to them separately.

DoS attacks can be easily detected since the target’s services will be degraded, for
example, with a high packet drop rate. Second, false positives are a serious concern
for DoS attack detection. Since the potency of DoS attacks does not depend on the
exploitation of software bugs or protocol vulnerabilities, it only depends on the volume
of attack traffic. Consequently, DoS attack packets do not need to be malformed, such
as invalid fragmentation field or malicious packet payload, to be effective [68]. As a

result, the DoS attack traffic can look very similar to legitimate traffic.

2.4.2 Vulnerability Scans.

A vulnerability scan can be used to conduct network reconnaissance, which is typ-
ically carried out by a remote attacker attempting to gain information or access to a
network on which it is not authorized or allowed. Network reconnaissance is increas-
ingly used to exploit network standards and automated communication methods. The
aim is to determine what types of computers are present, along with additional infor-
mation about those computers; such as the type and version of the operating system.
This information can be analyzed for known or recently discovered vulnerabilities that
can be exploited to gain access to secure networks and computers. Network recon-
naissance is possibly one of the most common applications of passive data analysis.
Numerous tools exist to make reconnaissance easier and more effective.

A port scan is an attack that sends client requests to a range of server port
addresses on a host, with the goal of finding an active port and exploiting a known
vulnerability of that service [78]. The result of a scan on a port is usually generalized

into one of three categories:
e Open: The host sent a reply indicating that a service is listening on the port.

e (losed: The host sent a reply indicating that connections will be denied to the
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port.
e Filtered: There was no reply from the host.

Potential security concerns exist for both the program responsible for delivering a
service (on open ports), and with the operating system that is running on the host (on
open or closed ports). Filtered ports do not tend to present vulnerabilities. There are
many standard scanning formats, some of which follow standard Internet protocols,
others which (purposefully) do not [80]. Some common techniques are outlined here:

TCP CONNECT scan—The simplest port scanners use the operating system’s
network functions. If a port is open, the operating system completes the TCP three-
way handshake, and the port scanner immediately closes the connection. Otherwise
an error code is returned. This scan mode has the advantage that the user does not
require special privileges. However, using the OS network functions prevents low-level
control, so this scan type is less common. This method is noisy, particularly if it is a
complete sweep of all ports: the services can log the sender IP address and Intrusion
detection systems can raise an alarm.

TCP SYN scan—SYN scan is another form of TCP scanning. Rather than use the
operating system’s network functions, the port scanner generates raw IP packets itself,
and monitors for responses. This scan type is also known as “half-open scanning”,
because it never actually opens a full TCP connection. The port scanner generates
a SYN packet. If the target port is open, it will respond with a SYN-ACK packet.
The scanner host responds with a RST packet, closing the connection before the
handshake is completed.

The use of raw networking has several advantages, giving the scanner full control
of the packets sent and the timeout for responses, and allowing detailed reporting of
the responses. SYN scan has the advantage that the individual services never actually

receive a connection. However, the RST during the handshake can cause problems
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for some network stacks, in particular simple devices like printers.

UDP scan—UDP is a connectionless protocol so there is no equivalent to a TCP
SYN packet. However, if a UDP packet is sent to a port that is not open, the system
will respond with an I[CMP port unreachable message. Most UDP port scanners use
this scanning method, and use the absence of a response to infer that a port is open.
However, if a port is blocked by a firewall, this method will falsely report that the
port is open. If the port unreachable message is blocked, all ports will appear open.
This method is also affected by ICMP rate limiting.

An alternative approach is to send application-specific UDP packets, hoping to
generate an application layer response. For example, sending a DNS query to port
53 will result in a response, if a DNS server is present. This method is much more
reliable at identifying open ports. However, it is limited to scanning ports for which
an application specific probe packet is available. Some tools (e.g., nmap) generally
have probes for less than 20 UDP services, while some commercial tools (e.g., nessus)
have as many as 70. In some cases, a service may be listening on the port, but
configured not to respond to the particular probe packet.

TCP ACK scan—ACK scanning is one of the more unique scan types, as it does
not exactly determine whether the port is open or closed, but whether the port
is filtered or unfiltered. This is especially good when attempting to probe for the
existence of a firewall and its rulesets. Simple packet filtering will allow established
connections (packets with the ACK bit set), whereas a more sophisticated stateful
firewall might not.

TCP FIN scan—TFirewalls are, in general, scanning for and blocking covert scans
in the form of SYN packets. FIN packets are able to pass by firewalls with no
modification to its purpose. Closed ports reply to a FIN packet with the appropriate

RST packet, whereas open ports ignore the packet on hand. This is typical behavior
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due to the nature of TCP, and is in some ways an inescapable downfall.

2.4.3 Worms.

It is vital to detect active worms effectively. In the near future active worms may
spread across the whole Internet in a very short period of time, making the average
detection time critical. A common way to detect worms is to place sensors in a
network to monitor messages sent to non-existent IP addresses. Administrators of
networks are aware of exactly which IP addresses are in use in their domains, and
common worm attacks do not have access to this information. If a message is sent to
a non-existent IP, then this flags the sender as suspicious [17]. Attackers that wish to
build stealth into the system must take preliminary steps to discover a network map
prior to initiating the worm.

Many models exist for worm propagation [17, 55, 87, 99, 100, 49, 77]. The basis
of many of these is the general epidemic model, which considers a fixed population
size N where each individual can be in one of three states: susceptible to the disease
(S), infected (I), or removed (R) [55]. In networking terms, removals can occur if the
victim is taken offline or becomes immune (patched) to the infection. The normal
state progression for an individual is S — I — R, normally termed an SIR model.
But in the networking domain, victims who recover and do not obtain immunity to
the infection will again become susceptible: S — I — S, an SIS model. Also known
as the Epidemiological Model, this is formally represented as:

dn
E:ﬁ(l—n)—dn (3)

where n(t) is the fraction of infected nodes, 3 is the infection parameter, and d is the
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Table 1. Parameters for the spread of active worms

vulnerable machines | N | number of vulnerable machines

Size of hitlist h | number of infected machines at the beginning of the
spread of active worms

Scanning rate s | average number of machines scanned by an infected
machine per unit time

Death rate d | rate at which an infection is detected on a machine
and eliminated without patching

Patching rate p | rate at which an infected or vulnerable machine
becomes invulnerable

death rate. The solution to the above equation is

no(l — p)
M) = oy e ()

Wherep:%andnozn(t:())zwzﬁ

2.5 Pattern Recognition

In machine learning, pattern recognition is the assignment of a label to a given
input value [75]. An example of pattern recognition is classification, which attempts to
assign each input value to one of a given set of classes. However, pattern recognition
is a more general problem that encompasses other types of output as well. Other
examples are regression, which assigns a real-valued output to each input; sequence
labeling, which assigns a class to each member of a sequence of values; and parsing,
which assigns a parse tree to an input sentence, describing the syntactic structure of
the sentence.

Pattern recognition algorithms generally aim to provide a reasonable answer for
all possible inputs and to do “fuzzy” matching of inputs. This is opposed to pattern
matching algorithms, which look for exact matches in the input with pre-existing

patterns. Algorithms for pattern recognition depend on the type of label output,
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on whether learning is supervised or unsupervised, and on whether the algorithm is

statistical or non-statistical in nature.

2.5.1 Classification.

In pattern recognition, we want to learn = +— y where x € X is an object and
y € Y is a class label. For a 2-class problem, we have v € R",y € +1. Given a
training set (1, y1)...(Tm, Ym), We want to train the classifier to generalize such that
given a previously seen x € X it finds a suitable y € Y. In other words, we want
to find a classifier y = f(x, ) where « are the parameters of the function. If we are

choosing our model from the hyperplanes in R™ then we have
f(z,w,b) = sinh(w - x + b) (5)

We can attempt to learn f(x,«) by choosing a function that performs well on

training data:

Remp(a) = 1/mz l(f(ﬂ?z, a)? yl) (6)

where [ is the zero-one loss function, l(y, ) if y # y and 0 otherwise. Ren, is called
the empirical risk, and represents the training error.

We are trying to minimize the overall risk:

R(a) = / I(f(x,0),y)dP(z, ) (7)

where P(z,y) is the (unknown) joint distribution function of x and y. R(«) represents
the test error.

Most methods used for classification use numerical values and are unable to han-
dle symbolic information directly. In the intrusion detection problem, packet data

can be highly qualitative in nature. Many flags are present in packet headers that are
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non-numerical, but which may be beneficial in detecting an attack. The challenge lies
in converting this information to a form which a classifier can interpret. Experiments
conducted in [39] compare the effectiveness of three different symbolic conversion
methods. Results demonstrate that these three methods improve the prediction abil-
ity of a classifier, with respect to the arbitrary and commonly used assignment of
numerical values. None of the indicated techniques are used in this work, but should

be explored in future research.

2.5.2 Clustering.

Classification requires prototype patterns from each class. Algorithms that derive
the decision or discriminant function using prototype patterns or training data are
called supervised algorithms for learning. Clustering algorithms form a special class of
algorithms that can identify natural groupings of data; and derive the class prototypes
or “cluster centers.” These algorithms do not need training samples and are referred
to as unsupervised learning algorithms. Further, clustering algorithms are not based
on the use of a discriminant function and no decision boundaries are generated.

Cluster-seeking algorithms partition a given set of patterns =y, xs,...,xx = U into
M disjoint sets. This is done on the basis similarity of patterns in the same class.
Clustering procedures are based on first selecting an appropriate similarity measure.

A commonly used clustering algorithm in this class is the k-means algorithm,
which is based on minimizing a performance index, F. K is the number of clusters
specified by the user, and F is the sum of squared distances of all points in a cluster
to the cluster center.

Assignment step: Assign each observation to the cluster with the closest mean:

S =y ¢ ey = mi? | <l —mP VL < G < ) (®)
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Update step: Calculate the new means to be the centroid of the observations in

the cluster:

m™ = 3" 1 9)

z;es")

The algorithm is deemed to have converged when the assignments no longer
change. In general, there is no guarantee that it will converge to the global opti-
mum, and the result may depend on the initial clusters. As the k-means algorithm
is usually very fast, it is common to run it multiple times with different starting

conditions.

2.5.3 Support Vector Machines.

The concept of Support Vector Machines (SVM), as proposed by Vladimir Vap-
nik at AT&T Bell Laboratories, emerged from the field of statistical learning theory
[53, 38]. SVMs were originally used to solve supervised two-class classification prob-
lems. Over the years researchers came up with numerous enhancements such as
one-class SVMs and multi-class SVMs. They are a well-known and popular tech-
nique for classification and regression. SVMs feature a general combination of high
accuracy, fast classification and fast training time. The task of supervised two-class
classification is solved by determining an optimal separating hyperplane between the
two given classes. Depending on whether linear or nonlinear SVMs are used, this
determination can happen in a high-dimensional feature space.

Vapnik showed that an upper bound on the true risk can be given by the empirical

risk plus an additional term:

Rle) < (o) + \/ g3 +1) ~ o) w0

where h is the dimensionality of the set of functions parameterized by «. This is
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a measure of the functions’ capacity or complexity. The more phenomena that are
described, the larger the value of h. Therefore, h is the maximum number of points
that can be separated in all possible ways by that set of functions.

As many other machine learning methods, SVMs operate in vector spaces. The
dimension of the vector space is determined by the amount of features used. An SVM
is characterized by its separating Hyperplane f(x) = w - ®(x) + b where w represents
the normal vector perpendicular to the hyperplane, b represents the offset from the
origin, and features are mapped to higher dimensional space with x — ®(x). For

example, a polynomial mapping is represented by

®: R* = Rz, 20 = (21, 20, 23) := (23, /(2) 2179, 73) (11)

A hypothetical hyperplane is illustrated by the dashed line in diagram (a) and
(b) of Figure 4. The hyperplane of diagram (b) is said to separate both data sets
in an optimal way since its margin to the two surrounding lines, representing the
class borders, is maximized. Afterwards, the classification of a vector (i.e., a testing
sample) is performed by determining on which ”side” of the hyperplane the vector
lies, i.e., to which class it belongs.

Diagram (a) of Figure 4 features a less optimal hyperplane. In this case the margin
of the hyperplane is visibly smaller than in diagram (b). This affects the generalization
ability since vectors lying very close to the hyperplane can be classified wrong. The
difficulty of training an SVM now lies in finding the optimal separating hyperplane.
The hyperplane is calculated from a training set (equation), where (equation) (the
exponent g stands for the amount of features) and (equation).

The vectors lying closest to the hyperplane are referred to as support vectors.
Only these vectors are used for calculating the hyperplane.

The dimensionality of ®(z) can be very large, making w hard to represent in
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Figure 4. Poor (a) and Optimal (b) separating hyperplanes of an SVM. The poorly
separating hyperplane offers bad generalization ability whereas the optimal separating
hyperplane perfectly divides both data sets by maximizing the margin of the hyperplane
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Figure 5. SVM separating features with a hyperplane in a higher dimensional space
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memory, and hard to solve. Kimeldorf and Wahba (1971) presented the representer

theorem, which shows that
m

w = Zaiq)(:v,-) (12)

=1

for some variables «. Instead of optimizing w directly we can optimize . This gives:

f(z) = Za@(xi) () + b (13)

and K(z;,z) = ®(x;) - $(z) is called the kernel function.

So far only the linear classification capability of SVMs is introduced. However, by
means of so called kernel functions SVMs are also able to separate data which, at first
glance, might not seem to be linearly separable. An example is illustrated in Figure 5.
The two data sets are not linearly separable without accepting many training errors,
i.e., training vectors which reside on the wrong side of the hyperplane. To solve the
nonlinear classification problem, kernel functions, defined as (equation), are used the
purpose of which is to transform vectors from the lower dimensional input space to
the higher dimensional feature space in which the data sets become linearly separable.
A kernel often recommended for first experiments is the radial basis function kernel
(often also referred to as Gaussian kernel). The kernel requires one variable, namely
(equation).

Here is a subset of popular SVM packages [44]:

o SVMUeht [46]: SVM!eht by Joachims, is one of the most widely used SVM
classification and regression packages. It has a fast optimization algorithm,
can be applied to very large datasets, and has a very efficient implementation
of the leave-one-out cross-validation. Distributed as C+-+ source and binaries
for Linux, Windows, Cygwin, and Solaris. Kernels: polynomial, radial basis

function, and neural (tanh).
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LibSVM [15]: LibSVM (Library for Support Vector Machines), is developed by
Chang and Lin and contains C-classification, v-classification, and e-regression.
Developed in C++ and Java, it supports also multi-class classification, weighted
SVM for unbalanced data, cross-validation and automatic model selection. It
has interfaces for Java, Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW.

Kernels: linear, polynomial, radial basis function, and neural (tanh).

SVMTorch: SVMTorch, by Collobert and Bengio, is part of the Torch machine
learning library and implements SVM classification and regression. Distributed

as C++ source code or binaries for Linux and Solaris.

Weka: Weka is a collection of machine learning algorithms for data mining
tasks. The algorithms can either be applied directly to a dataset or called from

a Java code. Contains an SVM implementation.

SVM in R: This SVM implementation in R (http://www.r-project.org/) con-
tains C-classification, n-classification, e-regression, and n-regression. Kernels:

linear, polynomial, radial basis, neural (tanh).

MATLAB SVM Toolbox: This SVM MATLAB toolbox, by Gunn, implements
SVM classification and regression with various kernels: linear, polynomial,
Gaussian radial basis function, exponential radial basis function, neural (tanh),

Fourier series, spline, and B spline.

TinySVM: TinySVM is a C++ implementation of C-classification and C-regression
which uses sparse vector representation and can handle several ten-thousands of
training examples, and hundred-thousands of feature dimensions. Distributed

as binary/source for Linux and binary for Windows.

Spider: Spider is an object orientated environment for machine learning in
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MATLAB, for unsupervised, supervised or semi-supervised machine learning
problems, and includes training, testing, model selection, cross-validation, and

statistical tests. Implements SVM multi-class classification and regression.

e jlibsvin [81]: Heavily refactored Java port of LibSVM. Implements optimized
kernel functions using Java class structure and APIs, and has support for mul-

tithreaded training.

SVMs have shown good results in data classification; however their training com-
plexity is very dependent on the size of the dataset. SVMs are known to be at least
quadratic with the number of training data points. One approach to reduce training
data size is to use a hierarchical clustering algorithm, as described by Horng [42].
That algorithm creates a clustering feature tree, which is then used to merge disjoint
clusters. Experiments using this technique on the intrusion detection problem are

encouraging [42].

2.6 Multiagent Systems

A common design question for any IDS is how to maximize the benefits and min-
imize the penalties associated with network-based as well as host-based approaches.
The Multiagent System (MAS) paradigm offers a way to accomplish this, with the
added advantages of flexibility and robustness provided by this approach.

Russell and Norvig [75] define a single agent through several properties: au-
tonomous operation, ability to perceive the environment, persistence over a long
period of time, ability to adapt to change, and ability to create and pursue goals.
These goals are typically in support of a broader objective. Franklin and Graesser
[31] provide a survey of definitions for software agents, and an associated taxonomy.

Multiagent systems can be used to solve problems that are difficult or impossible

for an individual agent or a monolithic system to solve. A multiagent system is a
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collection of agents that collaborate, explicitly (e.g., via cooperation) or implicitly
(e.g., via competition) to achieve a broad objective or series of objectives. The main
feature which is achieved when developing multi-agent systems is flexibility, since a
multi-agent system can be added to, modified and reconstructed, without the need
for detailed rewriting of the application. These systems also tend to be rapidly self-
recovering and failure proof, usually due to the heavy redundancy of components and
the self-managed features.

In the networking domain, if agents are required to be mobile, then all hosts in the
network must have a generic agent platform installed which provides the environment
in which the agent executes. Agent migration then consists of sending agent state to
a remote process responsible for reinstantiating the agent.

Jansen lists some specific advantages of a mobile, agent-based IDS [45]:

e Quercoming network latency - if an agent is present on a node requiring remedial
action, the agent can respond more quickly than if action must be initiated by

a central coordinator

e Reducing network load - Communication requirements are reduced by allowing
agents to process sensor data locally, instead of requiring each node to send sets
of sensor observations to a central processing location. Sharing the results of

local processing incurs a relatively light demand on bandwidth.

o Autonomous execution - surviving agents continue to operate when part of the

IDS fails

e Platform independence - agent platforms with standard interfaces may be writ-
ten for multiple operating systems to allow effective MAS execution in a het-

erogeneous OS environment
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e Dynamic adaptation - the system can be reconfigured during run-time in a
variety of ways. The mobility of the agents allowing them to seek effective
positions is a reconfiguration. Agents can clone themselves or request assistance
from other agents in high demand situations. Selected agents can be replaced
while non-selected agents continue to operate. One can also update repositories

of behaviors and parameters which agents access periodically.

Potential disadvantages include decreased performance and/or increased resource
consumption when mobility is implemented ineffectively. Also, since each agent is a
member of a trusted network that, if compromised, could provide the attacker consid-

erable leverage, digitally signed communications (including migrations) are essential.

2.7 Reputation

Trust and reputation are central to effective interactions in open multi-agent sys-
tems (MAS) in which agents, that are owned by a variety of stakeholders, continuously
enter and leave the system. Such a concept of reputation focuses on the difficulty for
agents to form stable trust relationships necessary for confident interactions. This
implies an environment in which individual agents are greedy, able to make their own
decisions, and not necessarily seeking to optimize the good of the system.

Many computational and theoretical models and approaches to reputation have
been developed [25, 96, 79, 74, 43]. In all cases, electronics personas are created,
which reflect the specific forum under evaluation (ecommerce, social networks, blogs,
etc.). Most of these models are either too abstract or explicitly model an environment
that does not apply to the one presented here. In particular, concepts such as social
networks, past experiences with agents, greed, competition, sparse participation of
agents, building trust over time, and coalitions all miss the mark on the approach

defined in this research. Many of these concepts are good candidates for future
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research, especially when paired with a fully distributed MAS.

The first objective of this research uses a different definition of reputation. In
the system described, agents do not make decisions on their own. Agents simply use
the available local observations in order to make a classification, which is sent to a
central agent controller. The controller dictates to individual agents whether they
should move to a new location. In this sense, agents are simply the eyes of a single
central controller and cannot be enticed to perform any individual actions. In other
words, all agents are fully trusted. Rather, the view of reputation is of a metric to
judge how capable the agent is to make an informed classification given its current
location.

In the general sense, reputation is what is generally said or believed about an
[agent’s] character or standing [47].

One example of a multiagent system using Reputation is SPORAS [96], in which
new agents start with a minimum reputation value, and build up reputation during
their time on the system. Reputation is raised or lowered based on feedback from other
parties. In addition, agents’ reputation is never allowed to fall below the level of a
new user, thus preventing an agent from purposely exiting and re-entering the system
just to improve its reputation. Our design does not have that issue, but SPORAS
represents some of the concepts that we are seeking. Other research contained in
[43, 74, 79] demonstrate other approaches.

We can consider the concept of Reputational Incentives defined in [13]: the trustor
calculates the reputational gain (or damage) that a trustee will experience as a result
of good (or bad) feedback being communicated to the society, and considers this as
an additional incentive.

Pertaining to the intrusion detection problem, a trust model is defined by [10],

and also makes use of the NetFlow concept of flows. The defined trust model is a
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specialized knowledge structure which is used by the agents in the second stage of
the processing. It aggregates the anomalies provided by all agents, and integrates the
anomalies of current flows with the similar flows observed in the past. The similarity of
flows is based on comparison of their features. Each network flow can be described by
a set of relevant observable features (feature vector). These features define the feature
space, a metric space on which the trust model of each agent operates. Trustfulness
is determined for significant clusters (significant flow samples) in this space, and the
anomaly of each flow is used to update the trustfulness of centroids in its vicinity.
Therefore, it reflects the past typical anomaly of similar flows in a similar situation.
Each agent uses a distinct set of features to describe the flow, and the added value of
the mechanism (which is similar to ensemble learning/classification) is in combining
the trustfulness assessments aggregated in different trust models into a single coherent

value.

2.8 Evolutionary Computation

In a MAS, there are many “controls” within an agent that define its behavior,
including classifiers, sensors and movement actuators. In the networking domain, it
would be beneficial to find control parameters that optimize the performance of the
IDS. For example, parameters of the agent’s classifier can be changed; but as the
system’s degrees of freedom increase, finding an optimal set of parameters quickly
becomes intractable.

In this and many other application domains it is easier to recognize a good solution
than to find it in the first place. Stochastic search algorithms offer a method for
finding near-optimal solutions to these types of problems [85]. Search can be used on
problems that can be formulated as finding a solution maximizing a criterion among

a number of candidate solutions. Search algorithms move from solution to solution
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in the space of candidate solutions (the search space) by applying local changes, until
a solution deemed optimal is found or a time bound is elapsed.

The simplest local search algorithm is hill climbing, which is an iterative algorithm
that starts with an arbitrary solution to a problem, then attempts to find a better
solution by incrementally changing a single element of the solution. If the change
produces a better solution, that incremental change is made to the new solution.
This repeats until no further improvements can be found.

Simple hill climbing suffers from a tendency to get stuck at a local maximum.
Some improvements to the algorithm attempt to mitigate this tendency, and include
stochastic hill climbing, random-restart hill climbing, hill-climbing with backtracking
and tabu search.

Another promising alternative is Evolutionary Algorithm (EA) which generate
solutions to optimization problems using techniques inspired by natural evolution,
such as inheritance, mutation, selection, and crossover. The generalized notion of an
EA is applicable to several sub-domains; chiefly, Genetic Algorithms (GAs), Evolu-
tion Strategies (ESs), and Evolutionary Programming (EP) [4, 21, 85]. EAs draw
inspiration from organic evolution as a means of searching for competitive solutions
in situations where efficient search for the optimal solution is elusive (e.g. NP-hard
problems).

In evolutionary computation, the process involves initializing a population of can-
didate solutions, where each solution is a vector of parameters proposed for the system
whose performance is being optimized. Each member of the population is evaluated
by supplying the parameters to the system and measuring performance to determine
the member’s fitness. The measure of performance may be a single value (which
could either represent a single objective or a weighted sum of objectives) or a vector

(e.g. in the case of multi-objective optimization). Fitness values are used as selection
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criteria to determine which members of the population should survive into the next
generation. Selected members may then undergo recombination and/or mutation to
produce new candidate solutions. Recombination produces offspring by combining
the parameter values of “parent” solutions in some way. Mutation only involves one
“parent” and simply changes specific parameter values as a means of exploring the
solution space. The resulting population may be a mix of old and new solutions. All
are evaluated as before, after which selection happens again, and so on for potentially
many generations until some criteria is satisfied (e.g. some set number of generations
have completed, some performance criteria has been met, or performance ceases to
improve).

Béck presents a useful EA formalism [4]. Optimization as a minimization of a
function f : M C R"™ — R, M # () consists of searching for #* € M such that

f(@*) > —oo and

VE € M: f(7) < f(3)

This is easily converted when optimization requires a maximization. Regardless,
the goal, usually unrealizable within time and other resource constraints, is to find
the global optimum #* for the objective function f within the feasible region M.

The formal definition of a generic, single objective evolutionary algorithm is pro-

vided in Appendix 3.1.

2.9 Simulation Environment

This section focuses on the underlying simulation framework. Specifically, we look
at Discrete Event Simulation. This method views the simulation as being composed of
a chronological sequence of events, each of which occurs in an instant and changes the

state in the system, possibly resulting in more events being scheduled. Comprehensive
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treatment of Discrete Event Simulation is given in [7].

Components of DES systems include:

e Clock - The simulation keeps track of current simulation time in appropriate
measurement units, but unlike in real time simulations, time in a DES jumps

from one instantaneous event to the next.

e Schedule - The set of events to handle, typically implemented as a priority queue

sorted by event time.

e Random-Number Generator - pseudorandom, which is desired in order to sup-

port a rerun of a simulation with exactly the same behavior

Typical usage of a DES includes the gathering of statistics, for which facilities may
be provided, and the specification of a stopping condition. As may be the case with
continuous- but not real-time simulation, a discrete event simulation runs at a rate
that is not tied to the real-world clock. When resources permit, simulations may be
run potentially much faster than real time, which is useful for collecting large amounts
of statistics. In other cases, it may be desired that simulations run much slower than
real time, perhaps paused for an extensive period of time via checkpointing, which is
useful for direct observation and analysis of system dynamics.

Parallelization of DES is discussed extensively in [32]. More recently, Park and

Fishwick present their work using graphics processing unit-based clusters in [67].

2.9.0.1 Popular DES Engines.
Some of the more well-known DES options and their areas of emphasis are:
e OMNeT++, [86]: network simulation

e MASON, [56]: agent-based systems simulation
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e CNET, [60, 59]: network simulation

e GloMoSim, [97]: large-scale wireless networks

e OPNET : network simulation

e NS2, [58]: network simulation

e PARSEC, [6]: parallelization

e SystemC : electronics systems-level modeling

e Tortuga : general DES with Java/Eclipse integration

e SimPy: general DES for Python

For this research, the MASON DES continues to be selected due to its agent-based
features and tight Java integration. OPNET, OMNet++ and NS2/NS3 simulate
routing at a much more detailed level than is needed for our purposes, though may

be explored in future research.

2.10 SOMAS

Self Organized Multi Agent Swarms (SOMAS) was created by Eric Holloway to
study the effects of a dynamic, decentralized intrusion defense system [41]. The
multi agent system is formally modeled as a DEC-POMDP, a [-POMDP, and a new
F(*-POMDP). Agents in the network are evolved using a multi-objective genetic al-
gorithm. These agents have the ability to change location, instantiate other agents
and delete agents, as well as various methods to modify GA chromosomes and fit-
ness values. Also, enemy agents have additional methods of stealing or corrupting
data on a node, sending denial-of-service packets, compromising a node, and oth-

ers. These functions are activated by actuators, which get their input from rules and
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sensors. The relationship between the sensors, rules and actuators are optimized by
the GA, which allows agents to defend against threats in the network. The agents
learn to defend against attacks in a number of pre-defined scenarios, including: In-
trusion Elimination, Enemy Avoidance, DDoS, and Information War. The primary
goal of SOMAS is to evaluate the effectiveness of self-organization and “entangled
hierarchies” for accomplishing scenario objectives. One of the interesting features of
SOMAS is the ability for agents to take active defensive action in the network, rather
than simply passively detecting an attack. For a complete description of SOMAS, see
[41].

2.11 MFIRE v1.0

MFIRE 1.0 was created by Capt David Hancock as a network simulation environ-
ment to conduct flow-based intrusion detection experiments using a reputation-based
multiagent system [37, 36, 35]. One critique of SOMAS was its rudimentary imple-
mentation of network topology and routing. MFIRE 1.0 was an attempt to create a
more realistic simulation environment. MFIRE 1.0 is written in Java, and makes use
of the MASON DES, and TopGen network topology generator. Networks and gate-
way routers are simulated down to the Autonomous System level, and packet routing
is a faithful implementation of the Border Gateway Protocol. Delays and packet loss
are handled by the system to a reasonable level of realism, while still allowing the
DES to simulate a large network at a fast rate. In addition to the network com-
ponents (nodes, links and packets), the prominent high-level objects are processes,
observations and classifiers. A process object allows arbitrary code to run on any
node. Subclasses derived from processes are made into agents, attackers, background
internet traffic, etc. In addition, each node collects flow-based observations based on

the current and past network traffic. Agents create features from these observations,
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which are used to classify if an attack is occurring. Agents may use any user-defined
classifier. Finally a Reputation system for the MAS allows a central agent controller
to rate the reliability of each agent’s classifications. This system prompts the agents
to move to better vantage points within the network, and imparts self-organization
to the MAS. Special attention is paid to the design of the MAS communication,
which allows inter-agent communication in the presence of many types of faults (see
Appendix A). The provided hierarchical class structure allows the framework to be
extended for many different experiment types, using an object-oriented approach.
Capt Hancock [37] presents the hypothesis that a flow-based, multi-agent network

attack classifier can be made more effective by:
1. employing a reputation system to govern agent mobility

2. adding a decay factor to each agent’s reputation to further spur agents to find

nodes providing the most “useful” information
From this hypothesis, four objectives are defined:

1. Develop an effective network simulation environment appropriate for the prob-

lem scope.
2. Validate the proper functioning of simulated malicious traffic.

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system.

4. Study the effects of several factors on classification accuracy.

The first three objectives are qualitatively validated with MFIRE 1.0. The fourth
is not finished, and has been incorporated into this research. In particular, MFIRE
1.0 concludes with the realization of the simulation environment (MASON DES), net-

work topology and routing, the MAS, agent intercommunication, reputation system,
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background user (Pareto) processes, and simple attacker processes (DDoS, Worm,
and Scan). These components are qualitatively validated as a complete, functional
system. Although the classifier framework is put in place, MFIRE 1.0 stops short
of implementing an actual classifier to allow agents to identify an attack; so no final
testing of the reputation system or overall performance experiment is conducted. For
a complete description of MFIRE 1.0 see [37].

This chapter provides background and theory on several topics regarding multi-
agent intrusion detection. Flow-based metrics, discrete event simulation, support
vector classification and stochastic search are key components in our proposed model.

In the next chapter we integrate these concepts into a working framework, MFIRE-2.
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III. MFIRE-2 Design

An updated design is required for autonomous classification of network attacks
in a live, albeit simulated, network. In this research, we build upon the MFIRE
framework of Hancock [37] by adding additional attack features, implementing a new
attack classification system, and adding facilities to generate training data and test
the system’s classification performance. In addition, we integrate features proposed
by Holloway [41] to allow agents to behave in more elaborate ways. This chapter
introduces these concepts in detail.

Intrusion Detection (ID) system design is an ongoing process, due to the approx-
imation of the network environment and the reaction to it. Thus, the multi agent
system paradigm, with several performance-enhancing details, is leveraged in this de-
sign in order to maximize the performance. The agents are designed to be mobile
and cooperative in terms of sharing feature observations. Over a series of simulated
attacks, the integrated system searches for a ‘good’ distribution of agents.

A recent, innovative network-based anomaly detection system is presented in [48].
The authors use a two-stage classification approach to detect novel intrusions of
various types, and is shown to have good empirical performance. Many IDS sys-
tems have shown in recent years to achieve good performance with real-world traffic
(10, 39, 40, 42, 45, 63, 95]. Our approach is substantially different, in that we seek
a robust environment to generate simulated network traffic; and the goal of our re-
search focuses on improvement in performance given the movement of agents, not on
achieving absolute performance outright. Thus it is difficult to find existing systems
to compare our approach, however many of systems previously mentioned provide a
basis for our key concepts of multi-agent systems, network-based detection, anomaly-
based classification, and flow-based statistics.

The design of a suitable network simulation environment involves the representa-
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tion of essential network components and operations. Specifically, nodes must route
traffic, generated by processes, over links with limited capacity, in a topology reflec-
tive of what is seen in the real Internet (see Section 2.1). Some of the processes
represented are ‘normal,” generating traffic according to distributions seen on the
real Internet, while other processes represented are ‘malicious,’ causing congestion on
network links, systematically extracting information regarding potential vulnerabili-
ties of network nodes, and/or spreading copies of themselves to other nodes without
authorization.

To enable the properties described in such a simulated network environment re-
quires a representation of traffic as content-bearing packets, facilities for delivering
these packets to specific destination processes, and facilities for instantiating a net-
work complete with its nodes, links, processes, and properties of each (e.g., respec-
tively routing tables, link capacities, and traffic-generation and response behaviors).

Some of the implementation described in this chapter comes directly from [37],
and is repeated here for completeness. Only information which is relevant to the
updated features of MFIRE-2 is provided. For additional implementation details, the

reader is encouraged to read [37].

3.1 Simluation Environment

This section presents the package hierarchy providing a framework in which to
place the required representations of these concepts. In addition to the network
simulation environment, a multi agent classification system is designed as a set of
processes, with components including agents and an agent controller. To support the
agents’ classification responsibilities, interfaces are designed for classification tech-
niques and feature definitions, enabling changes in detailed implementations without

requiring changes to the system architecture.
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Figure 6 presents a general view of the package hierarchy involved in the simula-

tion.

The domain layer consists of the following groups of classes:

Network - includes representations of physical domain entities of interest. This

is the ‘core’ of the simulation.

Scenarios - concrete realizations of the abstract MFNetwork. The prominent
class is the TopgenNetwork, which includes facilities for loading a network pro-
duced by the Topgen AS-level Internet topology generator. Each class in this
package is characterized by a a unique set of Processes initially running on a

subset of the nodes.

Processes - These are analogous to the networked applications on the real In-
ternet. Each Process runs on a host node and may receive and/or generate

traffic.

Payloads - Specially crafted payloads execute code when opened by a certain
receiving processes. These payloads can be written for legitimate purposes, such
as Remote Procedure Calls (RPC), but our focus is on payloads that install

malicious processes on the receiving node.

Multi agent system - This package includes the “worker bees” - the Agents, the
“queen bee” - the AgentController, as well as AgentManagers with special local

oversight of any Agents on the same host node.

Classification - Agents make use of entities in this package to make local clas-
sification decisions. Included are the classification algorithms, enclosed in the
‘classifiers’ package, and the observations and features used. Strictly speaking,
both observations and features are statistics-based calculations, but we distin-

guish the observations as being more “raw” than the features. By ‘feature’ we
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imply there is something composite in its nature - it may be an average of ob-
servation values or the result of some other series of mathematical operations

on the observations and/or other features.

At the top of Figure 6 is the MASON discrete event simulation engine package,
which provides many vital facilities for the execution of the simulation as well as the
visualization of the same. The details of the visualization are specified via entities in
the visualization package at the bottom of the diagram.

Figure 7 provides a class diagram for some architectural detail of the more promi-
nent aspects of the domain representation. This is not intended to provide a compre-
hensive listing of the classes nor the attributes and methods of each class. Rather,
expressed are some of the essential class associations and hierarchies that drive the

network simulation.

3.1.1 Network design.

The physical network components simulated in this research investigation include

[37]:

e Nodes - each node represents an Autonomous System (AS). Internal to an AS
is a collection of routers, switches, firewalls, and edge devices, including servers
and clients. These devices are all abstracted into one node in our simulation,
represented by the MF _Node class in Figure 7. Nodes route traffic via routing
tables, initialized via the Floyd-Warshall shortest path algorithm [29]. This
is analogous to gateway routers employing BGP on the real Internet, though
with BGP, policy decisions often trump routing efficiency (competing Internet
service providers, for example, may refuse to allow ‘through’ traffic without
compensation). Each node is addressable by a unique identification number.

Nodes provide resident processes with basic communications facilities, such as
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the send() method, which creates and sends packets. Nodes implement the
Steppable interface and therefore supply a step() method invoked on each
timestep of the simulation. This method primarily switches packets from the
inbound queues of all Nodelnterfaces to the outbound queues of Nodelnterfaces

identified in the routing table, via lookup on the packet’s destination address.

Nodelnterfaces - These are intermediaries between Nodes and 1) Links; or 2)
Node’s resident Processes. The first case includes all external-facing interfaces,
while the second describes the Node’s internal interface. Each is an entry/exit
point. All Nodelnterfaces have an inbound queue and an outbound queue. The
inbound queue is read by the attached Node and written to by the attached
link. The outbound queue is read by the attached link and written to by the

attached Node.

Ports - associated with nodes, ports are the communication end points for pro-
cesses running on servers and clients. In the real world, each computer typically
has many thousands of ports associated with each transport-layer protocol. For
example, there are 2! ports available for Transmission Control Protocol (TCP)
and another 2'6 for User Datagram Protocol (UDP), the number being fixed
by the width of the port field in the segment, respectively datagram header
[70, 71]. In our simulation, each port on an AS node corresponds with a port

on an arbitrary host internal to the AS.

Port Directory - Certain “well-known” ports are reserved for special purposes.
This is the case with the real Internet, for which a list is maintained by the
Internet Assigned Numbers Authority (IANA) [3] specifies how certain ports
are to be used, such as port 80 for Hyper Text Transfer Protocol (HTTP)

traffic. When these standards are adhered to, finding public services is greatly
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simplified. Also, filtering of certain expected types of traffic becomes simple.
Observe that, in our simulation, some ports are reserved for components of the

multi agent system.

Links - links in our network simulation are strictly point-to-point and connect
autonomous systems together. Links are full duplex but have finite bandwidth.
Depending on the scale of the simulation, links may vary in length, affecting

propagation delay. One of three scales is specified at the start of each simulation:

— LOCAL - All links have the same unit length. Packets traverse these links

in one step of simulation time.

— REGIONAL - Link lengths vary from one to ten units. This is useful when

the simulated AS topology spans a continent.

— GLOBAL - Link lengths vary from one to 100 units. This is appropriate
for simulation of an AS topology in which some of the nodes are satellites
in geostationary orbits, for which propogation delays can indeed be on the

order of 100 times those of terrestrial links.

Scale is realized with each link being composed of sublinks. Links implement
the Steppable interface. Each timestep, when the Link’s step() method is
called by the Schedule, the Link causes each Sublink to pass its traffic to its

adjacent Sublink (or, ultimately, Nodelnterface).

Processes - these include processes that strictly generate traffic for the benefit of
the simulation as well as classifying agents that generate actual communication
traffic (primarily to share observations). All processes run on nodes and must be
assigned a port before they can send and receive packets. Processes implement
the Steppable interface. When step() is called, the Process first receives and

processes traffic, and then generates outbound traffic.
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e Packets - Each packet consists of the following:

— Source node address - identifies the Node of origin
— Source port - the port used by the sending Process

— Destination node address - identifies the Node hosting the intended recip-

ient Process
— Destination port - communication endpoint for the intended recipient Process
— Sequence number - Facilitates sending messages spanning multiple packets

— TTL - Time To Live - the number of hops allowed before some intermediate
Node discards the packet. This mitigates problems arising from routing

loops induced by congestion or misconfiguration of the routing tables.

— Payload - a string containing the message the sending Process wishes to
pass to the intended recipient. The format of this message is entirely up

to the communicating processes.

— size - Indicates the size of the payload, in numbers of characters, if a
real payload is used. If a real payload is not required (e.g. to simulate
background traffic or junk traffic sent by d