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Abstract 

The spectral and spatial radiative properties of coherent thermal emission in the mid- and 

far-infrared (mid-IR and far-IR) through the use of micro- and nano-structured metal-

semiconductor materials were designed for and demonstrated experimentally.  Using an 

efficient implementation of the Rigorous Coupled Wave Analysis (RCWA) numerical 

technique and Computer Simulation Technology (CST) electromagnetic modeling 

software, two structures were designed to selectively emit at mid- and far-IR 

wavelengths, a one-dimensional (1-D) truncated multilayer resonator and a three-

dimensional (3-D) hybrid photonic crystal-multilayer (PC-multilayer).  A High Impulse 

Power Magnetron Sputtering (HIPIMS) deposition technique was used to fabricate two 

silver-germanium-silver (Ag-Ge-Ag) resonating structures with layer thicknesses of 6-

240-160 nm for one sample and 6-700-200 nm for the other.  The design thicknesses of 

each sample were verified through both reflectance and standard spectral ellipsometric 

measurements at wavelengths from 2-15 μm.  Reflectance measurements demonstrated 

spectrally selective absorption at the designed IR wavelengths whose general behavior 

was largely unaffected by a wide range of incident angles.  Ellipsometric measurements 

showed significant disagreement between HIPIMS-deposited material properties and bulk 

values found in literature.  Further, radiance measurements were taken at various high 

temperatures to investigate the effect of thermally excited surface waves on the radiative 

properties of the resonating structures.  From these radiance measurements, spectral 

emittance was directly derived and compared to the emittance inferred from reflectance  
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measurements.  It was established that inferring emittance can help to approximate the 

expected emission from a structure, but it is not an exact method of determining the 

actual emittance of a thermal source.  Using CST, the 3-D hybrid PC-multilayer structure 

was simulated as a sub-wavelength square hole array embedded inside a Ag slab on a Si 

substrate to examine the spatial coherence achieved by this more complex geometry.  

Simulated results indicate strong angular and polarization dependencies of incident 

radiation at IR design wavelengths of interest.  Initial fabrication results of the PC-

multilayer involving both HIPIMS deposition of a Ge-Ag-Ge-Ag (4-12-270-200 nm) 

multilayer, and focused ion beam milling of a square array of 3.6-μm diameter circular 

holes are also presented. 

 



 

vi 
 

Acknowledgments 

First, I would like to thank my academic advisor, Dr. Michael Marciniak, for his 

guidance and time towards this research effort.  I would also like to thank the other 

members of my thesis committee, Dr. Peter Collins, Maj Milo Hyde, and Dr. Stephen 

Nauyoks, for their support and active involvement throughout my time here at AFIT.  

The friendships developed with my classmates (more like teammates) through this 

endeavor will be cherished and have made the tough times not so tough and I thank them 

too.  Above all, I’d like to thank my wife for being my lifeline and enduring my mind’s 

“academic deployment”.   

My sincere appreciation goes out to the following individuals for whom made this 

research possible with their help and expertise: 

 Mr. Scott Apt, FIB and SEM 

 Dr. Kurt Eyink, Ellipsometry and 
Materials 

 Maj. Nathan Glauvitz, SEM and 
Fabrication 

 Ms. Stephanie Gray, IR-VASE and 
modeling 

 Dr. Kevin Gross, FTIR 

 Mr. Richard Johnston, Cleanroom 
and Photolithography 

 Ms. Abbey Juhl, Nanoscribe and 
Photolithography 

 Mr. Charlie McNealy, 
Electrodeposition 

 Mr. Neil Murphy, Materials 

 Mr. Michael Ranft, FTIR 

 Capt. Michael Seal, Original RCWA 
Code, Thermal Radiative Properties, 
Plasmonics 

 Capt. Spencer Sellers, Lumerical 

 Mr. Greg Smith, Mask Aligner and 
Emissometer 

 Mr. Thomas Stephenson, Zygo and 
Cleanroom 

 Ms. Lirong Sun, HIPIMS deposition  

 Mr. Vincent Tondiglia, Nanoscribe  

 Jason Vap, CASI, Mueller matrix 

Shane N. McConnell



 

vii 
 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments.............................................................................................................. vi 

List of Figures ......................................................................................................................x 

List of Tables ................................................................................................................... xix 

List of Symbols ..................................................................................................................xx 

List of Abbreviations ..................................................................................................... xxiii 

I.  Introduction .....................................................................................................................1 

General Issue ...................................................................................................................1 
Problem Statement ..........................................................................................................4 
Methodology ...................................................................................................................4 
Implications/Applications ...............................................................................................6 
Preview ............................................................................................................................6 

II. Theoretical Background ..................................................................................................8 

Chapter Overview ...........................................................................................................8 

Conventions ....................................................................................................................8 
Conservation of Energy and Kirchhoff’s Law ................................................................9 
Electromagnetic Theory and Constitutive Relations.....................................................11 
Thermal Radiation .........................................................................................................15 
Surface Waves ...............................................................................................................16 
Designing a Thermal Emitter ........................................................................................18 

Scatterometry ................................................................................................................20 
Spectroscopic Ellipsometry ...........................................................................................20 

Summary .......................................................................................................................21 

III. Literature Review.........................................................................................................22 

Review Papers ...............................................................................................................22 

Relevant Research .........................................................................................................23 
Summary .......................................................................................................................25 

IV. Methodology ................................................................................................................26 

Chapter Overview .........................................................................................................26 
Truncated Multilayer Resonator ...................................................................................27 



 

viii 
 

Page 

Constituent Material Properties .............................................................................. 28 
Angular Reflectance and Emittance of Ag .............................................................. 35 
Fabrication .............................................................................................................. 38 

Hybrid PC–Multilayer ...................................................................................................40 
Design ...................................................................................................................... 41 
Fabrication .............................................................................................................. 41 

Reflectance/Ellipsometric Measurements .....................................................................42 
Calculating Emittance ...................................................................................................43 
Summary .......................................................................................................................45 

V. Analysis and Results – Truncated Resonator ................................................................46 

Chapter Overview .........................................................................................................46 
Truncated Multilayer Resonator Design .......................................................................46 

Sample 1:  6-240-160 nm (Ag-Ge-Ag) .................................................................... 47 
Sample 1:  Fabrication Results ............................................................................... 49 
Sample 1:  Reflectance Measurements .................................................................... 52 
Sample 2:  6-700-200 nm (Ag-Ge-Ag) .................................................................... 55 
Sample 2:  Fabrication ............................................................................................ 55 
Sample 2:  Reflectance Measurements .................................................................... 56 
Spectroscopic Ellipsometry ..................................................................................... 59 
Radiance Measurements and Calculating Emittance ............................................. 67 

Summary .......................................................................................................................80 

VI. Analysis and Results – Hybrid PC-Multilayer ............................................................81 

Chapter Overview .........................................................................................................81 
Hybrid PC-Multilayer Design .......................................................................................81 
Hybrid PC-Multilayer:  Initial Fabrication ...................................................................89 
Summary .......................................................................................................................98 

VII. Conclusion ..................................................................................................................99 

Future Work ................................................................................................................102 
Design .................................................................................................................... 102 
Fabrication ............................................................................................................ 103 
Characterization .................................................................................................... 107 

Appendix A.  Nanofabrication .........................................................................................109 

3-D Laser Lithography:  Initial Fabrication Results ...................................................109 

Other Nanotechnology Characterization Techniques .................................................112 
Nanofabrication Literature ..........................................................................................113 

 



 

ix 
 

Page 

Appendix B.  Supplemental IR-VASE Measurements and Modeling .............................114 

Bibliography ....................................................................................................................121 

  



 

x 
 

List of Figures 

Figures Page 

1.  Illustration of the direction of propagation of radiation being emitted 
from a surface in spherical coordinates.  Both θ and ϕ are measured 
with respect to the local coordinate system constructed from the surface 
normal. ........................................................................................................................11 

2.  Schematic representation of a surface plasmon at the interface between a 
surface that supports surface waves (Medium 1) and free space 
(Medium 2).  The wave amplitudes decay exponentially with distance 
from the interface with decay constant   and distance from the 
interface z. ...................................................................................................................17 

3.  Illustration of a transverse magnetic (TM) surface wave on a bare metal 
interface. .....................................................................................................................18 

4. Calculated angular emittance of a Au-SiO2-Au tri-layer resonator for (a) 
TM and (b) TE polarizations.  The triangles and circles represent the 
measured reflectance dips obtained by an FTIR spectrometer and a laser 
scatterometer, respectively.  From [11]. .....................................................................24 

5.  Illustration of a truncated multilayer resonator. ............................................................27 

6.  Index of refraction for Germanium using a temperature-dependent 
Sellmeier equation versus measured values reported by Li [55]. ...............................30 

7.  Reduction in reflectivity with rising temperature at 0.69 (left) and 10.6 
μm (right) for silver (Ag), gold (Au), sodium (Na), copper (Cu), 
potassium (K), and aluminum (Al).  From [56]..........................................................31 

8.  Real and imaginary parts of the complex dielectric function of silver at 
room 294 K (room temperature) and 1000 K as calculated from the 
free-electron/Drude. ....................................................................................................33 

9.  Complex refractive index for Silver (Ag) using a free-electron/Drude 
model at 1000 K plotted with measured bulk values reported in Palik 
[44]. .............................................................................................................................34 

10.  Calculated specular reflectance (p-pol) for Ag at 294 K (left) and 1000 
K (right) from 0.1-10 μm.  Specular reflectance at 294 K was calculated 
using complex refractive index from Palik [44].  Specular reflectance at 
1000 K was calculated using complex refractive index values using a 
Drude model. ..............................................................................................................36 

11.  Calculated specular reflectance (p-pol) for Ag at 294 K (left) and 1000 
K (right) from 0.1-0.5 μm.  Specular reflectance at 294 K was 
calculated using complex refractive index from Palik [44].  Specular 
reflectance at 1000 K was calculated using complex refractive index 
values using a Drude model. .......................................................................................37 



 

xi 
 

Figures Page 

12.  Calculated specular emittance (p-pol)  for Ag at 1000 K over two 
wavelength bands, 0.1-10 μm (left) and 0.1-0.5 μm (right).  Specular 
emittance was calculated using complex refractive index values using a 
Drude model. ..............................................................................................................38 

13.  Scanning Electron Microscope (SEM) micrograph of the cross-section 
of a Ge sample deposited on a Si wafer and prepared by the Air Force 
Research Laboratory (AFRL) using a High Power Impulse Magnetron 
Sputtering (HIPIMS) technique.  From [60]...............................................................39 

14.  Illustration of a photonic crystal-multilayer hybrid structure constructed 
of a circular hole array embedded inside of a truncated multilayer 
resonator. ....................................................................................................................40 

15.  Illustration of a photonic crystal-multilayer hybrid structure constructed 
of a square array of circular holes embedded inside of a multilayer, 
where a is the period between each hole and d is the diameter of each 
hole.  View is from surface normal of the structure. ..................................................41 

16.  Comparison of the calculated angular emittance (p-pol) spectra of a Ag-
Ge-Ag truncated multilayer resonator with varying thicknesses for the 
top, optically thin Ag layer. ........................................................................................48 

17.  Calculated angular emittance (p-pol) for a Ag-Ge-Ag resonating 
structure at 294 K (left) and 500 K (right) from 2-10 μm.  Thicknesses 
of constituent materials are 6-240-160 nm, respectively. ...........................................49 

18.  Calculated specular emittance (p-pol) for a Ag-Ge-Ag resonating 
structure at 294 K (left) and 500 K (right) from 2-4 μm.  Thicknesses of 
constituent materials are 6-240-160 nm, respectively. ...............................................49 

19.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) 
on a silicon substrate.  Ag and Ge layers were deposited via a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique.  
Micrograph was taken at 100,000× magnification and at an angle of 52° 
from surface normal. ...................................................................................................50 

20.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) 
on a silicon substrate.  Measurements shown on the micrograph were 
made with the SEM showing several different estimats of the total 
height of the structure.  Ag and Ge layers were deposited via a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique.  
Micrograph was taken at 75,000× magnification and at an angle of 52° 
from surface normal. ...................................................................................................51 

 

 



 

xii 
 

Figures Page 

21.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-240-
160 nm) between 1.4 and 20 μm.  Reflectance measurements were 
taken using a J. A. Woollam Infrared – Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). ...........................................................................................52 

22.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-240-
160 nm) on silicon between 1.7 and 6 μm.   Reflectance measurements 
were taken using a J. A. Woollam Infrared – Variable Angle 
Spectroscopic Ellipsometer (IR-VASE). ....................................................................53 

23.  Comparison (p-pol) between theoretical emittance results (left) and 
experimental emittance results (right) found through measurements 
taken using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-240-160 nm, respectively. ....................................................................54 

24.  Calculated specular emittance (p-pol) for a Ag-Ge-Ag resonating 
structure at 294 K (left) and 500 K (right) between 2-20 μm.  
Thicknesses of constituent materials are 6-700-200 nm, respectively. ......................55 

25.  SEM micrograph of the top Ag surface of a Ag-Ge-Ag multilayer with 
thicknesses 6-700-200 nm, respectively.  Ag and Ge layers were 
deposited via a High Power Impulse Magnetron Sputtering (HIPIMS) 
technique.  Micrograph was taken at 45,000× magnification. ...................................56 

26.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-700-
200 nm) between 1.7 and 29 μm.   Reflectance measurements were 
taken using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). ...........................................................................................57 

27.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-700-
200 nm) between 1.7 and 15 μm.   Reflectance measurements were 
taken using the J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). ...........................................................................................58 

28.  Comparison (p-pol) between the theoretical emittance results (left) and 
experimental emittance results (right) found through measurements 
taken using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-700-200 nm, respectively. ....................................................................59 

29.  Screen capture from the J. A. Woollam VASE32 software of a modeled 
multilayer structure with associated thicknesses. .......................................................60 

30.  Amplitude ratio   (green) and phase difference   (blue) ellipsometric 
measurements made using a J. A. Woollam Infrared Variable Angle 
Spectroscopic Ellipsometer (IR-VASE) on a Ag-Ge-Ag truncated 
resonator, Sample 1 (6-240-160 nm), with associated model fits (red). .....................61 



 

xiii 
 

Figures Page 

31.  Calculated complex index of refraction, n (red) and k (green), for a Ag 
layer deposited via a High Power Impulse Magnetron Sputtering 
(HIPIMS) technique. ...................................................................................................62 

32.  Calculated complex index of refraction, n (red) and k (green), for a Ge 
layer deposited via a High Power Impulse Magnetron Sputtering 
(HIPIMS) technique. ...................................................................................................62 

33.  The real part of the index of refraction (n) for HIPIMS-deposited Ag 
compared with bulk optical constants reported in Palik [44] over IR 
wavelengths. ...............................................................................................................63 

34.  The imaginary part of the index of refraction (k) for HIPIMS-deposited 
Ag compared with bulk optical constants reported in Palik [44] over IR 
wavelengths. ...............................................................................................................64 

35.  The real part of the index of refraction (n) for HIPIMS-deposited Ge 
compared with bulk optical constants reported in Palik [44] over IR 
wavelengths. ...............................................................................................................64 

36.  The imaginary part of the index of refraction (k) for HIPIMS-deposited 
Ge compared with bulk optical constants reported in Palik [44] over IR 
wavelengths. ...............................................................................................................65 

37.  Comparison (p-pol) between new theoretical emittance predictions that 
include derived optical constants (n and k) for the HIPIMS-deposited 
materials (left) to those calculated (right) from measurements taken 
using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-240-160 nm, respectively. ....................................................................66 

38.  Comparison (p-pol) between new theoretical emittance predictions that 
include derived optical constants (n and k) for the HIPIMS-deposited 
materials (left) to those calculated (right) from measurements taken 
using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-700-200 nm, respectively. ....................................................................67 

39.  Spectral radiance measured by a MR-154 Bomem Fourier transform 
infrared (FTIR) spectrometer for Ag-Ge-Ag truncated resonator, 
Sample 2 (6-700-200 nm), at room temperature (297 K) overlaid with 
the theoretical radiance of an ideal blackbody also at 297 K. ....................................68 

40.  Spectral radiance measured by a MR-154 Bomem Fourier transform 
infrared (FTIR) spectrometer for Ag-Ge-Ag truncated resonator, 
Sample 2 (6-700-200 nm), at 408 K overlaid with the theoretical 
radiance of an ideal blackbody also at 408 K. ............................................................69 

 



 

xiv 
 

Figures Page 

41.  Spectral radiance measured by a MR-154 Bomem Fourier transform 
infrared (FTIR) spectrometer for Ag-Ge-Ag truncated resonator, 
Sample 2 (6-700-200 nm), at 473 K overlaid with the theoretical 
radiance of an ideal blackbody also at 473 K. ............................................................70 

42.  Spectral radiance measured by a MR-154 Bomem Fourier transform 
infrared (FTIR) spectrometer for Ag-Ge-Ag truncated resonator, 
Sample 2 (6-700-200 nm), at 601 K overlaid with the theoretical 
radiance of an ideal blackbody also at 601 K. ............................................................71 

43.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 
2 (6-700-200 nm), from two data sets, one was calculated from 
reflectance measurements and invoking Kirchhoff’s law to assume that 
the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is also selectively emitted (blue), and the other data set 
represents the calculated emittance derived from radiance 
measurements of Sample 2 while thermally excited to 408 K (red). ..........................72 

44.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 
2 (6-700-200 nm), from two data sets, one was calculated from 
reflectance measurements and invoking Kirchhoff’s law to assume that 
the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is selectively emitted (blue), and the other data set represents 
the calculated emittance derived from radiance measurements of 
Sample 2 while thermally excited to 473 K (red). ......................................................73 

45.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 
2 (6-700-200 nm), from two data sets, one was calculated from 
reflectance measurements and invoking Kirchhoff’s law to assume that 
the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is selectively emitted (blue), and the other data set represents 
the calculated emittance derived from radiance measurements of 
Sample 2 while thermally excited to 601 K (red). ......................................................74 

46.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) 
on a silicon substrate after being thermally excited to 408 K.  Ag and 
Ge layers were deposited via a High Power Impulse Magnetron 
Sputtering (HIPIMS) technique.  Micrograph was taken at 100,000× 
magnification and at an angle of 35° from surface normal. ........................................75 

47.  Measured spectral reflectance (p-pol) of a Ag-Ge-Ag truncated 
resonator (6-240-160 nm) between 1.7 and 6 μm and in 10° increments 
between 25-75° of incident angle before (blue) and after (red) being 
thermally excited to 408 K.  Reflectance measurements were taken 
using the J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). ...........................................................................................76 



 

xv 
 

Figures Page 

48.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-700-200 nm) 
on a silicon substrate after being thermally excited to 601 K.  Ag and 
Ge layers were deposited via a High Power Impulse Magnetron 
Sputtering (HIPIMS) technique.  Micrograph was taken at 50,000× 
magnification and at an angle of 35° from surface normal. ........................................77 

49.  Measured spectral reflectance (p-pol) of a Ag-Ge-Ag truncated 
resonator (6-700-200 nm) between 1.7 and 15 μm and in 10° increments 
between 25-75° of incident angle before (blue) and after (red) being 
thermally excited to 601 K.  Reflectance measurements were taken 
using the J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). ...........................................................................................78 

50.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 
2 (6-700-200 nm), from three data sets – two data sets were calculated 
from reflectance measurements before (blue) and after (green) being 
thermally excited to 601 K and invoking Kirchhoff’s law to assume that 
the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is selectively emitted, and the last data set represents the 
calculated emittance derived from radiance measurements of Sample 2 
while thermally excited to 601 K (red). ......................................................................79 

51.  CST simulated reflectance at normal incidence for a Ag-Ge-Ag (6-240-
160 nm) hole array structure (red) using optical constants from 
literature (Palik) and a single Ag (400 nm) slab hole array structure 
(green) using the default Ag from the CST material library. .....................................83 

52.  Illustration of one unit cell of the PC-multilayer structure as constructed 
in the CST simulation environment.  The Ag slab with hole at its center 
is highlighted on the left with a transparent Si substrate behind it.  On 
the right, the Si substrate is highlighted behind the transparent Ag layer. .................84 

53.  Illustration of the periodic boundary conditions implemented on the 
hybrid photonic crystal-multilayer in CST (left) and the respective 
coordinate system superimposed over one unit cell (right). .......................................85 

54.  Simulated spectral reflectance and transmittance from the hybrid 
photonic crystal-multilayer for   from 0-60° from a p-pol (TM) plane 
wave incident at 0  . ..............................................................................................86 

55.  Simulated spectral reflectance and transmittance from the hybrid 
photonic crystal-multilayer for   from 0-60° from a s-pol (TE) plane 
wave incident at 0  . ..............................................................................................86 

 
 



 

xvi 
 

Figures Page 

56.  Simulated spectral reflectance and transmittance from the hybrid 
photonic crystal-multilayer for   from 0-60° from a p-pol (TM) plane 
wave incident at 45  . ............................................................................................88 

57.  Simulated spectral reflectance and transmittance from the hybrid 
photonic crystal-multilayer for   from 0-60° from a s-pol (TE) plane 
wave incident at 45  . ............................................................................................88 

58.  SEM micrograph of a hybrid photonic crystal-multilayer (Ag-Ge-Ag) 
on a silicon substrate.  Ag and Ge layers were deposited via a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique with 
dimensions 6-240-160 nm.  The hole array was milled into the 
multilayer using focused ion beam (FIB) milling.  Micrograph was 
taken from surface normal. .........................................................................................90 

59.  SEM micrograph of a hybrid photonic crystal-multilayer (Ag-Ge-Ag) 
on a silicon substrate.  Ag and Ge layers were deposited via a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique with 
dimensions 6-240-160 nm.  The hole array was milled into the 
multilayer using focused ion beam (FIB) milling.  Micrograph was 
taken at an angle of 52° from surface normal. ............................................................91 

60.  SEM micrograph of a hybrid hole array/multilayer (Ag-Ge-Ag) on a 
silicon substrate.  Ag and Ge layers were deposited via a High Power 
Impulse Magnetron Sputtering (HIPIMS) technique with dimensions 6-
240-160 nm.  The hole array was milled into the multilayer using 
focused ion beam (FIB) milling.  Micrograph was taken at an angle of 
52° from surface normal. ............................................................................................92 

61.  Illustration of a photonic crystal-multilayer hybrid structure constructed 
of a square array of circular holes embedded inside of a multilayer with 
3-μm diameters and 6-μm periods   View is from surface normal of the 
structure. .....................................................................................................................93 

62.  Picture taken with a digital camera of a hybrid photonic crystal-
multilayer structure embedded immediately to the right of a black ink 
dot.  Total array size is 1.61 mm   113.33 μm.  The Ge-Ag-Ge-Ag (4-
12-270-200 nm) multilayer was deposited on a Si substrate.  The square 
array of circular holes was milled into the multilayer using a focused 
ion beam (FIB) system. ...............................................................................................94 

 

 

 

 



 

xvii 
 

Figures Page 

63.  SEM micrograph at 50  magnification of a hybrid photonic crystal-
multilayer structure embedded immediately to the right of a black ink 
dot.  Total array size is 1.61 mm   113.33 μm.  The Ge-Ag-Ge-Ag (4-
12-270-200 nm) multilayer was deposited on a Si substrate.  The square 
array of circular holes was milled into the multilayer using a focused 
ion beam (FIB) system. ...............................................................................................95 

64.  SEM micrograph of the center of a hybrid photonic crystal-multilayer 
structure at 750  magnification.  The Ge-Ag-Ge-Ag (4-12-270-200 
nm) multilayer was deposited on a Si substrate.  The square array of 
circular holes was milled into the multilayer using a focused ion beam 
(FIB) system. ..............................................................................................................96 

65.  SEM micrograph of the center of a hybrid photonic crystal-multilayer 
structure at 5000  magnification.  The Ge-Ag-Ge-Ag (4-12-270-200 
nm) multilayer was deposited on a Si substrate.  The square array of 
circular holes was milled into the multilayer using a focused ion beam 
system. ........................................................................................................................97 

66.  Illustration of a template-based nanofabrication approach that is capable 
of producing robust, large-scale samples with simple, repeatable, and 
low-cost execution. ...................................................................................................104 

67.  Image of planar 3-D unit cell constructed in CST. ...................................................109 

68.  The final arrayed pattern (simulated in CST) shown next to same 
pattern with Zygo images overlaid in front of the respective areas where 
the pictures were taken. ............................................................................................110 

69.  Zygo images of fabricated 22 array using a Nanoscribe 3-D laser 
lithography tool.  Patterned array was exposed in Nanoscribe IP-L 
photoresist on a glass substrate. ................................................................................111 

70.  Transmittance baseline of the ambient environment captured by the J. 
A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-
VASE) .......................................................................................................................114 

71.  Spectral transmittance of a p-type silicon (Si) wafer measured using the 
Air Force Research Laboratory’s (AFRL) J. A. Woollam Infrared 
Variable Angle Spectroscopic Ellipsometer (IR-VASE) .........................................115 

72.  A comparison between a fitted model and spectral transmittance of a p-
type silicon (Si) wafer.  The model was fit using material constants 
from J. A. Woollam’s infrared material library.  The transmittance was 
measured using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). .........................................................................................116 

 



 

xviii 
 

Figures Page 

73.  Measured and generated ellipsometry data of a silicon substrate (p-
doped) at visible and near-infrared wavelengths.  Measured data 
captured using a J. A. Woollam Visible Variable Angle Spectroscopic 
Ellipsometer (V-VASE).  Fitted model data was generated using J. A. 
Woollam WVASE23 software. ................................................................................117 

74.  Measured and generated amplitude ratio  data of a silicon substrate 
(p-doped) at mid-infrared wavelengths.  Measured data was captured 
using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE).  Fitted model data was generated using J. A. 
Woollam WVASE23 software. ................................................................................118 

75.  Measured and generated phase difference   data of a silicon substrate 
(p-doped) at mid-infrared wavelengths.  Measured data was captured 
using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE).  Fitted model data was generated using J. A. 
Woollam WVASE23 software. ................................................................................118 

76.  General Oscillator parameters used to model native silicon oxide layer 
(SiO2) using Air Force Research Laboratory’s (AFRL) J. A. Woollam 
Infrared – Variable Angle Spectroscopic Ellipsometer (IR-VASE). ........................119 

77.  Optical constants for Si wafer derived from measured ellipsometric data 
between 2-15 μm.  Measured data was captured using a J. A. Woollam 
Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE). ...........................120 

78.  Optical constants for a SiO2 passivation layer derived from measured 
ellipsometric data between 2-15 μm.  Measured data was captured using 
a J. A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer 
(IR-VASE). ...............................................................................................................120 

 



 

xix 
 

List of Tables 

Tables Page 

1.  Electrical and Thermal Properties of Crystalline Germanium (Ge). ........................... 29 

2.  Electrical and Thermal Properties of Bulk Silver (Ag). .............................................. 32 

 

  



 

xx 
 

List of Symbols 

Symbol  

°  Degree(s) 

   Amplitude Ratio 

   Phase Difference 

   Incident Zenith 

   Incident Azimuth 

   Absorptance, Attenuation Constant 

   Permeability 

   Permittivity, Emittance 

a   Period of Unit Cell 

d   Diameter of Hole 

incident  Incident Energy 

reflected  Reflected Energy 

absorbed  Absorbed Energy 

transmitted  Transmitted Energy 

   Reflectance 

   Transmittance 

L   Spectral Radiance 

T  Temperature 

h   Planck’s Constant 



 

xxi 
 

c   Speed of Light in Vacuum 

   Wavelength 

k   Boltzmann’s Constant 

E   Electric Field 

iM   Impressed Magnetic Current Density 

B   Magnetic Flux Density 

H   Magnetic Field 

iJ   Impressed Electric Current Density 

cJ   Conduction Electric Current Density 

D   Electric Flux Density 

evq   Electric Charge Density 

mvq   Magnetic Charge Density 

z  Distance to Interface 

n  Real Part of Refractive Index 

k  Imaginary Part of Refractive Index, or Extinction Coefficient 

   Angular Frequency 

p
  Plasma Frequency 

c   Electron Collision Frequency 

k   Direction of Propagation 

r   Position Vector 



 

xxii 
 

1   Real Part of Complex Dielectric Constant 

2   Imaginary Part of Complex Dielectric Constant 

®  Registered Trademark 

Ag   Silver  

Al   Aluminum  

Au   Gold  

C   Celsius 

CO2   Carbon Dioxide  

Cu   Copper  

Ge   Germanium  

K   Kelvin  

K   Potassium  

Na   Sodium  

O3   Tri-Oxide  

Si   Silicon  

SiO2   Silicon Dioxide  

sr  Steradian 

W   Tungsten  

 

  



 

xxiii 
 

List of Abbreviations 

Abbreviation 

1-D   One-Dimensional  

2-D   Two-Dimensional  

AFIT   Air Force Institute of Technology  

AFRL   Air Force Research Laboratory  

AR   Anti-Reflective  

BRDF   Bi-Directional Reflectance Distribution Function  

BSDF   Bi-Directional Scatter Distribution Function  

BTDF   Bi-Directional Transmittance Function  

cm  Centimeters  

CASI   Complete Angle Scatter Instrument  

CST   Computer Simulation Technology  

DRIE  Deep Reactive Ion Etching 

eV  Electron Volt 

far-IR   Far-Infrared  

FDFD   Finite Difference Frequency Domain  

FDT   Fluctuation-Dissipation Theorem  

FDTD   Finite Difference Time Domain  

FEM   Finite Elements Method xxi  

FEM-TD  Finite Elements Method in Time Domain  

FIB   Focused Ion Beam  

FIT-TD  Finite Integral Technique in Time Domain  



 

xxiv 
 

FMM   Fourier Modal Method  

FOV   Field Of View  

FTIR   Fourier Transform Infrared spectrometer  

FVTD   Finite Volume Time Domain  

HgCdTe  Mercury Cadmium Telluride  

HIPIMS  High Impulse Power Magnetron Sputtering  

InSb   Indium Antimonide  

IR-VASE  Infrared Variable Angle Spectroscopic Ellipsometer  

MCF   Material Characterization Facility  

mid-IR  Middle-Infrared  

mm  Millimeter 

nA  Nanoamps 

NIL   Nano-Imprint Lithography  

PC   Photonic Crystal  

PEC   Perfect Electric Conductor  

PMMA Poly(methyl methacrylate) 

RCWA  Rigorous Coupled Wave Analysis  

RIE  Reactive Ion Etching 

RF   Radio Frequency xxii  

RMS   Root Mean Square  

SEM   Scanning Electron Microscope  

SMS   Schmitt Measurement Services  

TE   Transverse Electric  



 

xxv 
 

TM   Transverse Magnetic  

μm   Micrometer, or Micron 

p-pol  P-polarized 
 
s-pol  S-polarized 



 

1 

 

 

 

SPECTRAL AND SPATIAL COHERENT EMISSION OF THERMAL RADIATION 

FROM METAL-SEMICONDUCTOR NANOSTRUCTURES 

I.  Introduction 

General Issue 

Thermal energy transfer consists of three modes of transport — conduction, convection, 

and radiation.  Conduction is due to a temperature gradient within and between matter 

leading to the transfer of thermal energy.  It occurs when adjacent molecules vibrate 

against one another, or as free electrons move between neighboring molecules.  

Convection is similar to conduction in that thermal energy is transferred between material 

mediums but different because it requires a dynamic environment, such as air or fluid 

flows.  Thermal energy transport via convection depends on the physical properties in the 

immediate vicinity of the volume.  Radiation encompasses thermal energy transport 

between bodies of matter without requiring an intermediate medium or direct contact.   

  Radiative properties of material surfaces, particles, and gases generally vary 

substantially over the electromagnetic spectrum.  Thermal radiation covers wavelengths 

between 0.1-100 microns (μm) [1].  For most practical engineering problems, the most 

significant implications can be realized from the visible to far-infrared (far-IR) 

wavelength range between 0.4-30 μm, as defined by [2].  Moreover, the middle-IR (mid-

IR) to far-IR wavelength range, from 3-30 μm as defined by [2], is where all finite 
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temperature biological materials and mechanical objects emit thermal radiation [3].  This 

frequency dependence is referred to as dispersion.  To account for these dependencies, a 

rigorous formulation will be required that takes into account electrical and thermal 

properties of materials and the boundary conditions that separate these mediums.  

Further, the physical properties of a material can vary significantly with temperature.  

The resistivity of a material, and subsequently the electrical and thermal conductivity, 

will change as temperature decreases or increases.  These changes in conductivity affect 

the electrical and thermal properties of matter to include a material’s complex index of 

refraction.  Therefore, a thorough understanding of the physical properties for a given 

material surface is needed to sufficiently predict and modify its radiative properties. 

Radiative transfer constitutes the quantitative calculation of electromagnetic 

energy exchanged between objects [1].  The way this energy interacts with those objects 

largely depends on the characteristics of the source, medium, and the material properties 

of the object being illuminated.  Thermal energy exchanges are generally described by 

the radiative transfer equation and the Planck blackbody distribution [1].  Radiation 

associated with a heated body is described as an example of incoherent radiation, both 

spectrally and spatially, where thermal energy transport is conceptualized as a particle.  

However, several recent experiments have experimentally demonstrated coherence 

properties associated with thermal radiation.  The discovery of new properties, such as 

coherence from thermally excited surface waves, associated with thermal radiation is 

partly due to new developments in experimental techniques that allow one to directly 

observe the near-fields [4].     
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The study of surface waves is commonly referred to today as plasmonics.  This 

topic has been around for a hundred years, dating back to the early 1900s.  Back then, 

much of the analytical computations were based on Rayleigh’s work on diffraction, and 

Zenneck’s and Sommerfeld’s work on surface waves [5].  Today, plasmonics 

encompasses a large part of the field of nanophotonics.  Further, the idea of using 

thermally generated surface waves to create resonant effects in the near-field is a recent 

advancement and shows promise in uncovering more properties not previously 

demonstrated in the past [4].  This recent development has inspired new designs for 

selective thermal emitters and other thermally pumped optical devices.  The utilization of 

thermally excited surface waves for coherent thermal radiation allows one to further 

exploit surface wave phenomena, and offers a new context for the application of 

plasmonics. 

One of the ways to take advantage of plasmonics and coherently affect the 

radiative properties of a surface is through micro- and nano-scale structuring of a surface 

or of the bulk of a material.  Layered media, where two or more different materials are 

layered together, is one example of altering the composition of a surface along one 

dimension to modify its radiative qualities [6-13].  Photonic crystals (PC) are another 

example where engineered structures whose material properties vary periodically in one, 

two, or all three dimensions result in unique optical properties absent or seldom found in 

nature [9, 14-22].  Metamaterials are another category of engineered structures that have 

generated a lot of attention due to their seemingly unnatural transmissive and reflective 

properties [23-27].  However, much of the research and literature on metamaterials 

focuses on radiative characteristics at radio frequency (RF) wavelengths.  This is due to 
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readily available and mature fabrication techniques, as well as affordable implementation.  

Less research has been accomplished at optical frequencies primarily due to the increased 

difficulty in fabrication at micrometer (μm) and nanometer (nm) scales.  An even smaller 

fraction of this research has been focused on thermal radiative properties that take 

advantage of thermally excited surface waves [3, 10, 16, 28-31]. 

Problem Statement 

In this thesis, the ability to selectively affect the thermal radiative properties of a surface, 

both spectrally and directionally, through the use of micro- and nano-structured materials 

will be designed for and demonstrated experimentally.  Polarization and angular 

sensitivities to incident light at room temperature will be investigated.  In addition, the 

effects of thermally excited surface waves on spectral emittance will be determined over 

mid- and far-IR wavelengths, from 3-19 μm as defined by [2], while each sample is 

heated to various high temperatures. 

Methodology  

Design of the photonic nanostructures in this work will involve modern modeling and 

simulation techniques to help complement rigorous analytical calculations, where 

applicable.  Two thermal emitter designs will be proposed, fabricated, and experimentally 

analyzed – a 1-D multilayer resonator and a 3-D hybrid PC-multilayer, or PC-multilayer 

for short.  Rigorous analytical solutions, complemented by Computer Simulation 

Technology (CST) electromagnetic modeling software, will be used for the design of the 

multilayer structure.  For the 3-D hybrid structure, computer simulations through CST 
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will be utilized for this more complex geometrical problem where a PC hole array will be 

embedded inside a multilayer. 

Upon completion of the analytical design, fabrication efforts will be accomplished 

using Air Force Research Laboratory (AFRL) facilities and resources.  The multilayer 

design will use a High Impulse Power Magnetron Sputtering (HIPIMS) deposition 

technique to deposit the constituent materials.  Fabrication of the hybrid PC-multilayer 

will involve both the HIPIMS deposition and a focused ion beam (FIB) milling tool.  

Tools such as a scanning electron microscope (SEM), Zygo Interferometer, and Zeiss 

optical microscope will be used to continually verify that fabricated structures meet 

design specifications. 

Reflectance measurements will be taken using a J. A. Woollam Infrared-Variable 

Angle Spectroscopic Ellipsometer (IR-VASE) to characterize how light is scattered at 

various IR wavelengths.  The IR-VASE can also make spectroscopic ellipsometry 

measurements.  Spectroscopic ellipsometry at room temperature will be used to verify 

layer thicknesses and derive the optical constants of the constituent materials.  These 

optical constants will be compared to bulk material values found in literature and will 

help to understand the optical properties observed throughout this study.  

Further, the samples will be thermally heated to spectrally analyze the angular 

emittance characteristics at various high temperatures.  This will be accomplished by 

making IR radiance measurements using an in-house emissometer assembly and MR-154 

Bomem Fourier Transform Infrared spectrometer (FTIR).  Subsequently, spectral and 

angular emittance can be derived from these radiance measurements to investigate the 
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effect of thermally excited surface waves on the radiative properties of each plasmonic 

structure. 

Implications/Applications 

Many applications can benefit from research in thermal radiation modification.  Most 

notably, significant implications are possible for solar cell technology, solar energy 

harvesting, and solar absorbers/reflectors.  The anti-reflective (AR) coating industry can 

benefit from frequency selective films that help eliminate unwanted reflections.  These 

AR coatings have applications in products ranging from optical components in a 

laboratory, to displays on flat-screen monitors and cell-phones. 

Thermal management applications can also be realized from radiative cooling of 

buildings to almost any electronic device requiring isolation or dissipation of thermal 

radiation.  Having better thermal control of a building will save on energy costs.   

Overheating caused by thermal energy generation is a major source of device failure in 

the electronics domain.  Also, since conductive and convective thermal energy transport 

is not possible in a space environment, thermal management problems on space vehicles, 

where radiative cooling is dominant, can directly benefit from this research.   

Preview 

Chapter II will provide a general theoretical background on key topics to be discussed in 

later chapters.  Chapter III discusses relevant citations pointing to past works and recent 

literature, where appropriate.  Chapter IV describes the methodology used in designing, 

fabricating, and characterizing both plasmonic nanostructures — the multilayer resonator 

and hybrid PC-multilayer.  Chapter V discusses the measurements captured and analyzes 
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the implications of the observed data.  Chapter VI summarizes the findings of this study 

and makes recommendations for future research opportunities.  Appendix A discusses 

initial fabrication results for a 3-D laser lithography tool pursued during the course of this 

thesis and other nanofabrication topics.  Appendix B presents supplemental IR-VASE 

measurements and modeling results.   
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II. Theoretical Background 

Chapter Overview 

This chapter provides a broad theoretical background on conservation of energy, 

electromagnetic theory, thermal radiation, and surface waves.  Relevant citations have 

been provided to supplement a given discussion or offer a resource for a more detailed 

development of a specific topic. 

Conventions 

Due to a multitude of nomenclature and convention variations found in literature, a few 

assumptions are made here for clarity.  Following the Fresnel convention [32], reflection 

and transmission will be viewed as general processes, while the numerical measurements 

made on a sample will be referred to as the reflectance and transmittance, respectively.  

Emittance is the ratio between the exitance of an actual source, and the exitance of a 

blackbody at the same temperature.  The distinction between “emittance” and 

“emissivity” is not always clear, and both are used interchangeably in literature [33].  For 

consistency, the term “emittance” will be used throughout this work.   

In addition, a distinction between transverse electric (TE) and transverse magnetic 

(TM) linear polarizations is in order.  In electromagnetics, TE waves refer to field 

configurations whose electric field components are transverse to a given direction, 

typically chosen as the direction of propagation.  Similarly, TM waves would have 

magnetic field components transverse to a chosen direction [34].  In physics, a Fresnel 

convention is commonly used where a TE wave refers to a field configuration where the 

electric field components are orthogonal to the plane of incidence [32].  Thus, the TM 
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wave would have its electric field components parallel to the plane of incidence.  To 

avoid confusion, the Fresnel convention for linearly-polarized waves will be assumed in 

this thesis. 

Conservation of Energy and Kirchhoff’s Law 

On a macroscopic level, energy is always conserved.  Assuming that a surface is in 

thermal equilibrium with its environment, conservation of energy requires that the 

incident energy ( incident ) be either reflected ( reflected ), absorbed ( absorbed ), or 

transmitted ( transmitted ):  

Equation 1  

 .incident reflected absorbed transmitted     (1) 

Dividing both sides of the equation by incident  results in  

Equation 2  

 1       (2) 

where   is the reflectance,   is the absorptance, and   is the transmittance.  For an 

opaque surface, no transmitted radiation is expected in theory.  Therefore,   is equal to 

zero resulting in  

Equation 3  

 1 .    (3) 

According to Kirchhoff’s law, in thermal equilibrium, the emittance   is equal to the 

absorptance  , yielding the following equation for emittance  

Equation 4  

 1 .    (4) 
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In the far-field regime, a blackbody source follows a Planckian distribution, 

providing an upper limit of the overall spectral exitance of a source in thermal 

equilibrium at a given temperature.  Exitance is the amount of power per unit area that 

leaves a surface.  The actual exitance or radiance curve for a real thermal source will be 

bounded by the corresponding theoretical limit of a Planckian distribution at the source 

temperature.   Radiance is another radiometric quantity that is bounded by this theoretical 

limit and can also be used to describe a thermal source.  Radiance L  is the amount of 

power radiated per unit projected source area, per unit solid angle leaving a surface 

Equation 5  

 
2

5 / 2

2( , , ) ,
( 1)hc kT

hc wattL T
e cm sr m 

 
 

 
  

   
 (5) 

where   is the incident zenith,   is the incident azimuth, T is the source temperature, h  

is Planck’s constant, c is the speed of light in vacuum,  is the wavelength, and k  is 

Boltzmann’s constant.  The behavior of this radiation spectrum and relationship to a 

blackbody can be partly described by the source’s emittance .  The formal definition of 

emittance is a ratio between the exitance, or radiance, of the actual source and that of a 

blackbody at the same temperature [2].  Thus, emittance is always less than one for actual 

thermal sources and can be defined as follows for a given solid angle 

Equation 6  

 
( , , )( , , )
( , )bb bb

L TT
L T




 
  


  (6)  

where Lλ is the source radiance, Lbb is the blackbody radiance, λ is the wavelength, T is 

the source temperature, and θ and ϕ describe the direction of propagation of radiation 

with respect to the surface normal as illustrated in Figure 1.  A blackbody source will 
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always have an emittance 1   for all wavelengths.  A selective radiator is a source 

whose emittance will vary spectrally. 
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Figure 1.  Illustration of the direction of propagation of radiation being emitted from a surface in 
spherical coordinates.  Both θ and ϕ are measured with respect to the local coordinate system 
constructed from the surface normal. 

 

Electromagnetic Theory and Constitutive Relations 

When looking at small distances away from a source with respect to wavelength or when 

the feature sizes of a structure are on the order of, or smaller than, a wavelength, 

conventional electromagnetic theory can be applied and observed near the boundary 

conditions of a given problem.  This zone is commonly referred to as the near-field, or 
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near-zone, and can be quantified to within an order of magnitude, or less, of the design 

wavelength.  When the distance away from a source is much greater than a wavelength, 

or the feature sizes of a structure are much larger than a wavelength, namely when 

looking as sizes greater than 
2( )distance


, thermal energy exchanges are typically 

described by the radiative transfer equation and the blackbody Planckian distribution 

where thermal energy transport is conceptualized as a particle, called a photon [1].  This 

regime is commonly known as the far-field, or far-zone.   

In the far-field, thermal radiation is traditionally considered spectrally and 

spatially incoherent.  In contrast, radiative transfer from laser radiation is considered 

coherent, and exhibits high directionality and quasi-monochromatic emission.  However, 

coherent thermal emission was recently observed for the first time in the far-field by 

Greffet et al. [35] in 2002.  Greffet et al. showed that angularly selective emission was 

possible by ruling a grating on a SiC substrate where surface waves could be supported 

and coupled to propagating modes observable in the far-field.  To understand coherent 

thermal radiation and this coupling in the near-field, an electromagnetic approach is 

needed. 

The theoretical concepts central to the study of electromagnetics are described by 

a set of basic laws (Faraday’s law, Ampere’s law, and Gauss’ law, among others) that 

came about through experiment in the nineteenth century [34].  James Clerk Maxwell 

combined these original theoretical concepts into a set of equations that describe the 

physical laws that govern electromagnetic fields, both electric and magnetic.  These 

equations are known as Maxwell’s equations.  In Maxwell’s equations, the electric and 
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magnetic fields are described with vector quantities, having both magnitude and 

direction.  The differential form of Maxwell’s equations is shown here with fictitious 

magnetic sources, iM  and evq , included [34]. 

Equation (7) was derived from Faraday’s law with an added magnetic 

displacement current density /B t   term introduced by Maxwell and can be written as  

Equation 7: Maxwell’s Equation 

 i
BE M
t


   


 (7) 

where E is the electric field (volts/meter), iM  is the impressed magnetic current density 

(volts/square meter),  and B  is the magnetic flux density (webers/square meter). 

Equation (8) was derived from Ampere’s law and can be written as  

Equation 8  

 i c
DH J J
t


   


 (8) 

where H  is the magnetic field (amperes/meter), iJ  is the impressed electric current 

density (amperes/square meter), cJ is the conduction electric current density 

(amperes/square meter), and D  is the electric flux density (coulombs/square meter).  The 

electric and magnetic field equations, shown in Equation (9) respectively, were derived 

from Gauss’ law and can be written as  

Equation 9  

 ev

mv

D q

B q

 

 
 (9) 
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where evq  is the electric charge density (coulombs/cubic meter) and mvq  is the magnetic 

charge density (webers/cubic meter).  The magnetic sources, iM  and evq , are considered 

fictitious since they are not physically realizable but they provide a numerical balance for 

aiding in mathematical solutions to Maxwell’s equations.  A mode is a particular 

electromagnetic field configuration that is a solution to Maxwell’s equations and 

associated boundary conditions.  Typically, there are many field configurations that 

satisfy the conditions and these are usually referred to as modes [34].   

When a material is subjected to electromagnetic fields, charged particles present 

in the material will interact with the electromagnetic field vectors.  Two of the 

macroscopic constitutive relations that exist to account for this behavior involve the 

electric and magnetic flux densities, D  and B , respectively.   Assuming linear, 

homogeneous, and isotropic media, the electric and magnetic fields are related to the 

electric and magnetic flux densities by 

 
D E

B H








 (10) 

where   is the permittivity and the   is the permeability of the medium.  These 

constitutive parameters are used to characterize the electrical properties of a material and 

are generally a function of the applied field strength, the position within the medium, the 

direction of the applied field, polarization, and the frequency of operation [34].  

Furthermore, materials whose constitutive parameters are functions of frequency are 

referred to as dispersive.  Dispersion is inherent in all real materials to some degree.   
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Thermal Radiation 

Electromagnetic theory supplies a framework for determining the observed optical 

properties from surfaces of various materials.  Understanding the wave nature of light 

becomes critical when considering radiative energy transfer at micro- and nano-scales, 

where the size of the structures is comparable to the wavelength.  At these length scales, 

only through electromagnetic theory can polarization, coherence, and radiative energy 

transfer be considered in detail [1].  The idea of describing thermal radiation using 

electromagnetic theory dates back as far as the early 1900s, when Hendrik Lorentz 

derived the thermal radiation from a random current density in a series of conferences  at 

Columbia University [4].  In the 1950s, Rytov developed electromagnetic models for 

thermal radiation that were analogous to the Langevin model of Brownian motion [36, 

37].  These electromagnetic descriptions of thermal radiation were considered from a 

fluctuational electrodynamics point of view and link Maxwell’s equations to thermal 

radiation emission.  Fluctuational electrodynamics characterizes a thermal source using 

the fluctuation-dissipation theorem (FDT) where thermal radiation comes about from a 

superposition of contributions from fluctuating current densities at a given point in free 

space [33].  Subsequently, a finite spectrum is defined for a random current density that 

appears as a stochastic source in Maxwell’s equations.  Thus, FDT provides a bridge 

between electromagnetic theory and emission of thermal radiation which can be used to 

analytically verify coherent emission of thermally emitted fields.  For more information 

on derivation and application of FDT, see [1, 29, 33, 37].  
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Surface Waves 

In classical electromagnetic theory, surface waves do not propagate to the far-field 

because they are bound to interfaces.  However, near-field energy transfer through these 

surface modes is possible given the right boundary conditions.  This energy transfer has 

been referred to as “radiation tunneling” in some cases and leads to heat transfer in the 

near-field that exceeds that of a blackbody [1, 4].  Using structuring, the right boundary 

conditions can be introduced to couple the energy from surface waves in the near-field to 

the propagating radiation observed in the far-field.   

Surface waves can be thought of as collective oscillations of electrons that 

introduce surface modes.  These surface modes are evanescent and are typically 

neglected since their amplitude decreases away from the interface on wavelength scales.  

Surface waves that result from incident electromagnetic fields causing resonant 

polarization oscillations in the material are called surface polaritons [38].  At an interface 

with a dielectric, this is due to coupling of the electromagnetic fields with optical 

phonons and these resonant oscillations are known as surface-phonon polaritons.  The 

optical properties of metals can be described by a plasma model where a free-electron gas 

is assumed against a fixed background of positive ion cores.  Therefore, at an interface 

with a metal, coupling with the electromagnetic field results in plasma oscillations called 

surface-plasmon polaritons.  In this section, surface-plasmon polaritons, or surface 

plasmons for short, propagating along a plane interface will be discussed. 

 Surface waves are captured in Maxwell’s equations where surface waves 

propagate along the interface with evanescent fields decaying exponentially into both 

mediums.  Figure 2 shows a schematic representation of a surface wave at the interface 
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between a medium that supports surface waves, and a free-space medium.  The wave 

amplitudes decay exponentially with distance from the interface with attenuation constant 

  and distance to the interface z, as shown in Figure 2.   
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Figure 2.  Schematic representation of a surface plasmon at the interface between a surface that 
supports surface waves (Medium 1) and free space (Medium 2).  The wave amplitudes decay 
exponentially with distance from the interface with decay constant   and distance from the 
interface z. 

 

 TE and TM polarization states can exist for surface waves [39].  For TE (s-

polarized or s-pol) surface waves, the electric field is perpendicular, or transverse, to the 

plane containing the interface.  For a TM (p-polarized or p-pol) surface wave, the electric 

field is parallel to the plane containing the interface.  Since non-magnetic materials are 

assumed at optical frequencies, TE-polarized surface waves are not supported [38].  A 

diagram of a TM surface wave supported by bare metal is shown in Figure 3.   
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Figure 3.  Illustration of a transverse magnetic (TM) surface wave on a bare metal interface.  
 

Designing a Thermal Emitter 

Designing selective thermal emitters is a multi-disciplinary problem.  It requires 

knowledge in electromagnetics, thermodynamics, material science, electrodynamics, and 

mechanics.  Multiphysics simulation programs such as COMSOL, CADFEM, and CST 

can be utilized to capture the numerous physical phenomena and their interactions to help 

complement an analytical development.  The aforementioned programs have frequency 

domain solvers and utilize a numerical technique called the Finite Elements Method, or 

FEM.  However, due to varying material and geometric properties in some 

electromagnetic problems, this may not be the most efficient method depending on a 

given material.  For example, time-domain techniques such as Finite Difference Time 

Domain (FDTD), Finite Integral Technique in Time Domain, (FIT-TD), Finite Volume 

Time Domain (FVTD), and Finite Elements Method in Time Domain (FEM-TD) are 

preferred when dealing with non-linear materials [40].  In general, FDTD software 

programs like Lumerical are typically chosen for their relative simplicity and speed in 

calculation when it comes to non-linear materials, or more complex geometries [40].   

Frequency domain methods, like Finite Difference Frequency Domain (FDFD), are 

typically not used unless material dispersion is strong.  FDFD can also be utilized when 
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time domain methods become too expensive or inaccurate.  The flagship of CST’s many 

solvers is based on the Finite Integration Technique (FIT) but only CST’s Frequency 

Domain solver is capable of illuminating and evaluating off-normal incident angles. 

A rigorous analytical technique from first principles can also be used to design a 

thermal emitter.  A transfer matrix method can be implemented by discretizing 

Maxwell’s equations, but this approach is limited in that the initial excitation can only be 

monochromatic.  Rigorous coupled-wave analysis (RCWA), also called the Fourier 

Modal Method (FMM), numerically solves for the diffraction of periodic structures but 

offers an efficient way to evaluate the electromagnetic fields over a wide angular range 

and spectral bandwidth.  It is an exact solution of Maxwell’s equations for the reflected 

and transmitted electromagnetic fields.  A full derivation of the RCWA solutions, starting 

with Maxwell’s equations, can be found in [41] and [42].  From these calculated fields, 

diffraction efficiencies by grating structures or uniform homogeneous multilayers can be 

derived.  The RCWA method assumes ideal coherence and an infinitely periodic 

structure.  This rigorous technique uses a layer-by-layer construct to effectively take 2-D 

slices of a given structure and approximate its geometric profile.  The RCWA algorithm 

is widely used for its good convergence and simple implementation.  The implementation 

used in this work follows a modified formulation of the RCWA algorithm introduced by 

Moharam and Gaylord (1986) [42] but leverages a numerical adaptation provided by 

Lifeng (1996) [43] that allows for faster convergence of the RCWA method. 
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Scatterometry 

To gain physical insight into phenomena related to optical observables, scatterometry can 

be utilized.  Optical scatterometry is a characterization technique that measures the 

directional scattered radiation from a surface.  Surfaces such as those constructed of PCs 

or metamaterials can have unique optical properties seldom found in natural materials.  

The optical signatures measured will largely be determined by the characteristics of that 

unique surface, such as roughness, particulates, defects, and surface-bulk interactions.  

Traditionally, these measurements encompass both reflected and transmitted signatures 

with attention towards angle-of-incidence sensitivity.   

Spectroscopic Ellipsometry 

The technique used for material deposition has a significant impact on the optical 

constants of that material.  Since all evaporated films are amorphous to some degree, the 

resulting microstructure of the material will affect the way light interacts with the 

material.  Ellipsometry measures a change in polarization as light propagates through a 

material.  As light becomes reflected, transmitted, or absorbed due to the material 

structure, the polarization change can be represented using two variables, the amplitude 

ratio   and the phase difference  .  The measured response of these variables depends 

on the optical properties and thickness of each individual material, to include the 

substrate for translucent structures.  This technique can be used to not only extract the 

optical constants of a given material, but also to estimate the thicknesses of those material 

layers.  For an in-depth discussion on determining optical properties by ellipsometry, see 

[44]. 
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Summary 

The presented background theory provides a basis for undertaking the design, fabrication, 

and characterization of infrared nanoplasmonic structures.  Relevant publications were 

highlighted for further in-depth background into the subject matter.  A look at recent 

literature in the next chapter will offer context to this research problem and provide a 

guide through previous investigations in this area.   
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III. Literature Review 

The ability of complex media and metamaterials to coherently affect thermal radiative 

properties by means of thermally excited surface waves has only recently been explored 

within the last two decades.  This is partly due to advancement in fabrication techniques 

and near-field thermal microscopy, leading to more investigations to further understand 

the influence of patterning at micro- and nano-scales on thermal radiative properties.  The 

scope of this review encompasses those selective emitters that leverage the coherence 

properties of thermal radiation, and subsequently result in radiative transfer observed in 

the far-field.   

Review Papers 

Scklover et al. (2008) [45] extensively discusses many published high-temperature 

optical structure designs with an eye toward practical applications in environments of 

extreme temperature.  In some cases, the optical structures were heated in excess of 1000 

degrees (°) Celsius (C).  A review published by Fu and Zhang (2009) [27] focused on 

thermal radiative properties of metamaterials and other nanostructured materials.  Fu and 

Zhang were interested in these structures for applications in radiative energy transfer and 

energy conversion systems.  Soukoulis and Wegener (2011) [26] describe past 

experimental achievements and discuss the future challenges associated with photonic 

metamaterials.   



 

23 

 

Relevant Research 

Coherent thermal emission has been demonstrated from numerous types of structures of 

varying complexities.  Planar multilayer structures, from a bi-layer to truncated PCs have 

been proposed [6-12, 14, 15].  Several authors have experimentally demonstrated 

coherent thermal emission from thermally excited surface waves using 3-D structures [3, 

16, 18, 28, 29, 35, 46, 47].  Also, several discussions of surface plasmons at metal 

interfaces and in thin films can be found in [38, 48, 49].    

Among the planar coherent thermal emitters mentioned above, the designs that 

were based on interference effects, versus thermally exciting surface waves, included 

Kollyukh et al.’s (2003) [50] parallel plate structure using semiconductors and various 

multilayer resonator designs with highly reflective coatings [9, 11, 12, 30, 51].  The 

majority of these multilayer resonator designs incorporated complex reflective layers 

consisting of Bragg reflectors or PCs [12, 30, 51].  The remaining two designs utilized a 

simple tri-layer structure using a metal as the reflecting boundaries of the resonant cavity 

[9, 11].  Of these simpler tri-layer designs, only one of these papers investigated angle-of-

incidence and polarization sensitivities while considering a gold- silicon dioxide-gold 

(Au-SiO2-Au) resonator [11].  Figure 4 shows the calculated angular emittance of a Au-

SiO2-Au tri-layer resonator for (a) TM- and (b) TE- polarized waves.  Wang et al [11] did 

not thermally heat this structure.   
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Figure 4. Calculated angular emittance of a Au-SiO2-Au tri-layer resonator for (a) TM and (b) TE 
polarizations.  The triangles and circles represent the measured reflectance dips obtained by an 
FTIR spectrometer and a laser scatterometer, respectively.  From [11]. 
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Both of the previous tri-layer designs used SiO2 as the transparent medium 

between the reflective layers of the resonant cavity.  However, their analysis and 

performance was limited to the near-IR (as defined by [2]) since the transmission range 

of the dielectric SiO2 is limited to approximately 180 nm to 2.2 μm (3.5 μm for 

crystalline quartz).  In this thesis, emission in the mid- to far-IR wavelength range will be 

designed for, requiring different materials to be considered and utilized.  Furthermore, 

broader resonances are preferred for those applications where higher bandwidth is 

desired.  Lastly, near-isotropic emission at specific design wavelengths, invariant to 

incident angles of radiation, will be investigated in this thesis. 

Summary 

This literature search is not meant to be an all-inclusive review but provides some 

background on earlier examinations into the design, fabrication, and characterization of 

high-temperature optical structures.  The references to past and recent literature provide a 

guide through previous investigations in this area and offer context to this research 

problem.  Given this perspective, the approach and processes chosen for further 

investigation of coherent thermal emission will be explained next. 
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IV. Methodology 

Chapter Overview 

The objectives of this study are to design, fabricate, and measure the performance of a 

nanostructured surface that acts as a selective emitter, both spectrally and directionally, at 

infrared wavelengths of interest when thermally excited.  The mid-IR to far-IR 

wavelength band, from 2-30 μm, as defined by [2], is where all finite temperature 

biological materials and mechanical objects emit thermal radiation.   Hence, mid-IR 

wavelengths were chosen as the design wavelengths of interest given their relevance in 

practical thermal radiation emission and detection problems.  The thermal emitters were 

also expected to perform in a high temperature environment, up to 900 Kelvin (K), so the 

constituent materials were required to be thermally stable when heated.  This made high 

melting points and thermally matched expansion coefficients between constituent 

materials necessary to prevent destruction and delamination of the samples.  In addition, 

this work took an emphasis on robust designs that can be reproduced over large-scale 

surface areas.   

The optical structures discussed here have scales of periodicity that are on the 

order of the design wavelength in the mid- to far-IR regime.  The words “on the order of 

the design wavelength” are differentiated here to distinguish PC structures from 

metamaterials.  The term “metamaterials” is reserved for nano-structured materials with 

sub-wavelength features that are less than 1/10 the design wavelength.  This is done so 

that designed effects are not attributable to Bragg diffraction.  However, note that not all 

research entities use this same demarcation in terminology.   
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Two thermal emitter designs are proposed in this work – a truncated multilayer 

resonator and a hybrid PC-multilayer.  Technically, these structures would fall under the 

metamaterial umbrella owing to the sub-wavelength thicknesses of each material layer 

(sub-wavelength in 1-D).  To avoid superfluous terminology, the word “metamaterial” 

will be left out for the remainder of this document.  The methodology behind each of 

these thermal emitter designs is described below in detail with associated fabrication and 

characterization techniques. 

Truncated Multilayer Resonator 

The first thermal emitter design is a truncated resonator design based on a multilayer 

resonator.  This planar structure was chosen for its relative ease in fabrication while still 

achieving coherent thermal radiative properties through wave interference effects.  The 

resonant cavity is formed by sandwiching a transparent medium between two reflective 

mediums.  One of the reflective mediums is optically thick, while the other is optically 

thin (thickness below intrinsic penetration depth).  Figure 5 shows an illustration of a 

truncated multilayer resonator. 

 

 

Figure 5.  Illustration of a truncated multilayer resonator. 
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Constituent Material Properties 

At optical frequencies, use of a lossy (high attenuation) metal like tungsten (W), although 

very appealing given its high melting point (~4000 K) and low thermal expansion 

coefficient, would have resulted in broader spectral resonances then those observed in 

low-loss metals such as silver (Ag) and Au.  As previously mentioned, the material 

properties of dielectrics, semiconductors, and metals are temperature dependent.  Optical 

properties of many materials are often not well characterized in literature, especially with 

respect to high temperatures.  Often, different results are reported from different sources 

for the same material.  Therefore, to account for these temperature sensitivities, two 

models will be used to predict the optical properties at temperatures at and above room 

temperature – a temperature-dependent Sellmeier equation and the free-electron/Drude 

model.   

A semiconductor, germanium (Ge), was the material chosen for the transparent 

medium of the resonant cavity for its appealing inherent material properties and expected 

performance enhancement while operating at high temperatures.  Germanium is a high 

refractive index semiconductor that is used in many infrared applications, from substrates 

for optical filters and lenses to attenuated total reflection prisms for spectroscopy [52].  

Its transmission range is between 1.8 and 23 μm, minimizing attenuation of incident 

radiation in this medium.  Representative values of thermal expansion, melting point, 

electrical conductivity, and thermal conductivity for crystalline Ge are given in Table 1. 
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Table 1.  Electrical and Thermal Properties of Crystalline Germanium (Ge). 

 Crystalline Germanium (Ge) 
Thermal Expansion Coefficient (per K) [52] 6.1 × 10-6 

Melting Point (K) 1211 
Electrical Conductivity (S/m) [34] 2.227 

Thermal conductivity (Watts/m K) [52] 77 
 

Since these thermal emitters would be tested at temperatures higher than room 

temperature (~294 K), temperature-dependent optical constants were desired for 

germanium.  Barnes and Piltch (1979) [53] calculated temperature-dependent coefficients 

from accepted empirical optical constants for the Sellmeier equation 

Equation 10  
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where n is the real part of the refractive index, and A, B, C, D, and E are Sellmeier 

coefficients.  Using temperature-dependent values of refractive index n, Barnes and 

Piltch calculated the following values for the Sellmeier coefficients:  

Equation 11  
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Potter (1985) [54] evaluated the Sellmeier equation at room temperature (291 K) over a 

large range of infrared wavelengths and these data can be found in Palik’s Handbook of 

Optical Constants for Solids (1985) [44].   

Figure 6 compares the calculated refractive index for Ge found using the 

Sellmeier equation at 294 K, 500 K, and 1000 K along with the measured refractive index 
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values published by Li (1980) [55] for intrinsic Ge at 500 K.  The measured and modeled 

refractive index values for Ge at 500 K are observed to be in close agreement with an 

average root mean square (RMS) of 0.0057. 

 

 

Figure 6.  Index of refraction for Germanium using a temperature-dependent Sellmeier equation 
versus measured values reported by Li [55]. 

 

Silver, exhibiting the highest electrical and thermal conductivities of all metals, 

was chosen for the reflective layers of the resonator.  High reflectivity is desired for sharp 

spectral responses of the cavity.  However, reflectivity of metals in the IR wavelength 

range is a decreasing function of temperature [18, 30, 56].  The reduction of reflectivity 

as temperature rises is lower at longer wavelengths (2% for aluminum, 10.6 μm, 925 K).  

At shorter wavelengths, reflectivity could reduce by as much as 30% (aluminum, 0.69 

μm, 925 K) depending on the metal and the temperature [56].  The reduction in 
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reflectivity with rising temperature at 0.69 and 10.6 μm for Ag, Au, sodium (Na), copper 

(Cu), potassium (K), and aluminum (Al) is shown in Figure 7.   

 

   
Figure 7.  Reduction in reflectivity with rising temperature at 0.69 (left) and 10.6 μm (right) for silver 
(Ag), gold (Au), sodium (Na), copper (Cu), potassium (K), and aluminum (Al).  From [56]. 

 

For metals like gold and silver, reduction in reflectivity with temperature rise is 

almost negligible, especially over the longer IR wavelengths.  This makes silver an ideal 

choice as a reflective boundary in high-temperature environments.   Representative 

values of thermal expansion, melting point, electrical conductivity, and thermal 

conductivity of bulk Ag are given in Table 2.   
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Table 2.  Electrical and Thermal Properties of Bulk Silver (Ag). 

  Bulk Silver (Ag) 
Thermal Expansion Coefficient (per  K) [52] 19.2 × 10-6 

Melting Point ( K) 1230 
Electrical Conductivity (S/m) [34] 6.12 × 107 

Thermal conductivity (Watts/m K) [52] 427 
 

A model was used to approximate the optical constants of silver at high 

temperatures.  This was accomplished by using a dielectric function given by the free-

electron/Drude model  

Equation 12  
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where  is frequency, p  is plasma frequency, and c  is electron collision frequency 

[56, 57].  As temperature increases, so does the electron collision frequency c  [56].  

This results in increased absorption of the metal at high temperatures which directly 

affects cavity losses.  The temperature dependence of the plasma frequency p  is very 

small due to volume expansion, consequently p
 
can be approximated as a constant [56].  

Thus, the silver dielectric function can be approximately modeled using the p = 8.28 eV 

and c  = (0.048/3001.3)T 1.3, where T  is temperature [30].  Figure 8 shows the real and 

imaginary parts of the complex dielectric function of silver at 294 K (room temperature) 

and 1000 K as calculated from the free-electron/Drude model from 1-10 μm. 
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Figure 8.  Real and imaginary parts of the complex dielectric function of silver at room 294 K (room 
temperature) and 1000 K as calculated from the free-electron/Drude. 

 

The complex dielectric constant   of a material is equal to the square of the 

complex index of refraction, determining the optical constants of the material.  The 

choice of using n ik  or ,n ik  where k  is the imaginary part of the refractive index 

(extinction coefficient), depends on the sign of the assumed plane-wave solution in 

Maxwell’s equations.  For this effort, a forward propagating wave is chosen to have the 

form ,jk re  where k is the direction of propagation and r is the position vector.  Thus, 

the n ik  convention will be chosen here.  The relationship between the real ( 1 ) and 

imaginary     ( 2 ) parts of the complex dielectric constant and the complex refractive 

index is  

 2
1 2 ( ) .i n ik       (14) 

From the free-electron/Drude model above, the real and imaginary parts of the dielectric 

constant were solved for over a range of IR frequencies at a given temperature T.  
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Accounting for the frequency-dependence of the complex dielectric constant yields the 

following expressions for the real and imaginary parts of the complex index of refraction 

as a function of frequency ,  
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Finally, temperature-dependent optical constants for silver were calculated at 

various high temperatures.  Figure 9 compares the complex refractive index of bulk Ag at 

room temperature to several high temperatures over a range of IR wavelengths.  

 

 

Figure 9.  Complex refractive index for Silver (Ag) using a free-electron/Drude model at 1000 K 
plotted with measured bulk values reported in Palik [44]. 
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Angular Reflectance and Emittance of Ag 

The calculated high-temperature optical constants for germanium and silver were then 

compiled into MATLAB® where RCWA formulations were used to solve for the 

electromagnetic fields of the truncated resonator problem.  The bottom silver layer must 

be opaque allowing negligible transmission of incident radiation through the cavity.  The 

typical skin depth of silver at optical frequencies is approximately 22-30 nm at room 

temperature.  In general, the skin depth of a metal increases as temperature increases and 

this is numerically observed to be most prevalent at longer wavelengths [56].  For 

example at 10.6 μm, the skin depth of Ag monotonically rises from 26 nm near room 

temperature (300 K) to 55 nm near its melting point (1230 K) [56].  When metal is 

deposited, the atomic structure of the material is amorphous allowing electromagnetic 

energy to penetrate deeper into the metal than would be expected for a bulk metal.  A 

thickness between 200-300 nm of silver was targeted to ensure that the bottom reflective 

layer was predominantly opaque with respect to IR wavelengths.  

  The resonator is a planar structure made up of three uniform homogeneous 

layers, silver-germanium-silver (Ag-Ge-Ag).  Assuming the top silver layer is optically 

smooth, only the dominant specular reflection is considered and expected to dominant the 

scattering response of the structure.  The RCWA, implemented in MATLAB®, is set up 

to calculate bi-static specular reflectance (0th diffraction order) over a wide range of 

wavelengths and angles of incidence.  The top, optically thin Ag layer will have a TM 

polarized (p-pol) plane wave incident upon it from free space at an angle   measured 

from surface normal.  The RCWA method makes no approximation to the material 

properties of a given structure.  This allows the user to input modeled or empirical 
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complex refractive index values for all constituent materials, such as those calculated for 

high-temperature applications.   

After calculating the reflected and transmitted fields, a dispersion relationship can 

be generated showing the specular reflectance over a range of incident angles.  The p-pol 

specular reflectance for Ag at room temperature (294 K) between 0.1-10 μm is shown in 

Figure 10.  The plasma frequency of Ag, calculated by RCWA, is observed at about 350 

nm, which is in agreement with literature.  At longer wavelengths, high reflectance is 

observed to be ubiquitous as expected for a metal above its plasma frequency.  This is 

more easily visible in Figure 11 where a close-up of the spectral reflectance is shown 

between 0.1-0.5 μm.   

 

       
Figure 10.  Calculated specular reflectance (p-pol) for Ag at 294 K (left) and 1000 K (right) from 0.1-
10 μm.  Specular reflectance at 294 K was calculated using complex refractive index from Palik [44].  
Specular reflectance at 1000 K was calculated using complex refractive index values using a Drude 
model. 

 

At finite temperatures above 0 K, the material properties of metals are known to 

not only vary spectrally, but also with increasing temperature.  The difference between 

the dispersions of Ag at 294 K and 1000 K is compared in Figure 10 where the optical 

constants for each temperature were acquired from Palik’s Handbook [44] and the Drude 
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model, respectively.  Note the decrease in reflectance at grazing incident angles as longer 

IR wavelengths are approached.  The plasma frequency of Ag is observed to shift 

towards shorter wavelengths, commonly referred to as “blue-shifted”, with the increase in 

temperature.  This is shown in Figure 11. 

 

      
Figure 11.  Calculated specular reflectance (p-pol) for Ag at 294 K (left) and 1000 K (right) from 0.1-
0.5 μm.  Specular reflectance at 294 K was calculated using complex refractive index from Palik [44].  
Specular reflectance at 1000 K was calculated using complex refractive index values using a Drude 
model. 

 

From conservation of energy, assuming an opaque structure with zero 

transmission allows absorption to be found using Equation (3), 1   .  Invoking 

Kirchhoff’s Law, emittance is assumed to equal absorptance    and subsequently the 

spectral angular emittance of the structure can be derived.  An example of the angular 

emittance of Ag at 1000 K over a range of IR wavelengths is shown in Figure 12.   
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Figure 12.  Calculated specular emittance (p-pol)  for Ag at 1000 K over two wavelength bands, 0.1-
10 μm (left) and 0.1-0.5 μm (right).  Specular emittance was calculated using complex refractive 
index values using a Drude model. 

 

This representation of the calculated spectral emittance expected from a structure 

over a wide range of incident angles will be used from here on out.  The original intent of 

this RCWA approach from [42] was to calculate the diffraction efficiencies for metallic 

surface-relief gratings made up of one material.  For this effort, multiple materials would 

be incorporated into a single design so the original code was modified to handle multiple 

materials, each with its own complex permittivity.  The RCWA code was validated by 

comparing its results to published analytical results and to those calculated using 

commercial software (e.g. CST and Essential Macleod).  Using this design tool, two 

multilayer resonator samples with differing Ge thicknesses will be proposed and analyzed 

in the next chapter. 

Fabrication 

There are a plethora of nano-fabrication techniques used to create micro- and nano-scaled 

optical structures, to include electron-beam lithography, direct laser writing, and other 

templating approaches [26].  Fabrication efforts from this work will be conducted using 
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both the AFIT Class 1000 Clean Room and AFRL facilities.  Known fabrication tools 

owned by AFRL at Wright-Patterson AFB include a Nanoscribe 3D laser lithography 

system, FEI Quanta dual-beam focused ion milling system, and Nanonex nano-imprint 

lithography (NIL) system. 

Material deposition will be accomplished in collaboration with the AFRL, 

Materials and Manufacturing Directorate.  Substrates consisted of p-type (boron doped) 

silicon (Si) wafers having Prime grade, 1-10  resistivity, and (100) orientation.  These 

Si wafers were acquired by AFRL from University Wafer.  For both thermal emitters, a 

HIPIMS deposition technique will be utilized for layering the Ag and Ge.  HIPIMS is an 

ionized plasma vapor deposition technique, capable of depositing dense, uniform films at 

room temperature [58, 59].  Material deposition was within a high-vacuum chamber, 

evacuated to a pressure below 1.0×10-6 Torr.  Figure 13 shows an SEM micrograph of the 

cross-section of a Ge sample deposited using the same conditions and equipment 

mentioned above.  A dense, columnar microstructure can be observed for HIPIMS-

deposited Ge [60]. 

 

 
Figure 13.  Scanning Electron Microscope (SEM) micrograph of the cross-section of a Ge sample 
deposited on a Si wafer and prepared by the Air Force Research Laboratory (AFRL) using a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique.  From [60]. 
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Hybrid PC–Multilayer 

A PC is a class of complex media in which the electromagnetic properties of the material 

are tunable over various frequencies and length scales.  Thirty years previous, 

Yablonovitch [61] and John [62] were credited with the novelty and experimental 

realization of PCs.  While some traditional views would only consider dielectric systems 

as PCs, this thesis includes metal-dielectric systems in the PC class of structures.  The 

optical structures discussed here have scales of periodicity that are on the order of the 

design wavelength in the IR regime so the term, PC, is chosen.  This section details the 

design and fabrication of a hybrid structure constructed of a hole array embedded inside 

of a truncated multilayer resonator.  Hence, for the remaining portion of this document, 

this structure will be referred to as a PC-multilayer.  An illustration of the PC-multilayer 

is shown in Figure 14. 
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Figure 14.  Illustration of a photonic crystal-multilayer hybrid structure constructed of a circular 
hole array embedded inside of a truncated multilayer resonator. 
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Design 

The RCWA approach used in designing the multilayer resonator is capable of handling 

periodic geometries only along one dimension.  The PC-multilayer has a periodic 

geometry (circular holes) in two dimensions.  Therefore, computer simulations through 

CST will be utilized for this more complex geometrical problem.  An illustration showing 

a finite portion of the PC-multilayer, as viewed from surface normal, is shown in Figure 

15, where a is the period between each hole and d is the diameter of each hole.   
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Figure 15.  Illustration of a photonic crystal-multilayer hybrid structure constructed of a square 
array of circular holes embedded inside of a multilayer, where a is the period between each hole and 
d is the diameter of each hole.  View is from surface normal of the structure.   

 

Fabrication 

Fabrication of the hybrid PC-multilayer structure will involve both HIPIMS deposition 

and a FIB milling system.  After HIPIMS material deposition, milling will occur using a 

FEI Quanta Dual Beam FIB system located in the AFRL Material Characterization 
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Facility (MCF).  This tool uses focused ions to ablate material away with high precision.  

Grayscale milling is possible, where a bitmap image can be loaded into the system to mill 

a predetermined pattern.  Depending on the scale of gray in the bitmap image, the FIB 

system will adjust its power accordingly.  Newer FIB systems are capable of generating 

patterns automatically through pattern generator tools.  Currently, the AFRL MCF does 

not have a FIB system equipped with a pattern generator, so the patterns to be milled for 

this effort will be generated manually.   

Reflectance/Ellipsometric Measurements 

The J. A. Woollam IR-VASE is capable of measuring reflection and transmission 

characteristics from a surface.  Transmittance measurements are limited to surface normal 

on this instrument.  Reflectance measurements can be taken from angles of incidence 

between 25-90° from wavelengths 1-40 μm.  Due to inherent noise of the system, the 

optimum wavelength range for analyzing reflection data will be from wavelenghts 1.7-20 

μm.  Due to the finite width of the samples, incident angles between 25-80° will be 

measured in 1° increments. 

The purpose of taking ellipsometric measurements is two-fold.  First, using J. A. 

Woollam modeling tools, the actual thicknesses resulting from the HIPIMS deposition 

process can be verified.  Second, using these same modeling tools, the material properties 

can be extracted from the ellipsometric measurements and provide a basis of comparison 

to bulk values published in Palik’s Handbook of Optical Constants of Solids (1985) [44] 

and other reported optical constants.  The models will be fit using preloaded materials 

from J. A. Woollam’s IR library.   The optical constants found in Palik’s extensive 
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inventory of materials are observed to be the most prevalent in literature.  Palik does 

quote some temperature-dependent optical constants, but these are sparse in comparison 

to room-temperature values due to the rarity of high-temperature investigations into such 

areas.   

Spectroscopic ellipsometric measurements will be made over a range of IR 

wavelengths using the IR-VASE on the sample substrate and constituent materials 

making up the multilayer resonator.  The advantages of IR-VASE include its wide 

spectral range from wavelengths 1.7-20 μm and the capability to acquire full 

ellipsometric measurements at multiple angles.  This enables the IR-VASE to determine 

both complex refractive index and complex permittivity for materials over its entire 

spectral range with high accuracy.  The thicknesses and effects of native oxides observed 

on each of the layers will also be investigated.   

Calculating Emittance 

Emittance associated with thermally heated structures will be derived from radiance 

measurements taken using an in-house AFIT emissometer.  This assembly consists of a 

rotation-controlled thermoelectric heating stage, MR-154 Bomem FTIR, and off-axis 

parabolic mirror.  Using this experimental setup, observations of the spectral and angular 

characteristics of a surface’s emittance will be made while a sample is thermally excited 

to varying degrees of high temperature. 

First, two calibration points for the MR-154 will be made using a calibrated 

blackbody.  This calibration set provides hot and cold temperature references that bound 

the expected brightness temperature for a given scene.  During calibration, the blackbody 
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will be positioned so that it fills the field of view (FOV) of the instrument.  This 

calibration technique is recommended by the Bomem user’s guide when the samples are 

expected to also fill the FOV [63].  This calibration method will be used for all 

measurements made during this experiment.  After calibration, each sample will be 

elevated in temperature to various high temperatures using a hot plate.  Using a 

thermocouple, the temperature of the sample’s surface will be verified before each 

radiance measurement.    

 If the source, or sample, being measured fills the entire FOV, the expected 

radiance contributions seen by the instrument will come from sample self-emissions and 

background reflections.  Assuming   variations (see Chapter II, Figure 1) and radiance 

of the path are negligible for this analysis, the measured radiance can be expressed as  

Equation 13  

 ( , , ) ( , , ) ( , , )meas samp back back samp sampL T L T L T        (17) 

where measL  is the measured radiance, backL  is the radiance of the background, sampL  is the 

radiance of the sample, backT  is the temperature of the background, sampT  is the 

temperature of the sample and   is the zenith angle as described in Chapter II, Figure 1.  

The background is assumed to be uniform in this calculation.  Utilizing Equation (4) for 

the sample reflectance and substituting Equation (6) in for the sample radiance, the 

equation for measured radiance now becomes  

Equation 14  

( , , ) [1 ( , , )] ( , ) ( , , ) ( , ).meas samp samp samp bb back samp samp bb sampL T T L T T L T             (18) 

Solving for ( , , )samp sampT    yields the following expression for emittance of the sample  
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Equation 15  

 
( , , ) ( , )

( , , ) .
( , ) ( , )

meas samp bb back
samp samp

bb samp bb back

L T L T
T

L T L T
  

  
 





 (19) 

As a result, emittance as a function of wavelength and angle can be calculated from the 

radiance measurements obtained from AFIT’s emissometer for a sample above the 

background temperature.  This operation will be carried out for each sample at several 

high temperatures above ambient. 

Summary 

The purpose of this chapter was to define the approach selected for the design, 

fabrication, and characterization of two thermal selective emitters.  The associated 

processes were briefly described for each of these phases.  With this in mind, the next 

chapter will follow-up with the resulting analytical designs for each thermal emitter.  

Fabrication results will be presented.  Finally, measurements for each sample will be 

analyzed and compared to those expected from theory. 
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V. Analysis and Results – Truncated Resonator 

Chapter Overview 

This chapter is split into three main sections.  The reflectance and emittance findings for 

the truncated resonator are discussed first, beginning with the final designs that would be 

carried forward to fabrication and measurement.  The second section reports the 

ellipsometric measurements taken for the constituent materials used in each design.  A 

comparison between derived optical constants and those acquired from published sources 

is made.  The third section highlights the design and initial fabrication results associated 

with the PC-multilayer.   

Truncated Multilayer Resonator Design 

Spectrally selective absorption centered at 6 μm was desired for this structure.  This mid-

IR wavelength was chosen since the temperature associated with a peak Planckian 

distribution at 6 μm is 483 K.  This temperature is practically realizable in a laboratory 

experiment and is still relevant with respect to those wavelengths (2-20 μm) where all 

finite temperature biological materials and mechanical objects emit thermal radiation [3].  

Thus, the original design called for a thick Ge layer for the middle transparent medium of 

the resonator around 740 nm.  However, due to the dynamic environment of the 

deposition process, the first sample came out with a Ge thickness closer to 240 nm.  The 

second sample had a 600 nm Ge layer.  Therefore, this section describes the design, 

fabrication, and characterization of two Ag-Ge-Ag resonating structures with layer 

thicknesses of 6-240-160 nm for one sample and 6-700-200 nm for the other.   
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Sample 1:  6-240-160 nm (Ag-Ge-Ag) 

A thickness between 150-200 nm of Ag was targeted to ensure that the bottom reflective 

layer was predominantly opaque with respect to IR wavelengths.  The thickness of the 

transparent medium made up of Ge was examined at 240 nm.  Several thicknesses were 

considered for the top, optically thin Ag layer.  Lee and Zhang’s (2006) [9] Ag-SiO2-Ag 

resonant cavity used a thickness of 22 nm for their top Ag layer but they wanted 15 nm.  

Wang et al.’s (2009) [11] cavities, constructed of Au-SiO2-Au, had thicknesses between 

21 and 30 nm.  Chang et al. (2009) used 11- and 15-nm thick Ag layer thicknesses on 

their Ag-SiO2-Ag thermal emitter.  To the best of the author’s knowledge, this is the only 

published work to utilize a top reflective layer that was below the penetration depth of the 

associated metal.   

A comparison of calculated angular emittance spectra of this truncated resonator 

with several different thicknesses from 6-50 μm for the top Ag layer is shown in Figure 

16.  In general, an increase in calculated angular emittance was observed as the thickness 

of the top Ag layer decreased, especially near normal at longer IR wavelengths.  For this 

effort, a thickness of 6 nm was chosen to analyze the effects of using an ultra thin layer of 

metal for the top reflective layer of the resonator.  This was also the thinnest Ag thickness 

achievable using the HIPIMS deposition technique.   Based on empirical results from this 

same equipment and deposition technique, thin layers of Ag below 6 nm tended to form 

“islands” of Ag particles causing a non-uniform film to develop [60].   
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Figure 16.  Comparison of the calculated angular emittance (p-pol) spectra of a Ag-Ge-Ag truncated 
multilayer resonator with varying thicknesses for the top, optically thin Ag layer. 

 

The resulting dispersions in the 2-10-μm wavelength band of interest expected for 

a 6-240-160-nm (Ag-Ge-Ag) resonating structure at 294 K (room temperature) and 500 K 

are shown in Figure 17 and Figure 18, respectively.  Increased emittance, centered at 2.75 

μm, was observed over a wider range of incident angles for Sample 1 when the 

temperature increased from room temperature to 500 K.   
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Figure 17.  Calculated angular emittance (p-pol) for a Ag-Ge-Ag resonating structure at 294 K (left) 
and 500 K (right) from 2-10 μm.  Thicknesses of constituent materials are 6-240-160 nm, respectively. 

 

        

Figure 18.  Calculated specular emittance (p-pol) for a Ag-Ge-Ag resonating structure at 294 K (left) 
and 500 K (right) from 2-4 μm.  Thicknesses of constituent materials are 6-240-160 nm, respectively. 

 

 

Sample 1:  Fabrication Results 

The truncated resonator design called for an opaque layer of Ag to be deposited first on 

the Si substrate.  This would ensure that negligible transmission would be expected 

through the multilayer.  Next, an IR transparent medium would be deposited made up of 

Ge.  This layer was designed for a thickness of 240 nm in the previous section.  Last, a 6-
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nm optically thin layer of Ag would be deposited to complete the cavity.  All three layers 

were deposited using a HIPIMS deposition technique.  An SEM micrograph of Sample 1 

at 100,000× magnification is shown in Figure 19.   

 

 

Figure 19.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) on a silicon 
substrate.  Ag and Ge layers were deposited via a High Power Impulse Magnetron Sputtering 
(HIPIMS) technique.  Micrograph was taken at 100,000× magnification and at an angle of 52° from 
surface normal. 

 

Since the micrograph was taken at an elevated angle (52° tilt), the absolute top 

and bottom of the structure could not be ascertained.  Thus, the exact dimensions could 

not be determined from the SEM alone for Sample 1.  Figure 20 shows a micrograph of 

Sample 1 at 75,000× magnification using a different SEM and at a different location on 
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the sample.  The yellow marked scales shown on the micrograph were made with the 

SEM dimensioning software and show measurement estimates for the total height of the 

structure.   

 

 

Figure 20.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) on a silicon 
substrate.  Measurements shown on the micrograph were made with the SEM showing several 
different estimats of the total height of the structure.  Ag and Ge layers were deposited via a High 
Power Impulse Magnetron Sputtering (HIPIMS) technique.  Micrograph was taken at 75,000× 
magnification and at an angle of 52° from surface normal. 

 

Based on the yellow scale bars, the bottom layer of Ag was estimated at 160 nm 

and the Ge layer was estimated at 240 nm.  Both the opaque Ag and transparent Ge layers 

were amorphous and exhibited a dense columnar microstructure.  The thickness of the 

optically thin layer of Ag on top of the Ge was not discernible.  However, the uniformity 
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of the top Ag layer appeared perturbed.  This was speculated to be a side-effect of the 

uneven geometry of the underlying columnar Ge layer on which it was deposited on. 

Sample 1:  Reflectance Measurements 

Reflectance measurements were taken using a IR-VASE owned by AFRL.  These 

reflectance measurements were made in 1° increments starting at a 25° incident angle and 

ending at 80°.  Spectral reflectance from wavelengths 1.4-20 μm for Sample 1 from 25-

80° in 1° increments is shown in Figure 21.   

 

 

Figure 21.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-240-160 nm) between 
1.4 and 20 μm.  Reflectance measurements were taken using a J. A. Woollam Infrared – Variable 
Angle Spectroscopic Ellipsometer (IR-VASE). 

 

An absorption band is clearly visible and centered at approximately 2.75 μm.  The 

reflectance dip is deepest near normal at 25° and decreases as a function of increasing 

incident angle as it approaches 80°.  Figure 22 shows a close-up of the reflectance dip due 
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to selective absorption from the resonating structure.  Ten-degree increments are shown 

here from 25-75°. 

  

 

Figure 22.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-240-160 nm) on silicon 
between 1.7 and 6 μm.   Reflectance measurements were taken using a J. A. Woollam Infrared – 
Variable Angle Spectroscopic Ellipsometer (IR-VASE). 

 

Assuming an opaque structure with zero transmission allows absorptance to be 

found using Equation (3), 1 ,    from conservation of energy.  Thus, the absorptance 

can be calculated from the measured reflectance values from the IR-VASE.  From 

Kirchhoff’s Law, emittance can be equated to absorptance    for a structure in 

thermal equilibrium.  Hence, the spectral angular emittance of the multilayer resonator 

can be described using the IR-VASE reflectance data.   A comparison between theoretical 

emittance results calculated through RCWA and experimental emittance results 

calculated from IR-VASE reflectance measurements is shown in Figure 23 for Sample 1. 
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Figure 23.  Comparison (p-pol) between theoretical emittance results (left) and experimental 
emittance results (right) found through measurements taken using a J. A. Woollam Infrared 
Variable Angle Spectroscopic Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-240-160 nm, respectively. 

 

The emittance peak was centered at 2.75 μm as expected but a broadening of the 

emittance band was observed.  Lower experimental emittance near normal at longer 

wavelengths from 8-10 μm was also observed when compared to theory.  Since bulk 

optical constants from Palik [44] were used to calculate the analytical results at room 

temperature for this comparison, it is possible that the deposited Ag and Ge may exhibit 

different material properties to some degree.  This will be explored later in this chapter 

when analyzing the spectroscopic ellipsometry measurements to derive the actual optical 

constants of the constituent materials.  Fabrication error may also be a culprit in the 

disparate results.  As an example, Figure 16 indicates a thinner top Ag layer leads to 

broader emittance bands.  It is possible the top Ag layer is even thinner than 6 nm.  

Another explanation for the broadened emittance band is the lack of a continuous top Ag 

layer. 
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Sample 2:  6-700-200 nm (Ag-Ge-Ag) 

The second Ag-Ge-Ag multilayer resonator, Sample 2, had thicknesses of 6, 700, and 200 

nm for the constituent materials, respectively.  The dispersions in the 2-20-μm 

wavelength band expected for Sample 2 at 294 K (room temperature) and 500 K are 

shown in Figure 24.  Decreased calculated emittance was observed near normal at the 7-

μm absorption band for this structure when the temperature increased from room 

temperature to 500 K.  At longer wavelengths above 15 μm, calculated emittance was 

significantly higher, especially towards grazing angles of incidence. 

 

       

Figure 24.  Calculated specular emittance (p-pol) for a Ag-Ge-Ag resonating structure at 294 K (left) 
and 500 K (right) between 2-20 μm.  Thicknesses of constituent materials are 6-700-200 nm, 
respectively. 

 

Sample 2:  Fabrication 

The Ag and Ge layers of Sample 2 were also deposited using a HIPIMS deposition 

technique.  An SEM micrograph of Sample 2 looking down along surface normal at 

45,000× magnification is shown in Figure 25.  Surface roughness of the top Ag layer 

again appeared negligible with respect to IR wavelengths. 
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Figure 25.  SEM micrograph of the top Ag surface of a Ag-Ge-Ag multilayer with thicknesses 6-700-
200 nm, respectively.  Ag and Ge layers were deposited via a High Power Impulse Magnetron 
Sputtering (HIPIMS) technique.  Micrograph was taken at 45,000× magnification. 

 

Sample 2:  Reflectance Measurements 

Reflectance measurements for this sample were also taken using the IR-VASE.  Spectral 

reflectance of this truncated resonator from 1.7-29 μm is shown in Figure 26.  As with 

Sample 1, these data were collected in 1° increments from 25-80° (from surface normal).  

Reflectance dips were observed at 2.6, 7.8, and 12 μm.  The absorption bands 

encountered at 2.6 and 7.8 μm are attributed to cavity resonances that are inherently 

reliant on the length of the cavity, specifically the thickness of the IR-transparent Ge 

medium where the cavity response is the primary means of spectrally selective 

absorptance.   
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Figure 26.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-700-200 nm) between 
1.7 and 29 μm.   Reflectance measurements were taken using a J. A. Woollam Infrared Variable 
Angle Spectroscopic Ellipsometer (IR-VASE). 

 

Ultimately, absorption around 12 μm will be attributed to an inherent property of 

the HIPIMS-deposited Ge.  Bulk Ge is not known to be absorptive at this wavelength.  

This absorption was evident in the reflectance results for the thinner Sample 1 (6-240-160 

nm) but not to the same degree seen in Sample 2’s results.  The stronger absorption seen 

in Sample 2’s measurements is thought to stem from a Ge layer that is approximately 

three times thicker relative to Sample 1’s Ge layer.  The amorphous microstructure of the 

deposited Ge may be the driver for this unexpected absorption.  Rationale for this 

speculation will be discussed later.   
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Figure 27 shows a close-up of the spectral reflectance from 1.7-15 μm in 10° 

increments between 25-75°.  The sharp increase (spike) in measured reflectance at 4.26 

μm is due to absorption of the carbon dioxide (CO2) molecule in the ambient air. 

 

 

Figure 27.  Spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-700-200 nm) between 
1.7 and 15 μm.   Reflectance measurements were taken using the J. A. Woollam Infrared Variable 
Angle Spectroscopic Ellipsometer (IR-VASE). 

 

Invoking Kirchhoff’s law again, spectral angular emittance is assumed to equal 

one minus reflectance.  Figure 28 shows a comparison between spectral emittance 

calculated with theory to that derived from spectral reflectance of Sample 2 measured 

using the IR-VASE. 
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Figure 28.  Comparison (p-pol) between the theoretical emittance results (left) and experimental 
emittance results (right) found through measurements taken using a J. A. Woollam Infrared 
Variable Angle Spectroscopic Ellipsometer (IR-VASE) for a Ag-Ge-Ag resonating structure with 
thicknesses 6-700-200 nm, respectively. 

 

There were three resonances observed between 2 and 20 μm, and centered at 1.6, 

2.64, and 7.75 μm.  The measured emittance band centered at 7.75 μm was five times the 

spectral bandwidth of the calculated emittance centered at 7 μm that used bulk optical 

constants from Palik [44].  Since this sample was deposited using the same equipment 

and conditions as Sample 1, it is also possible here that the optical constants of the 

HIPIMS-deposited Ag and Ge are different from those published in Palik.  Spectroscopic 

ellipsometry will be discussed next to verify the thicknesses of the constituent materials 

and derive respective optical constants to further investigate the cause of the differing 

results. 

Spectroscopic Ellipsometry 

Ellipsometric measurements were taken for Sample 1 from wavelengths 1.7-20 μm using 

the IR-VASE.  Using J. A. Woollam’s VASE32 software, models were fit to the 

ellipsometric measurements to extract the optical constants of the HIPIMS-deposited 
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materials.  The VASE32 modeling tool also helped to verify the thicknesses of the 

individual layers since layer thickness is one of many parameters that can be fit.   

The VASE32 software comes with a default library of models for common 

dielectrics, metals, and semiconductors applicable to IR wavelengths.  These models can 

be based on published material properties or empirical data.  Default Ge and Ag models 

from the IR library were used as a baseline for building a final model representative of 

the actual structure.  New models were generated for the HIPIMS-deposited Ge and Ag 

called “mcconnell ge 2” and “mcconnell silver 2”, respectively.  Figure 29 shows a 

screen capture of the layered structure used to model Sample 1 (6-240-160 nm) using 

VASE32 with associated thicknesses.   

 

 

Figure 29.  Screen capture from the J. A. Woollam VASE32 software of a modeled multilayer 
structure with associated thicknesses. 

 

The thinner top Ag layer (2.541 nm) was coupled to the bottom “mcconnell silver 

2” layer (1 mm) since they were the same material and this helped the convergence of the 

fitted model to the measured results.  Determining the thickness of the constituent 

materials requires that a portion of the IR radiation travel through the entire film and 

return back through the structure to the detector.  With the presence of absorption in 

Sample 1, this likely affected the layer thicknesses fit in the model.  Therefore, the layer 

thicknesses that are determined from a given model will not always be exact.   The 

ellipsometric measurements, amplitude ratio   and phase difference  , made using the 

0   mcconnell silver 2      1 mm
1   mcconnell ge 2 199.985 nm
2   (mcconnell silver 2) Coupled to #0 2.541 nm
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IR-VASE on Sample 1 are shown with their associated fitted models in Figure 30.  Note 

that three angles of incidence were used to collect ellipsometric data.  Use of multiple 

data sets in the regression analysis increased confidence in the uniqueness of the resulting 

optical constants.  

 

 

Figure 30.  Amplitude ratio   (green) and phase difference   (blue) ellipsometric measurements 
made using a J. A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE) on a 
Ag-Ge-Ag truncated resonator, Sample 1 (6-240-160 nm), with associated model fits (red). 

 

Mean square error of the fitted model using the VASE32 software was 1.675°.  

Thirty-two different parameters were used to fit this model to the measured ellipsometric 

data.  From the fitted model and thickness predictions, wavelength-dependent optical 

constants of the constituent materials can be derived.  Figure 31 and Figure 32 show the 

calculated complex index of refraction for the HIPIMS-deposited Ag (mcconnell silver 2) 

and Ge (mcconnell ge 2), respectively. 
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Figure 31.  Calculated complex index of refraction, n (red) and k (green), for a Ag layer deposited via 
a High Power Impulse Magnetron Sputtering (HIPIMS) technique. 

 

 

Figure 32.  Calculated complex index of refraction, n (red) and k (green), for a Ge layer deposited via 
a High Power Impulse Magnetron Sputtering (HIPIMS) technique. 

 

An evaluation of calculated complex index of refraction for the HIPIMS-

deposited Ag layers is plotted in Figure 33 and Figure 34 and compared against the bulk 
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optical constants reported in Palik [44] for real and imaginary parts of the refractive index 

n and k, respectively.   

 

 

Figure 33.  The real part of the index of refraction (n) for HIPIMS-deposited Ag compared with bulk 
optical constants reported in Palik [44] over IR wavelengths. 

 

HIPIMS values for refractive index n deviated significantly from the literature 

values, especially around the absorbing region of Sample 2 at approximately 3 μm.  The 

Palik values rose quickly with increasing wavelength while the HIPIMS data leveled to a 

value of 6 toward longer IR wavelengths.  For the imaginary part of the refractive index k 

shown in Figure 34, the HIPIMS values tended towards the literature values from 1-2 μm.  

Beyond 2 μm, the HIPIMS-deposited Ag deviated to far lower values when compared to 

Palik data.  Refractive index values n and k for Ge are compared in Figure 35 and Figure 

36, respectively.   
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Figure 34.  The imaginary part of the index of refraction (k) for HIPIMS-deposited Ag compared 
with bulk optical constants reported in Palik [44] over IR wavelengths. 

 

 
Figure 35.  The real part of the index of refraction (n) for HIPIMS-deposited Ge compared with bulk 
optical constants reported in Palik [44] over IR wavelengths. 

 

HIPIMS values for the refractive index n were lower than the crystalline values in 

Palik for Ge across all measured IR wavelengths.  The HIPIMS values also exhibited an 
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oscillatory behavior around the 12-μm band where the inherent absorption in the 

deposited Ge was speculated (Figure 26).  Typically, the imaginary component of 

germanium’s refractive index is considered negligible at IR wavelengths.  However, the 

calculated HIPIMS values for the imaginary part of the refractive index k were non-zero 

over the majority of IR wavelengths where the ellipsometric data was measured. 

 

 

Figure 36.  The imaginary part of the index of refraction (k) for HIPIMS-deposited Ge compared 
with bulk optical constants reported in Palik [44] over IR wavelengths. 

 

 Finally, these derived optical constants were fed back into the theoretical model 

for the truncated resonator using the MATLAB® implemented RCWA.  Figure 37 shows 

a comparison of the new theoretical model, with derived optical constants for the 

HIPIMS-deposited Ag and Ge, to the emittance results calculated from IR-VASE 

measurements for Sample 1 (6-240-160 nm).  This new model computed expected results 

that were were closer to those observed from the IR-VASE experiment. 
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Figure 37.  Comparison (p-pol) between new theoretical emittance predictions that include derived 
optical constants (n and k) for the HIPIMS-deposited materials (left) to those calculated (right) from 
measurements taken using a J. A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-
VASE) for a Ag-Ge-Ag resonating structure with thicknesses 6-240-160 nm, respectively. 

 

Bulk optical constants from Palik [44] were used to calculate the original 

analytical design (Figure 28).  Since any deposited material is amorphous to some degree, 

the material properties can be anticipated to vary due to contrasts in microstructure and 

purity.  The accuracy of derived optical constants from spectroscopic ellipsometry is 

highly dependent on the accuracy of the model built to fit the results.  These effective 

optical constants do not assume over-layers due to oxidation or surface roughness unless 

specifically accounted for in the model.  For Sample 2 (6-700-200 nm), Figure 38 shows 

a comparison of the new model to experimental results.  Again, the new model that 

accounted for the composition of the HIPIMS-deposited Ag and Ge yielded a dispersion 

relationship closer to that observed from the IR-VASE experiment.  Intrinsic Ge 

absorption at 12 um that was not present in a previous comparison (Figure 28) is now 

accounted for here, but note that emittance is significantly less pronounced in the 



 

67 

 

theoretical model in comparison to the experimental measurements taken with the IR-

VASE.   

 

      

Figure 38.  Comparison (p-pol) between new theoretical emittance predictions that include derived 
optical constants (n and k) for the HIPIMS-deposited materials (left) to those calculated (right) from 
measurements taken using a J. A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-
VASE) for a Ag-Ge-Ag resonating structure with thicknesses 6-700-200 nm, respectively. 

 

Radiance Measurements and Calculating Emittance 

Spectral emittance associated with thermally heated structures was derived from radiance 

measurements taken using an in-house AFIT emissometer.  Sample 2 was thermally 

excited to various temperatures and its radiance was measured by a Bomem FTIR 

spectrometer.  Figure 39 shows the measured spectral radiance captured by the Bomem 

FTIR spectrometer for Sample 2 at normal incidence and room temperature (297 K), 

overlaid with the theoretical radiance of an ideal blackbody also at 297 K.   
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Figure 39.  Spectral radiance measured by a MR-154 Bomem Fourier transform infrared (FTIR) 
spectrometer for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 nm), at room temperature (297 
K) overlaid with the theoretical radiance of an ideal blackbody also at 297 K. 

 

The measured radiance of Sample 2 included contributions from self emission and 

the background reflecting off the sample back to the spectrometer.  Significant noise was 

observed from 3-7 μm and 19-23 μm.  Figure 39 shows that the radiance of the 

background dominated the spectral radiance measured by the spectrometer with the 

measured radiance trending very closely to the envelope of the Planckian distribution.  

The background was not blocked for this ambient measurement, so this was expected at 

room temperature where Sample 2 is in thermal equilibrium with the background.  
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Figure 40.  Spectral radiance measured by a MR-154 Bomem Fourier transform infrared (FTIR) 
spectrometer for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 nm), at 408 K overlaid with 
the theoretical radiance of an ideal blackbody also at 408 K. 

 

Figure 40 shows the measured spectral radiance for Sample 2 at 408 K overlaid 

with the theoretical radiance of a blackbody also at 408 K.  Sample 2’s measured 

radiance (orange) shown in Figure 40 is only shown for the measurement range captured 

by the Bomem FTIR.  The measured radiance of Sample 2 exhibited behavior akin to a 

selective emitter when thermally excited above room temperature to 408 K.  Further, 

Sample 2’s selective emission occurred approximately near the same wavelengths 

predicted by inferring emittance from reflectance measurements where the 7.8-μm 

emission peak was attributed to a cavity resonance and the 12-μm emission peak was 

attributed to intrinsic absorption in the HIPIMS-deposited Ge layer.  An emission peak at 

approximately 9.7 μm was also observed from Sample 2 under thermal excitation that did 

not exist in the calculated emittance results using reflectance measurements.  This 
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contribution could be attributed to strong, unaccounted tri-oxide, or O3 (ozone), emittance 

at 9.7 μm that was excited through conduction to the air from the hot plate.   

 

 

Figure 41.  Spectral radiance measured by a MR-154 Bomem Fourier transform infrared (FTIR) 
spectrometer for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 nm), at 473 K overlaid with 
the theoretical radiance of an ideal blackbody also at 473 K. 

 

Figure 41 shows the measured radiance for Sample 2 at 473 K overlaid with the 

radiance of a blackbody also at 473 K.  At 473 K, Sample 2 continued to behave as a 

selective emitter but the selectivity was less pronounced.  At this temperature, Sample 2’s 

radiance still tends towards the theoretical results predicted for this resonating structure 

with emission dominating at around 7.8 and 12 μm.   

Figure 42 shows the measured radiance for Sample 2 thermally excited to 601 K 

and overlaid with the radiance distribution for a blackbody at 601 K.  Sample 2’s 

radiative behavior remained selective at 601 K with distinct emission peaks 7 and 12 μm.   
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Figure 42.  Spectral radiance measured by a MR-154 Bomem Fourier transform infrared (FTIR) 
spectrometer for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 nm), at 601 K overlaid with 
the theoretical radiance of an ideal blackbody also at 601 K. 

 

Using Equation (22), emittance as a function of wavelength was calculated from 

the radiance measurements obtained from AFIT’s emissometer instrument.  Two 

different sets of calculated emittance results for Sample 2 are shown in Figure 43.  The 

blue data set was calculated from reflectance measurements taken with the IR-VASE and 

invoking Kirchhoff’s law to assume that the radiation selectively absorbed by Sample 2 

would also be selectively emitted for a body in thermal equilibrium (297 K in this case).  

The red data set represents the calculated emittance derived from radiance measurements 

of Sample 2 while thermally excited to 408 K. 
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Figure 43.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 
nm), from two data sets, one was calculated from reflectance measurements and invoking 
Kirchhoff’s law to assume that the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is also selectively emitted (blue), and the other data set represents the calculated emittance 
derived from radiance measurements of Sample 2 while thermally excited to 408 K (red). 

 
The two sets of emittance results shown in Figure 43 followed the same general 

behavior.  The 7.8-μm and 12-μm emittance peaks observed during thermal excitation 

were centered at that same peaks predicted from inferred emittance.  The emittance peak 

at 9.7 μm, attributed to strong O3 interactions, was also evident in the emittance 

calculated from thermal excitation.  This was expected from the radiance measurements 

observed Figure 40.  This phenomenon did not exist in any form in the calculated results 

using reflectance measurements from the IR-VASE.   

Figure 44 shows the same comparison of calculated emittance results for Sample 

2 except the emittance was derived from radiance measurements taken while Sample 2 

was heated to 473 K. 
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Figure 44.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 
nm), from two data sets, one was calculated from reflectance measurements and invoking 
Kirchhoff’s law to assume that the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is selectively emitted (blue), and the other data set represents the calculated emittance 
derived from radiance measurements of Sample 2 while thermally excited to 473 K (red). 

 

The 473-K emittance data sets follow the same general behavior.  However, direct 

calculation of emittance from thermal excitation did not align with the indirectly 

calculated emittance as well as it did while Sample 2 was at 408 K.  Significant 

suppression of the emittance peak centered at 7.75 μm predicted from reflectance 

measurements was observed.  On average, the emittance between 6 and 10 μm calculated 

from thermal excitation was 40% lower than that calculated from reflectance.  The high 

emittance (0.8) at 12 μm was the dominant emittance peak at this temperature.  CO2 

absorption spike at 4.26 μm was clearly obvious in Figure 44. 

Figure 45 shows a final comparison of Sample 2 calculated emittance results after 

heating the structure to 601 K.  Again, selective radiative behavior was observed for 

Sample 2 and it behaved in a similar manner to that exhibited while at 473 K.  The 
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emittance peak at 12 μm was approximately 0.05 higher than that observed in Figure 44.  

The emittance peak predicted from reflectance measurements and invoking Kirchhoff’s 

law centered at 7.75 μm was present but was also 40% lower on average between 6 and 

10 μm. 

 

 

Figure 45.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 
nm), from two data sets, one was calculated from reflectance measurements and invoking 
Kirchhoff’s law to assume that the radiation selectively absorbed by Sample 2 at room temperature 
(297 K) is selectively emitted (blue), and the other data set represents the calculated emittance 
derived from radiance measurements of Sample 2 while thermally excited to 601 K (red). 

 

To pinpoint the cause of the contrasting emittance results, new SEM micrographs 

were taken of both samples to examine the surface morphology and overall 

microstructure of the tri-layer.  Figure 46 shows an SEM micrograph of Sample 1 after it 

was thermally excited to 408 K using a hot plate.  The surface geometry of the truncated 

resonator had indeed changed from its original state seen in Figure 19.  The surface of 

Sample 1 appeared to be no longer uniform and instead consisted of spherical collections 

of Ag particles ranging from 10-40 nm in diameter.  Both samples reached thermal 
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equilibrium with the hot plate very rapidly given their small size (approximately 2.5 cm 

2.5 cm) and thin profile.  Sample 1 reached thermal equilibrium with the hot plate at 

408 K for approximately 2 minutes before it was allowed to cool. 
 

 

Figure 46.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-240-160 nm) on a silicon 
substrate after being thermally excited to 408 K.  Ag and Ge layers were deposited via a High Power 
Impulse Magnetron Sputtering (HIPIMS) technique.  Micrograph was taken at 100,000× 
magnification and at an angle of 35° from surface normal. 

 

To characterize the effect of this new surface morphology on Sample 1’s 

performance, IR-VASE reflectance measurements were retaken.  Figure 47 shows the 

measured spectral reflectance of Sample 1 from 1.7-6 μm in 10° increments from 25-75° 

before (blue) and after (red) being thermally excited to 408 K.   
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Figure 47.  Measured spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-240-160 nm) 
between 1.7 and 6 μm and in 10° increments between 25-75° of incident angle before (blue) and after 
(red) being thermally excited to 408 K.  Reflectance measurements were taken using the J. A. 
Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE). 

 

Sample 1’s spectral reflectance was significantly impacted by the new surface 

morphology.  The previously observed reflectance dip at 2.6 μm climbed from a 

minimum of 0.025 before thermal excitation, to 0.575 after.  Also shown in Figure 47, the 

angular sensitivity after thermal excitation of Sample 1 was negligible compared to its 

angular response before. 

An SEM micrograph of Sample 2 after it was thermally excited to 601 K is shown 

Figure 48.  The surface of Sample 2 also consisted of spherical collections of Ag 

particles, except these aggregates were not as densely arranged as those found on Sample 

1.  The diameter of each Ag sphere again ranged from approximately 10-40 nm.  The Ge 

layer and bottom Ag layer seen here are less amorphous than previously observed in 

Figure 19.  The columnar microstructure that existed before being thermally excited is 
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not as distinct now.  Sample 2 reached thermal equilibrium with the hot plate at three 

different temperatures above ambient, 408 K, 473 K and 601 K, each time for 

approximately 2 minutes. 

 

 

Figure 48.  SEM micrograph of a Ag-Ge-Ag truncated resonator (6-700-200 nm) on a silicon 
substrate after being thermally excited to 601 K.  Ag and Ge layers were deposited via a High Power 
Impulse Magnetron Sputtering (HIPIMS) technique.  Micrograph was taken at 50,000× 
magnification and at an angle of 35° from surface normal. 

 

Figure 49 shows Sample 2’s associated measured spectral reflectance from 1.7-15 

μm in 10° increments from 25-75° before (blue) and after (red) being thermally excited to 

601 K.  The reflectance dip at 2.6 μm was less pronounced after thermal excitation but 

still reached a minimum of 0.35 at 25°.  This was not the case for the resonance at 7.75 

μm where the measured reflectance value went from approximately 0 to 0.6.  

Furthermore, the absorption at 12 μm due to the HIPIMS-deposited Ge was not 
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appreciably affected but the reflectance did rise by 0.1-0.2 depending on the incident 

angle.  The CO2 spike was lower in magnitude after thermal excitation.  In addition, a 

small dip at 7 μm was more distinct in the measured reflectance with respect to the results 

before heating Sample 2.  This is attributed to absorption by H2O molecules in the 

ambient air. 

 

 
Figure 49.  Measured spectral reflectance (p-pol) of a Ag-Ge-Ag truncated resonator (6-700-200 nm) 
between 1.7 and 15 μm and in 10° increments between 25-75° of incident angle before (blue) and after 
(red) being thermally excited to 601 K.  Reflectance measurements were taken using the J. A. 
Woollam Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE). 

 

Figure 50 shows a final comparison between emittance directly calculated from 

thermal excitation versus inferred emittances calculated from IR-VASE reflectance 

measurements before and after a 601 K heat treatment.  The emittance calculated 

indirectly from reflectance after the heat treatment process tends closer to the calculated 
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emittance found under thermal excitation.  This was expected given the change in Sample 

2’s surface morphology.  Conversely, the inferred emittance post-heat did underestimate 

the emittance directly observed at 601 K.  The contrasting emittance results are attributed 

to the temperature-dependent optical constants of the HIPIMS-deposited Ag and Ge 

materials.   

 

 
Figure 50.  Calculated emittance results for Ag-Ge-Ag truncated resonator, Sample 2 (6-700-200 
nm), from three data sets – two data sets were calculated from reflectance measurements before 
(blue) and after (green) being thermally excited to 601 K and invoking Kirchhoff’s law to assume 
that the radiation selectively absorbed by Sample 2 at room temperature (297 K) is selectively 
emitted, and the last data set represents the calculated emittance derived from radiance 
measurements of Sample 2 while thermally excited to 601 K (red). 

 

The Sellmeier and free-electron/Drude models were used to find temperature-

dependent optical constants for Ag and Ge in Chapter IV.  The specular emittance 

contour plots for Sample 2 shown in Figure 24 were calculated at room temperature using 

published optical constants from Palik [44] and at 500 K using modeled high-temperature 

optical constants.  Based on the normal emittance trend between the 294 K and 500 K 
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contour plots shown in Figure 24, the emittance was expected to decrease at IR 

wavelengths above 6 μm.  In contrast, the calculated emittance from 601 K thermal 

excitation was higher for almost all represented wavelengths when compared to 

emittance calculated from invoking Kirchhoff’s law.  To rigorously characterize the true 

high-temperature refractive index of the HIPIMS-deposited materials, ellipsometric 

measurements made at requisite high temperatures would be necessary to accurately 

predict the emittance of this structure. 

Summary 

This chapter discussed the design, fabrication, and characterization of two truncated 

multilayer resonator samples, Samples 1 (6-240-160 nm) and 2 (6-700-200 nm).  

Spectroscopic ellipsometry was used to verify the material properties of the actual 

materials used and helped to understand the optical observables measured using the IR-

VASE and emissometer.  Lastly, inferred emittance was compared to directly calculated 

emittance to investigate the validity of invoking Kirchhoff’s law to find the expected 

emission of a given structure.  In the next chapter, findings from a 3-D patterned thermal 

emitter will be presented. 
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VI. Analysis and Results – Hybrid PC-Multilayer 

Chapter Overview 

This chapter describes the design considerations and initial fabrication results for a 3-D 

hybrid PC-multilayer structure.   

Hybrid PC-Multilayer Design 

RCWA is very efficient when it comes to calculating diffraction efficiencies over a wide 

range of incident angles and wavelengths.  However, RCWA is somewhat limited to 

simpler multi-dimensional geometries such as grating structures.  Arbitrary shapes can be 

modeled to a degree but they require their geometric profiles to be discretized, which 

introduces numerous discontinuities in the calculation which may lead to unphysical 

results.  Multiphysics simulation and modeling tools are useful for the case of arbitrary 

geometries and sometimes offer visual depictions of physical phenomena that can be 

helpful.  For this reason, CST was utilized to simulate the performance of the PC-

multilayer structure.  Spectrally and spatially selective emittance centered at 6 μm was 

the objective for this 3-D structure.  In addition, a realistic design using FIB milling was 

desired for eventual fabrication of this hybrid thermal emitter using local resources at 

AFRL’s MCF. 

Dielectric and magnetic dispersive materials can be represented in CST using 

built-in dispersion models such as Debye, Drude, Lorentz, and Gyrotropic.  However, 

incorporating highly dispersive material parameters that were user-defined significantly 

increased the computation time of the 3-D CST simulation.  In the interest of time, the 

optical constants from Palik [44] and those ellipsometrically obtained as in Chapter V 



 

82 

 

were not used in CST for the following simulations.  The implication of not using user-

defined dispersive materials and using the default “Lossy” type materials from the CST 

material library is that the dispersive nature of the respective optical constants are 

approximated using a 1-D surface impedance model.  This will account for electric fields 

penetrating into the material but only to within a skin depth   of a given material whose 

thickness is represented by the following formula 

 2 ,


   (20) 

where   is the electric conductivity.  Further, due to this approximation, inherent 

absorption by conducting materials was not fully captured in these simulations.  To 

further drive the 3-D CST simulation time down, the Ag-Ge-Ag multilayer with 

embedded square hole array was approximated as a single slab of Ag with embedded hole 

array.  Thus, the structure of the original design was retained but the selective emittance 

that came as a result of the multilayer would not be represented in these simulations.   

To validate that the single Ag slab approximation with non-dispersive material 

properties would offer results representative of those acquired using with the full Ag-Ge-

Ag structure with Palik’s dispersive values, both structures were simulated for a p-pol 

(TM) normally incident plane wave.  The period between each hole was 6 μm and the 

diameter of each hole was 3 μm for both structures.  In Figure 51, CST simulated 

reflectance at normal incidence for a Ag-Ge-Ag (6-240-160 nm) hole array structure 

using Palik data is compared to a single Ag (400 nm) slab hole array structure using the 

default Ag from the CST material library.  Note that the reflectance dip at 6.5 μm is 

retained in the results from the approximated structure.  As expected, the reflectance dip 
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at 2.6 μm is not represented in the approximated structure with a single layer of Ag since 

the cavity set up by the Ag-Ge-Ag multilayer does not exist.  Since the overall behavior 

of the approximated hole array structure was retained, this construct was utilized for the 

remainder of this chapter.  

 

 
Figure 51.  CST simulated reflectance at normal incidence for a Ag-Ge-Ag (6-240-160 nm) hole array 
structure (red) using optical constants from literature (Palik) and a single Ag (400 nm) slab hole 
array structure (green) using the default Ag from the CST material library. 

 

Realistically, the PC-multilayer will reside on some substrate during fabrication.  

To account for this, a 20-nm Si substrate was added to the model.  Though this substrate 

thickness is not actually realistic, its purpose was to emulate the physical structure more 

closely to capture as much physical phenomena as possible without greatly increasing the 

computational time of the simulation.  For the PC-multilayer, the simulated model 

consisted of two layers, a single Ag slab and a Si substrate, using the “Silver (lossy)” and 
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“Silicon (lossy)” CST materials, respectively.  The Ag layer was a 66-μm2 slab, 400-nm 

thick, with a 3-μm diameter hole in the center of the slab.  The Si layer was also 66-

μm2, 20-nm thick, and was homogeneous throughout.  Figure 52 shows one unit cell of 

the PC-multilayer structure that was constructed in the CST simulation environment. 

 

       
Figure 52.  Illustration of one unit cell of the PC-multilayer structure as constructed in the CST 
simulation environment.  The Ag slab with hole at its center is highlighted on the left with a 
transparent Si substrate behind it.  On the right, the Si substrate is highlighted behind the 
transparent Ag layer. 

 

CST’s frequency-solver (f-solver) was used since it is capable of off-normal plane 

wave illumination.  Unit Cell boundary conditions were used to repeat the structure, seen 

in Figure 52, periodically along the x and y axes to model a square array.  The PC-

multilayer was illuminated with both p-pol (TM) and s-pol (TE) plane waves for   from 

0-60° in 5° increments, and for   equal to 0° and 45°.  Figure 53 illustrates the periodic 

boundary conditions implemented in CST and the respective coordinate system 

superimposed over the PC-multilayer unit cell.   
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Figure 53.  Illustration of the periodic boundary conditions implemented on the hybrid photonic 
crystal-multilayer in CST (left) and the respective coordinate system superimposed over one unit cell 
(right). 

 

For a p-pol plane wave incident at 0  , Figure 54 shows the simulated spectral 

reflectance and transmittance from the PC-multilayer for   from 0-60°.  This structure 

behaves as a transmission filter, selectively reflecting most wavelengths, but allowing 

some wavelengths to transmit through the structure.  For s-pol incident radiation, Figure 

55 shows the simulated spectral reflectance and transmittance from the PC-multilayer for 

  from 0-60° for a plane wave also incident at 0 .     
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Figure 54.  Simulated spectral reflectance and transmittance from the hybrid photonic crystal-
multilayer for   from 0-60° from a p-pol (TM) plane wave incident at 0  . 

 

 
Figure 55.  Simulated spectral reflectance and transmittance from the hybrid photonic crystal-
multilayer for   from 0-60° from a s-pol (TE) plane wave incident at 0  . 
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At normal incidence, transmission through the structure was observed at 6.5 μm.  

The propagating modes near normal to 60° are recognized as cylindrical waveguide 

modes through the circular apertures considering their presence for s- and p-pol incident 

radiation and for both azimuthal orientations.  The transmitted modes occurring at off-

normal incident angles are attributed to plasmonic modes.  Sub-wavelength hole arrays 

may perform as a band-pass filter, allowing longer wavelength to propagate while 

rejecting shorter wavelengths [64].  For bare, non-magnetic materials, TE-polarized (s-

pol) surface waves are typically not supported [38].  Under s-pol incident radiation, it was 

apparent that most of the off-normal plasmonic propagating modes were suppressed 

except at shorter wavelengths below 6 μm.  Those propagating modes that are observed 

were attributed to constructive and destructive wave interference effects between 

neighboring holes in the square array.  Further, increased angular transmittance at near-

normal incident angles was observed for s-pol.  This transmission band extended out to 

approximately 10° over a narrow band of wavelengths centered at 6.5 μm.   

For a p-pol plane wave incident at 45 ,   Figure 56 shows the simulated 

spectral reflectance and transmittance from the PC-multilayer for   from 0-60°.    Figure 

57 shows the simulated spectral reflectance and transmittance from the PC-multilayer for 

  from 0-60° for a s-pol plane wave also incident at 45  .  The dispersion of 

propagating modes at this azimuthal orientation did change.  This was expected given the 

change in problem geometry at 45  .  Here, cylindrical waveguide modes and 

plasmonic modes are evident for both polarizations.  However, the s-pol surface waves 

that were thought to be suppressed, clearly exist for incident polarization.  Therefore, the  
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Figure 56.  Simulated spectral reflectance and transmittance from the hybrid photonic crystal-
multilayer for   from 0-60° from a p-pol (TM) plane wave incident at 45  . 

 

 

Figure 57.  Simulated spectral reflectance and transmittance from the hybrid photonic crystal-
multilayer for   from 0-60° from a s-pol (TE) plane wave incident at 45  . 
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suppression of propagating modes at 0   for s-pol incident radiation (Figure 55) is 

now thought to stem from coupling interactions between neighboring holes.  Also, note 

from Figure 57 that the propagating plasmonic modes below 6 μm observed in Figure 55 

no longer pass through the filter at 45 .    This behavior supports the original claim that 

the s-pol propagating modes at 0   were due to coupling of neighboring holes at 

shorter wavelengths. 

Hybrid PC-Multilayer:  Initial Fabrication 

Fabrication of a PC-multilayer structure, consisting of a hole array embedded inside of a 

multilayer resonator, required two main steps.  The first step involved HIPIMS deposition 

of the Ag and Ge layers through AFRL’s Material and Manufacturing Directorate.  The 

second step involved FIB milling the multilayer using an FEI Nova 600 Nanolab (Serial 

Number:  D117) located in the AFRL MCF.  This FIB system was fitted with a 

Sidewinder ion column (Gallium ion source).  The resulting structure consisted of a 

square array of circular holes cut through to the silicon substrate of the sample.  There 

were two FIB runs executed on two different, but similar multilayers – one made of Ag-

Ge-Ag (6-240-160 nm) and the other made of Ge-Ag-Ge-Ag (4-12-270-200 nm).  The 

Ge-Ag-Ge-Ag multilayer structure is designed to selectively emit at 3.39 μm in a similar 

manner to that of Sample 1 from Chapter V.  The additional layer of Ge was added to 

provide an environmental barrier for the top Ag layer based on the previous experiments 

documented in Chapter V.  This thin 4-nm Ge capping layer was employed to mitigate 

oxidization of the metal and prevent the HIPIMS-deposited Ag from coalescing during 
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thermal excitation.  Both Nova FIB runs were carried out under manual operation by an 

AFRL MCF operator.   

The first Nova FIB run experimented with the precision of positioning holes and 

ascertaining the requisite FIB power parameters needed to mill through the multilayer 

down to the Si substrate.  SEM micrographs of this test sample taken from surface normal 

and at a 52° tilt from surface normal are shown in Figure 58 and Figure 59, respectively. 

 

 

Figure 58.  SEM micrograph of a hybrid photonic crystal-multilayer (Ag-Ge-Ag) on a silicon 
substrate.  Ag and Ge layers were deposited via a High Power Impulse Magnetron Sputtering 
(HIPIMS) technique with dimensions 6-240-160 nm.  The hole array was milled into the multilayer 
using focused ion beam (FIB) milling.  Micrograph was taken from surface normal. 

 



 

91 

 

Before milling a material with focused ions, the shapes to be patterned must first 

be generated by constructing a series of traces.  The traces can be pulled from a default 

library, provided by Nova, or custom patterns can be designed.  In Figure 58 and 59, 

traces for the circular holes were individually sized and positioned into a 610 array.  

Then, the traced pattern was milled into the multilayer two times (from left to right).   

 

 

Figure 59.  SEM micrograph of a hybrid photonic crystal-multilayer (Ag-Ge-Ag) on a silicon 
substrate.  Ag and Ge layers were deposited via a High Power Impulse Magnetron Sputtering 
(HIPIMS) technique with dimensions 6-240-160 nm.  The hole array was milled into the multilayer 
using focused ion beam (FIB) milling.  Micrograph was taken at an angle of 52° from surface normal. 

 

The rectangular shades of gray surrounding the hole array come from needing to 

image an effective area on the sample with the FIB so that the next 610 array can be 
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properly aligned and milled next to the first.  Similar to an SEM, focused ions can be 

used to image a sample at high magnifications.  The negative side-effect of imaging this 

way is the minute amount of focused ion energy that is used to image will, to a small 

degree, ablate some material away in the process.   
 

 

Figure 60.  SEM micrograph of a hybrid hole array/multilayer (Ag-Ge-Ag) on a silicon substrate.  Ag 
and Ge layers were deposited via a High Power Impulse Magnetron Sputtering (HIPIMS) technique 
with dimensions 6-240-160 nm.  The hole array was milled into the multilayer using focused ion beam 
(FIB) milling.  Micrograph was taken at an angle of 52° from surface normal. 

 

Figure 60 shows a close-up of a single hole using an SEM.  The hole is 

approximately 1.25 μm in diameter.  The ablation that occurs during FIB milling follows 
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a random raster pattern.  Streams of Ag material are visible on the outer edges of the 

circular aperture due to the residual effects of this raster technique.  Also, note that the 

edges at the top Ag layer are curved slightly. 

The objective for the second test run on the Nova FIB Dual Beam was to 

characterize the feasibility of fabricating a large-scale periodic array.  The pattern for this 

run consisted of a square array of circular holes with 3-μm diameters and 6-μm periods as 

shown in Figure 61. 

 

6 μm 

3 μm 

6 μm 

 
Figure 61.  Illustration of a photonic crystal-multilayer hybrid structure constructed of a square 
array of circular holes embedded inside of a multilayer with 3-μm diameters and 6-μm periods   
View is from surface normal of the structure.   

 

The Ge-Ag-Ge-Ag (4-12-270-200 nm) multilayer this square hole array was 

patterned into was deposited via the HIPIMS technique.  Figure 62 shows a picture taken 

with a digital camera of the PC-multilayer structure embedded immediately to the right of 
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a black ink dot.  Total array size is 1.61 mm   113.33 μm.  The black ink dot was used as 

a marker to pinpoint the center of the multilayer substrate.  Longest dimension of the 

multilayer substrate is 2 inches. 

 

 

Figure 62.  Picture taken with a digital camera of a hybrid photonic crystal-multilayer structure 
embedded immediately to the right of a black ink dot.  Total array size is 1.61 mm   113.33 μm.  The 
Ge-Ag-Ge-Ag (4-12-270-200 nm) multilayer was deposited on a Si substrate.  The square array of 
circular holes was milled into the multilayer using a focused ion beam (FIB) system. 

 

The square pattern was processed through serial exposures of smaller array cells, 

1212 array of holes, from left to right over a 1.61-mm distance.  Two rows were 

completed from top to bottom to achieve a 113.33-μm width.  Nova FIB conditions 

included a 9.3 nanoamps (nA) beam resulting in 99-115 second patterning times per array 

cell.  Using the 9.3 nA setting is typically higher than desired for precision milling.  

However, in an effort to mill each array cell more quickly, this amperage setting was 
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chosen.  Figure 63 shows an SEM micrograph of the fabricated PC-multilayer from 

surface normal at 50  magnification.  The black ink dot is especially visible to the left of 

the fabricated PC-multilayer in this image.   

 

 
Figure 63.  SEM micrograph at 50  magnification of a hybrid photonic crystal-multilayer structure 
embedded immediately to the right of a black ink dot.  Total array size is 1.61 mm   113.33 μm.  The 
Ge-Ag-Ge-Ag (4-12-270-200 nm) multilayer was deposited on a Si substrate.  The square array of 
circular holes was milled into the multilayer using a focused ion beam (FIB) system. 

 

At higher magnifications, surface materials in varying quantities have been 

ablated away during manual alignment of adjacent array cells.  This is shown in Figure 

64 where an SEM micrograph from surface normal of the center of the fabricated PC-

multilayer was taken at 750  magnification.  Upon visual inspection, the periodic array 
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of holes is slightly askew, but this was expected given the manual alignment of the hole 

array. 

 

 

Figure 64.  SEM micrograph of the center of a hybrid photonic crystal-multilayer structure at 750  
magnification.  The Ge-Ag-Ge-Ag (4-12-270-200 nm) multilayer was deposited on a Si substrate.  The 
square array of circular holes was milled into the multilayer using a focused ion beam (FIB) system.  

 
 
An SEM micrograph from surface normal of the center of the fabricated PC-

multilayer taken at 5000  magnification is shown in Figure 65.  At this magnification, it 

is evident that the thin Ge and Ag top layers have undergone mild ablation while the FIB 

was used to align each array.  The diameters of each circular hole ranged from 3.40-3.78 

μm.  On average, each hole was 0.6 μm over the target hole diameter of 3 μm.  The 
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period between each hole was not exact given the manual alignment resulting in a range 

of periods from 4-6 μm.  Moreover, due to the increased amperage (9.2 nA) used for this 

test run, the edges around the circular holes were not uniform.   

 
 

 

Figure 65.  SEM micrograph of the center of a hybrid photonic crystal-multilayer structure at 5000  
magnification.  The Ge-Ag-Ge-Ag (4-12-270-200 nm) multilayer was deposited on a Si substrate.  The 
square array of circular holes was milled into the multilayer using a focused ion beam system.  

 

The FIB-milled PC-multilayer required a total of 8 man-hours on a FIB system to 

achieve an array size of 1.61 mm   113.33 μm.  While this is not practical for 

commercial applications where larger surface areas would be desired, FIB-milling under 

manual operation is still useful to converge upon suitable FIB milling settings appropriate 
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for a sample with a particular composition, and lays the framework for future large-scale 

patterning efforts with micro- and nano-scale features sizes.   

Summary 

This chapter discussed the design and initial fabrication results of a Hybrid PC-

multilayer.  Using CST, this sub-wavelength hole array structure was modeled to 

examine the angular and polarization sensitivities of a 3-D thermal emitter design.  Initial 

fabrication results from a FIB milling technique on a HIPIMS-deposited multilayer were 

presented as well.  Conclusions and recommendations for future work that will 

complement the research presented in this thesis are captured in the following chapter. 
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VII. Conclusion 

In this thesis, two thermal emitter designs were proposed using RCWA numerical 

calculations and CST modeling.  Temperature-dependent optical constants of the 

constituent materials Ag and Ge were calculated and used to predict the performance of 

the thermal emitters at temperatures at and above room temperature.  The truncated 

resonator design used a HIPIMS deposition technique to deposit nano-layers of Ge and 

Ag to build a tri-layer structure.  Angular sensitivities to incident IR radiation at room 

temperature were investigated.  Spectroscopic ellipsometry was used to derive the actual 

optical constants of the HIPIMS-deposited materials and then compared to bulk material 

values from literature and to re-simulate device performance.  Emittance was derived 

from radiance measurements taken from 3-13 μm while the truncated resonator was 

thermally heated to various temperatures up to 601 K.  At normal incidence, a 

comparison of inferred emittance from reflectance measurements and those derived 

during thermal excitation was also presented.  CST simulation and modeling were used to 

design a more complex 3-D thermal emitter design, the PC-multilayer.  For this hybrid 

structure, FIB milling was used to pattern a hole array into a HIPIMS-deposited 

multilayer.  Though simulation, angular sensitivities to incident IR radiation at room 

temperature were also investigated. 

The original intent of this research was to investigate how a surface could be 

engineered to coherently affect the thermal radiative properties of a surface, both 

spectrally and directionally, through the use of micro- and nano-structured materials.  

However, as the research effort progressed, it became apparent that practical design and 

fabrication of engineered structures is not as clear-cut as the designer may expect it to be.  
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Beginning with the design phase, the material properties found in Palik’s Handbook of 

Optical Constants of Solids [44] were used to initially describe the predicted behavior of 

the truncated resonator.  Palik’s optical constants are most widely used in published 

works but, as shown in Chapter V, there were significant differences between the 

simulation using Palik’s values and the experimental results.  While the intrinsic bulk 

values from Palik yielded results that identified the proper spectral location of 

resonances, the overall behavior of the actual resonances, like considerable broadening, 

was not predicted.  From another perspective, this broadening could be embraced to 

achieve broadband spectral responses in a given application where more bandwidth is 

desired.  Further, an absorption peak at 12 μm in the HIPIMS-deposited Ge layer was not 

accounted for in the Palik data but was captured in the effective optical constants derived 

from the IR-VASE ellipsometric measurements. 

Surface quality, purity, overlayers, and microstructure will all affect the optical 

properties of deposited materials.  The HIPIMS deposition technique was chosen to 

minimize the effects of an amorphous microstructure and surface roughness.  Despite this 

consideration, it seemed that these effects could not be entirely avoided.  Evaporated 

metal films in particular are known to have a significant volume fraction of voids [44].  

Using the IR-VASE, optical constants were derived ellipsometrically for the HIPIMS-

deposited Ag and Ge.  Feeding these derived optical constants back into the simulation 

allowed the expected emittance to come much closer to the measured results.  Ultimately, 

to accurately predict the performance of a thermal emitter, the optical properties of the 

actual materials utilized in the design must be determined.   
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The assessments described thus far were all done at room temperature and the 

emittance calculations were all made by invoking Kirchhoff’s law where emittance was 

indirectly obtained from reflectance measurements.  When the truncated resonator was 

thermally heated, a direct method was used to calculate emittance from radiance 

measurements taken with a spectrometer.  When comparing calculated emittance under 

thermal excitation with that obtained using room-temperature reflectance measurements, 

while inferring emittance can help to approximate the expected emission from a structure, 

it is not an exact method of determining the actual emittance of a thermal source.  It was 

apparent that inferred emittance using Kirchhoff’s law would not only vary in magnitude 

when compared to direct emittance calculations, but also neglected to capture some 

physical phenomena.   

The truncated resonator thermal emitter design offered spectral coherence, 

confined to a design wavelength of choice, with near-isotropic emission in the IR regime.  

The spectral emittance exhibited by this structure was unaffected by the angle of incident 

radiation.  To achieve spatial coherence, a 3-D structure was presented, the PC-

multilayer.  Using holes with a diameter that was half the design wavelength, the PC-

multilayer design acted as a spectrally and spatially selective transmission filter, owing to 

a rich interplay of plasmonic effects and waveguide modes.  While FIB milling a single 

sample one at a time is not practical for industry, manual operation of a FIB system can 

still be utilized in academia to study specific phenomena or fabricate master moulds to be 

used repeatedly in a template-based nanofabrication process.  In addition, acquiring 

proper FIB milling settings specific to a given structure and composition is paramount in 

achieving high-precision fabrication results.  FIB milling large-scale samples becomes 



 

102 

 

feasible with the use of pattern generators that automate the arraying unit cells are 

utilized.  Newer FIB systems have this capability and should be considered for future 

periodic designs. 

Future Work 

There are several areas with respect to this research topic that are recommended below 

for further investigation.  Recommendations for future work to follow have been divided 

into three sections – design, fabrication, and characterization. 

Design 

For structures that are expected to operate and perform well in environments above room 

temperature, it is recommended that the actual optical constants of each constituent 

material are determined at the expected operating temperatures first.  This can be 

accomplished by using the IR-VASE with an optional heated sample stage attachment 

called the Heat Cell (HTC-100) or the Cryostat.  The Heat Cell can reach temperatures up 

to 573 K and allow ellipsometric measurements to be taken at fixed temperature 

increments.  The Cryostat’s temperature range is from 4.2-700 K and allows temperature-

dependent optical constants to be obtained above and below room temperature.  Finding 

the actual material properties of real materials up front will make the analytical designs 

more accurate when compared to experimental results. 

Hierarchical structures and structures with tapered geometrical profiles could be 

explored next.  The analytical development for these structures could be easily 

implemented in 3-D using advanced modeling and simulation programs.  Further, the 

CST software suite includes an electromagnetic-thermal coupled simulation that enables 
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an additional thermal analysis of structures to include temperature-dependent material 

parameters and the effect of thermal expansion on scattering.  CST is also compatible 

with dedicated graphics processing unit (GPU) computing and it is highly recommended 

that any CST analysis be carried out in conjunction with a dedicated GPU to shorten 

simulation wait-times.  COMSOL is another multiphysics program that is more capable if 

a rigorous thermal analysis is desired.  However, using highly dispersive material 

properties in CST’s frequency domain solver is not practical for broadband examinations 

given the long simulation times.  Thus, use of the CST time domain solver is 

computationally more efficient, but unable to evaluate off-normal illuminations.  Hence, 

for highly dispersive designs, an FDTD electromagnetic solver such as Lumerical may be 

more efficient than CST for off-normal incident angles in the time domain.  For all these 

modeling suites, it is recommended that a high performance supercomputer site be 

utilized to decrease simulation times. 

Fabrication 

A template-based approach is a simple, repeatable, and low-cost nanofabrication 

technique capable of producing robust, large-scale samples and is recommended for 

future fabrication of thermal emitters.  Using a double-inverse method, master templates 

can be created one time and used to repeatedly manifest sacrificial moulds of the master 

pattern.  The double-inverse term is used to highlight the fact that the final product will 

not be an inverse of the master template, but an exact copy.  This technique also offers 

fabrication of robust samples, capable of being handled constantly, without the necessity 

of a standard substrate.  An illustration of this recyclable nanofabrication process is 

shown in Figure 66.  Certainly, other nanofabrication techniques and tools could have 
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been utilized or may become available beyond those mentioned here.  The intent of this 

section is not to complete a review of all fabrication avenues, but rather to discuss a few 

fabrication techniques, tools, and facilities readily available at the time of this research.   

 

 
Figure 66.  Illustration of a template-based nanofabrication approach that is capable of producing 
robust, large-scale samples with simple, repeatable, and low-cost execution. 

 

Beginning with photolithography, a pattern is created in photoresist on a 

substrate.  This can be accomplished through the Nanoscribe 3D laser lithography tool 

(AFRL), interference lithography (AFIT), or exposure through a master mask on a mask-

aligner (AFIT).  With the exception of using an outside vendor, use of the Heidelberg 

Mask Maker in the AFIT Clean Room is the most practical way-forward in fabrication of 

a master template.  The Heidelberg is a tabletop laser pattern generator capable of 

creating master masks with feature sizes down to 1 μm.  The master mask is loaded into a 
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mask aligner where the designed pattern is exposed onto photoresist.  The Heidelberg is 

also capable of grayscale lithography where the laser power can be scaled to adjust the 

depth of the exposure allowing 3-D images to be fabricated in photoresist, to include 

tapered profiles and designs with multiple periods.  Use of a master mask enables a 

recyclable process where the master mask can be used repeatedly to expose multiple 

samples. 

After the photoresist is developed, a series of post-processing techniques (e.g. 

chemical etching, reactive ion etching (RIE)) can be used to transfer the designed pattern 

to the substrate, or another medium, creating a master template.  Chemical etching 

typically involves wet chemicals in various concentrations to selectively etch a given 

material.  The chemical recipe used will depend on the material to be etched.  RIE is an 

anisotropic etching process that selectively etches a given material based on a chemical 

recipe put together by the user.  The chemical recipe will again depend on the material.  

RIE etch rates run from 200 nm to 1 μm per minute but are usually limited to a total of 10 

μm.  Deep RIE (DRIE) is a similar process that is capable of higher etch rates up around 

20 μm per minute.  The total limit on etch depth using DRIE has been demonstrated in 

excess of 600 um.  RIE equipment is available in the AFIT Class 1000 Cleanroom and in 

the AFRL/RY Cleanroom.  An alternative method to transferring a pattern to a substrate 

without the need of photoresist is through FIB milling.  With FIB milling, custom master 

templates can be directly patterned.  FIB milling tools are available by appointment at 

AFRL’s MCF.  AFRL will be installing two new TESCAN FIB systems in 2012 that will 

enhance the MCF’s micro- and nano-patterning capabilities. 
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With a master template in hand, the pattern would be imprinted into a slave 

medium such as a thermoplastic, like poly(methyl methacrylate) or PMMA for short.  

Thermoset/photoresists such as SU-8 could also be used to manifest master templates.  

This is accomplished via nanoimprinting where a master template acts as a mould to 

transfer a pattern to a slave template, usually through the use of heat and a vacuum 

environment.  Nanoimprinting is also commonly known as hot embossing when heat is 

involved.  PMMA is an ideal choice since it is inexpensive and more robust than Si.  

Nanoimprinting can be carried out through commercial tools or other experimental 

techniques [26, 65, 66].  AFRL/RY’s Cleanroom houses a Nanonex NIL system. 

Next, the slave template will need a conductive layer (metal or conductive ink) 

deposited onto it.  This is necessary for subsequent electrodeposition.  Electrodeposition, 

also known as electroplating, is a deposition technique that involves metal ions traveling 

from an anode to a cathode through an electrolyte bath.  In this case, the object to be 

plated is the cathode.  Hence, conductivity is needed for deposition to occur.  From initial 

Cu electrodeposition results carried out in the AFIT Clean Room, it is recommended that 

the thickness of the conductive layer be at least equal to its skin depth.  Using sputtered 

Au, a thickness of 30 nm was ideal for a uniform Cu layer to be electrodeposited.  

Electrodeposition will be used to “fill in” the slave template with bulk Cu until a sizeable 

amount of Cu ions has accumulated, resulting in a Cu sample that is more robust and 

could be handled repeatedly with little complication. 

Lastly, a lift-off technique will be required to separate the original PMMA slave 

template from the Cu structure, thus completing the double-inverse templating process.  

PMMA is known to have poor adhesion with many metals, so manual lift-off of the slave 
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template may be possible.  Alternatively, since PMMA is a thermoplastic, it can be 

reheated to make the slave template less rigid and permit lift-off in case manual methods 

are not feasible.  A release layer could also be utilized to aid in lift-off in case the above 

methods fail. 

This template-based process offers a recyclable and low-cost nanofabrication 

technique capable of producing robust, large-scale optical structures.  Initial fabrication 

results of arrayed nanostructures using a 3-D laser lithography tool made by Nanoscribe 

can be found in Appendix A.   

Characterization 

A unique capability at Air Force Institute of Technology (AFIT) in the area of optical 

observables is the ability to record IR-tunable diffuse ellipsometry measurements.  

AFIT’s Schmitt Measurement Services (SMS) Complete Angle Scatter Instrument 

(CASI) was upgraded to be fully polarimetric and fit with six tunable external-cavity 

quantum cascade lasers ranging in wavelength from 4.4-9.7 μm.  Original CASI laser 

wavelength of 3.39 and 10.6 μm are also available.  The CASI can be configured with 

both indium antimonide (InSb) and mercury cadmium telluride (HgCdTe) photovoltaic 

detectors, allowing detection of scattered radiation between 2-12 μm.  AFIT’s CASI is 

capable of measuring both reflected and transmitted scatter from a sample surface.  The 

bidirectional scatter distribution function (BSDF) is developed as a model describing this 

scatter.  BSDF is equal to the sum of the bi-directional reflectance distribution function 

(BRDF) and bi-directional transmittance function (BTDF).  Polarimetric scatterometry is 

a form of optical scatterometry that accounts not only for angle-of-incidence sensitivities, 

but also the phase of both incident and scattered radiation as a method to further 



 

108 

 

characterize the scatter from a surface.  To further characterize the scatter of the PC-

multilayer structure, BSDF and polarimetric scatterometry measurements are 

recommended to describe how the IR radiative properties of the sample are affected by 

the angle and polarization of incident laser radiation.     
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Appendix A.  Nanofabrication 

3-D Laser Lithography:  Initial Fabrication Results 

AFRL/RX recently acquired a Nanoscribe 3-D laser lithography tool in 2011.  In an 

effort to characterize the feasibility of using this equipment to fabricate large-scale 

nanostructured samples, a test run was carried out with the purpose of fabricating a 22 

array.  Processing times and uniform patterning between each unit cell were evaluated 

during this effort.   

The Nanoscribe can import .stl file extensions for 3-D geometries.  CST was used 

to construct the 3-D unit cell and export the geometry in the .stl file format.  Figure 67 

shows a drawing of one unit cell generated using CST. 

 

 

Figure 67.  Image of planar 3-D unit cell constructed in CST. 

 

The Nanoscribe has two physical stages, one is mechanical and the other is piezo, 

that allow it to transverse over three dimensions.  The mechanical stage can only move 

laterally in two dimensions but allows wide surface areas to be transversed.  The piezo 
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stage is cable of moving within a 300300300 μm3 cube which allows the nanoscribe 

to expose photoresist within a 3-D space.  This makes 3-D structures with spatially 

varying geometry in all three dimensions possible.  The planar unit cell shown in Figure 

67 was conceptualized to determine the stability of the piezo stage for the full 300 μm in 

length and width.  Furthermore, this simple geometry would allow one to observe 

alignment of adjacent unit cells when arrayed.  A programming script was written to 

serially expose the 22 array in Nanoscribe photoresist (IP-L).  Glass substrates provided 

with the nanoscribe were used for this test sample.  In Figure 68, the final arrayed pattern 

(simulated in CST) is shown next to same pattern with Zygo images overlaid in front of 

the respective areas where the pictures were taken on the fabricated sample. 

 

  

Figure 68.  The final arrayed pattern (simulated in CST) shown next to same pattern with Zygo 
images overlaid in front of the respective areas where the pictures were taken. 

 
Overall, the piezo stage did well for most of its dynamic range but it was observed 

to be unstable from 275-300 μm.  Furthermore, there were alignment issues that were 

most evident at the corners of the unit cells where overlapping and misalignment was 
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encountered.  There were also several areas where the IP-L photoresist was over-exposed, 

or burned, due to possibly too much laser power.  Figure 69 shows these observations 

highlighted in red for each respective Zygo image. 

 

 

 

 

Figure 69.  Zygo images of fabricated 22 array using a Nanoscribe 3-D laser lithography tool.  
Patterned array was exposed in Nanoscribe IP-L photoresist on a glass substrate. 

 



 

112 

 

The next run on the Nanoscribe aimed to fabricate a 10 mm   10 mm area of 1- 

μm tall pillars (200   200 nm2), periodically arranged in two dimensions with 6-μm 

periods between each pillar.  This run, however, was never executed after first calculating 

the time it would take to write one array cell (275   275 μm) of these same pillars.  The 

estimated time for this size array was 35 minutes.  Assuming ideal fabrication conditions, 

to fabricate a 10 mm   10 mm pillar array would require 32 days of continuous laser 

operation.  This fabrication time pertains to use of an oil-immersion objective on the 

Nanoscribe (the only operating objective available at the time).  An air objective is 

available to be used on the Nanoscribe and this allows a larger photoresist volume to be 

exposed during laser operation at the cost of larger feature sizes.  This would help to 

shorten laser operation time.  A shallower design, less than the proposed 1- μm height, 

would also quicken the exposure time.  In summary, use of the Nanoscribe 3-D laser 

lithography tool for large surface area patterning is not recommended given the 

impractical processing times. 

Other Nanotechnology Characterization Techniques 

Thermophysical properties, such as thermal conductivity and specific heat, could be also 

measured using steady-state, modulated, or pulsed heating techniques.  Other optical 

techniques used in measurement of thermal properties of micro- and nano-structured 

materials include thermoreflectance, Raman spectroscopy, photothermal radiometry, 

fluorescence, laser flash techniques, and scanning thermal microscopy [33].  For in-situ 

morphological sample changes, a 1500°C heating stage can be utilized with a FIB to 

characterize how the physical structure changes in real-time with increased temperature.  
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Using an atomic force microscope (AFM) with a heated probe attachment will enable a 

near-field microscopy capability.  Some ellipsometric tools, such as J. A. Woollam’s M-

2000, allow in-situ ellipsometric measurements to be taken so that real-time changes in 

optical constants can be observed.   
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Appendix B.  Supplemental IR-VASE Measurements and Modeling 

Spectroscopic ellipsometric measurements were made over a range of optical 

wavelengths using the Visible VASE (V-VASE) and IR-VASE on a bare Si substrate.  

Using the Woollam VASE32 software and IR material library, models were fit to the 

ellipsometric measurements to extract the optical constants of each material (Si and SiO2 

in this case).   

The transmittance baseline of the optical path was captured using the IR-VASE 

and is shown in Figure 70.  Atmospheric absorption bands can be observed affecting the 

spectral profile of the transmittance due to various molecules such as CO2 and H2O.   

 

 
Figure 70.  Transmittance baseline of the ambient environment captured by the J. A. Woollam 
Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE) 

 

Spectral transmittance of a p-type Si wafer measured using the IR-VASE is 

shown in Figure 71.  From 1.7-5 μm, a negligible amount of light was observed to be 
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transmitted through the Si wafer.  From 5-40 μm, the transmittance monotonically 

increases from approximately 0 to 0.55.  The large absorption observed near 16 μm is 

attributed to a Fano resonance.  This p-type Si wafer was single-side polished.  These 

ellipsometric measurements were taken with laser radiation incident upon the polished 

surface of the Si wafer.  At shorter wavelengths, the rough unpolished surface is observed 

to scatter light away from the detector aperture.  Eventually, as the wavelengths become 

much longer than the surface roughness features, the surface roughness is no longer 

resolved and the incident radiation begins to transmit through the Si substrate.   

 

 
Figure 71.  Spectral transmittance of a p-type silicon (Si) wafer measured using the Air Force 
Research Laboratory’s (AFRL) J. A. Woollam Infrared Variable Angle Spectroscopic Ellipsometer 
(IR-VASE) 

 

A comparison between the spectral transmittance of the same p-type Si wafer and 

a fitted model is shown in Figure 72.  The model was fit using the default Si material 

from J. A. Woollam’s IR library.  The large Fano absorption seen at 16 μm was modeled 
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properly using Woollam’s software.  The diffuse scattering resulting from the unpolished 

backside of the Si wafer cannot be adequately modeled with the Woollam software.   

 

 
Figure 72.  A comparison between a fitted model and spectral transmittance of a p-type silicon (Si) 
wafer.  The model was fit using material constants from J. A. Woollam’s infrared material library.  
The transmittance was measured using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). 

 

If the Si wafer was double-side polished and the scatter was specular, then a 

“backside reflection” model could be generated to model interferences between the front 

and backside reflections at those interfaces.  Interface oscillations can be observed when 

interference between the front and backside reflections occurs.  Light from the front and 

back surfaces will constructively and destructively interfere together in a partially 

coherent manner.  Since this scatter is neither completely coherent, nor incoherent, it is 

extremely difficult to model.  This becomes more and more prevalent at longer 
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wavelengths when the backside of the wafer effectively appears smoother with respect to 

wavelength.   

Amplitude ratio   and the phase difference   ellipsometric measurements made 

on the V-VASE are shown in Figure 73.  The p-doped silicon substrate was measured on 

the V-VASE initially to verify the thickness of the SiO2 layer.  This is easier on the V-

VASE due to the smaller wavelengths used to interrogate the material structures.  

Thickness of the SiO2 layer over the silicon wafer was determined to be 2.4 nm at the 

time of this measurement.  Mean square error of the fitted model was 3.35.  Materials 

used from the Woollam visible material library to model the Si substrate and SiO2 layers 

were “si” and “sio2”, respectively.   

 

 
Figure 73.  Measured and generated ellipsometry data of a silicon substrate (p-doped) at visible and 
near-infrared wavelengths.  Measured data captured using a J. A. Woollam Visible Variable Angle 
Spectroscopic Ellipsometer (V-VASE).  Fitted model data was generated using J. A. Woollam 
WVASE23 software.   
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Using the IR-VASE, amplitude ratio   and the phase difference   ellipsometric 

measurements were made on the same Si wafer and those are shown with their associated 

model fits in Figure 74 and Figure 75, respectively.   

 

 
Figure 74.  Measured and generated amplitude ratio  data of a silicon substrate (p-doped) at mid-
infrared wavelengths.  Measured data was captured using a J. A. Woollam Infrared Variable Angle 
Spectroscopic Ellipsometer (IR-VASE).  Fitted model data was generated using J. A. Woollam 
WVASE23 software.   

 

 
Figure 75.  Measured and generated phase difference   data of a silicon substrate (p-doped) at mid-
infrared wavelengths.  Measured data was captured using a J. A. Woollam Infrared Variable Angle 
Spectroscopic Ellipsometer (IR-VASE).  Fitted model data was generated using J. A. Woollam 
WVASE23 software.   
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Mean square error of the fitted model on the IR-VASE was 0.51.  Materials used 

from the Woollam IR material library consisted of “sio2_ntve_ir_g” and “si_ir_drude”.  

Thickness of each layer used in the model was 2.389 nm for SiO2 and 1 mm for Si.  

General oscillators and parameters used to model the native silicon oxide layer using the 

Woollam WVASE32 software are shown in Figure 76. 

 

 
Figure 76.  General Oscillator parameters used to model native silicon oxide layer (SiO2) using Air 
Force Research Laboratory’s (AFRL) J. A. Woollam Infrared – Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). 

 

Optical constants for the Si and SiO2 layers are shown in Figure 77 and Figure 78, 

respectively.  These material properties were derived from the measured ellipsometric 

data taken by the IR-VASE between 2-15 μm.   
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Figure 77.  Optical constants for Si wafer derived from measured ellipsometric data between 2-15 
μm.  Measured data was captured using a J. A. Woollam Infrared Variable Angle Spectroscopic 
Ellipsometer (IR-VASE). 

 

 

Figure 78.  Optical constants for a SiO2 passivation layer derived from measured ellipsometric data 
between 2-15 μm.  Measured data was captured using a J. A. Woollam Infrared Variable Angle 
Spectroscopic Ellipsometer (IR-VASE). 
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