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Abstract. Humans have the remarkable ability to generalize from binoc-
ular to monocular figure-ground segmentation of complex scenes. This is
clearly evident anytime we look at a photograph, computer monitor or
simply close one eye. We hypothesized that this skill is due to of the abil-
ity of our brains to use rich embodied signals, such as disparity, to train
up depth perception when only the information from one eye is available.
In order to test this hypothesis we enhanced our virtual robot, Emer,
who is already capable of performing robust, state-of-the-art, invariant
3D object recognition [1], with the ability to learn figure-ground segmen-
tation, allowing him to recognize objects against complex backgrounds.
Continued development of this skill holds great promise for efforts, like
Emer, that aim to create an Artificial General Intelligence (AGI). For
example, it promises to unlock vast sets of training data, such as Google
Images, which have previously been inaccessible to AGI models due to
their lack of embodied, deep learning. More immediately practical impli-
cations, such as achieving human performance on the Caltech101 object
recognition dataset [2], are discussed. !
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1 Introduction

When we look at a photograph our mind perceives the objects as if they existed
right in front of us in three dimensional space. This is surprising since each eye
conveys the same image of the photograph with no useful disparity signals. One
can demonstrate this to themselves by looking at a photograph with one eye
closed and noting the rich perception of depth. So too is our depth perception
intact when we perceive the world more generally with only one eye open. In
normal binocular viewing conditions the disparity between objects in the two
eyes helps us to compute their depth, but it is rather remarkable that we can
continue to do this in lieu of this cue.

1.1 Genetic vs. Learned Monocular Figure-Ground Segmentation

How does the brain perform this remarkable feat? One possibility is that the skill
evolved and the expression of the requisite neural circuitry is hard-wired into our
genome. This seems rather unlikely as it is hard to imagine an environment that
consistently caused humans (or their ancestors) to lose an eye, constituting a
strong and consistent evolutionary selection pressure.

Experiments performed with Emer, our virtual robot, have led to the more
parsimonious hypothesis that this skill is learned. Evidence comes from a variety
of sources, such as [3], who found that in the case of isoluminance across figure
and ground the luminance cue breaks down and gestalt contours can fail to pop
out. In this case we rely on color, which, having weak stereopsis, is a monocular
cue. We hypothesize that the brain learns how to map this and other cues from
only one eye onto the standard binocular 3D depth map.

Additional evidence comes from [4], which reviews the evidence for innate vs.
learned depth perception in a large number of species. Although depth perception
is innate in some species, such as the rat, in others, such as humans, it is very
poor at birth and advances along with the infant’s sensorimotor coordination
and, perhaps, conceptual knowledge of the world. Notably, many species in which
vision develops quickly or is innate, such as the rat, have very poor visual acuity,
while human vision is rather sharp. This is potentially due, in part, to the longer
learning curve human vision undergoes. We hypothesize that this longer learning
trajectory in humans is due to the need to slowly incorporate a vast array of
signals into vision, and likewise, to incorporate vision into an extremely complex
brain. Indeed, as we have recently shown, human representations of objects in
IT cortex are physically changed by conceptual knowledge, allowing us to make
certain conceptual generalizations at the speed of visual object recognition [1].
The need to incorporate conceptual knowledge in such a deep way seems to slow
the progression of visual learning of all kinds, including depth perception and,
by extension, monocular figure-ground segmentation.

1.2 Idealized Training of Monocular Figure-Ground Segmentation

An idealized method of training such a network follows directly from the descrip-
tion of the problem. An infant looks at an object with one eye open, predicts
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its depth, and then opens its other eye. Learning occurs as a function of the
difference between the predicted and actual depths.

In terms of a neural network, there are two input layers representing the
primary visual cortex (V1) neurons for the left eye and right eye, respectively.
These map onto a layer which computes focal disparity, that is, the zero-disparity
region of foveation. The computation of disparity in the case of binocular vision
follows from straightforward geometry (see the horopter in [5]). During training
the information from one eye is removed and the network is asked to predict
the depth map of the scene. After making a guess based on monocular cues, the
the other eye is returned and the weights are changed based on the difference
between the predicted depth map and the actual depth map. While such a simple
network only provides marginal figure-ground segmentation ability, it clearly
demonstrates the point that we hope to make with Emer: that rich 3D signals
can serve as a training signal for figure-ground segmentation with 2D cues.

1.3 The Relevance of Embodiment

A notable demand of this disparity-based training paradigm is that it requires
an embodied agent. It would not be possible to compute the target 3D depth
map if the agent did not have two offset eyes. Just having eyes is not always
sufficient for depth perception, however. For example, human skill at depth per-
ception correlates with the ability to crawl [4]. Infants make predictions about
how far away something is and translate that guess into a goal in motor coor-
dinates. After the infant crawls to the object it knows the actual distance and
can translate that motor error back into visual error by proxy of parietal cortex,
thus improving depth perception. While we would eventually like to bootstap
the learning of the binocular 3D depth map itself in such a manner, which would
then bootstrap monocular depth perception, for now we assume the existence of
trained binocular depth perception and focus on generalizing it to the monocular
case.

2 Materials and Methods

Experiments were conducted using the emergent Neural Network Simulation
System [6]. The Leabra neural network architecture and learning rule was used
for all simulations [7].

2.1 Emer

Our simulated robot, Emer (Fig. 1), is implemented using the Open Dynamics
Engine rigid body physics simulator [8] and the Coin3D 3D Graphics Developer
Kit [9]. Each of his eyes is a camera, and their offset positions on his head give
him slightly different views of objects, facilitating stereo vision. The eye-beams
projecting from his eyes give a sense of where he is foveating. Emer’s full brain
includes a superior colliculus and a cerebellum, with which he can learn to turn
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Fig. 1. Our virtual robot, Emer. His name is based on “emergent”, our neural net-
work simulator. Seen here are his torso, head, eyes, eye-beams, and the fish that he is
foveating in prepration for object recognition.

his head and foveate on an object. In this simulation, however, we have disabled
these parts of his brain and have instead hard coded foveation in order to make
the simulation faster.

2.2 CU3D-100 dataset

To test the sufficiency of our model on a realistic, challenging version of the object
recognition problem, we used our dataset of nearly 1,000 3D object models from
the Google SketchUp warehouse (the CU3D-100 dataset [10]) organized into
100 categories with an average of 9.42 exemplars per category (Fig. 2a-d). Two
exemplars per category were reserved for testing, and the rest were used for
training. Objects were rendered to 20 bitmap images per object with random
+20° depth rotations (including a random 180° left-right flip for objects that
are asymmetric along this dimension) and overhead lighting positioned uniformly
randomly along an 80° overhead arc. These images were then presented to the
model with planar (2D) transformations of 30% translation, 20% size scaling, and
14° in-plane rotations. The CU3D-100 dataset avoids the significant problems
with other widely-used benchmarks such as the Caltech101 [12], by ensuring
that recognition is truly robust to significant amounts of invariance, and the 3D
rendering approach provides full parameterization over problem difficulty.

2.3 Structure of the LVis Model

The LVis (Leabra Vision) model [1] (Fig. 3) preprocessed bitmap images via two
stages of mathematical filtering that capture the qualitative processing thought
to occur in the mammalian visual pathways from retina to LGN (lateral genicu-
late nucleus of the thalamus) to primary visual cortex (V1). The output of this
filtering provided the input to the Leabra network, which then learned over a se-
quence of layers to categorize the inputs according to object categories. Although
we have shown that the early stages of visual processing (through V1) can be
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Fig. 2. The CU3D-100 dataset. a) 9 example objects from the 100 CU3D categories.
b) Each category is further composed of multiple, diverse exemplars (average of 9.42
exemplars per category). ¢) Each exemplar is rendered with 3D (depth) rotations and
variability in lighting. d) The 2D images are subject to 2D transformations (translation,
scale, planar rotation), with ranges generally around 20%.

Fig. 3. The architecture of the LVis model [1]. LVis is based on the anatomy of the
ventral pathway of the brain, from primary visual cortex (V1) through extrastriate ar-
eas (V2, V4) to inferotemporal (IT) cortex. V1 reflects filters that model the response
properties of V1 neurons (both simple and complex subtypes). In higher levels, recep-
tive fields become more spatially invariant and complex. All layers are bidirectionally
connected, allowing higher-level information to influence bottom-up processing.
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learned via the self-organizing learning mechanisms in Leabra [6], it was more
computationally efficient to implement these steps directly in optimized C++
code. This optimized implementation retained the k-winners-take-all (kWTA)
inhibitory competition dynamics from Leabra, which we have found important
to for successful recognition performance. Thus, the implementation can be func-
tionally viewed as a single Leabra network.

2.4 Detalils of the Figure-Ground Model

Fig. 4. The figure-ground segmentation model. There are three sets of layers at three
interacting spatial resolutions. The first set corresponds to V1, the second set to V1C
end-stop cells [11], and the third set learns to extract the figure from the background.
The network is connected in a feedforward fashion from left to right. All of the figure
layers have both recurrent and bidirectional connectivity, allowing the network to learn
how to combine the information from each resolution so as to reproduce just the figure
in the high resolution figure layer. The high resolution figure layer then projects to the
V1 layer of the LVis model, helping the figure to pop-out in object recognition.
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The figure-ground segmentation model (Fig. 4) has three feedforward streams,
going from left-to-right, that each operate at a different resolution. The right-
most figure column comprises the output stages of the network, with the high
resolution figure layer being the final output. The principle of operation of the
network can be clearly seen by comparing the low and high resolution V1 layers
with the high resolution figure layer. At low resolution the background falls out
out completely but much of the fine detail of the stapler is lost. At high resolution
the fine detail is retained but so too is the background. In the high resolution
figure output layer it is evident that the network has learned to be constrained
by both sources of information and produces a stapler with fine detail and no
background.

Learning, Training and Testing During training Emer is presented with 3D
objects against complex backgrounds from the CU3D-100 and is asked to identify
them by name. Generalization performance is then assessed on the remaining two
objects per category. The training signal is derived from our disparity matching
algorithm which is written in optimized C++ code. In order to compute the
training signal Emer first foveates an object, resulting in stereo images. Our
disparity matching algorithm then compares the images and computes the zero-
disparity region that is used as a training signal. During training the network
predicts what the figure is in each of the figure layers at its corresponding res-
olution. Next, the weights are changed as a function of the difference between
this prediction and the correct answer as output by our disparity matching al-
gorithm. The network is then tested on its ability to predict this training signal
for objects it has never seen before.

V1 and End-stop Cells The middle column of Fig. 4 contains end-stop cells,
which are essential to solving the figure-ground problem [11]. End-stop cells
detect when one oriented edge in V1 terminates into another, enabling the de-
tection of T-junctions and contours, which are excellent cues for figure-ground
segmentation. This can be seen visually by noting that the end-stop layers are
active for the figure with little activity for the background. These weights are
not learned, but are rather fixed, with each end-stop cell integrating over several
rows of V1 neurons.

Both V1 and end-stop cells have feedforward projections to the figure layers.
Each neuron in V1 projects to its corresponding neuron in the figure layer.
Each group of neurons in the end-stop layer connects to every other neuron in
the corresponding group of neurons in the figure layer. The weights in these
projections are learned over training.

Recurrent and Bidirectional Connectivity Between Figure Layers Re-
current projections connect each figure layer to itself. These projections are in-
tended to support the continuation of contours, by helping to make edges robust
to differences in bottom-up strength. This principle of good continuation is im-
plemented by having each neuron connect to neurons of similar orientation in
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neighboring unit groups. The weights are initially randomized, but are then
tuned over learning.

Bidirectional projections exist between all figure layers, which allows the
network to learn about coarse-to-fine and fine-to-coarse interactions. This is
implemented by having each neuron in the figure layers receive from a small
patch of neurons in the other figure layers at approximately the same spatial
location.

Interactions with the LVis Object Recognition Model The figure-ground
model and the LVis object recognition model interact by having the high-resolution
figure layer influence the V1 layer of the object recognition model. This is
achieved by comparing the activations of each unit in the figure layer with the
corresponding unit in LVis V1 and applying the smaller of the two activations to
LVis V1. Because the LVis V1 layer sees the figure against a background, and the
figure layer learns to ignore the background, this has the effect of damping the
background in the object recognition pathway, improving performance in object
recognition against a complex background. This “min” operation occurs after
the first five cycles, and then periodically throughout settling if the activity in
the figure layer has changed by a sufficient amount.

3 Results

Fig. 5. Generalization performance of LVis in four object recognition conditions. w/
BG: With backgrounds and without figure-ground training error asymptotes at 35.3%.
w/ BG & 2D FG: With backgrounds and with the learning figure-ground front-end
intact performance asymptotes at 24.7% error. w/ BG & 3D FG: With backgrounds
and using the target depth map as input into LVis (i.e., no 3D to 2D generalization
- this is the best possible case for the previous condition) performance asymptotes
at 22.2% error. w/o BG: Without backgrounds using just the standard LVis model
performance asymptotes at 6% error.
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All of the conditions in Fig. 5 have the same basic task, which is invariant
object recognition on the CU3D-100 dataset. The model is trained on approx-
imately eight exemplars per category and then generalization performance is
tested on the remaining two objects from each category. Two objects for each of
the 100 categories are held out for testing and performance is computed as the
number of errors divided by 200 (as seen in Fig. 5).

The performance of the learned monocular figure-ground segmentation is
compared to several other conditions in Fig. 5. The key comparison conditions
are standard LVis with no backgrounds, LVis with backgrounds and without
figure-ground segmentation and LVis with the best 3D figure-ground segmenta-
tion that our disparity matching system can compute.

The main condition being tested is object recognition against a background
(such as the one seen in the picture in Fig. 4) with the learned monocular
figure-ground segmentation model in place. To demonstrate that this is a hard
problem, note that the difference in performance between LVis with and without
backgrounds (and without figure-ground segmentation) is 29.2% error, which is
a dramatic decrease in performance. The other key comparison is between the
model that uses the computed disparity signal (and thus does not need to gener-
alize from 3D to 2D) versus the learned monocular figure-ground segmentation
model. The monocular model has only 2.4% more error, a relatively slight dif-
ference.

4 Discussion

We chose to start with relatively simple backgrounds that nonetheless resulted
in a dramatic detriment to performance in object recognition. The monocular
figure-ground segmentation system had only 2.4% more error than it possibly
could have, demonstrating that the model does indeed learn how to segment
figure from ground.

We believe this result merits continued effort and has great promise for the
field of AGI. For example, it has recently been argued that the field of computer
vision has become stuck using narrow AI methods to do what is effectively a
sophisticated form of pattern recognition in lieu of true invariant object recog-
nition [12]. A main crux of this argument is that many state-of-the-art object
recognition datasets, such as the Caltech101 [2], do not provide a rich enough
training signal to truly develop invariance over scale, translation, and 3D orien-
tation. Therefore, models which attempt to do object recognition on this dataset
are effectively limited to doing an advanced form of pattern recognition because
the training data needed for true invariant object recognition is simply not there.

This has led our lab [13] to develop a new dataset of nearly 1000 objects
in 100 categories based on 3D models derived from the Google Sketchup 3D
Warehouse. We have recently used this dataset, known as the CU3D-100, to test
that our model of biologically plausible object recognition [1] solves the hard
problem of invariant object recognition as opposed to pattern recognition.
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However, we believe that the Caltech101 is not in itself intrinsically flawed.
Rather, researchers are going about solving the problem in the wrong way and
avoiding the hard problem. Because the images in the Caltech101 are derived
from Google Images they have arbitrary backgrounds, requiring figure-ground
segmentation at some level. We believe the correct way to solve the Caltech101
problem, and to solve the problem of training on the entirety of Google Images in
general, is to first create an embodied agent that can learn to do invariant object
recognition based on 3D models. Next, the agent should learn to do invariant
object recognition against complex backgrounds using its ability to do monocular
figure-ground segmentation. Finally, the embodied agent can be tested on the
Caltech101 and will stand a chance of getting closer to human performance on
the task.

5 Future Work

Achieving human performance on the Caltech101 is a challenging problem. In
the context of the model presented here, we have only used disparity signals as
cues to depth. The 2D monocular system can only learn to be as good as its
training signal, and so a richer signal is needed to get to the performance of LVis
without backgrounds. Our next step is therefore to investigate ways to improve
the 3D disparity signal.

One well-known mechanism that animals use is disparity-from-motion. It is
possible that motion not only acts as a depth cue, but can train the 3D disparity
system as to the depth in the scene, which can then in turn train the 2D disparity
system. Our lab has already begun initial investigations into this mechanism
and the results are promising. Ultimately, it seems likely that the brain uses a
multitude of signals to converge on monocular figure-ground segmentation that
is nearly as good as binocular, and it will be some time before our model reaches
that level.
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