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Abstract

The Air Force Institute of Technology’s Advanced Navigation Technology center

has invested significant research time and effort into alternative precision navigation

methods in an effort to counteract the increasing dependency on Global Positioning

System for precision navigation. Such alternative navigation methods have become

particularly useful in environments where the required direct line of sight to the satel-

lite constellation is not available or when the enemy is purposely denying access to

the GPS signal. The use of visual sensors and feature tracking has since emerged

as a valuable and feasible precision navigation alternative which, when coupled with

inertial navigation sensors can reduce navigation estimation errors by approximately

two orders of magnitude [22]. Although the basic mathematics and algorithms have

been thoroughly documented, image-aided navigation is still in its early stages. This

research aims to improve two key steps within the image-aided navigation process:

camera calibration and landmark tracking. The camera calibration step is improved

by automating the point correspondence calculation within the standard camera cali-

bration algorithm, thereby reducing the required time for calibration while maintain-

ing the output model accuracy. The landmark tracking step is improved by digitally

simulating affine distortions on input images in order to calculate more accurate fea-

ture descriptors for improved matching through large changes in relative viewpoint.

These techniques are experimentally demonstrated in an outdoor environment with a

consumer-grade inertial sensor and three imaging sensors, one of which is orthogonal

to the others. Using a tactical-grade inertial sensor coupled with GPS position data as

the truth source, the improved image-aided navigation algorithm is shown to reduce

navigation errors by 24% in position, 16% in velocity, and 35% in attitude compared

to the standard two-camera image-aided navigation setup.
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Enhanced Image-aided Navigation Algorithm

with Automatic Calibration

and Affine Distortion Prediction

I. Introduction

The success of the United States Air Force mission is dependent on the availabil-

ity of precision navigation information. This need is currently fulfilled by the

combination of inertial sensors and position information from the Global Position-

ing System (GPS). Without GPS, inertial sensors alone can only provide a reliable

solution for a short term before inertial drift-induced uncertainty exceeds acceptable

limits. The absence of an alternate inertial error-constraining technology has cre-

ated a dependency on GPS, which is vulnerable to disruption from urban line-of-sight

occlusion or intentional enemy jamming. The Chief of Staff of the Air Force has

addressed this issue by stating, “It seems critical to me that the Joint Force should

reduce its dependence on GPS-aided precision navigation and timing, allowing it to

ultimately become less vulnerable, yet equally precise, and more resilient” [17].

1.1 Current Technology

One of the major research thrusts emerging from the need to decrease depen-

dency on GPS is image-aided navigation. The concept of image-aided navigation

involves augmenting inertial sensors with imaging sensors in order to track visual

landmarks. Landmark tracking coupled with inertial sensor measurements has been

shown to produce stable navigation solutions that are nearly two orders of magnitude

more accurate than inertial sensors alone [22]. This research focuses on improving two

aspects within image-aided navigation: camera calibration and landmark tracking.

1.1.1 Camera Calibration. The current tool of choice for camera calibration

is the Camera Calibration Toolbox from Caltech [1]. The algorithms used inside

1



the tool are heavily based on Dr. Zhang’s camera calibration work [24] and further

explained in the next chapter. Currently, a standard two-camera calibration procedure

is as follows:

1. First, the cameras are rigidly mounted to a camera bar.

2. Next, a planar calibration surface such as the one illustrated in Figure 1.1 is

held still while both cameras capture an image.

3. The planar surface is then moved into a different pose and the cameras capture

another image.

4. This process is repeated until a sufficient number poses have been captured

(usually around 10).

5. Next, the user must manually step through each image for each camera and

click on the outer four corners of calibration surface as shown in Figure 1.2.

6. If the calibration surface is not fully visible within an image, such image must

be discarded.

7. The calibration toolbox uses the corner mapping from each image to calculate

intrinsic and extrinsic parameters for each camera.

8. Lastly, the calibration toolbox produces the relative translation and rotation

between the two cameras and calibration is complete.

1.1.2 Landmark Tracking. The current image-aided navigation algorithm

employed at the Advanced Navigation Technology (ANT) center uses stochastic-

constrained search areas derived from inertial measurements to find and track fea-

tures from one discrete time to the next. A successful feature match depends on the

Euclidean distance between the 128-vector descriptor of a feature and its candidate

match. Figure 1.3 illustrates successful (green) and unsuccessful matches (yellow)

over consecutive time steps. Common causes for unsuccessful matches include fea-

tures leaving the image plane between discrete time steps and large affine distortions

arising from either vehicle movement or camera selection.

2



Calibration images

Figure 1.1: Traditional planar calibration surface. The chessboard pattern
printed on the planar surface allows for practical feature mapping from simple
corner detection.

1.2 Problem Formulation

The problem addressed in this research is composed of two parts. First, the

current camera calibration procedure is unnecessarily manual and therefore slow and

prone to user-induced error. The first goal is to automate the entire camera calibra-

tion process by using a different planar calibration surface, one with distinct features

that can be automatically recognized and matched by a computer without user in-

teraction (eliminating the need to click on the outer four corners of the chessboard).

Second, the current landmark tracking algorithm does not account for affine distor-

tions arising from drastic changes in vehicle position and camera selection, such as

when a feature tracked by a forward camera moves into the field of view of a side

camera. Therefore, the second goal is to develop an affine distortion prediction algo-

rithm that preemptively transforms tracked features using inertial measurements in

3
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Figure 1.2: Outer corner delineation. The user must individually click on the
outer four corners of each image to identify the boundaries of the calibration
surface.

order to improve feature matching success rate during extended periods of navigation

and over orthogonal cameras. An increased feature matching success rate will directly

improve the navigation solution by reducing error.

1.3 Research Contributions

The primary contribution of this research is an enhanced image-aided naviga-

tion algorithm that includes a deeply-coupled image and inertial navigation solution

with predictive affine distortion modeling. Additionally, this research delivers a fully

automated camera calibration algorithm that enables the calibration of cameras with

minimal overlapping between fields of view. The algorithms described herein generate

a stable navigation solution accurate to within 1.5% (of distance traveled) in posi-

tion, 1 meter per second in velocity and 4 degrees in attitude using a consumer-grade

inertial sensor and three consumer-grade cameras.
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Figure 1.3: Feature matching illustration. Successful matches from ti to ti+1

are denoted by green search areas while unsuccessful matches are denoted by
yellow search areas.

1.4 Outline

The remainder of this thesis is divided into four additional chapters. Chap-

ter II discusses the background topics needed to build a foundational understanding

of inertial navigation, imaging sensors, camera calibration, image-aided navigation

and feature generation and matching. Chapter III outlines the methods used to de-

velop the automatic calibration and affine distortion prediction algorithms as well as

the experimental procedures used to evaluate them. The experimental results are

presented and analyzed in Chapter IV, and finally, conclusions and suggestions for

further development are made in Chapter V.
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II. Background

This chapter outlines the major concepts needed to implement the automatic cal-

ibration and affine distortion prediction algorithms described in this thesis and

to understand their importance. The notational conventions used throughout this

thesis are presented in Section 2.1. A brief overview on the use of reference frames

for navigation is given in Section 2.2. Section 2.3 overviews the basic concepts in

inertial navigation. Notable digital signal processing techniques used in this research

are discussed in Section 2.4. Camera models and camera calibration techniques are

summarized in Section 2.5. Sections 2.6 and 2.7 cover the basic concepts in Kalman

filtering and image-aided navigation as well as their associated limitations. The ma-

jor contributions from previous research efforts are briefly discussed throughout the

appropriate sections.

2.1 Mathematical Notation

The quantities expressed in equations, figures, tables and text throughout this

research adhere to the following conventions:

Scalars: Scalars are represented by either upper or lowercase characters in italics,

e.g., a or A.

Vectors: Vector quantities are represented by lowercase characters in bold, e.g., a.

Unless specifically stated otherwise, all vectors should be interpreted as column

vectors.

Vector Components: The scalar components of a vector are represented with sub-

scripts indicating their corresponding axes, e.g., the x-component of the vector

a is represented as ax.

Homogeneous Vectors: Homogeneous vectors are built by augmenting standard

vectors with an additional component equal to 1 and are represented with an

underscore, e.g., a. The use of homogeneous vectors is further discussed in

Section 2.2.1.3.
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Matrices: Matrices are represented by uppercase characters in bold, e.g., A or Ψ.

Estimated Variables: Variables that represent an estimate of a particular quantity

are represented with the “hat” accent, e.g., â.

Direction Cosine Matrices: Direction cosine matrices representing a rotation from

frame a to frame b are denoted by Cb
a.

Reference Frame: If a vector is expressed in a specific reference frame, a superscript

letter is used to designate the reference frame, e.g., pa is a vector in the a frame.

Relative Position or Motion: In cases where is it important to specify relative

motion, combined subscript letters are used to designate the frames, e.g., ωab

represents the angular rate vector from frame a to frame b.

A Priori and A Posteriori Estimates: When describing the operation of a Kalman

filter algorithm, it is necessary to distinguish between estimates computed be-

fore (a priori) or after (a posteriori) a measurement update. In such instances,

a “minus” character superscript is added to the variable for a priori estimates

while a “plus” character superscript is added to a posteriori estimates, e.g.,

â(t−) or â(t+).

2.2 Reference Frames

Navigation reference frames are fundamentally important when expressing po-

sition, velocity, and orientation of a body. For this research, the following reference

frames are defined based on those presented in [3], [20] and [22]:

The true inertial frame (I-frame) - a theoretical reference frame in which New-

ton’s laws of motion apply. The frame is defined by a non-accelerating, non-

rotating orthonormal basis in R
3. Because of the relative nature of the universe,

the true inertial frame has no predefined origin or orientation.

The Earth-centered inertial frame (i-frame) - an orthonormal basis in R
3, with

its origin at the center of mass of the Earth. The x and y axes are located
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on the equatorial plane with the x-axis pointing towards Aries. The z-axis

points towards the North Pole. The i-frame is a non-rotating frame, but it does

accelerate with respect to the true inertial frame due to the relative rotation

between celestial bodies. However, for terrestrial navigation purposes, it can be

considered an inertial reference frame. The i-frame is illustrated in Figure 2.1.

The Earth-centered Earth-fixed frame (e-frame) - an orthonormal basis in R
3,

with its origin also at the Earth’s center of mass. The e-frame is rigidly attached

to the Earth, with the x-axis on the equatorial plane pointing toward the Green-

wich meridian, the z-axis aligned with the North Pole, and the y-axis on the

equatorial plane pointing toward 90 degrees East longitude. Because the e-

frame is a true Cartesian reference frame, some navigation computations are

simplified. The e-frame is illustrated in Figure 2.1.

The vehicle-fixed navigation frame (n′-frame) - an orthonormal basis in R
3,

with its origin located at a predefined point on a vehicle (e.g., the vehicle’s

center of gravity or the center of a triad of inertial sensors, etc.) The vehicle-

fixed navigation frame’s x, y, and z axes point in the North, East and down

(NED) directions, respectively. Although the concept of down is open to inter-

pretation, for the purposes of this research, down is defined as the direction a

plumb line would point due to gravity. The n′-frame rotates with respect to the

e-frame due to translational motion of the vehicle and the rotation of the earth.

The n′-frame is illustrated in Figure 2.1.

The Earth-fixed navigation frame (n-frame) - an orthonormal basis in R
3, with

its origin located at a predefined location on the Earth, typically on the surface.

The Earth-fixed navigation frame’s x, y, and z axes point in the North, East,

and down directions relative to the origin, respectively. As in the previous

case, down is defined as the direction of the gravity vector. In contrast to

the vehicle-fixed navigation frame, the Earth-fixed navigation frame remains

fixed to the surface of the Earth. While this frame is not useful for very-long
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Figure 2.1: The inertial and Earth frames originate at the Earth’s center
of mass, while the vehicle-fixed navigation frame’s origin is located at a fixed
location on a vehicle [22].

distance navigation, it can simplify the navigation kinematic equations for local

navigation routes. The n-frame is illustrated in Figure 2.2.

The body frame (b-frame) - an orthonormal basis in R
3, rigidly attached to the

vehicle with its origin co-located with the navigation frame. The x, y, and z

axes point out the nose, right wing, and bottom of an aircraft, respectively.

Strapdown inertial sensors are fixed to the b-frame, although they may not be

located at the origin or aligned with the axes. The b-frame is shown in Figure 2.3.

The camera frame (c-frame) - an orthonormal basis in R
3, rigidly attached to a

camera, with its origin at the camera’s optical center. The x and y axes point

up and to the right, respectively, and are parallel to the image plane of the

camera. The z-axis points out of the camera perpendicular to the image plane.

The c-frame is shown in Figure 2.4.
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Figure 2.2: The Earth-fixed navigation frame is a Cartesian reference frame
with the x and y axes perpendicular to the gravity vector, the z-axis aligned
with the gravity vector, and its origin fixed to the Earth [22].

The binocular disparity frame (c0-frame) - an orthonormal basis in R
3, which

is rigidly attached to the lever arm located between cameras in a binocular

configuration, with its origin at a specified point on the lever arm. The x,

y, and z axes point up, right, and forward, respectively, and parallel to the

corresponding ca-frame axes. The c0-frame is shown in Figure 2.5.

Image frame (pix-frame) - an orthonormal basis in R
2 with its origin beyond the

upper-left pixel of a digital image. Multiple conventions exist throughout im-

age processing literature for pixel indexing and axis orientation. In this thesis,

images are indexed according to the matrix storage format used by The Math-

works, Inc’s Matlab software, with the upper left pixel indexed as (1,1), the

x-axis down the left side and y-axis across the top of the image.

10



Figure 2.3: Aircraft body frame illustration. The aircraft body frame origi-
nates at the aircraft center of gravity [22].

Calibration board frame (cal-frame) - an orthonormal basis in R
3 with its origin

at the upper-left corner of the calibration board. The x and y axes are aligned

with the calibration board while the z-axis points upward, away from the board.

The cal-frame is shown in Figure 2.6.

2.2.1 Coordinate Transformations. It is often necessary to relate measured

vector quantities from one frame to another. This is accomplished by applying a

coordinate transformation matrix, which can be composed of a translation and/or a

rotation component. Translations describe relative positions between the origins of

two reference frames, while rotations describe the relative angle between the principal

axes of two reference frames.

2.2.1.1 Translation Vectors. When two reference frames differ only

in relative origin position (e.g., their principal axes are co-directional), a translation
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Figure 2.4: Camera frame illustration. The camera reference frame origi-
nates at the optical center of the lens [22].

vector can be used to express vectors from a coordinate frame in terms of a second

frame. The description of point P in terms of frame a can be expressed in terms of a

co-directional frame b using

pb = pa − pa
ab (2.1)

where pb is the position of point P in frame b and the vector pa
ab is the translation of the

a-frame to the b-frame in a-frame coordinates. Figure 2.7 illustrates the application

of a translation vector between two reference frames.

2.2.1.2 Direction Cosine Matrices. While a translation vector defines

the relative origin position between two reference frames, a Direction Cosine Matrix

(DCM) defines the relative rotation between the principal axes of two reference frames.

DCMs apply rotations to each axis in a reference frame, using the standard Euler

angles, and in the following order [16]:

1. First, a rotation angle ψ is applied about the z-axis of the originating frame.
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Figure 2.5: Binocular disparity frame illustration. The binocular disparity
frame originates at the midpoint between the optical center of the two camera
frames, ca and cb [22].

2. Next, a rotation angle θ is applied about the y-axis of the newly formed inter-

mediate reference frame.

3. Finally, a rotation angle φ is applied about the x-axis of the second intermediate

reference frame formed in step 2.

Once the desired Euler angles are defined, a DCM can be built using

Cb
a =











1 0 0

0 cos φ sin φ

0 −sin φ cos φ





















cos θ 0 −sin θ
0 1 0

sin θ 0 cos θ





















cos ψ sin ψ 0

−sin ψ cos ψ 0

0 0 1











(2.2)

where Cb
a is the DCM that rotates the principal axes of frame a to become co-linear

with the principal axes in frame b. A vector, originally written in terms of frame a,

ya can be represented in terms of frame b using

yb = Cb
ay

a (2.3)

Additionally, due to their purely rotational function, DCMs have the following

properties:
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Figure 2.6: Calibration board frame illustration. The calibration board
frame originates at the upper-left corner of the calibration board [1].

• The determinant of any DCM is always equal to 1, ensuring vector magnitudes

are always preserved during rotations.

• A DCM is guaranteed to have an inverse since it has a nonzero determinant.

• A DCM that aligns frame b to frame a is simply the inverse of the DCM that

aligns frame a to frame b.

• The inverse of a DCM equals its transpose.

2.2.1.3 Transformation Matrices. Transformation matrices provide a

practical method to apply both a translation and a rotation to a vector or point using

one mathematical operation. In order to use transformation matrices, a homogeneous

vector is constructed by augmenting the original vector with an additional element

set equal to one, i.e.,

p = [px py pz | 1]T (2.4)
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Figure 2.7: Translation vectors. The vector pab translates the origin of frame
a to the origin of frame b and can be used to describe the position of point P
relative to frame b given its coordinates in terms of frame a.

A transformation matrix is then composed of a rotation DCM and a translation

vector. For example, given a DCM Cb
a, which aligns frame a to frame b, and a

translation vector pa
ab, which collocates the origin of frame a with the origin of frame

b, the a-frame vector pa can be expressed in terms of frame b using

pb = Tb
ap

a (2.5)

where

Tb
a =











Cb
a | −pa

ab

− −
01×3 | 1











(2.6)

2.3 Inertial Navigation

Inertial navigation is based on the basic concept that, starting from a known

location, attitude, and velocity, a vehicle’s current position and attitude can be esti-

mated by integrating measured changes in velocity and rotation. Inertial navigation

measurement devices such as an Inertial Measurement Unit (IMU) consist of three

15



accelerometers, which measure specific force and three gyroscopes (commonly referred

to as gyros), which measure rotational velocity relative to the I-frame.

When equipped with the navigation equations necessary to integrate for posi-

tion, velocity and attitude, the entire measurement system is referred to as an Inertial

Navigation System (INS). In general, there are two types of INSs: platform and strap-

down. A platform INS is composed of measurement sensors mounted on a platform

and gimbaled such that the vertical sensor of the unit is always aligned with local

gravity. In contrast, a strapdown INS consists of a a simple IMU rigidly mounted to

a vehicle with its motion sensors mounted orthogonally and aligned with the vehicle’s

b-frame. During the experiments conducted for this thesis, vehicles were equipped

with Micro Eletro-mechanical Systems (MEMS) grade strapdown IMUs due to their

small size, light weight and low-power consumption. The navigation equations were

then implemented in software separate from the device. Further information regarding

strapdown inertial navigation can be found in the works of Titterton and Weston [20].

2.4 Digital Image Processing

This section explores the basic concepts behind digital imaging and signal pro-

cessing on which camera calibration, landmark tracking and image-aided navigation

are built.

2.4.1 Digital Imaging. In this research, the digital imaging model consists of

a light source, a subject or scene, an optical collection device and an imaging sensor.

The light source illuminates the subject while the reflected light rays are collected by

a lens and captured by an optical image sensor. The image sensor translates image

intensities into voltages, which are then quantized into discrete Red Green Blue (RGB)

values by an analog-to-digital converter as shown in Figure 2.8.

2.4.1.1 Perspective Projection Geometry. Perspective projection ge-

ometry describes the mathematical relationship between the 3-D coordinates of a
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Figure 2.8: Image sensor diagram. Light captured by the lens is interpreted
by the imaging sensor to produce a digital image [16].

point in the c-frame and its projection onto the 2-D pix-frame. The physical proper-

ties of a scene can then be extracted from captured images using such relationships.

The process by which a 3-D point is projected onto the 2-D image plane is referred

to as perspective projection. The perspective projection model is derived from the

basic pinhole camera shown in Figure 2.8. In the standard pinhole camera model,

light rays travel from the subject, pass through the lens and are projected onto the

focal plane located at a distance f behind the lens. However, because light rays travel

in straight lines through the lens and towards the origin of the imaging sensor, the

received image is naturally inverted. In order to account for and undo this natural

image inversion, a virtual image plane is placed at a distance f in front of the lens, on

which geometric proportions are identical to those perceived by the imaging sensor.

The modified pinhole camera model is illustrated in Figure 2.9. The vectors depicted

in Figure 2.9 will be discussed in the next section.
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Figure 2.9: Pinhole camera model. The effects of image rotation through
the lens are modeled by placing a virtual image plane in front of the sensor [16].

2.4.1.2 Intrinsic Camera Matrix. Using the properties of perspective

projection geometry, the mathematical expression that transforms a 3-D point in the

c-frame into a 2-D point in the pix-frame can be developed. The vector sc originates

at the camera sensor origin Oc and terminates at S. As shown in Figure 2.9, the vector

scproj, which also originates at Oc but terminates at the image plane, is collinear with

and a scalar multiple of sc. Since the image plane is located at z = f , the z-coordinate

of scproj is also f . Using similar triangle geometry, the scaling factor which relates the

two vectors can be derived as shown in Equation (2.7)

scproj =
f

scz
sc (2.7)

Next, the z-coordinate in scproj is discarded as the point moves from the c-frame

to the pix-frame. The z-coordinate removal can be represented mathematically using

sproj =





1 0 0

0 1 0



 scproj (2.8)
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Figure 2.10: Image plane diagram. The image plane has both physical
dimensions H ×W and pixel dimensions M ×N . The x and y axes from the
c-frame project onto the image plane at the coordinates (M+1

2
, N+1

2
) [16].

where sproj is the 2-D projection of scproj onto the pix-frame. Finally, the translation

and scaling between the c-frame and the pix-frame is shown in Figure 2.10. The

relative rotation between the two frames involves simply inverting the x-axis and is

done using

ppix =





−1 0

0 1



pproj (2.9)

where the vectors ppix and pproj describe the position of a point p in the pix-frame

and projected c-frame respectively. The projected c-frame is depicted in Figure 2.10

by the xproj and yproj axes and is obtained by projecting the 3-D c-frame onto the

2-D image plane.
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The scaling factors are derived from the ratios of physical-to-pixel dimensions

in the image plane. The x-axis is scaled from a physical length H to a pixel length

M which leads to a scaling factor of M/H in the x-direction. Similarly, the y-axis is

scaled using the factor N/W . Finally, the origin of the c-frame is offset by M+1
2

pixels

in the x-direction and N+1
2

pixels in the y-direction. Combining all transformations

between the c-frame and pix-frame up to this point yields

spix =





−M
H

0 0

0 N
W

0



 scproj +





M+1
2

N+1
2



 (2.10)

where the vector spix is the 2-D projection of a point in the c-frame, described by

scproj, onto the pix-frame. Finally, homogeneous vector representations can be used to

describe the combined rotation, translation, and scaling through the transformation

matrix

Tpix
c =











−f M
H

0 M+1
2

0 f N
W

N+1
2

0 0 1











(2.11)

where

spix =
1

scz
Tpix

c sc (2.12)

The camera model can also be used to convert coordinates from the pix-frame

back to the c-frame. A set of coordinates expressed in terms of the pix-frame can be

converted back to c-frame using

Tc
pix = Tpix

c

−1
=











− H
fM

0 H(M+1)
2fM

0 W
fN

−W (N+1)
2fN

0 0 1











(2.13)
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where

sc = Tc
pixs

pix (2.14)

Note that since there is a loss of dimension when transforming from the c-frame

to the pix-frame, it is impossible to fully invert the transform. Rather, Equation (2.14)

yields a homogeneous 3-D vector that is co-directional with the true vector but not

necessarily equal. The stereo-vision techniques designed to recover the lost dimension

are discussed in Section 2.5.3.

2.4.2 Scale Invariant Feature Transform. Feature identification and match-

ing are integral processes within the proposed automatic calibration and affine distor-

tion prediction algorithms. Although many feature detection and matching techniques

are found throughout computer vision literature, only a few generate features that can

be recognized through changes in camera position and orientation with respect to the

scene, a property which is of fundamental importance. That is, the feature descrip-

tion for each feature should be invariant to changes in scale, rotation or translation

within the image-space. Because of these requirements, the Scale Invariant Feature

Transform (SIFT) algorithm developed by Lowe [12] was chosen as the feature de-

tection algorithm used in this research. The SIFT algorithm is composed of four

main stages: scale-space extrema detection, keypoint localization, orientation assign-

ment and keypoint description. This section explores how these four stages produce

a feature detection algorithm that is invariant to scale, rotation, and translation.

2.4.2.1 Scale-Space Extrema Detection. In the first stage of the trans-

form, stable features are identified within the image across all possible scales using a

continuous scale function known as scale-space. The scale-space function L(x, y, σ) is

built using the Gaussian distribution as a base function kernel and is given by

L(x, y, σ) = G(x, y, σ)⊛ I(x, y) (2.15)
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where I(x, y) is an input image, ⊛ is the convolution operator and G(x, y, σ) is given

by

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.16)

A Difference of Gaussians (DOG) function D(x, y, σ) is constructed in order to

provide scale invariant detection and is given by

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.17)

= L(x, y, kσ)− L(x, y, σ) (2.18)

which yields a computationally efficient approximation to the scale-normalized Lapla-

cian of Gaussian function [11], thereby providing scale invariance. Figure 2.11 illus-

trates how the DOG functions are constructed for an input image. The initial image is

incrementally convolved with 2-D Gaussian distributions to produce blurred images,

which are separated by a constant k in scale-space (shown in the left column). Next,

adjacent blurred images in scale-space are subtracted per Equation (2.18) to produce

the DOG images (shown on the right column). Groups of blurred images are referred

to as octaves and are separated by factors of 2 in scale-space. After an entire octave

is completed, the next octave is formed by downsampling the k = 2 blurred image by

a factor of 2 and repeating the process.

After forming all possible DOG functions, the local extrema within all the re-

sulting images needs to be found. To do so, each sample point is compared to its

eight nearest neighbors in the current image as well as the nine nearest neighbors in

the scale image above and below as shown in Figure 2.12. Finally, a sample point is

considered a possible feature only if it is larger or smaller than all of of its neighbors.

2.4.2.2 Keypoint Localization. Once a candidate feature has been

found using the scale-space extrema process, a detailed fit to the nearby data in

the image must be performed to determine its location, scale, and ratio of principal

curvatures. The data fit allows the rejection of candidate features that have low
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Figure 2.11: Difference of Gaussians illustration. Neighboring scale-space
images are subtracted to produce the Difference of Gaussians function [12].

contrast, which makes them susceptible to noise, or are poorly localized along an

edge. The data fit is found through a Taylor series expansion (up to the quadratic

terms) of the DOG function D(x, y, σ) using

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (2.19)

where D is evaluated at the candidate feature location and x = (x, y, σ)T is the

offset from the candidate point. The location of the extremum x̂ within the image is

then estimated using Equation (2.19) by taking its derivative with respect to x and

setting it equal to zero. If the resulting offset between the estimate of the extremum’s

location x̂ and the current candidate is larger than 0.5 in any dimension, a different

candidate is chosen and the process is repeated. Finally, since even poorly defined

candidates will have a high DOG response along the edges of the image, the ratio of

their principal axes is analyzed in order to eliminate any candidates that have a high

ratio of largest-to-smallest eigenvalues, indicating they are on an edge.

23



Figure 2.12: Local extrema illustration. A candidate feature must be smaller
than or greater than all of its 26 neighbors in scale-space [12].

2.4.2.3 Orientation Assignment. Once all the qualifying features have

been selected from the elimination processes described above, a relative orientation is

assigned to each feature based on local image properties. Computing the orientation

of each feature allows the generation of an unique descriptor, which identifies the

feature in its own orientation frame. Therefore, features can later be matched using

their descriptors regardless of the absolute orientation of their source images, making

the SIFT algorithm rotation invariant. A feature’s orientation is computed from

the blurred image L which corresponds to the feature’s scale σ. The local gradient

magnitude and orientation are computed around the feature location in L using

m(x, y) =
√
A2 + B2 (2.20)

θ(x, y) = tan−1(B/A) (2.21)
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where

A = L(x+ 1, y)− L(x− 1, y) (2.22)

B = L(x, y + 1)− L(x, y − 1) (2.23)

Finally, a histogram of the orientations is built from sample points around the

feature location. Local peaks are then identified within the histogram. Multiple

keypoints, consisting of location, scale, and orientation, can be generated from a

single feature, consisting only of location and scale, by assigning different orientations.

Usually, the orientations in the top 20% of the histogram are used in generating

multiple keypoints from a particular feature.

2.4.2.4 Keypoint Description. Up to this point, keypoints consisting of

location, scale, and orientation have been generated from an input image. These three

parameters are then used to generate local 3-D coordinate frames for each keypoint,

providing a repeatable method of keypoint description, which is invariant to such

parameters. The final step in the SIFT algorithm generates a more unique keypoint

descriptor that provides partial invariance to factors such as illumination and small

changes in 3-D viewpoint. The SIFT keypoint descriptor process is based on a model

of biological vision where neurons respond to gradients at particular orientations and

spatial frequencies. Using this model, a keypoint descriptor is created by computing

the gradient magnitude and orientation in a sampled region around the keypoint’s

location. Next, the orientations are weighed by a 2-D Gaussian function, centered at

the keypoint’s location, and accumulated into 8-bin histograms, which summarize the

contents over 4 × 4 subregions as shown in Figure 2.13. Consequently, the keypoint

descriptor is a 8 × 4 × 4 = 128 point normalized vector containing the values of the

gradient orientation histogram bins in the 4× 4 subregions.

2.4.3 Feature Matching Techniques. Szeliski [19] introduces a few feature

matching methods for algorithms that produce feature or keypoint descriptors such
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Figure 2.13: Keypoint descriptor illustration. A feature’s unique descriptor
is composed from a histogram of the image gradients around its location [12].

as SIFT. In this thesis, the particular feature matching algorithm used for both auto-

matic calibration and image-aided navigation is the Nearest Neighbor Distance Ratio

(NNDR). NNDR was chosen over other common techniques such as Random Sample

Consensus (RANSAC) [4] due to the deep-coupling of inertial and imaging sensors

provided by the image-aided navigation algorithm discussed in Section 2.7. Feature

matching is accomplished by comparing feature descriptors, which are normalized

vectors in 128-space as discussed in Section 2.4.2.4. Using NNDR, potential matches

are found by computing the Euclidean distance in 128-space from a reference feature

to all possible candidate features. Then, the following ratio is computed using the

two closest candidate features

r =
d1

d2

=
||dR − dA||
||dR − dB||

(2.24)

where dR is the reference feature descriptor and dA and dB are the two closest can-

didate feature descriptors. The NNDR computed in Equation (2.24) is a measure of

the strength of a particular match. If the ratio is much less than 1, then dA is much

closer to dR than dB and therefore the match is strong. In contrast, if the ratio is
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close to 1, then both dA and dB are very close to dR and therefore the match may be

too weak to declare it with confidence. Setting a maximum NNDR ratio that must

be satisfied helps prevent false matches.

2.4.4 Affine Keypoint Distortions. The keypoint descriptor generation and

matching algorithms discussed up to this point provide full scale and rotation invari-

ance, as well as partial illumination invariance. However, another major necessity in

feature tracking is affine distortion invariance. As the viewpoint of a physical object

changes, either through vehicle motion or camera angle, the image gradients from

which keypoint descriptors are derived change along with the image of the object.

Fortunately, the change can be adequately modeled using affine transformations on

the initial image. Using this concept as a foundation, Morel and Yu developed the

Affine Scale Invariant Feature Transform (ASIFT) algorithm [15], which they claim

provides full affine invariance. The ASIFT algorithm recursively uses the basic SIFT

algorithm described in the previous section as a core function. Much like the scale-

space development used by Lowe to provide scale invariance, Morel and Yu simulate a

series of affine transformations on a given image and calculate standard SIFT keypoint

descriptors for each of the simulated images. When compared to SIFT, the ASIFT

algorithm outputs nearly nine times as many keypoints per input image because of

the affine distortion simulations. The ASIFT algorithm creates multiple versions of

the standard SIFT descriptors for each image, which increases the probability of ob-

taining successful matches. The keypoint matching improvement given by ASIFT is

illustrated in Figures 2.14 and 2.15. The predictive affine distortion modeling algo-

rithm introduced in Chapter III is partly based on the ASIFT concept. However, as

later explained in Section 2.6, it only needs to generate a single affine-transformed

image, since distortion parameters are estimated in the Extended Kalman Filter.
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Figure 2.14: SIFT matches during high affine distortion. Since the SIFT
algorithm does not account for affine distortions, 0 successful matches and 6
false matches are obtained with an NNDR of 0.55.

Figure 2.15: ASIFT matches during high affine distortion. Because the
ASIFT algorithm provides full affine invariance, 100 successful matches and 0
false matches are obtained with an NNDR of 0.55.

2.5 Camera Calibration

Real world imaging sensors present nonlinear lens distortions that must be mod-

eled and accounted for in computer vision algorithms such as image-aided navigation.

Additionally, the relative rotation and translation between a camera and the scene it

captures (referred to as extrinsic parameters) must be determined for proper image

analysis. This section explores the camera calibration techniques that are currently

used to compensate for the distortion effects and calculate the extrinsic configuration

parameters in a computer vision system.
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2.5.1 Distortion Models. The first step in determining the nonlinear lens

distortion of an imaging sensor is to model the distortion. Brown [2] groups the

distortion parameters into radial, tangential, and skew components.

2.5.1.1 Radial Distortion. Radial distortion, the most noticeable of

the three, causes straight lines to appear curved in the images produced by the sensor.

The main cause of radial distortion is non-uniform magnification inside the sensor’s

optics. Radial distortion is modeled as a function of r, the Euclidean distance between

a point given by the vector sproj in the c-frame and the frame’s origin, which is given

by

drad = 1 + k1r
2 + k2r

4 + k3r
6 (2.25)

r =

√

(sprojx )2 + (sprojy )2 (2.26)

where drad is the radial distortion factor for a particular length r, and k1, k2, and k3

are constant distortion coefficients calculated through camera calibration.

2.5.1.2 Tangential Distortion. Tangential distortion is less visible on

images produced by the sensor and causes the principal point c to shift away from

the true (geometric) center of the image plane. The causes of tangential distortion

include differing curvatures in the front and back of the sensor’s lens and misalignment

between the sensor’s lens and collection array. Brown models tangential distortion as

a 2-D function of r, sprojx and sprojy defined by

dtan =





2p1(s
proj
x )(sprojy ) + p2[r

2 + 2(sprojx )2]

p1[r
2 + 2(sprojy )2 + 2p2(s

proj
x )(sprojy )]



 (2.27)

2.5.1.3 Skew Factor. The distortion caused by a skew factor αc is the

most difficult to visualize and refers to the orthogonality between the x and y axes

in the pix-frame. Although the skew factor for most real world imaging systems is
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nearly zero, it is not negligible when extracting real world metrics from images of

a scene. The skew factor determines how far the pix-frame axes are from perfectly

orthogonal. When included in a camera model, the skew factor multiplies the upper

middle coefficient in the camera transformation matrix Tpix
c such that

spix =
1

scz











−f M
H

−αcf
M
H

M+1
2

0 f N
W

N+1
2

0 0 1











sc (2.28)

2.5.1.4 Camera Distortion Model. Combining all three intrinsic distor-

tion parameters generates a complete mathematical representation of the projection

of a point given by the vector sc in the c-frame onto the distorted pix-frame, which

yields the true pixel coordinates spix. The complete camera distortion model is given

by

spix =
1

scz










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−αcf
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drad 0 dtanx

0 drad dtany
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sc (2.29)

2.5.2 Calibration Algorithms. Having defined a camera distortion model,

an adequate method for calculating its parameters can be developed. Many camera

calibration techniques are found throughout computer vision literature. While most

require the extensive use of complicated calibration equipment, Dr. Zhang introduces

a practical algorithm that requires only a planar surface with known feature coordi-

nates [24]. Furthermore, Zhang’s algorithm contains the fundamental techniques used

by Bouguet in his camera calibration toolbox for Matlab R© [1].

2.5.2.1 Camera Calibration from a Planar Surface. Zhang [24] de-

velops a flexible and robust algorithm for calculating the intrinsic and extrinsic pa-

rameters for a given imaging sensor (or set of sensors). Using the distortion model

developed in the previous section, Zhang defines the relationship between a 3-D point
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and its 2-D image projection in a fashion similar to Equation (2.29) such that

sm = A[R t]M (2.30)

A =











α c u0

0 β v0

0 0 1











(2.31)

where s is an arbitrary scale factor, the augmented matrix [R t] contains the ex-

trinsic parameters, and the matrix A contains the intrinsic parameters. Comparing

Equation (2.28) with Equation (2.31) yields

A = Tpix
c











1 αc 0

0 1 0

0 0 1











(2.32)

and

α = −fM
H

(2.33)

c = −αcf
M

H
(2.34)

u0 =
M + 1

2
(2.35)

β = f
N

W
(2.36)

v0 =
N + 1

2
(2.37)
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Additionally, since the extrinsic parameters describe the relative rotation and

translation between the 3-D c-frame and the 2-D pix-frame, the augmented matrix

[R t] is of the form

[R t] =

















r11 r12 r13 tx

r21 r22 r23 ty

r11 r12 r13 tz

0 0 0 1

















(2.38)

Since the 3-D points to be used for calibration all lie on a planar surface, Zhang

begins by defining extrinsic parameters relative to the cal-frame such that all 3-D

points lie on z = 0. Since all points lie on the same plane, Zhang drops the third

coordinate and reduces all 3-D point coordinates to 2-D, yielding

sm = HM (2.39)

H = A[r1 r2 t] (2.40)

where H is a 3× 3 homography matrix defined up to a scale factor. After estimating

H from a single set of model (M) and image (m) points, Zhang uses the fact that the

column vectors r1 and r2, which compose H, are orthonormal to define the following

additional constraints on the intrinsic parameters

hT
1A

−TA−1h2 = 0 (2.41)

hT
1A−TA−1h1 = h2A

−TA−1h2 (2.42)

where the notation −T represents the inverse and transpose operations and the col-

umn vector hi is the i
th column of H. Using the two constraints given above, Zhang

then solves for the extrinsic and intrinsic parameters by observing the same planar

surface from at least two views, which must differ by both rotation and translation.

Observing more than two views of the planar surface creates an overdetermined system
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that can be solved using least-squares. Creating an overdetermined system accounts

for noise in the collection process. Further information on the closed form (analytical)

and iterative (maximum likelihood) solutions to the calibration system can be found

in Zhang’s technical report [24].

2.5.2.2 Caltech Camera Calibration Toolbox. Bouguet [1] makes exten-

sive use of Dr. Zhang’s calibration method to develop a practical camera calibration

user interface for Matlab R©. Bouguet uses the exact homography estimation tech-

nique described by Zhang but chooses to use the orthogonality property of vanishing

points [16] to estimate the intrinsic parameters. Finally, Bouguet implements ad-

ditional algorithms [7] to estimate the tangential distortion coefficients. Although

the Camera Calibration Toolbox developed by Bouguet has become one of the most

widely used tools in camera calibration among computer vision research facilities, its

mode of operation is unnecessarily manual and prone to user error. One of the goals

of this research, which will be discussed in the next chapter, is to automate Bouguet’s

toolbox.

Using a common reference, the extrinsic results for each camera in a system are

compared in order to compute their relative rotation and translation. To do so, the

cameras and the calibration board must remain stationary (relative to one another)

while capturing each view from multiple cameras. Another goal of this research is

to develop a robust multi-camera calibration algorithm that can be used to calibrate

multi-camera systems with non-overlapping fields of view. Further development is

presented in the next chapter.

2.5.3 Binocular Stereopsis. Using the epipolar geometry illustrated in Fig-

ure 2.16, the 3-D location of a point can be calculated by observing it from two

different cameras with known rotation and translation (obtained during calibration).
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Figure 2.16: Binocular imaging geometry. The 3-D position of a point in
the n-frame can be extracted from its projections onto the image planes of two
cameras with known relative rotation and translation.

The epipolar geometry constraints are given by

Pr = R(Pl −T) (2.43)

pl =
fl
Zl

Pl (2.44)

pr =
fr
Zr

Pr (2.45)

where T and R represent the relative rotation and translation between the left and

right cameras, fl and fr are the respective focal lengths of each camera, the vectors

pr and pl represent the projections of the world point P onto each image plane, and

the vectors Pr and Pl represent the coordinates of the world point P on each c-frame.

Starting with the left image of a point, a 1-D search along the epipolar line on the right

image can be conducted in order to extract the distance to the point thus establishing

its full 3-D location. Binocular imaging geometry is used extensively in determining

the 3-D location of each landmark within the image-aided Extended Kalman Filter

presented in Section 2.7. Additional information on epipolar geometry and binocular

stereopsis can be found in Szeliski’s textbook [19].
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2.6 Kalman Filtering

The Kalman filter, developed by Rudolf Kalman in 1960 [10], provides a method

for the optimal combination of measurements made by multiple sensors (e.g., inertial

and imaging). The Kalman filter uses Bayesian statistics to combine dynamics and

measurements models, which provides a solution estimate with the lowest possible

uncertainty. This section outlines the basic principles behind the Kalman filter as

outlined by Maybeck [13] [14].

2.6.1 Linear Kalman Filter. The physical system dynamics are modeled

using the form

ẋ(t) = Fx(t) +Bu(t) +Gw(t) (2.46)

where x is a vector containing the system states of interest, u is a vector containing

system control inputs and w is a vector of white Gaussian noise sources with

E[w(t)] = 0 (2.47)

E[w(t)w(t+ τ)] = Qδ(τ) (2.48)

while the matrices F, B and G contain constant coefficients, which specify linear

combinations of the vectors they multiply.

In order to implement the Kalman filter algorithm in a computer system, the

continuous-time model must be discretized to account for system propagation between

samples. The discrete process noise strength matrix Qd and the discrete control

input matrix Bd are obtained by changing the limits of integration to capture a single

time step ∆t within the general solution to the system, which is given shown by

Maybeck [14] and VanLoan [21]. Additionally, the discrete state transition matrix,
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which is used to propagate system states and derived from the system dynamics

model, is given by

Φ = eF∆t (2.49)

Linear discrete measurements from the various sensors are modeled by

z(ti) = Hx(ti) + v(ti) (2.50)

where z is a vector of sensor measurements and v is a vector of discrete-time, white

Gaussian noise sources with

E[v(ti)] = 0 (2.51)

E[v(ti)v(tj)] = Rδij (2.52)

and

E[w(ti)v(tj)] = 0 (2.53)

while the matrixH contains constant coefficients, which specify linear combinations of

the system state vector x. Since the system is fully linear, the Kalman filter algorithm

guarantees a Minimum Mean Squared Error (MMSE) optimal solution for estimating

the system states.

The quantities of interest estimated by the Kalman filter are contained within

the random vector x. The Kalman filter provides the probability density function for

x at each discrete time step, conditioned on noise corrupted measurements provided

by sensors. The Kalman filter algorithm begins with initial conditions, which include

the initial state estimate vector x̂ and its uncertainty, which is contained by the

covariance matrix Pxx. The initial conditions are propagated from one discrete time

step to the next using the discrete state transition matrix such that
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x̂(t−i+1) = Φx̂(t+i ) +Bdu(ti) (2.54)

Pxx(t
−

i+1) = ΦPxx(t
+
i )Φ

T +Qd (2.55)

As linear measurements become available at discrete time intervals, the propa-

gated state estimates and their covariance are optimally combined with the incoming

measurements using the Kalman gain matrix K, which is given by

K(ti) = Pxx(t
−

i )H
T [HPxx(t

−

i )H
T +R]−1 (2.56)

The state estimates and covariances are updated with the Kalman gain matrix

from Equation (2.56) using

x̂(t+i ) = x̂(t−i ) +K(ti)[z(ti)−Hx̂(t−i )] (2.57)

Pxx(t
+
i ) = Pxx(t

−

i )−K(ti)HPxx(t
−

i ) (2.58)

As shown in Equations (2.57) and (2.58), the Kalman gain matrix serves as an

optimal weighting factor that gives adequate preference to either the propagated or

measured estimates, given their individual uncertainties, in order to minimize mean

squared error.

2.6.2 Extended Kalman Filter. If a particular system cannot be adequately

represented using linear dynamics or measurement models, the linear Kalman filter

algorithm does not guarantee optimal solutions. However, in certain cases, linear

approximations to nonlinear systems can still yield accurate estimates. In such cases,

the Extended Kalman Filter (EKF) is used. The basic system dynamics equation for

a nonlinear system is given by

ẋ(t) = f [x(t),u(t), t] +G(t)w(t) (2.59)
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where f is a vector containing functions which represent the system. In turn, the

nonlinear measurement equation is given by

z(ti) = h[x(ti), ti] + v(ti) (2.60)

where h is a vector of functions which model the sensor. The main goal is to linearize

nonlinear models about their nominal estimates in order to use the conventional linear

Kalman update equations. To do so, the states are redefined using the perturbation

model given by

δx(t) , x(t)− x̂(t) (2.61)

where δx(t) represents the difference between the true state vector and its estimate.

In order to propagate the system from initial conditions or a previous measurement

to the time of the next measurement, the EKF integrates the nonlinear dynamics

function over the discrete time difference using

x̂(t−i+1) =

∫ ti+1

ti

f [x(t),u(t), t]dt+ x̂(t+i ) (2.62)

while the state covariance matrix is propagated using Equation (2.49), Equation (2.55)

and a linearized dynamics model matrix F given by

F(ti) =
∂f

∂x

∣

∣

∣

∣

x̂(t+
i
)

(2.63)

In order to update the propagated state estimates using an incoming (possibly

nonlinear) measurement, the measurement must first be predicted by evaluating the

measurement model function with the most recent estimate using

zpred(ti) = h[x̂(t−i ), ti] (2.64)

δz(ti) = z(ti)− zpred(ti) (2.65)
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where δz is called the measurement perturbation and represents the difference between

the actual and predicted measurements.

In order to combine the propagated and measured state estimates, the nonlinear

measurement function h is linearized to obtainH(ti) in a similar fashion to F(ti) using

H(ti) =
∂h

∂x

∣

∣

∣

∣

x̂(t−
i
)

(2.66)

The linearized matrix H is then used in Equation (2.56) to obtain a Kalman

gain matrix, and the measurement update equation reduces to

δx̂(t+i+1) = K(ti+1)δz(ti+1) (2.67)

due to the use of perturbation state estimates and measurements. The perturbation

state δx̂, which starts at zero during each filter recursion, is updated using Equa-

tion (2.67) and added to the nominal trajectory to produce a nominal estimate. Prior

to the next recursion, the perturbation state is reset to zero. Since the EKF does not

guarantee optimal solutions, it must often be tuned prior to use by adding process

noise and selecting specific initial conditions. Tuning increases filter stability and

usually increases solution uncertainty.

2.7 Image-aided Navigation

Veth [22] describes a novel approach to image-aided navigation in which features

are tracked within an image over time in order to correct inertial navigation errors.

At the same time, inertial sensor measurements are used to correct errors within the

visual feature tracking algorithm. Using a so-called stochastic feature tracker, Veth

presents a deeply-coupled inertial and visual navigation algorithm that uses rigorous

stochastic developments in order to integrate the two systems.
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Table 2.1: Image-aided navigation parameters.
This table summarizes the major parameters in Veth’s
image-aided navigation algorithm [22].

Parameter Description
pn Vehicle position in navigation frame
vn Vehicle velocity in navigation frame
Cn

b Vehicle body to navigation frame DCM
ab Accelerometer bias vector
bb Gyroscope bias vector
tnm Location of landmark m in the navigation frame
db Camera-to-body lever arm in body frame
Cb

c Camera-to-body orientation DCM in body frame
y Vector of landmark locations in navigation frame

2.7.1 Algorithm Description. The major system parameters involved in the

algorithm are listed in Table 2.1. Veth uses an EKF to periodically update the error

estimates in the system parameters, which can be grouped into navigation parame-

ters (position, velocity, attitude), inertial sensor biases and a vector (y) describing

the location of the landmarks of interest. Throughout the EKF, navigation param-

eters are calculated using bias-corrected inertial measurements (vehicle velocity and

angular increment) and used to propagate the error estimates through the strapdown

mechanization equations described by Titterton and Weston [20]. The navigation pa-

rameters are modeled as stochastic random processes while the inertial sensor biases

are modeled as first-order Gauss-Markov processes, which are based on manufacturer

specifications. Finally, the landmarks used in visual feature tracking are modeled as

stationary objects with respect to the Earth, with a small amount of process noise

added for filter stability. Figure 2.17 illustrates Veth’s overall algorithm.

2.7.2 Landmark Track Maintenance. Due to computer limitations and on-

line implementation practicalities, Veth constrains the number of features that are

tracked at any particular time through the use of a track maintenance algorithm.

In general, a maximum and minimum number of tracks is set, and features are con-

stantly “pruned” in order to provide the EKF the best information possible. In his
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Figure 2.17: The 3-D locations of stationary features are tracked and used
to provide measurement updates in order to estimate and correct inertial navi-
gation errors. In turn, the inertial navigation system is used to support feature
tracking [22].

algorithm, Veth uses SIFT to generate features of interest because they are easy to

identify, locally distinct from other features and well separated in image-space. The

main purpose of the track maintenance algorithm is to remove “stale” tracks when

no correspondence is found for extended periods of time.

2.7.3 Measurement Model. One of the most crucial developments in Veth’s

algorithm [22] is the use of rigorous stochastic projections to propagate features be-

tween images. Veth describes a tracking loop algorithm responsible for incorporat-

ing new landmark tracks, predicting and matching feature locations between images

through the use of stochastic projections and providing actual filter measurements to

the EKF. In turn, the EKF assists the tracking loop by providing mean-square error

state estimates from which stochastic projections are derived.

The tracking loop incorporates new tracks (as necessary) by estimating the 3-D

location of the feature using a combination of binocular stereopsis and the current
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Figure 2.18: Features of interest are propagated into future images using
inertial measurements and stochastic projections [22].

navigational state vector. The vector containing feature locations, along with its

associated covariance matrix, is augmented into the EKF using the system’s stochastic

properties [23]. As the EKF propagates the state estimate, the location of the features

in a future image are predicted along with an uncertainty ellipse, which is derived

from the propagated covariance matrix. Finally, the landmark correspondence search

can be restricted based upon the pix-frame projection of each landmark’s location

uncertainty in order to speed up the tracking process. Once (and if) a match is

found, the pixel location of the matched features is used to update the navigation

state. Figure 2.18 illustrates the stochastic projection process.

2.8 Summary

This chapter has laid the basic foundation upon which this thesis is based. Top-

ics including nomenclature, reference frames, inertial navigation, digital image pro-

cessing, camera calibration, Kalman filtering and image-aided navigation have been
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explored. The next chapter of this research describes how these concepts were used to

develop an improved image-aided navigation algorithm that includes automatic cam-

era calibration and accounts for affine distortions such as those presented by cameras

with non-overlapping fields of view.
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III. Methodology

This chapter presents the methods used to generate a solution to the problems

described in Chapter I, as well as the experiments used to evaluate the solution.

This chapter is divided into two sections: algorithm development and experimental

methods. The algorithm development for automatic calibration is presented in Section

3.1.1. The affine distortion prediction process is presented in Section 3.1.2. Finally,

the experimental methods used to validate the major research contributions of this

thesis are presented in Section 3.2.

3.1 Algorithm Development

3.1.1 Automatic Calibration . This section describes the procedures used

to generate an automated calibration algorithm based on the manual calibration pro-

cesses described in Section 2.5. The automatic calibration algorithm developed in this

section removes the need for user interaction and complements the existing Matlab R©
toolbox.

As previously stated, the current calibration process relies heavily on user in-

volvement. Although current computer vision algorithms are very efficient at recog-

nizing corners within an image [6], there are currently no mature methods for sepa-

rating a standard calibration board, such as the one in Figure 1.2, from the image

background. Because of this, the current calibration process starts off by a manual

delineation of the calibration board perimeter for every calibration image. Addition-

ally, the user is asked for the size of each square and the number of squares along each

axis. As the user defines the board perimeter within each image, the toolbox builds

a set of coordinate correspondences between points in the pix-frame (m) and points

in the cal-frame (M). Once enough correspondences are established, the toolbox can

run through a gradient descent algorithm to find the best solution for

m = HM (3.1)
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Figure 3.1: Standard (manual) calibration process. During standard cali-
bration, the user is heavily involved in the board delineation and square size
input steps.

where the homography matrix H contains the camera model and transformation ma-

trix that takes points from the cal-frame into the pix-frame.

As illustrated by Figures 3.1 and 3.2, the manual steps from the standard al-

gorithm (color-coded red) are replaced with proven automated computer functions

(color-coded blue) in order to eliminate the need for user interaction. First, the stan-

dard calibration board is replaced by an arbitrary image for which distinct SIFT

features can be found and tracked. SIFT matches can then be automatically found

between the physical board and a digital copy with no need for user interaction. A

sample feature match set from an experimental calibration is shown in Figure 3.3.

Having automatically found the pix-frame points m on the right image, their

corresponding cal-frame coordinates can be computed through a transformation ma-
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Figure 3.2: Automatic calibration process. During automatic calibration,
user involvement is drastically reduced by changing the calibration board and
replaced by automatic feature recognition.
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M̂ (3.3)

M = Aprint
pix M̂ (3.4)

where the set of points M̂ have coordinates which are measured in pixels and the

set of points M are measured in meters, as required by the calibration toolbox. It is

important to note that since all cal-frame points are coplanar, their third coordinate
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Figure 3.3: Automatic calibration matches. Board delineation and corner
detection are replaced by automatic SIFT feature matching between an image
printout and its digital copy. The left image shows digital cal-frame coordi-
nates M̂, while the right image shows the corresponding pix-frame points m.

can be assumed to be zero (z = 0), which reduces the transformation matrix from

three to two dimensions. The coefficients that populate the transformation matrix

in Equation (3.2) are computed by comparing the pixel and meter coordinates of at

least three known points in a least-squares algorithm. The corners of the white square

shown in Figure 3.4 illustrate four known points selected in both the digital board

and the printed board.

Having defined the M and m vectors without user interaction, the standard

calibration toolbox can be used to execute the gradient descent computations and

complete the calibration process. The results from an automatic calibration routine

are compared to the standard calibration process in terms of total time and reprojec-

tion error in Chapter IV.

3.1.2 Affine Distortion Prediction . This section describes the methods and

algorithms used to develop a predictive algorithm that accounts for affine distortions

in SIFT feature descriptors, which arise from changes in 3-D viewpoint. The pre-

dictive algorithm, referred to from here on as Affine Distortion Prediction (ADP), is
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Figure 3.4: Pixel-to-board frame mapping. In order to convert digital cal-
frame coordinates (pixels) to actual printed cal-frame coordinates (meters) for
all automatic SIFT matches found, a transformation matrix is constructed by
comparing the digital and printed cal-frame coordinates of four known points
(corners of the white square).

then deeply coupled into the existing Image-aided Extended Kalman Filter (IAEKF),

originally developed by Veth [22].

3.1.2.1 Effects of Affine Distortion on Feature Matching. In order to

fully understand the need for, and advantages provided by ADP, the effects of affine

distortions in feature tracking effectiveness must be examined. As previously stated,

one of the key requirements in image-aided navigation is the ability to detect and

track features over many frames of an image sequence. Although SIFT descriptors

allow feature matching through changes in scale (zoom), rotations about the c-frame’s

z-axis (2-D rotations), and illumination, feature tracking effectiveness diminishes with

rotations about the c-frame’s x and y axes (3-D rotations) [18]. Figure 3.5 illustrates

a 3-D rotation between two images of the same scene. Using the conventional SIFT

descriptors found for both images and a NNDR of 0.45, there was only one positive

match found. Next, Figure 3.6 illustrates a drastic increase in SIFT matches between

the two images when an affine transformation is artificially applied to the original flat

image. Finally, Figure 3.7 illustrates the locations of the matches found in Figure 3.6

backprojected onto the original flat image to produce the final match set.
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3.1.2.2 Simulating Affine Distortions. Having established the poten-

tial improvement offered by simulating affine distortions, the mathematics involved

can be developed. The process begins with a flat, grayscale digital image I with height

M and width N . The grayscale value stored in the (i, j) element of the matrix I can

be thought of as a 2-D point with coordinates (j+1, i+1) in the pix-frame. An affine

distortion to I can be simulated by applying a 3-D DCM AÎ
I about the image center

to every element in I such that











ĵ + 1

î+ 1

k̂











= AÎ
I

T





















j + 1

i+ 1

0











−











N/2

M/2

0





















+











N/2

M/2

0











(3.5)

where the new elements (̂i, ĵ) compose the simulated image Î, which is the resulting

affine-distorted version of I. Note that in order to apply a 3-D transformation matrix

onto a 2-D image, a third dimension must be created for every element in I. Since all

the elements of I are assumed to be coplanar, a third coordinate of z = 0 can be set for

all points in the image prior to applying AÎ
I . The DCM AÎ

I can be built from desired

changes in line-of-sight azimuth (ψ) and elevation (θ) using Equation (2.2). Since

SIFT descriptors are already invariant to rotations about the line-of-sight vector, φ

is always set to zero.

Simulating an affine distortion to the original image is essentially equivalent to

resampling I along the major axes of AÎ
I . Therefore, the final step in this process

consists of applying a low-pass 2-D Gaussian filter on Î to prevent undesired aliasing.

A 2-D low-pass Gaussian filter can be applied to an image X using

Xfilt = X⊛ h(n1, n2) (3.6)

h(n1, n2) =
hg(n1, n2)
∑

n1

∑

n2

hg
(3.7)

hg(n1, n2) = e−(n2
1
+n2

2
)/(2σ2) (3.8)
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where n1 and n2 represent the dimensions of the Gaussian filter and σ represents its

standard deviation. Figure 3.8 illustrates the simulated affine distortion output image

for four different combinations of change in line-of-sight azimuth and elevation.

3.1.2.3 Transforming SIFT Descriptors. With a method for simulat-

ing affine distortions in place, a process for transforming the SIFT descriptor of a

particular feature can be developed. Transforming the SIFT descriptor of a specific

feature differs from the process shown in Section 3.1.2.1 and Figure 3.6. Specifically,

one is no longer simulating an affine distortion on the input image and checking for

all possible matches, but rather trying to obtain a new (affine-distorted) descriptor

for a single feature. The reason for this difference is that in order to integrate ADP

into the IAEKF, SIFT feature descriptors need to be “propagated” to account for

changes in relative viewpoint between the vehicle and the features it tracks.

The entire SIFT descriptor transformation process is illustrated in Figure 3.9.

Again, the process begins with a flat input image I, a feature of interest fm, which is

described by pix-frame coordinates (xm, ym), SIFT scale σm, SIFT rotation rm and

SIFT descriptor dm. The goal is to use a desired change in azimuth (∆φ) and elevation

(∆θ) in order to transform dm and produce d̂m.

The first step is to simulate the affine distortion dictated by ∆φ and ∆θ on I

using Equation (3.5). Since the affine distortion simulation equation applies to all

points, it can be used to project the coordinates of fm (xm, ym, 0) along with the rest

of the image. The affine distortion simulation process significantly alters the scale

and rotation of the entire image, which changes both rm and σm. This change makes

it impossible to manually compute a new SIFT descriptor from Î, which is the affine-

distorted version of I, at f̂m, which is the projected location of fm in the new image.

Instead, the SIFT algorithm described in Section 2.4.2 is applied to Î to produce

a new set of SIFT features G. Finally, the nearest neighbor in G to f̂m is found

using Euclidean distances and called gn. It is then assumed that if the threshold for

accepting a close neighbor match is low enough, d̂m can be taken directly from the new
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feature. That is, the “transformed” descriptor for fm is actually the descriptor from

the new feature gn. If a new feature is not found within the established threshold,

the SIFT descriptor is said to be non-transformable for the given ∆φ and ∆θ and

the original descriptor is returned. Figures 3.10 through 3.12 illustrate the descriptor

transformation algorithm described in this section.

3.1.2.4 Deep Coupling into IAEKF. Having developed an algorithm

for transforming SIFT descriptors using desired changes in azimuth and elevation,

ADP can now be integrated into the IAEKF in order to improve long-baseline feature

tracking performance. The first step involves understanding the nature of changes in

visual information through vehicle movement. As shown in Figure 3.13, assuming a

forward-moving trajectory, visual elements which initially are characterized by high

affine and projective distortions become “flatter” as the vehicle approaches. That is,

in general, additional information about particular objects is gained in a scene as one

gets closer to them.

A similar characteristic can be attributed to the affine distortion simulation al-

gorithm described in 3.1.2.2. Note that affine distortion works by resampling initial

visual information, which actually reduces the amount of information, to approximate

the effects of high affine change. Affine distortion simulation can only distort currently

available visual information, and more importantly, it cannot recover missing informa-

tion. In other words, affine distortion simulation cannot be used to “flatten” images

that are already distorted; it can only further distort images.

From the above observations, one can conclude that in order to use ADP ef-

fectively, a SIFT descriptor cannot be simply propagated forward because the visual

information, which was hidden by the high affine distortion, cannot be recovered.

Instead, newer measurements (sets of descriptors) must be propagated backwards.

Therefore, newer descriptors, which are assumed to be “flatter” and contain more in-

formation, need to be transformed to match current descriptors, which are assumed to
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be distorted and contain less information. Figure 3.14 illustrates the visual operator

space problem described in this section.

Having established the correct application of ADP onto SIFT descriptors, the

mechanics involved in the deep coupling with the IAEKF can be finally set. Fig-

ure 2.17 describes the baseline deep coupling algorithm described by Veth [22]. Inte-

grating ADP into the existing visual aided navigation algorithm can be thought of as

not only predicting where (in the pix-frame) features will appear from ti to ti+1, but

also what (in terms of SIFT descriptor changes) those feature will look like at ti+1.

The algorithm begins with the binocular initialization of K landmarks at ti. As

previously mentioned, the binocular initialization is necessary for estimating feature

depth and is only needed when discovering new landmarks. After initializing a par-

ticular landmark m and estimating its 3-D location in the n-frame tnm, the landmark’s

initial descriptor dm(ti) and relative azimuth ψm(ti) and elevation θm(ti) are recorded.

The landmark’s relative azimuth and elevation are computed using

lnvm = tnm − pn (3.9)

ψ = tan−1

(

−lnvm(3)
√

lnvm(1)
2 + lvm(2)2

)

(3.10)

θ = tan−1

(

lnvm(2)

lnvm(1)

)

(3.11)

where the n-frame vector lnvm is a line-of-sight vector pointing from the vehicle to

the landmark m, and the vectors tnm and pn represent the landmark and vehicle

positions in the n-frame respectively. In short, relative azimuth is the angle between

the projection of lnvm onto the N -E plane and the N -axis, while relative elevation is the

angle between lnvm and the N -E plane. Additionally, the computed relative azimuth is

modified from Equation (3.10) by adding or subtracting π to ensure continuity across

the entire 2π circle. Figure 3.15 illustrates the azimuth and elevation angles as defined

by the n-frame. Note that relative azimuth and elevation are purely functions of the
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relative position between the vehicle and the features it tracks; vehicle attitude is not

a factor.

Next, using the mathematics described by Veth [22], each of the K landmarks is

propagated forward in time from ti to ti+1. The pix-frame location of each landmark

is estimated using INS measurements. A stochastically-defined elliptical search area

around each estimated landmark location is created and based on state covariances

as shown in Figure 1.3. Before attempting to match candidate features from the

image at ti+1 (referred to as measurements) to landmark descriptors from ti, the

ADP algorithm is used to propagate dm(ti) to d
−

m(ti+1) for all K landmarks. In order

to do so, the most recent computed position solution is used to calculate ψ̂m(t
−

i+1) and

θ̂m(t
−

i+1), for each of the K landmarks being tracked.

Having calculated the new relative azimuth and elevation for the mth landmark,

∆ψm and ∆θm are computed using

∆ψm = ψ̂m(t
−

i+1)− ψ̂m(t
+
i ) (3.12)

∆θm = θ̂m(t
−

i+1)− θ̂m(t
+
i ) (3.13)

The SIFT descriptor transformation algorithm described in Section 3.1.2.3 is

then used to back-propagate all candidate features from ti+1 to ti as illustrated in

Figure 3.14 while keeping track of their corresponding original SIFT descriptors. Fi-

nally, a NNDR algorithm is used to identify a match between the particular landmark

and all back-propagated candidate features that fall within the search window. If a

positive match is found, d−m(ti+1) is then defined as the transformed SIFT descriptor

that was positively matched while d+m(ti+1) is defined as the corresponding original

descriptor. This process is repeated for all K landmarks active at ti. The entire ADP

algorithm is illustrated in Figure 3.16.
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3.1.2.5 Optimizing Simplifications. Not all magnitudes of ∆ψm and

∆θm warrant the use of ADP. There is a range of change in either relative azimuth or

elevation that can be neglected due to its minimal effect on SIFT descriptors. This

range was experimentally found to be 0 − 35 degrees in both. Additionally, it was

experimentally established that distortion simulations exceeding 60 degrees in either

azimuth or elevation result in SIFT descriptor transformation success rates below 5%

and therefore can be neglected.

The ADP algorithm is repeated K times every discrete time step, often with

very similar affine distortions. Therefore, measurement back-projections involving

similar ∆ψ and ∆θ combinations for a particular time step can be grouped into a

single back-projection mode in order to eliminate computational redundancy. Fig-

ure 3.17 illustrates a sample back-projection set (∆ψ,∆θ) and the modes they were

grouped into. Since back-projection involves transforming an image in accordance

with a particular (∆ψ,∆θ), many features may be back-projected using the same

transformed image.

3.1.2.6 Additional Enhancements to the IAEKF. Finally, several im-

portant enhancements were implemented into the existing IAEKF software:

Side Landmark Manager: In order to track landmarks over extended periods of

time using side cameras, landmark coast time, which is the amount of time a

landmark is allowed to remain active in the absence of positive matches, has to

be lengthened so that landmarks remain active while they transition between

front and side cameras. However, a longer landmark coast time increases the

wait time required to replace a stale track. This is exacerbated under condi-

tions in which the forward-looking scene changes quickly (e.g., during horizon-

tal turns). Ultimately, a longer coast time increases the probability of losing

all landmark tracks without replacement, which effectively eliminates the mea-

surement updates provided by the feature tracker to the IAEKF. This conflict

between landmark coast time and feature tracker effectiveness was solved by
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adding a second feature tracker, which receives landmark hand-offs from the

standard feature tracker as it deactivates stale features. The second feature

tracker allows newly deactivated landmarks to still provide measurement up-

dates, if a positive match is made through a side camera, while maintaining a

relatively short landmark coast time.

SIFT Descriptor Update: In the original implementation of the IAEKF, the fea-

ture tracker used the SIFT descriptors from initial landmark activations to de-

termine matches. If a positive match was found, the SIFT descriptor was not

replaced by its match, which is by definition newer. This process was changed

so that SIFT descriptors for matched landmarks are replaced by their latest

match. This frequent SIFT descriptor update increases the probability of track-

ing landmarks over extended periods of time since it reduces the relative change

between reference and candidate SIFT descriptors. Additionally, this frequent

descriptor update can be used to account for descriptor changes arising from

small incremental changes in viewpoint.

Lens Distortion Corrections: Finally, the original IAEKF implementation only

accounted for lens distortion effects when correcting landmark locations on the

pix-frame. However, lens distortion was not used to account for changes in

feature appearance as a function of pix-frame location. It is logical to assume

that the SIFT descriptor for a particular feature changes significantly depend-

ing on the feature’s location within the pix-frame due to radial lens distortion

effects. Therefore, in order to track features for extended periods of time, and

more importantly, as they change locations within the pix-frame, all incoming

measurement images were undistorted using the camera model from calibra-

tion prior to detecting SIFT features. This image undistortion step increases

the probability of obtaining a positive landmark match even as the landmarks

change position within the pix-frame.
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3.2 Experimental Methods

This section describes the experimental methods used to evaluate the automatic

calibration and affine distortion prediction algorithms developed in Section 3.1. The

topics discussed include test equipment, algorithm variables, sensor models and data

collection run descriptions.

3.2.1 Test Equipment. The main equipment used to experimentally ver-

ify both algorithms includes a set of 3 consumer-grade computer-vision cameras

from Prosilica and the MEMS-grade MIDG II IMU from Microbotics. Addition-

ally, portable power and processing (computer) hardware was necessary to mobilize

the test setup and collect outdoor data. Finally, the tactical-grade SPAN INS/GPS

system from Novatel was used in conjunction with the main test equipment in order

to collect high-fidelity truth data for error computations. Figures 3.18 and 3.19 il-

lustrate the two collection rigs used during this research. The automatic calibration

algorithm was tested by calibrating a pair of consumer-grade cameras using the au-

tomatic algorithm and comparing the results with Bouguet’s standard method. The

ADP algorithm was tested by collecting outdoor inertial and image data using the

two collection rigs and comparing the IAEKF output results with the high-fidelity

truth source.

3.2.2 Algorithm Variables. In order to properly test the ADP algorithm,

the standard variables needed to run the IAEKF were tuned. Table 3.1 summarizes

all the variable values needed to repeat the experiments performed for this research.

The standard variables used in Veth’s code [22] as well as newly-added ADP variables

are included. The algorithm variables are described below.

Coast time : Time an active track is allowed to remain stale.

Max landmarks : Maximum amount of tracks allowed at any moment.

ADP groups : Minimum, maximum and separation of ADP mode groups.
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Table 3.1: Variable values for IAEKF algorithm.
This table summarizes the variable values associated
with the IAEKF implementation used for this re-
search.

Variable Value

Coast time (front) 1 [s]
Coast time (side) 3 [s]
Max landmarks (front) 30
Max landmarks (side) 30
ADP groups ± 0:5:60 [deg]
ADP threshold 40 [deg]
Minimum feature scale 3
Minimum correlation 0.95
SIFT match NDDR 0.45
Pixel error STD 2 [pix]
SIFT rotation error STD 0.5 [pix]
SIFT scale error coefficient 0.05 [pix]
Radial error coefficient 0.005 [pix]
Stochastic constraint distance 2.15 [pix]

ADP threshold : Minimum viewpoint change in an ADP group for algorithm usage.

Minimum feature scale : Minimum SIFT feature scale to accept a new track.

Minimum correlation : Minimum descriptor correlation to accept match.

SIFT match NNDR : NNDR used to accept feature matches in the IAEKF.

Pixel error STD : Pixel error standard deviation in measurement model.

SIFT rotation error coefficient : Rotation error multiplier in measurement model.

SIFT scale error coefficient : Scale error multiplier in measurement model.

Radial error coefficient : Radial distortion error multiplier in measurement model.

Stochastic constraint distance : Baseline distance for feature match search area.

3.2.3 Sensor Models and Installation. An accurate INS model was devel-

oped, based on manufacturer specifications and experimental data, in order to ade-

quately propagate the EKF states during processing. Table 3.2 summarizes the main
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Table 3.2: MIDG II MEMS-grade INS model. This
table summarizes the MIDG II INS model variables
used for this research.

Variable Value

Sampling frequency 50 [Hz]
Accelerometer time constant 3600 [s]
Gyroscope time constant 3600 [s]
Accelerometer bias STD 0.2 [m/s2]
Gyroscope bias STD 9× 10−3 [rad/s]
Accelerometer scale factor 300 [ppm]
Gyroscope scale factor 150 [ppm]
Accelerometer random walk STD 9× 10−3 [m/s/

√
s]

Gyroscope random walk STD 9× 10−4 [rad/
√
s]

characteristics of the INS model used during this research. Table 3.3 summarizes the

standard 15-state Pinson error model [20], which was used in conjunction with the

INS model in the IAEKF. Finally, the automatic calibration algorithm described in

this research was used to produce camera models for each camera as summarized in

Table 3.4 as well as the extrinsic sensor installation measurements summarized in

Tables 3.5 and 3.6. However, as it will be later pointed out in Section 5.2.1, the

automatic camera calibration algorithm does not currently compute IMU-to-camera

extrinsic configurations. The extrinsic configurations computed by the algorithm are

all relative to Camera 1 (front left). Therefore, the IMU-to-camera lever arm was

manually measured for Camera 1 and the two sensors were assumed to be perfectly

aligned in terms of DCMs.
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Table 3.3: Kalman filter state definitions. This
table summarizes the standard 15-state Pinson error
model [20].

State Variable Meaning

x1 δpN North position error [m]
x2 δpE East position error [m]
x3 δpD Down position error [m]
x4 δvN North velocity error [m/s]
x5 δvE East velocity error [m/s]
x6 δvD Down velocity error [m/s]
x7 δα North attitude error [mrad]
x8 δβ East attitude error [mrad]
x9 δγ Down attitude error [mrad]
x10 δfxs x accelerometer bias [m/sec2]
x11 δfys y accelerometer bias [m/sec2]
x12 δfzs z accelerometer bias [m/sec2]
x13 δωxs x gyro drift [rad/sec]
x14 δωxs y gyro drift [rad/sec]
x15 δωxs z gyro drift [rad/sec]
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Figure 3.5: SIFT matches through large affine change. Although SIFT
descriptors allow for feature matching through changes in illumination, 2-D
rotation, and zoom, their matching effectiveness quickly decreases during 3-D
rotations. SIFT finds one match between the two images.
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Figure 3.6: SIFT matches with simulated affine distortion. If a 3-D rotation
approximating the right image is applied to the original left image, the number
of SIFT matches drastically increases to 40.
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Figure 3.7: Backprojection of match locations onto original image. Finally,
the match locations from the simulated image can be backprojected onto the
original flat image to recover the final match locations between the two original
images.
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∆ θ = −30, ∆ ψ = 60

(a)

∆ θ = 10, ∆ ψ = −40

(b)

∆ θ = −50, ∆ ψ = 0

(c)

∆ θ = 0, ∆ ψ = 50

(d)

Figure 3.8: Sample affine distortion output images using various combinations of
desired change in azimuth and elevation. The input image is essentially resampled
along the major axes of the 3-D DCM AÎ

I .
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Figure 3.9: SIFT descriptor transformation algorithm.

 

 
fm

Figure 3.10: Sample flat image I with selected SIFT feature fm.
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f̂m
G

Figure 3.11: Sample affine-distorted image with new SIFT features. Since
the image scale and rotation have changed, new SIFT descriptors cannot be
manually computed at the exact feature location. Instead, the entire SIFT
algorithm is used to re-detect a new set of features (G) within the new image.
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f̂m
G
gn
Threshold

Figure 3.12: Sample nearest neighbor feature match. The SIFT descriptor

for the closest new feature gn to f̂m within the predefined threshold (2 pixels
in this case) is chosen as the “transformed” descriptor d̂m.
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Figure 3.13: Nature of visual information gain over time. Initially, there is
very little visual information available about the face of the object parallel to
the travel path (top). As the vehicle continues on a straight and forward tra-
jectory, the amount of visual information available increases (bottom). Affine
distortion simulation is capable of taking the bottom image and approximating
the top image but not vice-versa.
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Figure 3.14: Illustration of descriptor propagation operator. Since the de-
scriptor operator O cannot be applied to current descriptors, all incoming
measurements are back-propagated using ADP (O−1). Descriptor matching is
done on the left (“distorted” R128 ) and the nearest match is followed back to
the right (“flat” R128).

Figure 3.15: Relative azimuth and elevation in the n-frame.
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Figure 3.16: ADP algorithm block diagram.
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Figure 3.17: Sample ADP mode grouping.
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Figure 3.18: Data collection push-cart illustration. The push-cart collection
rig was manually pushed around a parking lot during Run 1, primarily to
collect enough data to tune the IAEKF variables.

71



Figure 3.19: Data collection van illustration. The van-mounted collection
rig was used in a downtown environment during Run 2 and was the primary
collection source for this research.
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Table 3.4: Camera models table. This table summa-
rizes the models for the various imaging sensors used
for this research.

125495 122865 101205 107971 102828 115970

Make Prosilica Prosilica Prosilica Prosilica Prosilica Prosilica
Lens Pentax Pentax Pentax Pentax Pentax Pentax
Focal length [mm] [1376,1374] [1361,1359] [1375,1373] [928,927] [935,933] [1106,1105]
Principal point [pix] [604,522] [611,492] [633,532] [766,595] [797,559] [539,404]
k1 -0.119 -0.113 -0.116 -0.094 -0.118 -0.113
k2 -0.188 0.181 -0.163 -0.099 0.168 0.16
k3 −6.66× 10−4 −1.11× 10−3 −1.12× 10−4 −1.23× 10−3 9.04× 10−3 3.47× 10−4

k4 1.54× 10−4 −1.05× 10−3 −1.66× 10−4 2.50× 10−3 −8.66× 10−4 −1.98× 10−4

Resolution [pix] [960,1280] [960,1280] [960,1280] [1600,1200] [1600,1200] [1024,768]
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3.2.4 Data Collection Run Descriptions. The automatic calibration algo-

rithm was tested indoors using a single data collection and two consumer-grade cam-

eras. The ADP algorithm was tested through two different collection rigs (Figures

3.18 and 3.19), which were used to perform two different collection runs. Run 1 was

performed in a parking lot using the rig shown in Figure 3.18, while Run 2 was per-

formed in an urban downtown using the rig shown in Figure 3.19. The purpose of Run

1 was to collect a short amount of data in order to debug and tune the ADP-enhanced

IAEKF algorithm. Having properly tuned the system, Run 2 was then performed as

the primary source of data. It is important to note that the system was not re-tuned

for Run 2. The results from Run 2 are more indicative of real-world system perfor-

mance, since the system would most likely not be re-tuned prior to runs. Table 3.7

summarizes the key characteristics of each run including the location, duration, and

equipment used.

3.3 Summary

This chapter has presented the key contributions of this research in terms of

algorithm development for both the automatic calibration and affine distortion pre-

diction algorithms. Additionally, the test equipment and experiments used to validate

the algorithms were described. The results from these experiments are analyzed and

illustrated in Chapter IV.
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Table 3.5: Sensor installation table for Run 1. This
table summarizes the (vehicle) body-to-sensor transla-
tion vector (Tb

bs) and sensor-to-body DCMs (Cb
s) for

each sensor used in Run 1. The body (b) frame is
defined as shown in Figure 2.3.

Tb
bs[m] Cb

s

IMU











0.0000

0.0000

0.0000





















1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000











Cam 1











0.0191

−0.2273

−0.0080





















0.0000 0.0000 1.0000

0.0000 1.0000 0.0000

−1.0000 0.0000 0.0000











Cam 2











0.0204

0.2289

−0.0135





















−0.0031 −0.0015 1.0000

0.0029 1.0000 0.0015

−1.0000 0.0029 −0.0031











Cam 3











−0.0864

0.1692

−0.0476





















−0.0353 −0.9994 −0.0049

0.0251 −0.0058 0.9997

−0.9991 0.0352 0.0253










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Table 3.6: Sensor installation table for Run 2. This
table summarizes the (vehicle) body-to-sensor transla-
tion vector (Tb

bs) and sensor-to-body DCMs (Cb
s) for

each sensor used in Run 2. The body (b) frame is
defined as shown in Figure 2.3.

Tb
bs[m] Cb

s

IMU











0.0000

0.0000

0.0000





















1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000











Cam 1











0.0318

−0.1655

−0.0088





















0.0000 0.0000 1.0000

0.0000 1.0000 0.0000

−1.0000 0.0000 0.0000











Cam 2











0.0165

1.6025

−0.0040





















0.0081 0.0019 1.0000

−0.0017 1.0000 −0.0019

−1.0000 −0.0017 0.0081











Cam 3











−0.4731

−0.2259

−0.0500





















−0.0075 0.9988 0.0494

0.0068 0.0494 −0.9988

−0.9999 −0.0072 −0.0071











Table 3.7: Data collection run descriptions. This ta-
ble characterizes the data collection runs used during
this research.

Run 1 Run 2

Location Parking lot Urban downtown
Vehicle Push cart Van
Duration [mm:ss] 5:40 9:00
Total distance [m] 172.04 2.257× 103

Left Camera 125495 107971
Right Camera 122865 102828
Side Camera 101205 115970
Side Camera Direction Right Left
IMU MIDG II MIDG II
Truth Source HG1700 SPAN HG1700 SPAN
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IV. Results and Analysis

This chapter discusses the results from the experiments described in Section 3.2,

which were used to evaluate the automatic calibration and affine distortion

prediction algorithms developed during this thesis. The methods used to process and

analyze the collected data are presented in Section 4.1. Sections 4.2 and 4.3 present

and discuss the results from the automatic calibration and affine distortion prediction

algorithms respectively.

4.1 Data Processing

The calibration and navigation data collected during the experiments described

in Section 3.2 were post processed using The Mathworks, Inc.’s Matlab software, ver-

sion R2010B. Data processing included image formatting, truth trajectory generation,

accelerometer and gyro bias estimation and error calculation.

4.1.1 Image Formatting. Prior to processing each run, the collected raw

image data was timestamped within ± 1 millisecond, renamed, and organized into

respective folders in order to decrease the computational load on the IAEKF. Next,

every image was pre-rectified to account for lens distortions (as explained in Section

3.1.2.6). Finally, SIFT features were precomputed for every rectified image in order

to reduce the run-time load on the IAEKF.

4.1.2 Error Calculation . A tactical-grade SPAN navigation platform from

Novatel, consisting of a Honeywell HG1700 inertial sensor and a GPS receiver, was

used to collect high-fidelity position, velocity, and attitude data during both runs.

This truth data was preprocessed to generate true position, velocity, and attitude

states in order to verify the performance of the IAEKF output. State errors will be

computed by subtracting estimated states from their respective true states in Section

4.3.2.
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4.1.3 Bias Estimation. During the beginning of each run, the IAEKF was al-

lowed to estimate accelerometer and gyroscope biases by observing INS measurements

and comparing them to known or reference states. For this research, the high-fidelity

truth data was given to the IAEKF in the form of alignment measurements with low

covariance for a short duration. In real-world applications, this process can be also

accomplished by allowing the IAEKF to run while the vehicle is stationary. In order

to simulate real-world applications, the collection rigs remained stationary for a brief

period of time before executing the run. Run 1 (calibration run) was aligned for two

minutes, while Run 2 (demonstration run) was aligned for 30 seconds.

4.2 Automatic Camera Calibration

Since there was no practical way of obtaining truth data for comparison, the

automatic calibration algorithm was tested by calibrating a single binocular pair of

consumer-grade cameras and comparing the calibration results to a standard calibra-

tion from Bouguet’s toolbox. Instead of comparing each parameter, the calibration

routines were compared in terms of average reprojection error, which represents the

effective accuracy of the entire camera model produced. As shown in Table 4.1, the

automatic calibration algorithm provided a 70 % increase in calibration speed (by

eliminating manual calibration steps) and averaged 4 times more calibration points

per image while maintaining sub-pixel errors. It is important to note that, unlike

Bouguet’s algorithm, the automatic calibration algorithm did not require the entire

calibration board to be visible, which allowed the calibration board to be held closer

to the binocular camera set. Consequently, the calibration board covered a larger

part of the pix-frame when compared to standard calibration as shown in Figure 4.1.

Although the mean reprojection error was sub-pixel, the automatic calibration algo-

rithm exhibited a significant increase in reprojection error spread when compared to

Bouget’s toolbox (illustrated in Figure 4.2). This increase in spread is most likely

due to the lower SIFT feature localization and matching accuracy when compared to

the corner localization accuracy of the Harris corner detector. Additionally, since the
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Table 4.1: Automatic calibration results. This table
compares the calibration results from an automatic
calibration routine and a standard calibration routine.

Standard Automatic

Calibration time [min] 10 3
Number of images used 10 7
Approximate points per image 100 400
Average reprojection error [pix] [0.20 0.18] [0.35 0.27]

user did not manually delinate the calibration board, the algorithm’s estimate of the

board’s pose ([R t]) could have been degraded, which resulted in degraded camera

model estimates (A).

4.3 Affine Distortion Prediction

The ADP algorithm was tested during two collection runs, using similar collec-

tion rigs. The calibration run was collected using the push-cart rig, and its primary

purpose was to collect enough data to properly tune the IAEKF. Having tuned the

system variables, the demonstration run which was collected using the van-mounted

rig, was used to verify the effects of ADP while varying the number of cameras used.

4.3.1 Trajectory Comparisons. As mentioned in Section 4.1.2, the high-

fidelity truth data was used to generate “true” trajectories for each run. In this

section, the IAEKF filtered output trajectories are compared to the truth trajectories

in the horizontal (North-East plane) and vertical (Down) dimensions.

4.3.1.1 Calibration Run. As shown in Figures 4.3 and 4.4, varying the

number of cameras or the usage of ADP did not significantly alter the resulting filter

output trajectory for the calibration run. This was somewhat expected due to its short

duration. It is important, however, to note that the processing profiles including the

usage of 3 cameras (with ADP on and off) did result in a Down trajectory closer to the

known terrain variations of the collection location. Since the data collection motion
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profile included a double loop in the horizontal trajectory, the vertical trajectory was

expected to exhibit a double “dip” which was not present in the reference trajectory,

but approximated by the IAEKF output trajectories involving 3 cameras. This minor

yet important discrepancy points at an underlying problem in the truth data for this

run. Therefore, the truth data was discarded after t = 250 seconds. Again, since the

run was useful in providing tuning parameters, this partial loss of truth data was not

catastrophic.

4.3.1.2 Demonstration Run. The trajectory comparisons for the

demonstration run are shown in Figures 4.5 and 4.6. As illustrated by the figures,

each processing profile resulted in a slightly different IAEKF output trajectory. The

differences in the output trajectories are most noticeable in the latter part of the

run (as expected), especially in the vertical trajectory. These trajectory comparisons

indicate, at an early stage, that the usage of ADP resulted in filtered trajectories

closer to the truth in both the two and three camera configurations. This is especially

noticeable in the vertical trajectory comparison (Figure 4.6) and could be attributed

to either the increase of positive landmark matches, or the decrease of false landmark

matches during the run. Unfortunately, the veracity of individual landmark matches

is impractical to determine since it would require careful manual supervision of the

real-time navigation computations for the run.

4.3.2 Navigation State Errors. In this section, the IAEKF filtered outputs

for the nine navigation states (3 position, 3 velocity, 3 attitude) are analyzed in terms

of error, which was obtained by subtracting the corresponding true states as described

in Section 4.1.2.

4.3.2.1 Calibration Run. Table Table 4.2 summarizes the Root Sum

Squared (RSS) errors for the nine Position, Velocity, and Attitude (PVA) navigation

states in the calibration run, while Figures 4.7 through 4.12 illustrate the absolute

and RSS errors for each navigation state as functions of time. Since the truth data
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Table 4.2: PVA RSS errors for the calibration run.
This table summarizes the mean RSS position, veloc-
ity, and attitude errors for the calibration run across
all four processing configurations. The 4th row of the
table displays position errors as a percentage of the
total distance traveled (172 m).

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Position [m] 0.64 0.64 0.63 0.63
Position [%] 0.37 0.37 0.37 0.37
Velocity [m/s] 0.053 0.053 0.055 0.055
Attitude [mrad] 41.98 41.98 42.06 42.06

was determined to be invalid after t = 250, the error computations have been limited

to exclude times greater than 250 seconds.

As illustrated by Figures 4.7 through 4.12 and foreshadowed by the trajectory

comparisons, there was no significant difference in position, velocity or attitude errors

for the calibration run. This is most likely due to the short duration of the run. The

mean position, velocity, and attitude RSS errors increased slightly for the process-

ing profiles involving three cameras, but the increase amounts were not statistically

significant.

81



X

YO
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(b)

Figure 4.1: Comparison of pix-frame coverage for calibration. (a) Manual Calibra-
tion (b) Automatic Calibration. The increased lens and pix-frame coverage, enabled
through automatic calibration, explains the slight increase in reprojection error when
compared to Bouguet’s toolbox.
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Figure 4.2: Calibration reprojection error illustration. (a) Manual Calibration (b)
Automatic Calibration. Although still providing sub-pixel averages, the automatic
calibration routine showed a slight increase in average reprojection error and spread
when compared to Bouguet’s toolbox.
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Figure 4.3: N -E trajectory comparison plots for the calibration run.
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Figure 4.4: Down trajectory comparison plots for the calibration run. Note
that truth data is invalid after t = 250 s.
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Figure 4.5: N -E trajectory comparison plots for the demonstration run.
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Figure 4.6: Down trajectory comparison plots for the demonstration run.
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Figure 4.7: Position error plots for the calibration run. Note that ADP ON
and ADP OFF profiles overlap for both 2 and 3 camera configurations.
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Figure 4.8: Position RSS error plots for the calibration run. Note that ADP
ON and ADP OFF profiles overlap for both 2 and 3 camera configurations.

89



0 50 100 Align 150 200 250

−0.2

0

0.2

V
n E

rr
 (

m
/s

)

0 50 100 Align 150 200 250

−0.2

0

0.2

V
e E

rr
 (

m
/s

)

0 50 100 Align 150 200 250

−0.1

0

0.1

V
d E

rr
 (

m
/s

)

Run Time [sec]

 

 

2 Camera (ADP OFF)
2 Camera (ADP ON)
3 Camera (ADP OFF)
3 Camera (ADP ON)
Error ± 1−σ

Figure 4.9: Velocity error plots for the calibration run. Note that ADP ON
and ADP OFF profiles overlap for both 2 and 3 camera configurations.
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Figure 4.10: Velocity RSS error plots for the calibration run. Note that ADP
ON and ADP OFF profiles overlap for both 2 and 3 camera configurations.
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Figure 4.11: Attitude error plots for the calibration run. Note that ADP
ON and ADP OFF profiles overlap for both 2 and 3 camera configurations.
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Figure 4.12: Attitude RSS error plots for the calibration run. Note that
ADP ON and ADP OFF profiles overlap for both 2 and 3 camera configura-
tions.
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Table 4.3: PVA RSS errors for the demonstration
run. This table summarizes the mean RSS position,
velocity, and attitude errors for the demonstration run
across all four processing configurations. The 4th row
of the table displays position errors as a percentage of
the total distance traveled (2.26 km).

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Position [m] 46.25 42.10 52.92 34.98
Position [%] 2.05 1.87 2.34 1.53
Velocity [m/s] 1.16 1.14 1.30 0.97
Attitude [mrad] 129.89 129.57 163.74 84.35

4.3.2.2 Demonstration Run. Table 4.3 summarizes the RSS errors for

the nine PVA navigation states in the demonstration run, while Figures 4.13 through

4.18 illustrate the absolute and RSS errors for each navigation state over time.

For the demonstration run, the processing profile selection had a significant

impact on navigation errors. In an absolute sense, the position, velocity, and attitude

errors for this run were higher across all processing profiles when compared to the

calibration run. However, it is important to note that the demonstration run was

approximately 1.6 times longer in duration and 13.1 times larger in total distance when

compared to the calibration run. Since the IAEKF algorithm is still based on dead-

reckoning, its errors are neither stationary nor ergodic. Therefore, it is reasonable to

expect that long runs may not have the same errors as short runs.

Analyzing the errors in the demonstration run relative to each other confirms

some of the initial trends foreshadowed in the trajectory analysis, but also reveals

an interesting phenomenon. Performing further analysis on the numbers provided

by Table 4.3 shows that using the ADP algorithm always improved performance

across all navigation states. Interestingly however, using a three-camera configuration

without ADP produced the highest errors across all states in the demonstration run.

In contrast, the three-camera configuration with ADP resulted in the lowest errors
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Figure 4.13: Position error plots for the demonstration run.

across all states. These results showcase of the effects of false landmark matches

on navigation accuracy. This disparate behavior between the two processing profiles

involving three cameras hints at a possible increase of positive matches, decrease of

false matches, or a combination thereof when using ADP.
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Figure 4.14: Position RSS error plots for the demonstration run.
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Figure 4.15: Velocity error plots for the demonstration run.
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Figure 4.16: Velocity RSS error plots for the demonstration run.
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Figure 4.17: Attitude error plots for the demonstration run.
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Figure 4.18: Attitude RSS error plots for the demonstration run.
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4.3.3 Landmark Tracking. Since ADP is designed to directly improve long-

baseline feature tracking, it is important to analyze feature matching and tracking

performance for each of the runs.

4.3.3.1 Calibration Run. Tables 4.4 and 4.5 summarize the landmark

match and track performance for the calibration run. As expected, the number of

total landmark matches is significantly higher for Camera 1 and Camera 2 due to

their relative position with respect to the vehicle. Additionally, since all landmarks

are always initialized by the front camera pair, it is natural for those cameras to

obtain higher match counts. Following the trend set by the trajectory and state

error comparisons for the calibration run, there was no major statistical difference

in the total landmark match counts across the various processing profiles. In terms

of landmark track statistics, the minimum, maximum, mean, and standard deviation

for landmark track duration remained statistically unchanged across all processing

profiles. Figures 4.19 through 4.21 illustrate the cumulative landmark match counts

over time for each of the three cameras. As illustrated by the figures, all processing

profiles resulted in similar cumulative landmark match counts with respect to time.

Although not statistically significant, Figure 4.21 did display a slightly increased slope

on the number of landmark matches with respect to time, which could be an early

indication of the effects of ADP on long-baseline landmark tracking. Additionally, it

is important to note that the matches obtained with ADP off were not necessarily the

same matches obtained with ADP on; it is possible, as supported by the state error

results, that enabling ADP decreased false matches and increased positive matches.

4.3.3.2 Demonstration Run. Tables 4.6 and 4.7 summarize the land-

mark match and track performance for the demonstration run. The landmark match

counts for the front camera pair were very similar across all processing profiles, much

like in the calibration run. Analyzing the results from Camera 3 reveals more support-

ing evidence for improved side-camera match performance when using ADP. There

is only a small difference between the two final landmark match counts for Cam-
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Table 4.4: Landmark match counts for the calibra-
tion run 1. This table summarizes the cumulative
landmark match counts for the calibration run 1 across
all four processing configurations.

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Cam 1 6.83× 103 6.83× 103 6.89× 103 6.87× 103

Cam 2 6.92× 103 6.93× 103 6.94× 103 6.89× 103

Cam 3 NA NA 29 30

Table 4.5: Landmark track statistics the calibration
run. This table summarizes the landmark tracking
duration statistics for the calibration run across all
four processing configurations.

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Min [s] 0 0 0 0
Max [s] 52.00 52.00 52.00 52.00
Mean [s] 4.52 4.58 4.58 4.58
STD [s] 7.41 7.40 7.43 7.40

era 3. However, this information, coupled with the significant improvement across

all navigation states when using ADP, points at bigger underlying improvement in

landmark match performance. Thus, the data is not intended to imply that the Cam-

era 3 matches with ADP off were the same ones found with ADP on. Rather, while

the count is similar, the error analysis suggests that enabling ADP increased match

accuracy. Figures 4.22 and 4.23 display similar landmark match performance for the

front camera pair, as was the case with the calibration run. Meanwhile, Figure 4.24

shows a significant increase in cumulative landmark match counts for Camera 3 with

respect to time, when using ADP. Finally, the results shown in Table 4.7 reveal no

significant difference in minimum, maximum, mean or standard deviation in landmark

track durations across the four processing profiles. This is yet another indicator that
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Figure 4.19: Camera 1 landmark matches for the calibration run.

using ADP may not be simply increasing the number of positive matches, but more

likely performing a combination of false match reduction and positive match addition,

which resulted in a small net positive change with large improvements in navigation

accuracy.

4.3.4 Computational Load. Although this research was not aimed at opti-

mizing computations for real-time implementations, it is still important to note the

computational load differences between all four processing profiles. Table 4.8 sum-

marizes the computational time required to complete each run using the various pro-

cessing profiles. As expected, the processing profiles involving three cameras required

longer computational times due to the recursive use of the SIFT algorithm. Addi-

tionally, the usage of ADP increased the required computational time non-linearly

in every case. It is important to note that even with the fastest processing profile
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Figure 4.20: Camera 2 landmark matches for the calibration run.

(two camera, no ADP), both runs required significantly more time than the actual

duration of the run. Again, this research did not aim at optimizing these algorithms

for real-time implementation, but such efforts will be necessary before fully fielding a

system equipped with this technology.

4.4 Summary

This section has presented the results and analysis from the experiments de-

scribed in Chapter III. The automatic calibration algorithm has been shown to not

only decrease the required time for calibration, but also vastly reduce the necessary

user interaction when compared to the standard calibration technique. Finally, the

usage of affine distortion prediction and a side-looking camera has been shown to sig-

nificantly improve vehicle position, velocity, and attitude estimates by the IAEKF. By

104



200 220 240 260 280 300 320

5

10

15

20

25

30
Camera 3 Track Details

Run Time [sec]

C
um

ul
at

iv
e 

F
ea

tu
re

s 
T

ra
ck

ed

 

 
3 Camera (ADP OFF)
3 Camera (ADP ON)

Figure 4.21: Camera 3 landmark matches for the calibration run.

understanding the nature and mathematics behind computer feature matching tech-

niques, two major steps in the image-aided navigation cycle (calibration and feature

tracking) have been further matured.
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Table 4.6: Landmark match counts for the demon-
stration run. This table summarizes the cumulative
landmark match counts for the demonstration run
across all four processing configurations.

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Cam 1 2.06× 104 2.03× 104 2.05× 104 2.08× 104

Cam 2 2.17× 104 2.12× 104 2.20× 104 2.15× 104

Cam 3 NA NA 27 30

Table 4.7: Landmark track statistics for the demon-
stration run. This table summarizes the landmark
tracking duration statistics for the demonstration run
across all four processing configurations.

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Min [s] 0 0 0 0
Max [s] 41.50 41.75 41.75 41.75
Mean [s] 1.39 1.39 1.45 1.42
STD [s] 4.04 3.98 4.10 4.06

Table 4.8: Processing times table. This table sum-
marizes the processing times required to complete the
two collected runs across all four processing configu-
rations. All times are in [hh:mm:ss].

C1 C2 C3 C4

Cameras 2 2 3 3
ADP Off On Off On
Calibration Run 00:06:44 00:10:10 00:18:55 01:18:16
Demonstration Run 00:48:10 06:36:59 01:24:49 14:39:26
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Figure 4.22: Camera 1 landmark matches for the demonstration run.
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Figure 4.23: Camera 2 landmark matches for the demonstration run.
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Figure 4.24: Camera 3 landmark matches for the demonstration run.
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V. Conclusions and Future Work

This chapter summarizes the information presented in earlier sections of this

thesis as well as suggestions for continued improvement through future work.

5.1 Conclusions

As the Air Force’s dependency on precision navigation information has in-

creased, so has the interest in overcoming the reliance on GPS. Image-aided naviga-

tion, or the coupling of inertial and imaging sensors has grown as a possible alternate

precision navigation technology over the past decade and continues to show promis-

ing results. This research has focused on improving two key steps in the image-aided

navigation process: camera calibration and landmark tracking. Consequently, the

two main objectives of the research have been to optimize camera calibration through

automation and improve landmark tracking accuracy through affine distortion predic-

tion. Together, these two computer vision techniques allow for precision navigation

through the deep, mutualistic coupling of inertial and imaging sensors.

The automatic camera calibration algorithm was developed from an existing

manual camera calibration toolbox by automating specific steps which previously re-

quired a human in the loop. Specifically, the standard chess-pattern calibration board

was substituted with an arbitrary image on which distinct features can be found. Fea-

ture matches between the physical and digital copies of the calibration board were

automatically found, removing the need for the manual delineation of the calibration

board perimeter, as was required by the original toolbox. Having automatically com-

puted the necessary correspondences between points in the calibration board frame

with points in the pixel frame, the calibration algorithm was finished as usual, which

resulted in a completely automatic camera calibration toolbox. The automatic camera

calibration algorithm was presented at the 7th Annual Dayton Engineering Sciences

Symposium [8].

A novel affine distortion prediction algorithm was developed in order to counter-

act the distortions arising from changes in 3-D viewpoint, which significantly feature
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matching accuracy. Affine distortions on 2-D images were simulated by assuming all

points on a given image are actually three-dimensional and coplanar. Starting with

the image-aided navigation extended Kalman filter built by Veth [22] as a baseline,

the affine prediction algorithm was used to simulate affine distortions on existing im-

ages, based on the relative change in position between a vehicle and the landmarks

it tracked. The distorted images were then used to compute new feature descrip-

tors that better approximated those found in new images. In contrast to ASIFT [15],

where all possible distortions are simulated for every input image, the affine distortion

prediction algorithm only simulated the necessary image distortions due to its deep

integration into the EKF. The enhanced IAEKF algorithm with affine distortion pre-

diction was presented at the Position Location and Navigation System Conference [9].

An experiment was developed to evaluate the performance of the automatic

calibration and affine distortion prediction algorithms. For the camera calibration al-

gorithm, a binocular set of cameras were calibrated using both the standard (manual)

toolbox with the chess-pattern board, and the automatic algorithm with the modified

board. The two calibration techniques were compared in terms of total time required,

average number of point correspondences, lens coverage, and reprojection errors in

the resulting camera model.

For the affine distortion prediction algorithm, two outdoor collection runs were

performed using a three-camera setup, augmented with a MEMS-grade INS sensor,

and a high-fidelity truth source. The first run was collected using a push-cart around

a full parking lot and featured mostly left-hand turns with a right-facing side camera.

The second run was collected using a van driving around a downtown urban envi-

ronment, and featured mostly right-hand turns with a left-facing side camera. The

two data collections were then post-processed through the extended Kalman filter,

using various processing profiles in which the number of cameras and the usage of

affine distortion prediction were individually varied. The filter’s results were then

compared with the solutions from the high-fidelity truth source for each run in order

to determine their accuracy.
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The automatic calibration algorithm showed a 70% decrease in required time

when compared to the manual calibration. Additionally, it increased the average

number of point correspondences used for calibration from 1000 to 5600, which was

directly associated with increased lens coverage. Although the average pixel reprojec-

tion error was slightly higher for automatic calibration, it was still sub-pixel for both

the x and y axes. The significant increase in reprojection error spread was attributed

to the decreased feature localization and matching accuracy of the SIFT algorithm

when compared to the Harris corner detector.

The affine distortion prediction algorithm significantly improved the accuracy

of all nine navigation states for the demonstration run. It was concluded that the

calibration run was too short to show any significant differences. Further investigation

revealed that using affine distortion prediction resulted in more accurate results due

to a combination of reduction in false matches and increase in positive matches. It

was also determined that augmenting the standard forward-looking camera pair with

a side-looking camera without affine prediction actually increased navigation errors,

possibly due to false landmark matches. Using a standard image-aided navigation

setup consisting of two forward-looking cameras and no affine distortion prediction

as a baseline, the augmented configuration with a side-looking camera and affine

distortion prediction provided an average reduction in error of 24% in position, 16%

in velocity and 35% in attitude.

5.2 Future Work

Both of the algorithms developed in this thesis could be improved upon in the

quest for a reliable, mature alternate precision navigation technology. This section

presents some of the possible areas of improvement for future research.

5.2.1 Multi-sensor Extrinsic Calibration. The automatic calibration algo-

rithm presented in this thesis computes the camera model for each individual camera

in a system, as well as the relative rotation and translation between each camera using
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the first camera’s frame as the reference frame. However, most image-aided naviga-

tion platforms are equipped with more than just imaging sensors. At a minimum,

image-aided navigation as presented herein requires the use of an inertial sensor in

addition to the imaging sensors. For this reason, it would be wise to further develop

the automatic camera calibration algorithm presented in this thesis into a full-vehicle,

multi-sensor calibration process, which provides camera models as well as the relative

rotation and translation between every sensor. A vehicle calibration algorithm that

is fully automatic would certainly propel image-aided navigation into a new level of

maturity and field readiness.

5.2.2 Calibration Board Elimination. Although the automatic calibration

algorithm presented in this thesis has eliminated the need for user interaction during

the computation phase, a human-in-the-loop is still required to hold a calibration

board in front of the cameras to collect the calibration images. The use of a calibration

board makes camera calibration relatively simple, but adds a level of manual work that

is not practical for field operations. If image-aided navigation and computer vision

technology are to be implemented in real-world scenarios, with actual navigation

platforms, the automatic camera calibration algorithm should be further developed to

eliminate the need for a calibration board. The calibration board could be eliminated

by using known features within the field of view of the cameras while still maintaining

the automation provided by the SIFT algorithm.

5.2.3 Projective Distortion Modeling. The affine distortion prediction al-

gorithm significantly improved feature matching accuracy by computing new feature

descriptors on digitally distorted images. However, the affine camera model on which

affine distortion prediction is based is not exactly representative of real-world distor-

tions. In reality, features undergo a projective distortion which has been approximated

by the affine model. Projective models include the effects of vanishing points created

by the projection of light into the focal point of an imaging sensor. Although affine

approximations have been shown to provide significant improvements in feature track-
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ing, it would be insightful to investigate the improvements (if any) provided by fully

modeling projective distortions.

5.2.4 Modular Landmark Tracking Filter. One of the key computational

limitations on the image-aided navigation algorithm developed by Veth [22] is the

requirement to augment the extended Kalman filter with three additional states for

each landmark being tracked. For this reason, the maximum number of landmarks

tracked by any camera was kept to 30 (resulting in 90 additional states). Taking into

consideration that the average image contains approximately 900 salient features, only

3% of the available visual information is being used for navigation. However, setting

the maximum number of features to even 200 would require the use of 600 additional

states, and pose a heavy computational load. Although Veth’s implementation [22]

provides very deep coupling between the feature tracker and the inertial sensor, it

limits (computationally) the maximum number of features that can be tracked. A

potentially more computationally-friendly approach would implement feature tracking

without requiring additional Kalman filter states in the navigation filter by adding a

parallel filter for landmark estimation and tracking. This modular architecture may

improve the overall system’s ability to grow or shrink the number of landmarks as

well as add or remove vision-aiding altogether without significant system re-design.

Such an architecture may pave the way towards modular, all source navigation, where

users may select a suite of sensors suited for their particular application or mission [5].

5.2.5 Catalog-based Landmark Navigation. Finally, the feature tracker im-

plemented in the current image-aided algorithm provides state measurements which

are relative from frame to frame. That is, the standard feature tracker tells the ex-

tended Kalman filter how the vehicle moved from one epoch to the next. Consequently,

there is a significant possibility of accumulating navigation errors, especially in posi-

tion and attitude, because there are no absolute measurements being provided. One

method of combating such incremental error accumulation is to implement a catalog-

based feature tracker in addition to the standard feature tracker. A catalog-based
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tracker would provide absolute position measurements based on known landmark lo-

cations, or previously tracked landmarks that had relatively low position uncertainty.

5.3 Closing

This research has presented two signal processing algorithms designed to im-

prove the image-aided navigation process. As this technology continues to mature,

a reliable, equally-precise alternative to navigation via GPS may be achieved. The

necessary processes have been developed; it is now up to the next wave of scholars to

propel this theory into a practical, fielded reality.
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