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Summary: Through direct numerical simulation (DNS) for the sound generated by the

interaction between two isentropic vortices, it is found that the interaction between two

vortices with a large difference in their strengths or scales can generate continuous strong

noise. The interaction between two isentropic vortices results in the formation of two vortex

dipoles, with each vortex dipole containing two vortex cores. If there is a large difference

in their initial strengths, there is a large difference in the strengths of the resulted vortex

cores. As a result, the weaker vortex rotates around the stronger one continuously, which

is the key source of the aerodynamic sound. This DNS result provides a new concept: the

interactions among turbulent structures with large differences in their scales play a key role

in the generation of turbulent noise.
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Since the pioneer work of Lighthill [1] in 1952 on aerodynamic sound generation, the

sound generated by unsteady flows has received increasingly attention. Many theories have

been developed. Typical examples include the vortex sound theory of Powell [2], the wave

antenna theory of Crow [3], the instability wave model of Ffowcs Williams and Kempton [4]

and the stagnation enthalpy theory of Doak [5]. These theories do offer better understandings

to the generation of aerodynamic noise and provide good methods in engineering to calculate

the noise generated by unsteady flows such as jet [6], wake [7], shear layer [8] and airframes

[9]. However, from the earliest stress tensor theory of Lighthill [1] to the recent stagnation
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enthalpy theory of Doak [5], the theoretical sound sources are abstract and not physically

measurable. How sound is produced by turbulent structures is still an open problem.

Owing to the difficulty in tackling turbulent flows, it is necessary to study a simpler

flow model. Vortices are building blocks of turbulent flows. The interaction between two or

among more vortices is a common phenomenon and is very important in many applications

such as mixing layers, jets and combustion instability. This interaction can result in the

deformation of vortices and can generate sound waves, which has a close relationship with

the sound generation of turbulent flows. For example, Powell’s theory of vortex sound [2]

provides a framework for the turbulent sound. Under certain conditions, two co-rotating

vortices can merge together. At the instant of vortex merging, strong noise is generated [10].

It has been shown that the sound generated by vortex pairing has the essential characteristics

of noise generated by jets and shear layers [11, 12].

Though there are many studies [2, 10, 13] on the sound generation by vortex dominated

flows, the actual mechanism is not well understood. In recent years, we have been studying

the mechanism of sound generation in the interaction between a shock wave and a single

planar vortex [14], a pair of planar vortices [15, 16] or a longitudinal vortex [17] through

direct numerical simulation (DNS) for the two and three dimensional unsteady compressible

Navier-Stokes equations using the fifth order weighted essentially nonoscillatory (WENO)

finite difference scheme developed by Jiang and Shu [18] and improved by Zhang and Shu

[19, 20] for the aeroacoustic computation. We have obtained many interesting findings,

including the multi-stage interaction between a shock and a strong vortex [14] and limit

cycles in the interaction between a normal shock wave and a longitudinal vortex [17]. The

most interesting finding belongs to our recent study on the sound generated by the interaction

of two isentropic vortices with a large difference in their scales, in which continuous strong

noise is generated. This phenomenon might reveal the key mechanism of sound generation

by turbulent flow, namely the interaction between turbulent structures with different scales,

which has not been noted in previous studies. In this letter, we will briefly introduce this
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finding.

As our physical model shown in Figure 1, two isentropic vortices with a separation dis-

tance d are placed in the center of our computational domain (xl < x < xr, yl < y < yr). The

tangential and radial velocity, pressure and density of a single isentropic vortex [21, 14, 22]

are uθ(r) = Mre(1−r2)/2, ur = 0, p(r) = 1
γ
[1− γ−1

2
M2

υe1−r2

]
γ

γ−1 and ρ(r) = [1− γ−1
2

M2
υe1−r2

]
1

γ−1

respectively, where r =
√

(x − xv)2 + (y − yv)2/rc, (xv, yv) is the center of the initial vortex,

rc is the critical radius for which the vortex has the maximum strength, Mυ is the strength

of the vortex, and γ = 1.4 is the ratio of specific heats. This isentropic vortex is an exact

solution of the Euler equation, which can not generate any sound wave. The initial flow

field for the interaction of two vortices is prescribed by the superposition of the flow fields

produced by each of the two single vortices. In our simulation, the strengths of the upper

and the lower vortices are chosen from 0.01, 0.2, 0.25, 0.45, 0.5, 0.75 and 0.8. The separation

distance of the two vortices is set to be d = 2,4 or 2.2. The initial locations of the upper

and the lower vortices are set to be (xu, yu) = (0., 1
2
d) and (xd, yd) = (0.,−1

2
d) respectively.

rc is set to be 1.0 or 0.2. The computational cases contain arbitrary combinations of these

parameters. Our computational domain is set to be xl = yl = −220 and xr = yr = 220.

After a grid convergence study to confirm enough grid resolution, we use an uniform mesh

with the grid density of 6000× 6000, which can offer resolved solution for the vorticity field

and sound waves under study.

The interaction of two isentropic vortices has a close relationship to the rotating direc-

tions, the strengths and the initial separation distance of the two vortices. Based on the

evolution of the vorticity field and the generation of sound waves in the interaction, we can

classify the interaction into four modes.

Mode I: The first mode is the interaction between two counter-rotating vortices with

similar scales including similar strengths and similar spacial scales. This interaction will

result in a new flow structure and generate sound waves. Figure 2 is the evolution of the

vorticity field in the interaction of two counter-rotating vortices with the same strength
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Figure 1: Schematic diagram of the flow model for the interaction of two isentropic vortices.

Mu = −0.5 and Md = 0.5 and the same radius of rc = 1.0. The upper vortex rotates

clockwise and the lower vortex rotates in the opposite direction. The initial distance of the

two vortices is d = 4. As can be seen from figure 2, the initial isentropic vortex has two

layers, the inner layer and the outer layer. The sign of vorticity is opposite in the inner layer

and the outer layer. The interaction results in a great change in their shapes. The vortex

cores are pressed to an approximately elliptical shape from the initially circular shape and

they gradually form a vortex dipole, which is advected to the left by the induced velocity.

The outer layers move toward the symmetry line and gradually separate from the vortex

core. They form a weaker vortex dipole which moves to the right. The vortex dipoles often

appear in the wake of a school of fish [23, 24]. Five sound waves with quadrupolar nature are

generated in this interaction, which are shown in figure 3 for the contours and figure 4 for

the circumferential and radial (along the symmetry line) distributions of the sound pressure

∆p = p−p0

p0

respectively.

Mode II: The second mode is the interaction of two co-rotating vortices in similar

scales. It has the following features: (1) The interaction evolves into two non-symmetric

vortex dipoles; (2) Essentially different from the interaction of two counter-rotating vortices

in the first mode, two vortex cores of each vortex dipole evolve from the same initial vortex,
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Figure 2: The evolution of the vorticity field in the interaction of two counter-rotating
vortices in the case of Mu = −0.5 and Md = 0.5, d = 4 and rc = 1.
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Figure 3: The contours of the sound pressure ∆p = p−p0

p0

in the interaction of two counter-
rotating vortices in the case of Mu = −0.5, Md = 0.5, d = 4 and rc = 1 at t = 200. Solid
lines represent ∆p > 0 while dashed lines represent ∆p < 0.
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Figure 4: The circumferential (left) and radial (right) distributions of the sound pressure in
the interaction of two counter-rotating vortices in the case of Mu = −0.5, Md = 0.5, d = 4
and rc = 1 at t = 200.
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one resulting from the inner layer of the initial vortex and the other from the outer layer. In

this process, five sound waves with quadrupolar nature are generated, which is very similar

with the first Mode.

Mode III: The third mode is the merging of two co-rotating vortices. Under certain

conditions, the interaction of two co-rotating vortices will result in their merger [25], which

is a key phenomenon in shear layers and wake flows. Preceding the merger, the cores of

the two vortices move closer, and the resulting elliptical vortices evolve into a single circular

vortex with two arms. In the tail region of each arm, a weaker vortex is formed from the

outer layer of the original vortex. The sign of vorticity of this weaker vortex is opposite

with that of the merged core. The weaker vortices rotate in the opposite direction with the

stronger ones. In the process of vortex merging, strong noise is generated which is similar

to the merging process of two Gaussian vortices [10].

Mode IV: The fourth mode is the interaction of two vortices with a large difference in

their scales. From the point of view of noise generation, this mode is the most interesting

and is the key of this letter. This mode contains two different types. One is the interaction of

two isentropic vortices with a large difference in their strengths. The other is the interaction

between two isentropic vortices with a large difference in their spacial scales.

Figure 5 contains the contours of the evolution of the vorticity field in the interaction

between two counter-rotating vortices with a large difference in their strengths. The strength

of the upper vortex is Mu = −0.8 and the strength of the lower vortex is Md = 0.25, which is

much weaker than the upper vortex. Similar to the interaction between two counter-rotating

vortices of the same strength, the interaction evolves into two vortex dipoles. The cores of the

two initial vortices move closer and form a stronger vortex dipole. The outer layers separate

from the initial vortices. They move closer and form a weaker vortex dipole. Because there

is a large difference in their strengths, both vortex dipoles are strongly non-symmetric. As

a result, the weaker vortex core rotates around the stronger one quickly. At the same time,
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the weaker vortex dipole rotates around the stronger vortex dipole. In this process, strong

continuous noise is generated. Figure 6 contains the contour and distribution along the

symmetry line of the sound pressure at the typical time t = 200.

The same phenomenon is observed in the interaction of two co-rotating vortices with a

large difference in their strengths. Strong continuous noise is generated, which is shown in

figure 7 for the dilatation in the acoustic field at the typical time t = 200 for the case of

Mu = 0.8 and Md = 0.25.

To study the effect of spacial scales, we study the interaction of two vortices with large

difference in their radii. Figure 8 contains the contours of the evolution of the vorticity field in

the interaction between two counter-rotating vortices with a large difference in their spacial

scales. The strengths of the upper and the lower vortices are the same with Mu = −0.5 and

Md = 0.5, while there is a large difference in the radii of the vortices. They are rc = 1.0

and 0.2 respectively. As can be seen from figure 8, we find that the smaller vortex rotates

around the larger one continuously. The initial circular vortices are pressed into elliptical

shapes. This interaction can also produce continuous strong noise which is shown in figure

9.

Comparing the interactions in these four modes, we find that the first mode is a basic

mode. Except for the merging of two co-rotating vortices in some special conditions, two

vortex dipoles are formed. If there is a large difference in their scales, either in the strengths

or in spacial scales, the vortex dipoles are strongly non-symmetric. As a result, the weaker

vortex core of the dipole rotates around the stronger one continuously just like a satellite.

In this process, there is continuously strong noise generated. Because there are many vor-

tices, eddies and structures of different scales in a turbulent flow, the interactions among

these structures are very common. From the sound generated by the interaction of two

isentropic vortices, we propose a new concept: The interactions among the structures with

large differences in their scales are the key source of turbulent noise.
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Figure 5: The evolution of the vorticity field in the interaction of two counter-rotating
vortices with a large difference in their strengths. Mu = −0.8, Md = 0.25, d = 4. and
rc = 1.0.
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Figure 6: The contours (left) and the distribution along the symmetric line (right) of the
sound pressure in the interaction of two counter-rotating vortices in the case of Mu = −0.8,
Md = 0.25, d = 4 and rc = 1.

Figure 7: The contours of dilatation in the interaction of two co-rotating vortices in the case
of Mu = 0.8, Md = 0.25, d = 4 and rc = 1 at t = 200.
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Figure 8: The evolution of the vorticity field in the interaction of two counter-rotating
vortices with a large difference in their spacial scales. Mu = −0.8, Md = 0.25, d = 2.2,
rcu = 1 and rcd = 0.2.
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Figure 9: The contours (left) and the distribution along the symmetric line (right) of the
sound pressure in the interaction of two counter-rotating vortices in the case of Mu = −0.5,
Md = 0.5, d = 2.2, rcu = 1 and rcd = 0.2.
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