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Abstract

The gas dynamics equations, coupled with a static gravitational field, admit the hydro-

static balance where the flux produced by the pressure is exactly canceled by the gravitational

source term. Many astrophysical problems involve the hydrodynamical evolution in a grav-

itational field, therefore it is essential to correctly capture the effect of gravitational force in

the simulations. Improper treatment of the gravitational force can lead to a solution which

either oscillates around the equilibrium, or deviates from the equilibrium after a long time

run. In this paper we design high order well-balanced finite difference WENO schemes to

this system, which can preserve the hydrostatic balance state exactly and at the same time

can maintain genuine high order accuracy. Numerical tests are performed to verify high

order accuracy, well-balanced property, and good resolution for smooth and discontinuous

solutions.
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1 Introduction

In recent years, research on well-balanced numerical methods for the hyperbolic equations

with source terms (also referred as hyperbolic balance laws) has attracted much attention.

In one space dimension, balance laws take the form of

Ut + f(U)x = s(U, x), (1.1)

where U is the solution vector with the corresponding flux f(U), and s(U, x) is the source

term. They usually admit steady state solutions, in which the source term is exactly bal-

anced by the flux gradient. A challenge in the numerical analysis of such balance laws is

to maintain these steady states, and to compute their perturbations accurately. Indeed, if

a scheme cannot balance the effects of convective fluxes and source term, it may introduce

spurious oscillations near equilibria, unless the mesh size is extremely refined. To save the

computational cost, well-balanced methods, which preserve exactly these steady-state so-

lutions up to machine accuracy, are specially designed and work well on relatively coarse

meshes. A typical example considered extensively in the literature for balance laws is the

shallow water equation with a non-flat bottom topology. Many researchers have developed

well-balanced methods for the shallow water equation using different approaches, see, e.g.

[4, 1, 8, 2, 13, 22, 20] and the references therein.

Another important example of the hyperbolic balance laws is the gas dynamics system un-

der gravitational field. Near the equilibrium state, there exists the hydrostatic balance where

the flux produced by the pressure is canceled by the gravitational source term. Many astro-

physical problems involve the hydrodynamical evolution in a gravitational field, therefore it

is essential to correctly capture the effect of gravitational force in the simulations, especially

if a long-time integration is involved, for example in modeling star and galaxy formation.

Improper treatment of the gravitational force can lead to a solution which either oscillates

around the equilibrium, or deviates from the equilibrium after a long time run. There have

been several attempts in designing well-balanced methods for the gas dynamics, which take
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care of the implementation of the gravitational field. LeVeque and Bale [9] proposed the

quasi-steady wave-propagation methods for an ideal gas subject to a static gravitational

field. A Riemann problem is introduced in the center of each grid cell such that the flux

difference exactly cancels the source term. Zingale et al. [6] investigated the process of map-

ping an astrophysical initial model from a stellar evolution code onto the computational grid

of an explicit code while maintaining hydrostatic equilibrium. A different strategy for the

construction of well-balanced discretizations with respect to dominant hydrostatics has been

proposed by Botta et al. [5] for the nearly hydrostatic flows belonging to a certain class of

solutions. More recently, Xu and his collaborators [19, 23, 12] have extended the gas-kinetic

scheme to the multidimensional gas dynamic equations to develop well-balanced numerical

methods, where the gravitational potential was modeled as a piecewise step function with a

potential jump at the cell interface.

Most of the works mentioned above are for numerical schemes of at most second order

spatial accuracy. The main objective of this paper is to design a finite difference WENO

scheme for the gas dynamic equations with gravitational source terms, which maintains the

well-balanced property for the hydrostatic balance, and at the same time is genuinely high

order accurate for the general solutions. We introduce a different treatment of the source

term, which mimics the WENO approximation to the flux term, so that the exact balance

between the source term and the flux can be achieved at the steady state. The proposed

method is a generalization of the approach to develop well-balanced methods for the shallow

water equations and other balanced laws in [20, 21]. The specific WENO scheme we use is

the fifth order finite difference scheme introduced by Jiang and Shu [7]. It uses a convex

combination of three candidate stencils, each producing a third order accurate flux, to obtain

fifth order accuracy and an essentially nonoscillatory shock transition. Time discretization

can be implemented by the TVD Range-Kutta method [17]. WENO schemes were first

introduced by Liu, Osher and Chan in [11]. For more details of WENO schemes, we refer to

[7, 15, 16].
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The outline of the paper is as follows: In Section 2, the model and its steady state

solutions are described. In Section 3, we develop the well-balanced finite difference WENO

scheme, which at the same time is genuinely high order accurate for the general solutions

of the gas dynamics equations. Extension to two dimensional problems is introduced in

Section 4. In Section 5, we show selective numerical results in one and two dimensions to

demonstrate the behavior of the proposed finite difference WENO methods, verifying high

order accuracy, the well-balanced property, and good resolution for smooth and discontinuous

solutions. Concluding remarks are given in Section 6.

2 The model

We consider the equations governing the conservation of mass, momentum and energy of an

inviscid, non-heat conducting, isotropic fluid. These gas dynamic equations, coupled with a

static gravitational potential, are given by

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = −ρφx

Et + ((E + p)u)x = −ρuφx, (2.1)

in one space dimension, where ρ denotes the fluid density, u is the velocity, p represents the

pressure, and E = 1
2
ρu2+p/(γ−1) is the non-gravitational energy which includes the kinetic

and internal energy of the fluid. γ is the ratio of specific heats and φ = φ(x) is the time

independent gravitational potential.

2.1 Hydrostatic balance

For the static gravitational potential φ(x), we are interested in preserving the hydrostatic

balance, which is a special steady state solution to (2.1)

ρ = ρ(x), u = 0, px = −ρφx, (2.2)
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with a constant temperature and zero velocity. For an ideal gas, we have the relation

p = ρRT, (2.3)

where R is the gas constant, and T is the temperature. Combined with the steady state

equation px = −ρφx from (2.2), it becomes

ρ(x) = ρ0 exp

(

−
φ

RT

)

, (2.4)

which leads to the special steady state

ρ = ρ0 exp

(

−
φ

RT

)

, u = 0, p = RTρ = RTρ0 exp

(

−
φ

RT

)

, (2.5)

with constant temperature T .

The simplest and most commonly encountered case is the linear gravitational potential

field: dφ/dx = g, with the corresponding hydrostatic balance

ρ = ρ0 exp(−gρ0x/p0), u = 0, p = p0 exp(−gρ0x/p0). (2.6)

3 Well-balanced finite difference WENO methods

In this section we design a genuinely high order accurate well-balanced WENO method

for the gas dynamic equations (2.1) with gravitational source terms. The key idea is to

discretize the source term by a finite difference WENO formula consistent with that for the

flux. We will concentrate our discussion on the one-dimensional case. Generalization to the

two dimensional problems will be presented in Section 4.

Well-balanced methods are specially designed to preserve exactly the steady-state so-

lutions up to machine accuracy with relatively coarse meshes. High-order well-balanced

WENO methods have been designed for the shallow-water equations by the same authors in

[20]. The main idea there is to decompose the source term into a sum of two terms first, and

discretize each of them independently using a finite difference formula consistent with that

of approximating the flux derivative terms in the conservation law. The same technique has

5



been generalized to other hyperbolic balance laws in [21] and to hybrid WENO schemes in

[10]. Similar idea has also been employed in designing well-balanced method for the Euler

equation in [5], where the same discrete gradient operator has been used to approximate

the pressure gradient and gravitational potential gradient. In this paper, we generalize this

idea to the gas dynamic equations to design a genuinely high order well-balanced WENO

method. We would like to preserve exactly the steady state solution satisfying (2.5). The

special steady state of the form (2.6)

ρ = c exp(−gx), u = 0, p = c exp(−gx), (3.1)

coupled with the linear gravitational potential field

φx = g, (3.2)

will be used as an example to illustrate the basic idea in this section. More general equilib-

rium (2.5) can be handled following the same technique, and will be explained briefly at the

end of this section.

The first step in designing the well-balanced method is to rewrite the source term following

the guideline presented in [21]. The gas dynamic equations (2.1) can be reformulated as

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = ρ exp(gx)(exp(−gx))x

Et + ((E + p)u)x = ρu exp(gx)(exp(−gx))x, (3.3)

where the gravitational source −ρg is replaced by ρ exp(gx)(exp(−gx))x, and −ρug is treated

in the same way. The main motivation of such a change is to let the source term and the

corresponding flux term share similar form in the case of the steady state solution (3.2).

As we will see below, this new form of the source term is crucial for the design of our

well-balanced method. We refer to [21] for more motivation and explanation, as well as the

extension to more general source terms.
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For simplicity, we denote the one-dimensional Euler equations (3.3) by

Ut + f(U)x = s(U, φ),

where U = (h, hu, E)T with the superscript T denoting the transpose, f(U) is the flux and

s(U, φ) = (0,−ρφx, ρuφx)
T is the source term. We also assume the mesh is uniform with

mesh size ∆x. In a finite difference scheme, our computational variables are Uj(t), which

approximate the point value at xj . The finite difference WENO scheme is given by

d

dt
Uj(t) +

1

∆xj

(

f̂j+ 1

2

− f̂j− 1

2

)

= ŝj(U), (3.4)

with f̂j+ 1

2

being the numerical flux, and ŝj(U) being a high order approximation to the source

term at the point xj .

A well-balanced method is one that balances the flux and source term exactly, i.e.
(

f̂j+ 1

2

− f̂j− 1

2

)

/∆xj = ŝj(U), at the steady state solution (3.1). Following the ideas in

[20], we will start by considering an identical linear finite difference operator for the flux

derivative and the derivatives in the source terms. A linear finite difference operator D is

defined to be one satisfying D(ag1 + bg2) = aD(g1) + bD(g2) for constants a, b and arbitrary

grid functions g1 and g2. A scheme for (3.3) is said to be a linear scheme if all the spa-

tial derivatives are approximated by linear finite difference operators. At the steady state

solution (3.1), for any consistent linear scheme, the first equation (ρu)x = 0 and the third

equation ((E + p)u)x = ρu exp(gx)(exp(−gx))x are both satisfied exactly since the velocity

u equals to zero. The truncation error for the second equation takes the form of

D1(ρu2 + p) − ρ exp(gx)D2(exp(−gx)), (3.5)

which reduces to

D1(p) − ρ exp(gx)D2(exp(−gx)),

where D1 and D2 are linear finite difference operators used to approximate the spatial deriva-

tives. For any linear scheme which also satisfies that D1 = D2 for the steady state solution
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(3.1), the truncation error for the second equation reduces to

D1(p)− ρ exp(gx)D2(exp(−gx)) = D1(c exp(−gx))− c exp(−gx) exp(gx)D2(exp(−gx)) = 0,

at the steady state solution (3.1), which presents the desired well-balanced property. There-

fore, we have

Proposition 3.1: For the gas dynamic equations (2.1) with the linear gravitational potential

field (3.2), linear scheme which satisfies D1 = D2 for the steady state solution (3.1) are well-

balanced, i.e. it can preserve these steady state solution exactly.

We now extend the well-balanced property to high order nonlinear finite difference WENO

scheme [7, 3], in which the nonlinearity comes from the nonlinear weights and the smooth

indicators. We would like to make minor modifications to the WENO scheme, so that the

well-balanced property is maintained without affecting the accuracy and nonlinear stability.

To simplify the presentation, we first consider the finite difference WENO scheme without

a flux splitting (e.g. the WENO-Roe scheme as described in [7]) or the local characteristic

decomposition. At the steady state solution (3.1), the first and third equations in (3.3) can

be satisfied exactly, since u = 0 and the WENO approximation to (ρu)x and ((E + p)u)x is

consistent. There are two derivatives in the second momentum equation of (3.3): (ρu2 + p)x

and (exp(−gx))x. The WENO approximation to the flux derivative term (ρu2 +p)x proceeds

as usual. Notice that the WENO approximation to dx where d = ρu2 + p can be eventually

written out as

dx|x=xj
≈

r
∑

k=−r

akdk+j ≡ Dd(d)j (3.6)

where r = 3 for the fifth order WENO approximation and the coefficients ak depend non-

linearly on the smoothness indicators involving the grid function d. For the other derivative

(exp(−gx))x in the source term, as explained in [21], the key idea now is to use the finite

difference operator Dd with d = ρu2+p fixed, namely to use the same coefficients ak obtained

through the smoothness indicators of d in (3.6), and apply it to approximate (exp(−gx))x.
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Thus

(exp(−gx))x|x=xj
≈

r
∑

k=−r

ak exp(−gxk+j) = Dd (exp(−gx))j .

Clearly, with d = f(u, x) being fixed, the finite difference operator Dd, defined from the high

order WENO procedure, is a high order accurate linear approximation to the first derivative

for any grid function. Therefore, the overall high order accuracy will not be affected, and

the proof for Propositions 3.1 will go through. We can conclude that the high order finite

difference WENO scheme as stated above, without the flux splitting or local characteristic

decomposition, and with the special handling of the source terms described above, maintains

exactly the steady state solution (3.1).

Now, we consider WENO scheme with the local characteristic decomposition, which

is typically used in high order WENO scheme for system to obtain better non-oscillatory

properties for strong discontinuities. To compute the numerical flux at xi+ 1

2

, we first compute

an average state ui+ 1

2

between ui and ui+1, using either the simple arithmetic mean or a Roe’s

average [14]. The local characteristic matrix R, consisting of the right eigenvectors of the

Jacobian at ui+ 1

2

, is then fixed. The neighboring point values of the flux functions needed

for computing the numerical flux is projected to the local characteristic fields determined by

R−1. The numerical fluxes are computed in the characteristic direction, and then projected

back into the physical space by left multiplying with R, yielding finally the numerical fluxes

in the physical space. In this process, we notice that (3.6) still holds, while d now becomes a

vector grid function (ρu, ρu2 + p, (E + p)u)
T
, and ak are 3×3 matrices depending nonlinearly

on the smoothness indicators involving the grid function d. The key idea is still to use the

difference operator Dd with d = (ρu, ρu2 + p, (E + p)u)
T

fixed, and apply it to approximate

(0, exp(−gx), exp(−gx))T
x in the source terms. The remaining arguments stay the same as

above, and we can prove that after the incorporation of a local characteristic decomposition,

the WENO scheme still maintains exactly the steady state solution.

At the end, WENO scheme with a Lax-Friedrichs flux splitting, such as the WENO-LF

and WENO-LLF scheme described in [7], is considered. Here the flux f(U) is split into
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f+(U) and f−(U), defined by

f±(U) =
1

2









ρu
ρu2 + p
(E + p)u



 ± αi





ρ
ρu
E







 , (3.7)

for the i-th characteristic field, where αi = maxu |λi(u)| with λi(u) being the ith eigenvalue

of the Jacobian f ′(U), and the maximum is taken over either a local region (for WENO-LLF

method) or a global region (WENO-LF). The artificial viscosity terms ±αi(ρ, ρu, E)T are

important to provide a non-oscillatory solution, however they will destroy the well-balanced

property. We now modify this flux splitting to

f±(U) =
1

2









ρu
ρu2 + p
(E + p)u



 ± α′

i





ρ exp(gx)
ρu exp(gx)
E exp(gx)







 , (3.8)

by replacing ±αi(ρ, ρu, E)T with ±α′

i(ρ exp(gx), ρu exp(gx), E exp(gx))T . The coefficient α′

i

is given by

α′

i = αi max
x

exp(−gx), (3.9)

where the maximum is taken over a local or global region, in order to maintain enough

artificial viscosity. This modification does not affect accuracy, which relies only on the fact

f(U) = f+(U) + f−(U). Our motivation of using ±α′

i(ρ exp(gx), ρu exp(gx), E exp(gx))T

comes from the fact that they become constant vectors in the case of steady state solution

(3.1). Thus, by the consistency of the WENO approximation, their contribution towards

the numerical flux approximation is zero. The flux splitting WENO approximation in this

situation becomes simply f±(U) = 1
2
f(U), hence the steady state solution is preserved as

before, if we simply split the derivatives in the source term as:




0
exp(−gx)
exp(−gx)





x

=
1

2





0
exp(−gx)
exp(−gx)





x

+
1

2





0
exp(−gx)
exp(−gx)





x

, (3.10)

and apply the same flux splitting WENO procedure to approximate them with the nonlinear

coefficients ak coming from the WENO approximations to f±(U) respectively. We have thus

proved that
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Proposition 3.2: The WENO-Roe, WENO-LF and WENO-LLF schemes as stated above

are well-balanced for the steady state solution (3.1) and can maintain the original high order

accuracy. 2

At the end, we present how the high order well-balanced WENO method can be designed

for the more general steady state (2.5). We first rewrite the gas dynamic equations (2.1) as

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = RTρ exp(
φ

RT
)

(

exp(−
φ

RT
)

)

x

Et + ((E + p)u)x = RTρu exp(
φ

RT
)

(

exp(−
φ

RT
)

)

x

. (3.11)

Following exactly the same technique as stated above, with the flux splitting (3.8) replaced

by

f±(U) =
1

2









ρu
ρu2 + p

(E + p)u



 ± α′

i





ρ exp( φ
RT

)

ρu exp( φ
RT

)

E exp( φ
RT

)







 , (3.12)

and the source term splitting (3.10) replaced by





0

exp(− φ
RT

)

exp(− φ
RT

)





x

=
1

2





0

exp(− φ
RT

)

exp(− φ
RT

)





x

+
1

2





0

exp(− φ
RT

)

exp(− φ
RT

)





x

, (3.13)

we can show that the resulting WENO method is both high order accurate and well-balanced.

Total variation diminishing (TVD) high order Runge-Kutta time discretization [17] is

used in practice for stability and to increase temporal accuracy. For example, the third

order TVD Runge-Kutta method is used in the simulation in this paper:

U (1) = Un + ∆tF(Un) (3.14)

U (2) =
3

4
Un +

1

4

(

U (1) + ∆tF(U (1))
)

Un+1 =
1

3
Un +

2

3

(

U (2) + ∆tF(U (2))
)

,

where F(U) is the spatial operator.
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4 Two-dimensional extension

In this section, we construct a well-balanced WENO scheme on rectangular meshes to solve

the two-dimensional gas dynamic equations with the gravitational field, which take the form

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = −ρφx

(ρv)t + (ρuv)x + (ρv2 + p)y = −ρφy

Et + ((E + p)u)x + ((E + p)v)y = −ρuφx − ρvφy, (4.1)

where (u, v) is the velocity of the fluid, and ρ, p, φ(x, y) follow the definitions below (2.1).

E = 1
2
ρ(u2 + v2)+ p/(γ − 1) is the non-gravitational energy. The hydrostatic balance we are

interested to preserve is the constant temperature and zero velocity steady state solution:

ρ = ρ0 exp

(

−
φ

RT

)

, u = v = 0, p = RTρ = RTρ0 exp

(

−
φ

RT

)

, (4.2)

and the steady state solution corresponding to the linear gravitational potential field: dφ/dx =

g1 and dφ/dy = g2 takes the form

ρ = ρ0 exp(−ρ0(g1x + g2y)/p0), u = v = 0, p = p0 exp(−ρ0(g1x + g2y)/p0). (4.3)

It is straightforward to extend the high order finite difference WENO scheme to multiple

space dimensions, by simply approximating each spatial derivative along the relevant coor-

dinate. This is one of its major advantages over the finite volume method. The conservative

approximation to the derivative from point values is as simple in multi-dimensions as in

one dimension. In fact, for fixed j, if we take W (x) = f(U(x, yj)), then we only need to

perform the one-dimensional WENO approximation to W (x) to obtain an approximation to

W ′(xi) = fx(U(xi, yj)). See again [7, 15] for more details of finite difference WENO schemes

in multi-dimensions.

Following the steps in designing a well-balanced WENO scheme for the one-dimensional

gas dynamic equations in Section 3, we find out that it is also straightforward to extend
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these results to two dimensions. For the steady state solution (4.2), we rewrite the source

terms as

−ρφx = RTρ exp(
φ

RT
)

(

exp(−
φ

RT
)

)

x

(4.4)

−ρφy = RTρ exp(
φ

RT
)

(

exp(−
φ

RT
)

)

y

(4.5)

−ρuφx − ρvφy = RTρu exp(
φ

RT
)

(

exp(−
φ

RT
)

)

x

+ RTρv exp(
φ

RT
)

(

exp(−
φ

RT
)

)

y

(4.6)

in (4.1), and the one dimension procedure described in Section 3 is followed in each of the x

and y directions. The residues are then summed up and the time discretization is still by a

TVD Runge-Kutta method (3.14). All the desired properties proved in the one-dimensional

case, such as high order accuracy and the well-balanced property, are still valid in the two

dimensional case. We restricted our discussion in this section to two space dimensions only,

although the algorithm can be easily designed for three dimension as well.

5 Numerical examples

In this section we present numerical results of our fifth order well-balanced finite difference

WENO methods for the one- and two-dimensional gas dynamic equations with gravitational

source terms. Time discretization is by the third order TVD Runge-Kutta time discretization

(3.14). Unless otherwise specified, the CFL number is taken as 0.6.

5.1 Shock tube under gravitational field

The first test case is the standard Sod test, coupled with the gravitational field. Following

the problem setup in [12], the computational domain is set as [0, 1], and the initial conditions

are given by

ρ = 1, u = 0, p = 1, if x ≤ 0.5,

ρ = 0.125, u = 0, p = 0.1, if x ≥ 0.5,
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The gravitational field φ takes a value of g = φx = 1, and γ = 1.4. We compute this problem

using our well-balanced finite difference WENO method with reflection boundary conditions

and 100 uniform meshes. The solutions at time t = 0.2 are shown in Figure 5.1 for the

density, velocity, pressure and the energy. We also plot a reference solution, computed by

the traditional finite difference WENO method with much refined 2000 uniform meshes, in

these figures to provide a comparison. Due to the gravitational force, the density distribution

is pulling towards the left direction, and negative velocity appears in some regions. By

comparing the results in these figures, we observe that this problem is well solved by the

proposed numerical method on the relatively coarse mesh of 100 mesh points.

5.2 One dimensional isothermal equilibrium solution

This test case was first proposed by LeVeque and Bale [9] and later used in [19, 12], to

demonstrate the capability of the proposed scheme for computations on the small pertur-

bation of a steady state. The computational domain is set as [0,1]. We consider an ideal

gas with γ = 1.4 and the linear gravitational field φx = g, which stays at an isothermal

equilibrium solution in the form of (2.6),

ρ0(x) = p0(x) = exp(−x), and u0(x) = 0. (5.1)

The gravitational force, with g = φx = 1, acts in the negative x direction.

5.2.1 Well-balanced test

We first show an example to demonstrate the well-balanced property of the scheme. The

initial condition is taken as the steady state solution (5.1) which should be exactly preserved.

We compute the solution until t = 2 using 200 uniform mesh points. In order to demonstrate

that the steady state is indeed maintained up to round-off error, we use single precision and

double precision to perform the computation, and show the L1 errors of ρ, ρu and E in

Table 5.1. We can clearly see that the errors are at the level of round-off errors for different

precisions, which verifies the well-balanced property.
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Figure 5.1: The numerical solutions of the Sod test under gravitational field in Section 5.1
at time t = 0.2. Top left: density distribution; Top right: velocity distribution; Bottom left:
energy distribution; Bottom right: pressure distribution.
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Table 5.1: L1 error for different precisions for the steady state solution (5.1) in Section 5.2.

precision ρ ρu E
single 2.65E-07 8.32E-08 1.37E-07
double 1.15E-15 1.43E-16 5.05E-16

5.2.2 Perturbation of the equilibrium solution

We now impose a small perturbation to the initial pressure state

p(x, t = 0) = p0(x) + η exp(−100(x − 0.5)2), (5.2)

where η is a non-zero perturbation constant. Two cases have been run: η = 0.01 and

η = 0.0001. For small η, this disturbance should split into two waves, propagating left and

right. We compute the solution until t = 0.25 with 200 grid points and simple transmissive

boundary conditions. The results are shown in Figure 5.2. The initial pressure perturbation

is included as the dashed line. For the purpose of comparison, we also plot a reference

solution, obtained with 2000 points. The traditional non-well-balanced WENO method,

with the straightforward calculation of the source terms, has been tested for these two cases,

and their results are also included in Figure 5.2. We notice that, the traditional WENO

methods are able to capture the big perturbation well, but do not perform well for the

small perturbation test case with a coarse mesh of 200 mesh points. With the well-balanced

technique, these small perturbations are well captured on this coarse mesh.

5.3 One dimensional gas falling into a fixed external potential

We consider the same gas dynamic equations with static gravitational potential (2.1) and

a constant temperature and zero velocity steady state solution (2.5). The following steady

state is taken from the paper by Slyz and Prendergast [18], and has also been considered in

[19, 12].
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Figure 5.2: The pressure perturbation of a hydrostatic solution. The result of the well-
balanced WENO method with 200 and 2000 grid points, and that of the non-well-balanced
(denoted by non-wb) WENO method with 200 grid points. Left: η = 0.01 in (5.2); Right:
η = 0.0001.

The gravitational potential has the form of a sine wave,

φ(x) = −φ0
L

2π
sin

2πx

L
, (5.3)

where L is the computational domain length and φ0 is the amplitude. The steady state takes

the form of

ρ = ρ0 exp

(

−
φ

RT

)

, u = 0, p = RTρ0 exp

(

−
φ

RT

)

, (5.4)

with a constant temperature T .

5.3.1 Well-balanced test

We start with a test to verify the well-balanced property. Consider an ideal gas with γ = 5/3,

and the parameters ρ0 = 1, R = 1, T = 0.6866, L = 64, φ0 = 0.02 in (5.3) - (5.4). The initial

condition is taken as the steady state (5.4), and we compute the solution until t = 50 using

200 uniform mesh points. In order to demonstrate that the steady state is maintained up

to round-off error, we use single precision and double precision to perform the computation,

and show the L1 errors of ρ, ρu and E in Table 5.2. We can easily observe that the errors

are at the level of round-off errors for different precisions.
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Table 5.2: L1 error for different precisions for the steady state solution (5.4) in Section 5.3.

precision ρ ρu E
single 1.52E-07 9.63E-08 1.79E-07
double 1.24E-15 1.93E-16 3.94E-16

5.3.2 Convergence test

In this test, we start from an initial state, which is a small perturbation of the steady state

(5.4), and will eventually converge to an isothermal hydrostatic distribution after long time.

The initial condition is given by

ρ = ρ0 exp

(

−
φ

RT

)

, u = 0, p = RTρ0 exp

(

−
φ

RT

)

+ 0.001 exp(−10(x − 32)2),

(5.5)

where the parameters R, T et al. are given in Subsection 5.3.1. We run the simulation

with 64 uniform mesh points for 1,000,000 time steps, and plot the numerical results at

the final time in Figure 5.3. As a comparison, we also include the numerical results of the

traditional non-well-balanced WENO method, where the constant temperature distribution

of the steady state solution is not well-captured on this coarse mesh.

5.4 Testing the orders of accuracy

In this example we check the numerical orders of accuracy when the schemes are applied to

the following two dimensional problem. Consider the equations (4.1) with a linear gravita-

tional field φx = φy = 1. An exact solution takes the form of

ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t(u0 + v0))),

u(x, y, t) = u0, v(x, y, t) = v0,

p(x, y, t) = p0 + t(u0 + v0) − x − y + 0.2 cos(π(x + y − t(u0 + v0)))/π,

in the domain [0, 2] × [0, 2]. u0 = v0 = 1 and p0 = 4.5 are chosen in this test. The CFL

condition is taken as 0.2 and the time step ∆t is taken to be proportional to (1/∆x +
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1/∆y)−5/3, so that the temporal accuracy is of the same order as the spatial accuracy. The

exact solutions are used as the boundary condition. We run the simulation until the stop

time t = 0.1 and compute the numerical error. Table 5.3 contains the L1 errors and orders

of accuracy. We can clearly see that, in this two dimensional test case, the designed high

order accuracy is achieved for the finite difference WENO scheme.

Table 5.3: L1 errors and numerical orders of accuracy for the example in Section 5.4.

Number ρ ρu ρv E
of cells L1 error order L1 error order L1 error order L1 error order
8 × 8 3.88E-03 3.66E-03 3.66E-03 4.83E-03

16 × 16 5.06E-04 2.93 4.85E-04 2.91 4.85E-04 2.91 5.46E-04 3.14
32 × 32 2.75E-05 4.20 2.72E-05 4.15 2.72E-05 4.15 3.02E-05 4.17
64 × 64 1.15E-06 4.57 1.15E-06 4.56 1.15E-06 4.56 1.30E-06 4.53

128 × 128 4.33E-08 4.74 4.29E-08 4.73 4.29E-08 4.73 5.10E-08 4.68
256 × 256 1.54E-09 4.81 1.57E-09 4.78 1.57E-09 4.78 1.81E-09 4.81

5.5 Two dimensional isothermal equilibrium solution

The following test is used to demonstrate the well-balanced property and the capability of

the proposed methods for capturing the small perturbation of an isothermal equilibrium

solution in the two dimensional case. We set the computational domain as the unit square.

Consider an ideal gas with γ = 1.4 and the linear gravitational field φx = φy = g. The

isothermal equilibrium state under consideration takes the form of

ρ(x, y) = ρ0 exp

(

−
ρ0g

p0
(x + y)

)

, u(x, y) = v(x, y) = 0,

p(x, y) = p0 exp

(

−
ρ0g

p0
(x + y)

)

, (5.6)

with the parameters ρ0 = 1.21, p0 = 1 and g = 1.

5.5.1 Well-balanced test

The two dimensional well-balanced property is first tested. We take the initial condition as

the steady state solution (5.6), and compute the solution until t = 1 using 50 × 50 uniform
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grid points. In order to demonstrate that the steady state is indeed maintained up to round-

off error, we use single precision and double precision to perform the computation, and show

the L1 errors of ρ, ρu, ρv and E in Table 5.4. We can clearly see that the errors are at the

level of round-off errors for different precisions, which verifies the well-balanced property.

Table 5.4: L1 error for different precisions for the steady state solution (5.6) in Section 5.5.1.

precision ρ ρu ρv E
single 1.72E-08 3.31E-08 3.38E-08 3.42E-08
double 1.15E-16 9.46E-17 9.46E-17 1.38E-16

5.5.2 Perturbation of the equilibrium solution

Next, we study the capability of the proposed method for the small perturbation to the

stationary state. Consider a small perturbation to the initial pressure state of (5.6),

p(x, y, t = 0) = p0 exp

(

−
ρ0g

p0
(x + y)

)

+ η exp

(

−
100ρ0g

p0
((x − 0.3)2 + (y − 0.3)2)

)

, (5.7)

centered at (0.3, 0.3), where η is a non-zero perturbation constant, and set as 0.001 in this

test.

We compute the solution until t = 0.15 with 50× 50 grid points and simple transmissive

boundary conditions. The contour plot of the pressure perturbation is shown in the left

plots of Figures 5.4 and 5.5. We also run this test with the traditional non-well-balanced

WENO method, with the straightforward calculation of the source terms. Its result is shown

in the right plots of Figures 5.4 and 5.5. The density perturbations are also shown in Figure

5.6. We notice that, the non-well-balanced WENO method is not capable of capturing such

small perturbation on the coarse mesh, while the well-balanced one can resolve it very well.

We also run both methods with a refined 200 × 200 mesh, and the results are shown in

Figure 5.7. As expected, the results of non-well-balanced WENO schemes improve, and

the difference between well-balanced and non-well-balanced methods becomes smaller as the

mesh is refined.
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6 Concluding remarks

In this paper we have constructed a well-balanced finite difference WENO scheme of arbitrary

order of accuracy for the gas dynamics equations with a static gravitational field. Special

source term discretization is introduced such that the resulting WENO scheme balances the

zero-velocity and constant temperature steady state solutions to machine accuracy, and at

the same time maintains the original high order accuracy and essentially nonoscillatory prop-

erty for general solutions. Numerical examples are given to demonstrate the well-balanced

property, accuracy, good capturing of the small perturbation to the steady-state solutions,

and non-oscillatory shock resolution of the proposed numerical method. Ongoing work in-

cludes constructing well-balanced methods for more general steady state solutions.
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