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Abstract 

Unique scatter characteristics of nano-/micro-structured materials have been widely 

studied, but lacking is a focus on the off-normal incidence characteristics of this scatter. The 

measurements of off-normal spectral and angular scatter for a guided-mode resonant filter 

(GMRF) photonic crystal (PC) and a surface plasmon polariton (SPP) structure were compared to 

finite-difference time-domain (FDTD) simulations, as well as analytical PC and SPP theory. The 

GMRF is a 2-d refractive index-modulated square grating made of titanium-dioxide (TiO2) and 

ultraviolet-cured polymer (UVCP) with the top and bottom covered by UVCP. Spectral off-

normal un-polarized and linearly polarized transmission and bidirectional scatter distribution 

function (BSDF) measurements are compared to FDTD simulations to determine off-normal 

scatter characteristics of the filter. The GMRF is found to exhibit extraordinary angular scatter for 

guided-modes and off-normal incidence. An analytical expression was developed which 

accurately predicts the location of these modes in simulations and at the measured location for 

incident angle and wavelength. The SPP sample is a gold/titanium thin film (50 nm) with a 2-d 

square array of circular holes deposited on 1 μm of highly n-doped, n=2e18cm-3,  gallium-

arsenide (GaAs) upon a semi-insulating GaAs substrate.  Spectral extraordinary transmission 

measurements were made for various normal and off-normal incidence angles (θi) with linearly 

polarized and un-polarized light. The first- and second-order SPP modes and their dependence on 

θi, azimuthal angle with respect to alignment with the hole array (φ), polarization and the grating 

momentum vector were identified.  The measurements and simulations corroborate the theoretical 

analysis, giving an analytical solution to the spectral location of lower-order modes.  Full 

polarimetric spectral transmission was both measured and simulated, giving a Mueller matrix 

representation of the spectral transmission of the SPP structure at θi=0° and 20° and φ=0° and 

45°, demonstrating that this structure is moderately depolarizing when resonant.  These results  
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demonstrate the dependence on incident angle and polarization of the extraordinary 

characteristics of two classes of nano-/micro-structured materials. 
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FDTD SIMULATION OF NOVEL POLARIMETRIC AND DIRECTIONAL 

REFLECTANCE AND TRANSMITTANCE MEASUREMENTS FROM OPTICAL 

NANO- AND MICRO-STRUCTURED MATERIALS 

  

I.  Introduction 

Recently, there has been a surge in nano- and micro-structured optical materials 

that offer special properties for the propagation, localization and control of 

electromagnetic (EM) radiation over a range of frequencies from the visible to the far-

infrared. Among these structured materials are photonic crystals (PCs) and surface 

plasmon polariton (SPP) structures; these are the focus of this thesis. 

PCs and SPP structures have been proposed for a variety of new concepts such as 

optical computing, optical communications, alternate energy and heat management. 

Waveguides are an application of these structures which provides the basis for optical 

computing. Optical computing utilizes photon, rather than electron, switching for logic 

processes. This form of computing is potentially much faster and offers a much broader 

bandwidth then current computing. These structures also provide the capability to make 

very fine line width and voltage-tunable optical filters. These are critical components in 

full optical communication applications. PCs and SPP structures can also be designed 

into selective thermal emitters which provide applications in heat management and 

improvement in harnessing solar energy. By designing a thermal emitter tuned to match 
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the absorption spectrum of photovoltaic cells, the efficiency of solar energy production 

can be improved over existing designs. 

All these applications and others for which these structures have been proposed 

are listed among the essential focus areas for Air Force science and technology 

investment in the "Technology Horizons 2010-2030" report [1]. 

Problem Statement 

If the phenomena of these structures can be generalized, it may be possible to 

extend these unique properties to the ultraviolet or even x-ray or gamma ray. However, 

while there are many theoretical publications on nano-/micro-structured materials, there 

are relatively few experimental papers discussing the performance of these structures in 

operational environments, and the behavior that is reported for fabricated structures is 

often only for very limited experimental conditions. Specifically, an area of research in 

the nano-/micro-structured materials field that has not been extensively considered is the 

hemispherical polarimetric scatter and scatter distribution of these materials, especially 

for off-normal incidence. Most literature presents an engineered material and gives 

normal incidence reflectance or transmittance measurements only [2-7]. Before war 

fighter applications of these materials can be considered, the basic physics of the 

structures proposed theoretically must be characterized through measurement and 

simulation to fully understand their scatter dependence on polarization and angle of 

incidence.  
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Methodology 

This research effort reviews two optical nano-/micro-structured materials and 

simulates these structures using a finite difference time domain (FDTD) model to predict 

the off-normal incidence scatter. The rigorously determined scatter is then compared 

against specific measurements to validate the simulation. The simulations and 

measurements are then used to assign physical phenomena to the unique off-normal 

characteristics identified.  

Overview 

Chapter II gives a background for the theory and characteristics of  PCs and SPP 

structures with an emphasis on the samples being examined in this thesis. Also included 

in the background is an explanation of the finite difference time domain (FDTD) and the 

commercial software, Lumerical Solution's FDTD solver, which was used as an analysis 

tool to determine off-normal scatter from these structures. Finally, an overview of the 

measurement instruments used is presented. Chapter III focuses on the analysis and 

measurements of a guided-mode resonant filter (GMRF) PC. The measurements and 

unique characteristics of this structure are presented, followed by the FDTD simulation 

and findings. Chapter IV focuses on the analysis and measurements of an SPP 

extraordinary transmission filter. The measurements are presented, an analytical 

expression is developed to describe the off-normal characteristics of this transmission, 

and FDTD simulations are utilized to complete analysis. Chapter V concludes this thesis 

and examines the areas of future work.  
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II.  Background 

This chapter provides a review of physical phenomena which describe both the 

design and behavior of the nano-/micro-structured materials studied in this research. An 

overview of photonic crystals (PCs), photonic bandgaps (PBGs) and surface plasmon 

polaritons (SPPs) is presented. The finite difference time domain (FDTD) method for 

electromagnetic (EM) modeling is reviewed and a description of Lumerical Solutions' 

FDTD software is given. The use of the bidirectional scatter distribution function 

(BSDF), which describes the full angular scatter characteristics of materials, was used 

heavily in this research; therefore, a review of it is provided, including that of fully 

polarimetric BSDF. Finally, the subset of AFIT's Optical Scatter Laboratory measuring 

instruments used in this research is described. 

Photonic Crystals and Bandgaps 

Photonic crystals (PCs) are dielectric structures with periodically modulated 

refractive indices. These structures are both naturally occurring and man-made. The 

refractive index distribution, 2( ) [ ( )]n r r , where   is the electric permittivity and r  is 

the position vector, forms a lattice which is analogous to a crystal lattice in a 

semiconductor. Due to the periodicity, solutions to Maxwell's equations for a periodic   

describe the propagation of EM waves within the PC and provide the allowed 

wavelengths   and propagation vectors k . Wavelengths and propagation vectors that 

are allowed to propagate form modes and groups of modes form bands, referred to as 

pass bands. If a group of modes is forbidden from propagating through the structure, it is 

called a stop band. These band relations are usually represented in a band diagram as a 
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dispersion relation, or the dependence of the propagation vector, k or  , on optical 

frequency,  . The Maxwell-Faraday equation and Ampère's circuital law are used to 

describe the propagation of EM waves within a PC made up of non-magnetic, isotropic, 

periodically modulated dielectrics 

 

1

1( ) ( )

E H i H
c t c

H r E i r E
c t c




 


   




   



 (2.1) 

where E  is the electric field, H  is the magnetic field, c is the speed of light and t is time. 

Combining these yields 
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( )
H H

r c




 
    

 
 (2.2) 

referred to as the Helmholtz equation. 1
( )r

   is the eigen-operator and is a 

Hermetian for lossless media, 2( / )c  is the eigen-value and H  is the eigen-state. There 

is also a constraint on the Helmholtz equation given by Gauss' law 

 0H   (2.3) 

If an eigen-operator is periodic, like this one is, then the Bloch-Floquet theorem applies, 

given by 

 ( )( , ) ( )i k r t
kH r t e u r  (2.4) 

where ( ) ( )rk ku r u r   is the periodic envelope and r  is the period in the direction 

of r . The first Brillouin zone is a uniquely defined primitive cell in k  space surrounding 

the 0k   point. The Bloch-Floquet theorem implies that any wave vector k   outside the 
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first Brillouin zone is equivalent to some wave vector k  inside the zone translated by the 

reciprocal lattice vector 2ˆ
r

G r 



 where r̂  is the unit vector in the direction of r  , i.e. 

 k k G    (2.5) 

Inserting Equation (2.4) into (2.2) and neglecting the time harmonic terms gives 

   21( )
( ) k kik ik u u
r




 
     

 
 (2.6) 

where / c   is the normalized frequency. This eigenvalue equation can be solved for 

the dispersion relation of a PC [8].  Figure 1 shows an example of the dispersion relation 

of a 1-d PC made up of two different dielectrics of the same thickness. The bottom 

diagram shows a schematic of the structure. The shaded regions are stop bands and the 

white region is the pass band, defining where a photon with specific   and zk  can 

propagate within the PC. The ability to engineer these pass bands and stop bands allows 

PCs to be used in many optical device applications. 
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Figure 1.  Example Bandgap diagram for 1-d photonic crystal with modulated dielectrics. The plot 
on the left is for p-polarization, the right plot is for s-polarization and the bottom diagram shows a 
schematic of the 1-d PC [9]. 

Surface Plasmon Polaritons 

Surface plasmon polaritons (SPPs) are EM surface waves that are evanescently 

confined to the surface of a metal-dielectric interface. To present this discussion in a 

general form, it is best to start with a cursory review of Maxwell's equations and the wave 

equation. Maxwell's equations in differential form are 

 

  extD    (2.7) 

 0B   (2.8) 

 
BE
t


  


 (2.9) 
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 ext
DH J
t


  


 (2.10) 

The four macroscopic fields linked by these equations are  the dielectric 

displacement D , the electric field E , the magnetic field H  and the magnetic flux 

density B . Consider two semi-infinite nonmagnetic media with local, frequency-

dependent dielectric functions 1  and 2  separated by a planar surface at  0z  , shown 

in Figure 2. In the absence of external forces, Equations (2.7)-(2.10) can be expressed as 

 
1

j j jH E
c t




 


 (2.11) 

 
1

j jE H
c t


  


 (2.12) 

 ( ) 0j jE   (2.13) 

 0jH   (2.14) 

where 1j   for 0z   and 2 for 0z  . Equations (2.11)-(2.14) can be classified into TM 

polarized and TE polarized modes. 

  

 

Figure 2.  SPP graphical representation of interface between two media with 
dielectric functions 1 and 2 separated by a planar interface at 0z  . 
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For TM polarized modes, the electric field is perpendicular to the interface. It is parallel 

for TE polarized modes. If the interface is assumed to be ideal, then for wave propagation 

along it, there must be an electric field component normal to the surface; therefore, TE 

polarized surface oscillations do not exist. To find conditions that allow propagation 

along the interface (along the x-axis), consider TM polarized modes where the magnetic 

field is parallel to the interface. 

 | | ( )
, ,( ,0, ) j jk z i x t

j x j z jE E E e e   
  (2.15) 

 | | ( )
,(0, ,0) j jk z i x t

j y jH H e e   
  (2.16) 

where / ,x z jE  is the component of jE  in the /x z  direction, ,y jH  is the component of jH  

in the y direction and , ( 1,2)j x jk j   is the propagation constant that represents the 

magnitude of the wave vector parallel to the surface; and ,j z jk k  is the component of the 

wave vector perpendicular to the surface and its reciprocal defines the evanescent decay 

length, quantifying the confinement of the waves to the surface. Inserting (2.15) and 

(2.16) into (2.11)-(2.14) yields 

 1 ,1 1 ,1y xik H E
c

  (2.17) 

 2 ,2 2 ,2y xik H E
c

   (2.18) 

where 
2

2
2j j jk

c


   . Applying boundary conditions at the interface which demand 

that the electric and magnetic fields are continuous across it gives 

 1 2
,1 ,2

1 2

0y y
k kH H
 

   (2.19) 
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 ,1 ,2 0y yH H   (2.20) 

which only have a solution if 

 1 2

1 2

0
k k
 
   (2.21) 

This is the surface-plasmon condition [10]. From the boundary conditions, it also follows 

that 1 2     which yields 

 1 2

1 2

( )
c

 
 

 



 (2.22) 

Now consider the Drude model for a semi-infinite metal in a vacuum (i.e. 2 1  ) [11] 

 
2

1 1
( )

p

i 




  
 


 (2.23) 

where p  is the plasma frequency of the metal and   is the collision frequency and is 

much smaller than the plasma frequency. For this case, using Equation (2.22), the 

dispersion relation is 

 
2 2

2 2( )
2

p

pc
 

 
 





 (2.24) 

shown in Figure 3 for 15p eV   [6]. The green dashed line represents the light line at 

c   and the dotted line represents the classical non-dispersive, or non-retarding, 

surface plasmon frequency ( / 2s p   ). The lower line is the SPP frequency, 

 
2 4

2 2 2 4 4( )
2 4
p pc c

 
        (2.25) 

which, in the retarded region of /s c   , can couple with the free EM field.  



 

11 

 

Figure 3.  Dispersion diagram for a metal with plasma frequency ( p ), 15eV.  The 
dashed green line is the light line. The dotted line represents the non-dispersive plasma 
frequency ( s ). The upper line is the dispersion of light in the solid and the lower line 
is the SPP frequency. 

 

Note that the wave vector   is a two dimensional wave vector in the plane of the 

surface; when entered into Equation (2.25), the dispersion relation for SPPs is defined. 

Hence, if the light hits the surface in any direction, the external radiation dispersion line 

will always lay between the light line and the horizontal s  line in such a way that it will 

never intersect the SPP line. Light incident on an ideal surface cannot excite SPP modes 

[10]. However, there are two mechanisms in which SPP modes can be excited. Surface 

roughness or gratings can provide the requisite momentum via the Umklapp process, or 

the translation of the plasmon frequency wave vector into another Brillouin zone [12]. 

The second is attenuated total reflection (ATR) via total internal reflection through a 
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prism, sometimes referred to as prism coupling [13]. For this research, the focus will be 

on the former. 

 Consider a thin metal film on a dielectric substrate with a square array of holes as 

shown in Figure 4. 0 2 /k    is the propagation constant of the incident radiation and 

0 sin( )x ik k   is the component of the wave vector of the incident radiation that is in-

plane with the surface. For this arrangement, the incident photon and grating momentum 

match the SPP momentum when 

 spp x x yk k iG jG    (2.26) 

where sppk  is the SPP wave vector and is the same as   described above, xG  and yG  are 

the grating lattice vectors, 2 /x yG G    , where   is the period of the hole array 

and i, j are integers [14] . Therefore, due to the corrugated surface, this type of structure 

will support SPP modes.  

 

Figure 4.  Graphical representation of a thin metal film with a periodic lattice of 

holes with period Λ for the excitation of SPPs. 0k is the wave vector of the incident 

light,  and x yk k  are the components of the incident radiation parallel to the 
surface interface. 
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The frequency of these SPP modes depends on the angle of incidence, the grating 

momentum vector and the complex index of refraction of the surrounding medium and 

the metal layer. 

From Equations (2.26) and (2.22), an angle dependent representation of the 

resonant modes can be shown as 

 

, ,

, ,
, 2

2

,

( ) ( )
( ) ( )

( )

sin

m i j d i j

m i j d i j
i j inc

inc
i j

i j

   

   
 









 
   

 

 (2.27) 

where ( )m   is the permittivity of the metal film and ( )d   is the permittivity of the 

dielectric of the interface. The wavelength dependence of ( )d   can be neglected and it 

can be approximated as 

 1,0
,d eff dn


 


 (2.28) 

since | | ,m d m d       and d d    where i      [15].  

 If the structure coordinates are aligned with spherical coordinates such that the x-

axis is aligned with 0inc  , then if 45inc   , the incident wave vector also includes a y 

component, i.e. 

 spp x y x yk k k iG jG     (2.29) 

where 
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

 





 
 

 (2.30) 

where x̂  and ŷ  are unit vectors in the x and y directions, respectively. For this 

orientation, the resonant modes are 

  

,

,
, | 45 2 2

, ,

( )
2

( )

2 2 2 2sin sin
inc

m i j d

m i j d
i j inc

inc inc
i j i j

i j



  

  
 

 
 

 




   
            

 (2.31) 

 

Another phenomenon that adds to the spectral transmission of SPP structures is 

the Wood's anomaly described by 

 ( ( ) sin ), 1,2,3...R eff incn m
m

  


    (2.32) 

The Wood's anomaly takes place when, for certain diffraction orders and incident angles, 

the diffracted light lies in the plane of the surface. Since the radiation cannot be scattered 

into this forbidden region, it is redistributed into allowed diffraction orders [16].  

It has been observed that arrays of subwavelength sized holes in otherwise 

optically thick metal films exhibit peaks in the transmission spectra. At these maxima, the 

transmission efficiency is orders of magnitude greater than that predicted by standard 

aperture theory at wavelengths up to ten times the size of the holes [17]. This highly 

unusual zero-order transmission spectrum has been named extraordinary transmission. 
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Also included in the spectral transmission of a metal-dielectric structure such as 

that depicted in Figure 4 is the propagation of the incident radiation through the holes. It 

has been shown that the holes will always support a propagating mode near the surface 

plasmon frequency [18]. These modes can be found by solving the circular waveguide 

equations. This contribution is not detailed here because the main focus of this research 

will be on extraordinary transmission at frequencies well below the surface plasmon 

frequency. However, these phenomena can be combined via superposition to form the 

extraordinary transmission spectra for SPP structures, making is difficult to determine the 

location of higher-order modes. Since the lowest order modes take place at the longest 

wavelength, far away from the surface plasmon frequency, they can usually be 

determined. The extraordinary transmission of these structures makes them very 

attractive for various applications including spectrally selective emitters, interfacing 

between external optics and focal plane arrays, and enhancing the surface sensitivity of 

spectroscopic measurement systems. 

Finite Difference Time Domain (FDTD) Analysis 

To fully describe the physics inherent in a finite difference time domain (FDTD) 

Maxwell's equations solving algorithm, consider a full representation of Maxwell's 

equations, 

 i
BE M
t


   


 (2.33) 

 i c
DH J J
t


   


 (2.34) 

 evD q   (2.35) 
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 mvB q   (2.36) 

 where iM  is the impressed magnetic current density, iJ  is the impressed electric current 

density, cJ  is the conduction electric current density, evq  is the electric charge density 

and mvq  is the magnetic charge density [19]. FDTD uses a discrete definition of geometry 

for a given EM problem in both time and space. The EM fields and material geometries 

are described on discrete Yee mesh cells, as shown in Figure 5. The Equations (2.33)-

(2.36) can be described discretely in time where the time step is related to the mesh size 

through the speed of light. This technique is an exact solution to Maxwell's equations in 

the limit that the mesh cell size goes to zero. 

For this research effort, Lumerical's commercially available FDTD software is 

used. Since this algorithm directly solves Maxwell's equations, the solution are assumed 

to be correct as long as the boundary conditions and solver mesh are correctly 

established. 

 

Figure 5.  Yee cell representation as used by FDTD to solve Maxwell's equations. 
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Lumerical's software has a pre-loaded material database with material 

characteristic definitions from widely accepted publications like Edward Palik's 

"Handbook of Optical Constants" and the "CRC Materials Science and Engineering 

Handbook" [20, 21]. If a material that is to be modeled is not in the materials database, 

the user can define it and load it into the simulation via a materials definition script. 

Depending on the simulation bandwidth, the software interpolates the materials' complex 

refractive index data points to continuous functions. If using sampled or user defined 

materials data, this interpolation can be checked and adjusted to ensure good fits across 

the simulation bandwidth. This becomes especially important when modeling dispersive 

materials. A badly interpolated function for material characteristics will cause the 

simulation to diverge. 

Since FDTD is a time-domain method, the EM fields are calculated as a function 

of time. The time signal of the source is a pulse defined by 

 
2

0
2

( )
2( )( ) sin[ ( )]
t t

t
o os t t t e




   (2.37) 

where 0t  is the initial time, o  is the initial angular frequency and t  is the time step. 

The Fourier transform of ( )s t  is  

 ( ) ( )i ts e s t dt    (2.38) 

Ideally, ( )s t  would be a Dirac delta function; this would give the system's response for 

all frequencies. It is more efficient and numerically accurate to excite the system with a 

short pulse such that 2( )s   has a reasonably large value over all frequencies of interest 

[22].  
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Lumerical's FDTD has several boundary condition (BC) definitions. The two used 

in this research were the Perfectly Matched Layer (PML) and the Bloch BC. The PML 

acts as a perfect absorber, allowing the fields to decay in the defined direction, and is 

useful in confining the system's response to the physical structure being modeled. This is 

implemented by multiplying the curl component in the defined direction of Equations 

(2.33) and (2.34) with a term that allows the fields to exponentially decay. For example 

 

ˆ ˆ ˆ

1
( )1

z y x z y x

x

E E E x E E y E E z
y z z x x y

xx xi


         
          

         

 


 


 (2.39) 

will cause the electric field to decay in the x-direction. ( )x x  is a term that quadratically 

or cubically increases from zero at the defined boundary [23]. 

Bloch BCs are used in simulating periodic structures when a phase shift between 

periodic unit cells in the model structure exists. This applies when using a plane wave 

source at off-normal incidence or when using dipole sources to simulate the dispersion 

relation of a periodic structure. This BC is based on Bloch-Floquet theorem mentioned in 

Equation (2.4). 

There are many radiation sources available in the Lumerical software package. 

The one most often used for this research is the plane wave source. This source must only 

be used with periodic BCs placed normal or at less than 90 degrees to the propagation 

vector and PML BCs in the positive and negative propagation direction. The source 

should be extended outside the periodic boundary. In other words, a plane wave source is 

assumed to have infinite width (1-d) or area (2-d) propagating into an absorbing BC. 
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In general, the plane wave source in FDTD is always linearly polarized. However, 

different polarization states can be simulated using the superposition of two or more 

sources. For example, to simulate un-polarized light, an average can be taken from all 

possible input polarizations 

 
2 2 2

0

1 | ( ) |
2ave

E E d


 


   (2.40) 

where  is the polarization angle measured from the plane of incidence. Due to linearity, 

( )E   can be expressed as 

 ( ) sin( ) cos( )s pE E E     (2.41) 

where sE  and pE  are s-polarized and p-polarized electric fields. Inserting Equation 

(2.41) into (2.40) gives 

  
2 22 1

2 s pave
E E E   (2.42) 

Therefore, to simulate un-polarized light, two sources can be used, one with p-

polarization, the other with s-polarization, by defining their phases to be equal. Similarly, 

circular polarization can be simulated by the superposition of a s-polarized source and a 

p-polarized source with their phase differing by 90 degrees. By adjusting  and the phase 

of two sources, any polarization state can be simulated. 

One limitation of FDTD is when a broadband source is simulated for an off-

normal incidence angle with Bloch BCs; the source angle varies as a function of 

wavelength. Broadband sources inject fields that must have a constant in-plane wave 

vector at all wavelengths given by 
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 2 sin( )in plane d
c

k 



   (2.43) 

where c  is the center wavelength and d  is the user defined incident elevation angle. 

Because this value must be constant for all  , 
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 (2.44) 

Therefore, if a broadband source is going to be used at off normal incident elevation 

angles with Bloch BCs, then i  will vary with   as shown in Figure 6. 

If a system response is desired with dependences on i  and  , like a dispersion 

relation, then this limitation presents a challenge. There are two options for overcoming 

this. First, a two dimensional sweep can be formed where a simulation is run for each 

i   combination; this technique gives good results but is time consuming. The second 

option is to perform a broadband sweep in i  and then interpolate the data points post-

simulation into a common source injection angle. This technique is easy to implement 

since the data points are present for each i  and  ; they just need to be aligned and 

interpolated into a common step size. Figure 7 shows the results of this algorithm. The 

plot on the left shows the data points prior to interpolation, and on the right, data points 

afterwards. One drawback of this technique is the constraint placed on d  given by 

 1

max

max( ) sin c
d






  
  

 
 (2.45) 
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So the range of d  depends on the bandwidth of interest, and a full angle range,

[0 ,90 ]d     , cannot be evaluated using this method. 

 

Figure 6.  Definition of the incident elevation angle's, i , dependency on  in 
FDTD simulations when using Bloch BCs. 

 

 

 

Figure 7.  (left) Data points prior to interpolation with the described θi(λ) dependence. (right) Data 
points after interpolation where the data for each λ has a common source incident elevation angle 
[22]. 
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The system's response is measured by monitors. There are multiple monitors 

available in Lumerical but the only one used in this research was the frequency domain 

power monitor (FDPM). The FDPM collects the time signal at a specified location, a line 

for 2-d simulations and a plane for 3-d, and performs a Fourier transform, returning the 

complex field values at the specified location. Analysis groups are collections of 

monitors and defined functions to return desired simulation characteristics. Users can 

define their own analysis groups, which was done for the Mueller matrix simulation and 

will be described in Chapter 4. 

  Lumerical's FDTD software package provides a very powerful design and 

modeling capability. The user interface is easy to use and there is extensive 

documentation available on Lumerical's website [22]. This software is also available on 

high performance computing (HPC) clusters worldwide. In the United States, Lumerical 

is available on Harvard's National Nanotechnology Infrastructure Network Computation 

Project. This cluster is available to academic researchers in the U.S. and was accessed to 

simulate some of the largest model definitions for this research. 

Bidirectional Distribution Scatter Function 

EM scatter may be described by the bidirectional scatter distribution function 

(BSDF), defined in radiometric terms as the scattered radiance divided by the incident 

irradiance. 

 ( , )
( , )

s s s

i i i

dLBSDF
dE

 

 
  (2.46) 
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where   is the elevation angle in spherical coordinates with respect to the surface 

normal,   is the azimuthal angle, and the subscripts i and s  refer to incident and 

scattered, respectively. This function describes the power scattered per unit solid angle by 

a sample as shown in Figure 8. The BSDF can be segmented into two contributions, the 

reflected radiance as a bidirectional reflection distribution function (BRDF), and the 

transmitted radiance as a bidirectional transmission distribution function (BTDF). 

 BSDF BRDF BTDF   (2.47) 

Electromagnetic scatter from a surface can be described deterministically by 

defining boundary conditions for the surface profile and solving Maxwell's equations, but 

for optical surfaces, the features that make up the surface profile that must be considered 

are on the nanometer scale due to the small wavelength of light. If measured using a laser 

beam, the area illuminated is typically thousands of times larger than a wavelength. 

Although this technique has been done for 2-d surfaces [25], this approach becomes 

computationally challenging. Rather, BSDF models used to describe scatter are based on 

physical theory, that is to say they follow basic physical laws, but use measured data to 

specify parameters and fit the model to the data. These models use statistical descriptions 

to describe the surface profiles based on measured data. When light is scattered from a 

surface, even a very smooth surface like a mirror, some light is scattered in every 

direction and some is scattered such that the angle of reflection equals the angle of 

incidence, or into the specular direction. BSDF models attempt to describe the different 

contribution from both phenomena at all scatter angles. Many of these models describe 

the surface as micro-facets that are oriented according to some statistical distribution 

function or surface distribution function (SDF), but are themselves perfectly smooth. 
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Figure 8.  BSDF Definition [24]. 

 

The reflection and transmission from each facet is then described by Fresnel reflection; 

the angle of incidence equals the angle of reflection and the angle of transmission 

depends on the index of refraction of the material. Micro-facet models result in a 

computationally fast method to predict scatter, and do a fairly good job of describing it 

for many surfaces. If there are scatterers present on the surface that are much smaller than 

a wavelength, then Rayleigh scatter can be used to effectively describe the scatter by 

describing the surface roughness as a power spectrum distribution (PSD) function and 

performing a Fourier transform. Spherical scatterers can be described by Mie scatter for 

above surface structures or particles; non-spherical scatterers are often approximated the 

same way.  

Many BSDF models have been developed to describe the scatter from surfaces. 

Dr. Thomas Germer at the National Institute of Standards and Technology (NIST) has 

developed a BSDF library in C++ called ScatMech [26]. A subset of these models is 

shown in Figure 9.  
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Figure 9.  Hierarchy representation of a subset of ScatMech BSDF library model classes. 

 

This library contains several BSDF model classes and sub-classes that include facet 

models, Rayleigh-Rice approximation models, Mie scattering models and an effective 

rigorous coupled-wave BSDF model. ScatMech also contains several PSD, SDF and 

grating profile functions, providing an expansive range for fitting BSDF data to a model. 

Due to ScatMech's BSDF fitting range, it could be used to fit models to scatter from 

nano- and micro-structured materials. An investigation of this potential is outlined in 

Appendix A, where a fitting algorithm was developed to search ScatMech for model fits. 

The ability to efficiently search and fit ScatMech models to measured BSDFs would be 

valuable in predicting scatter from this new class of materials. 

A more complete method for characterizing scatter is described in a polarimetric 

BSDF (pBSDF) model, which uses the Mueller matrix (Mm). A Mm is a four by four 

matrix that describes the transformation of an incident Stokes vector, is , into the 



 

26 

reflected or transmitted Stokes vector, os , for a specified incident solid angle s  and 

elevation angle s , i.e. 

 coso i s ss Mm s    (2.48) 

where 
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Stokes vectors describe the polarized intensity and can be expressed in terms of the 

electric field by 
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 (2.50) 

where 0 1 2 3, , ,  and s s s s are elements of the Stokes vector corresponding to total intensity, 

linear polarization to either the x- or y-directions, linear polarization at ±45° from the x- 

or y-directions, and left- or right-hand circular polarizations, respectively, and xE  and yE  

are the x- and y-components of the complex electric field of an EM wave traveling in the 

z-direction in Cartesian coordinates. The most general state of polarization is elliptical, of 

which linear and circular are special cases. A Stokes vector can also be defined in terms 

of intensity and parameters of the polarization ellipse (shown in Figure 10), giving 

measurable quantities to all its elements. The elements defined in this manner are 
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Figure 10.  Polarization ellipse [27]. 
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 (2.51) 

 

where I is the intensity, p is the degree of polarization, 

 2 2 2
1 2 3

0

1p s s s
s

    (2.52) 

 is the angle of polarization or the major axis angle from the polarization ellipse and 

 1 3
2 2

1 2

2 = tan s
s s

 
 
 
  

 (2.53) 

Given these definitions, the polarization response for any optical system can be 

determined. ScatMech also provides the capability to model pBSDFs by incorporating a 

Mm into the definition of the models. More information about this ScatMech capability 

can be found at the NIST website [26]. 

If an optical system is polarization preserving the Mm is defined by 
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

preservingMm

 
 
 
 
 
 

 (2.54) 

while a completely depolarizing optical system will have a Mm defined by 

 

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

non preservingMm 

 
 
 
 
 
 

 (2.55) 

These definitions are useful when determining the degree of polarization by 

examining the Mm. As can be seen, the p of Mm (2.54) is equal to 1 and p of Mm (2.55) 

is equal to zero. 

AFIT Optical Scatter Laboratory 

The basis of this research effort was measured data taken in AFIT's Optical 

Scatter Laboratory. AFIT has a Schmitt Measurement Services complete angle scatter 

instrument (CASI) that has been upgraded into an automated Dual-Rotating-Retarder 

(DRR) Mm polarimeter. A CASI has the capability to make complete BSDF 

measurements and the DRR Mm polarimeter can provide complete pBSDF 

measurements as shown in Figure 11.  

Another device used to characterize the structures researched was a Fourier 

transform spectrometer. Fourier transform spectroscopy uses a Michelson interferometer 

to split the light from a source into two beams. One beam is reflected off a fixed mirror 

while the other is reflected off moveable mirror which adjust the optical path length of  
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Figure 11.  (right) AFIT's Schmitt Measurement Services CASI photograph. (left) DRR Mm 
polarimeter schematic. 

 

 that beam. The two beams are then recombined and scattered off the measurement 

sample. The scatter is collected by a detector and sampled at discrete time intervals 

corresponding to movements of the adjustable mirror, allowing the temporal coherence of 

the light, i.e. an interferogram, to be measured. The optical frequency spectrum of the 

scatter can then be determined from a Fourier transform of the interferogram. 

 These measurement instruments provided the empirical data to validate the 

analytical and simulation results for this research effort. 

Summary 

 This chapter provided a brief theoretical background for this research effort 

including an overview of the theory of the novel nano-/micro-structured materials 

studied, PC photonic bandgap and SPP surface waves, the computational tool used, 

Lumerical's FDTD EM solver algorithm and software, and measurement instruments 

used to collect the data for this research including the BSDF physical definition, 

polarimetric terms and the Mm representation. These are all used in the following 
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analyses of a PC guided mode resonant filter and a SPP extraordinary transmission filter, 

and their scatter characteristics for off-normal incident radiation.  
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III.  Guided Mode Resonance Filter Measurement, Analysis and Simulation Results 

 Guided mode resonance filters (GMRFs) are PCs which are designed to cause 

resonance with incident light at specific wavelengths. When these structures are 

illuminated, a portion of the beam is transmitted while the rest is diffracted and trapped in 

a waveguide structure. A portion of the trapped light is then diffracted back out of the 

waveguide and constructively or destructively interacts with the transmitted radiation. 

Resonance takes place when, at certain frequencies and incident angles, there is complete 

interference and no light is transmitted [5]. 

GMRF samples were provided by Prof. Brian Cunningham of the University of 

Illinois at Urbana Champaign. Fabrication of these structures can be found in 

publications by Prof. Cunningham [2, 3, 28]. The BDRFs of these structures were 

measured by Capt Robert Lamott as part of his AFIT MSEE thesis described in [29]. The 

filter studied here is designed to block incident radiation for normal incidence at 532nm. 

This structure is a 2-d GMRF like the one shown in Figure 12.  

 

Figure 12.  2-D GMRF example geometry. (left) 2d schematic showing the layers of the filter. (center) 
Grating layer. (right) Scanning Electron Microscope (SEM) picture of the nano-mold used to 
fabricate each grating layer [2, 29].  
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The filter consists of three 2-d grating structures each separated by 5μm of ultraviolet-

cured polymer (UVCP) and has a protective plastic coating on both the top and bottom. 

The high index material used in the gratings is titanium dioxide (TiO2).  

This chapter begins with Capt Lamott's BSDF measurement of off-normal 

incident radiation at 544nm on this structure and those unique findings. Spectral 

transmission measurements from a Fourier transform spectrometer are then presented, as 

are Lumerical FDTD simulations of these measurements. The theoretical method used in 

the design and characterization of GMRFs is examined; this theory will then be used to 

characterize the FDTD simulations and measurements, and an explanation for these 

unique measurements is offered. 

CASI and Fourier Transform Spectrometer Measurements 

 Complete angle scatter measurements of this structure were made with a 544nm 

laser and showed unique characteristics at θi=25.7°, as shown in Figure 13 [29]. As can 

be seen from the measured BSDF, this results in a unique scatter pattern. Lamott referred 

to this angle as the resonant angle, since at this angle, the GMRF scattered light in all 

directions as illustrated in the inset of Figure 13.  

For this thesis, spectral transmission measurements were made for off-normal 

incidence, p-, s- and un-polarized incident light. The polarized measurements were made 

with the incident azimuthal angle,  , equal to zero, i.e. the incident plane was parallel to 

the grating periodicity. The un-polarized measurement were made for 0   and 45 . 

These measurement are shown in Figures 14 and 15 on contour plots with   versus angle 

of incidence. These same measurements were also made by Capt Lamott and are shown 
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in Appendix A of his thesis [29]. The angular resolution for the these measurements was 

5°, except for the un-polarized measurements, where 1° steps were taken from 24°-27°. 

The measurements made here and those made by Lamott differ only by amplitude, but 

the locations of the nulls in the transmittance in λ and angle of incidence are the same. 

Figure 16 shows the spectral transmission for s-, p- and un-polarized incident 

light at 25i   . As can be seen from these measurements, at the angle that created the 

unique scatter patter, 25.7°, the filter is not in the defined GMRF resonance as described 

by Wang and Magnusson [30]. In other words, the structure is not completely filtering 

light at this wavelength and angle. 

 

 

Figure 13.  BSDF of 2-D GMRF at "resonant" angle (θi=25.7°) showing both transmission (red) and 
reflection (blue) [29]. The GMRF was designed to provide filter protection for 532nm light and was 
measured at 544nm. The inset is a photo of the scatter at the resonant angle. 
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Figure 14.  Measured spectral transmittance of the GMRF for p- (left) and s-polarization (right). 
Angle of incidence, θi, steps were made in 5° increments and the incident plane was parallel to the 
grating periodicity (φ=0°). 

 

 

Figure 15.  Measured spectral transmittance of the GMRF for un-polarized light with φ=0° (left) and 
45° (right). Angle of incidence, θi, steps where made with 5° steps except around the angle of interest, 
25°, where 1° steps were taken. 
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Figure 16. Measured spectral transmittance of the GMRF for all measured polarizations with θi=25°. 

 

Theoretical Analysis 

To fully understand and characterize the GMRF phenomena, consider a 1-d slab 

grating waveguide which has a modulated dielectric along the grating as shown in Figure 

17. If light couples into the waveguide structure, it is possible to excite a guided mode. 

The guided mode will propagate in the x-direction but due to the periodic modulation, the 

structure is leaky; thus, guided modes cannot be sustained on the waveguide grating. The 

theoretical analysis of this phenomenon has been described by Wang and Magnusson  for 

this simple example [30]. The electric permittivity in the grating is,  

 ( ) cos( )gx Gx     (3.1) 

where g is the average relative amplitude,  is the modulation amplitude and G is the 

grating momentum vector and 2 /G   . In solving for the electric field in the grating, 

they let 0  and the solution then resembles that of a dielectric slab waveguide. 
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Figure 17.  Basic 1-d slab GMRF. For certain incident angle and wavelength, there can exist a 
guided mode which propagates along the x-axis inside the grating structure, but due to the 
modulated dielectric, it acts as a leaky waveguide and allows the guided mode to scatter out. 

 

Following their example, via rigorous coupled-wave (RCW) theory, the 

eigenvalue equation for the fields in the guided mode for a 1-d structure with a TM 

polarized incident field is 

 3 1
2 2

1 3

( )
tan( ) g m m m

m
m g m m

t
     


     





 (3.2) 

where 

 
2 2 2 2

1

2 2
3

,

, ( sin( ) / )

m g m m m

m m m g

k k

k k m

     

      

   

    
 (3.3) 

and m  is the z-component of the propagating vector of the mth mode, m  and m  are the 

decay constants into the top and bottom lower index media, respectively, and m  is the x 

component of the propagation vector of the mth mode, shown in Figure 17. For TE 

polarization, the eiganvalue equation is 
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 2

( )tan( ) m m m
m

m m m

t   


  





 (3.4) 

By approximating the measured GMRF structure as a 1-d PC, shown in Figure 18, 

and using these equations, the guided modes can be estimated. Using Λ = 0.3μm , 

1 2 2.13   ,  t = 0.25μm ,  fill-ratio = 40%  and  1 2 2
1sin [ / sin( )]i g     , a 

dispersion relation can be plotted, shown in Figure 19. Although the measured GMRF 

has two separate grating layers, this approximation still compares well to the FDTD 

simulation shown in the next section.   

Figure 19, the dispersion relation of this 1-d approximation, shows where the left 

and right sides of Equations (3.2) and (3.4) are equal for angle of incidence, i , and  . 

As can be seen from this plot and comparing it to Wang and Magnusson's results, the m = 

±1 mode is the most effective mode at filtering incident light. What needs to be 

determined is the mode that is causing the unique BSDF (Figure 13) that was measured 

by Lamott in the 2-d GMRF.    

 

  

Figure 18.  1-d approximation of the GMRF that was measured (Figure 12) . 
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Figure 19.  Dispersion relation of the structure depicted in Figure 18. TM polarization is shown on 
the left and TE on the right. These plots show where the left side and right side of Equations (3.2) 
and (3.4) are equal, resulting in the solutions of the eigenvalue equations for θi and λ. 

 

A method for approximating the resonant modes in 3-d can be developed by 

treating the structure like a waveguide coupler. The equation for the modes of a 

waveguide coupler with s-polarization is 

 2 2sin( )inc m effk m n 
 


  


 (3.5) 

For this case, effn  can be approximated from / effn    since the m=1 mode for 

0inc    is known to be at 532nm  . By following a similar development as that 

described for finding the modes of an SPP structure in Chapter 2 and defining  

 ,i j x y y xk k iG jG      (3.6) 

where 2
x yG G
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0, , ,2 /i j i jk   , , ,2 /i j eff i jn   , and x̂  and ŷ  are unit vectors. Hence, a 3-d 

approximation for the location of the guided modes can be expressed as 




 [

m
]

0 10 20 30 40
0.4

0.45

0.5

0.55

0.6

0.65




 [

m
]

 

 

0 10 20 30 40
0.4

0.45

0.5

0.55

0.6

0.65

m=-1

m=+1

m=+2

m=+2

m=+1

m=-1



 

39 

 , 2 2
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1 1sin sin cos sin
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i j inc inc

inc inc inc inc
i j i j

n

i j
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 



   
            

 (3.7) 

This relation is shown in Figure 20. For this relation, the (1,0) mode corresponds 

to s-polarization and the (0,1) mode corresponds to p-polarization since the definition for 

the grating coupler equation is for s-polarization. While this may seem like a very simple 

solution compared to the numerical methods used in literature, it compares very well with 

both the RCW approximation in 2-d and the measured results shown in Figures 14 and 15 

for the (1,0)  and (0,1) modes. The simulation results will also be shown to compare 

fairly well with this approximation for the higher modes. 

  

Figure 20.  Solutions to Equation (3.7), for  =0° and 45°, giving the approximate location of the 
lower order modes. The (1,0) mode for this representation corresponds to s-polarization and the (0,1) 
mode to p-polarization. 
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FDTD Simulation 

Lumerical FDTD simulation of this structure proved challenging, especially when 

trying to simulate the unique BSDF measurement at 25.7° incident angle. While the 

simulation software does have the capability to measure angular transmission and 

reflection, the spatially very narrow peaks off-specular only appeared for one location in 

s , s , polarization and λ. On the other hand, spectral transmission simulations were 

readily developed to be compared to the measured data. 

The first simulation was that of the 1-d geometry shown in Figure 18. This model 

is a 2-d model in x and y (instead of x and z as shown in the depiction). The transmittance 

from this simulation is shown Figure 21. As can be seen from the nulls (blue) areas from 

these plots, the m = ±1 mode, from Equations (3.2) and (3.4), is the most efficient at 

filtering radiation, while the m = +2 mode seems to have little, if any, effect on the 

transmittance. The location of the m= - 2 mode is out of the range of these plots. Note the 

close agreement between the simulation, which simulated the exact structure depicted in 

Figure 18, and the slab waveguide approximation dispersion relation (Figure 19), which 

approximated the two offset grating layers as a waveguide with an effective index of 

refraction equal to the average index in the two grating layers. The 1-d GMRF is much 

better at filtering TM polarization than TE, for this reason, the 2-d GMRF was designed 

to reduce the reflection differences due to polarization [2]. 
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Figure 21.  Simulated transmittance as a function of incident angle and wavelength of the 1-d GMRF 
depicted in Figure 18. TM polarization is shown on the right and TE on the left. Compare these plots 
with the slab waveguide approximation dispersion relation shown in Figure 19. 

 

The next action in the modeling and simulation development was ensuring that 

the normal spectral transmission model of the 2-d GMRF compared well with measured 

and published results for this structure. The model's geometry was built using circular 

holes instead of the square ones depicted in Figure 12 since the fabrication of this 

structure used a silicon nano-mold with posts to form the holes. Two definitions for the 

refractive indices were tried. The one given by Palik in "Handbook of Optical Constants" 

included an imaginary component which always resulted in diverging fields in the 

simulation [20]. The best results came from using those published by Yang in his PhD 

dissertation (Prof. Cunningham was his advisor) [28]. The first model simulated one 

period in the x- and y-directions using Bloch BCs, and a 600nm span in the z-direction 

with a PML BC. Using this configuration, the plane wave excitation begins inside the 
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UVCP. Therefore, the wavelength was adjusted accordingly. Also, when comparing this 

simulated data to the measured data, i  needs to be adjusted by Snell's law.  

 1 1sin sin
1.46sim meas   

  
 

 (3.8) 

where sim  is the incident angle shown in the simulations and meas  is the incident angle 

shown in the measurements. The simulated and measured spectral transmissions are 

compared in Figure 22, where the measured data is the same as that depicted in Figure 

16.  

This model was then used to simulate a sweep in i  and   for s- and p-

polarizations and 0   and 45°, where the hemispherical transmission and reflection 

was measured with two FDPM planes with their normals in the z-direction. The 

transmission monitor was placed below the structure and the reflection monitor was 

placed above the source. In order to sweep i  from 0° to 50°, a two dimensional sweep 

was used as described in Chapter 2. The results from this simulation are shown in Figures 

23-26. The simulated reflectance for 0    is shown in Figure 24 but left out for 

45    for brevity.  
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Figure 22.  Measured (green) vs. simulated (blue) spectral transmission for un-polarized light for 
normal incidence. 

 

  

Figure 23.  Simulated transmittance as function of incident angle and wavelength of a 2-d GMRF 
with φ=0°. The data cursor shows the location of the resonant angle (scaled by Snell's law) as 
measured by Lamott.  
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Figure 24.  Simulated reflectance as function of incident angle and wavelength of a 2-d GMRF with 
φ=0°. The data cursor shows the location of the resonant angle (scaled by Snell's law) as measured by 
Lamott. 

 

 

Figure 25.  Simulated transmittance as function of incident angle and wavelength of a 2-d GMRF 
with φ=45°. The data cursor shows the location of the resonant angle (scaled by Snell's law) as 
measured by Lamott. 
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Figure 26.  Simulated transmittance as function of incident angle and wavelength of a 2-d GMRF 
with un-polarized source and φ=0° and 45°. The data cursor shows the location of the resonant angle 
(scaled by Snell's law) as measured by Lamott. 

  

Figure 23 can be compared to Figure 14 if the angle of incidence is scaled as 

mentioned above. However, it can be directly compared to the approximation made by 

Equation (3.7) and Figure 20. For s-polarization they compare well. These figures show a 

data cursor pointing to the location where Lamott measured the unique BSDF.  

As can be seen in Figure 25, incidence at an azimuthal angle of φ=45° is not 

going to excite a coupled mode at the location in θi and λ where the unique BSDF pattern 

was measured. 

Figure 26 shows the simulated transmittance for un-polarized radiation following 

the description given in Chapter 2; the simulated transmittance for p-polarization and s-

polarization were averaged. These simulation results can be compared to the un-polarized 

angular measurements shown in Figure 15. 
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Figure 27 shows the measured and simulated spectral transmittance for s-, p- and 

un-polarized light. As mentioned in Equation (3.8), the simulated incident angle was 

scaled by Snell's law. The measured and simulated data do not compare well. While the 

null around 525nm is close for the measurements and simulations, the simulation does a 

poor job at predicting the null around 544nm. 

Another simulation was done that approximates the structure as a one-layer 

grating covered with 500nm of UVCP on the top and bottom. The source excitation was 

placed above the UVCP and the reflection and transmission monitors were placed outside 

the UVCP. The results of this simulation are shown in Figure 28. Notice the location of 

the measured unique BSDF corresponds to the (0,1) mode in Equation (3.7) (plotted in 

Figure 20) for s-polarization.  

  

Figure 27.  Simulated and measured transmittance of the 2-d GMRF for all measured and simulated 
polarizations with θmeas=25° and θsim=17°. 
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Equation (3.7) is developed with incident angle and wavelength inside the UVCP. 

Snell's law of refraction (Equation (3.8)) was applied to this approximation and the result 

is shown in Figure 29. Notice the resemblance between this approximation and the 

simulations shown in Figure 28. From these results, it can be seen that the (1,0) mode 

causes the resonance as defined by Wang and Magnusson, and the (0,1) mode causes the 

unique BSDF as measured by Lamott. Since the resonant angle was measured at λ = 

544nm and θi = 25°, which intersects a coupled mode at one location, it is reasonable to 

assume that any guided-mode will result in a similar scatter pattern as measured by 

Lamott. 

 

 
Figure 28.  Reflectance and transmittance as functions of angle of incidence and wavelength of the 
GMRF approximated as a single layer with 500nm of UVCP on the top and bottom and with the 
source and monitors placed in free space. Top row depicts p-polarization and the bottom, s-
polarization. The arrows point to the location of the unique measured BSDF. 
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Figure 29.  The solution of Equation (3.7) scaled by Snell's law. Note the resemblance to Figure 28 
and the agreement between the (0,1) mode at θi=25° and λ=544nm. 

 

Another simulation of this structure was done where the grating orders and their 

strengths were measured in all directions. In the z-direction, only specular grating orders 

were determined. However, in the x-/y-direction, multiple grating orders were calculated 

and their strengths were multiplied by the transmission in the respective direction to 

represent power propagating parallel to the grating periodicity. The results from this 

simulation are shown in Figure 30 where the normalized x/y transmission is plotted for 

points in λ and θ shown in the inset. The x/y transmission increases with incident angle at 

the locations of the guided modes.  

The orders and their directions for three points, A, B and C (shown in the inset of 

Figure 30), were then plotted on spherical plots shown in Figure 31. The black dotted line 

represents the incident light, blue lines represent the specular reflection  and the red and 

green lines represent power transmitted in the x-/y-directions. For normal incidence at 
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532nm, there is essentially no power transmitted in the x-/y-direction. For off-normal 

incidence at wavelengths not corresponding to coupled modes, the x/y transmission is 

minimal, and for wavelengths corresponding to coupled-modes with off-normal 

incidence, the x/y transmission is significant as shown in Figure 31 (C). 

 

 

Figure 30.  Normalized x/y transmission for seven points along the (±1,0) mode the (0,1) mode. The 
points are shown in the inset plot of the transmission from Figure 28. The points A, B, and C show 
where the grating orders were calculated and are plotted in Figure 31. 

 

Figure 31.  Spherical plots showing the grating orders and their direction for (A) λ=532nm and θi=0°, 
(B) λ=700nm and θi=25° and (C) λ=544nm and θi=25°. 
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These results provide evidence that at incident angles higher than approximately 

5° and wavelengths corresponding to coupled modes, the structure will exhibit the unique 

BSDF pattern measured by Lamott.   

Conclusion  

A unique scatter pattern not previously mentioned in the literature was measured 

by Lamott for a GMRF [29]. The analysis and results of this chapter provide evidence 

that this unique BSDF pattern of the measured GMRF corresponds to any coupled mode 

defined by Equation (3.7) for incidence angles higher than 5°. Since these structures are 

designed as spectral filters, their performance is often characterized by spectral 

transmission/reflection measurements and the angular scatter has not been examined in 

the literature. The effects of this mode are hard to determine in spectral transmission 

measurements and simulations, but the effect this mode has in angular reflection and 

transmission patterns is of great consequence, as demonstrated by Capt Lamott. This 

pattern should scale with angle and frequency, providing a single challenge to the 

development of a parameterized BSDF model for these types of structures. Such a model 

would need to approximate this extraordinary scatter pattern only at the location of this 

mode, and elsewhere, with the pattern of a 2-d reflective/transmissive grating. The 

development of Equation (3.7)  does provide  an approximation to predict the mode in 

measured data. To further test the accuracy of this approximation, more measurements at 

different angles of incidence and wavelengths could be done. If Equation (3.7) can be 

substantiated through measurement-based analysis, then it could be incorporated into a 
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BSDF model for GMRF structures. Since Equation (3.7) is easy to derive and evaluate, it 

could provide the framework for a computationally fast BSDF model. 
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IV.  Surface Plasmonic Extraordinary Transmission Filter Measurement, Analysis 
and Simulation Results 

A collection of surface plasmonic extraordinary transmission filters was provided 

by Dr. Zahyun Ku of the University of New Mexico and Materials and Manufacturing 

Directorate, Air Force Research Laboratory (AFRL/RX). These structures are a series of 

2-d square titanium (Ti)/gold (Au) hole arrays with various periods (Λ=1.79, 1.89, 2.00,  

2.08, and 2.33 μm) on 1 m of heavily n-doped GaAs (free electron concentration n=

18 32 10 cm ) on a substrate of semi-insulating (un-doped) GaAs. The nominal diameter 

of the holes was 0.5Λ.  A description of the fabrication of these structure can be found in 

Dr. Ku's PhD dissertation [15]. Dr. Ku got good results when simulating this structure in 

CST Microwave Studios for normal incidence with the approximation, 

, 1,0~ /d eff dn     , given in Equation (2.28). These filters were designed to be 

integrated with an intersubband quantum-dots-in-a-well structure to be used as a mid-

infrared focal plane array. Figure 32 shows a scanning electron microscope (SEM) image 

of the filter with a period of 2.08μm.  

 

Figure 32.  SEM image of the SPP transmission filter with Λ=2.08μm.  
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The scatter analysis of this structure will focus on the sample with a period of 

2.08μm . While the periodicity does change the spectral characteristics, for brevity, only 

one case is presented but the results can be generalized to any of the others. This chapter 

will present the measured results and findings for off-normal spectral polarimetric 

transmission of this structure. Then, an analytical approach will be taken to explain the 

measured results. Finally, the results from FDTD simulations will be used to enforce the 

analytical explanations.  

Measurements 

Dr. Ku showed that the spectral nature of the extraordinary transmission at normal 

incidence is dependent on the periodicity of the rectangular hole array. As mentioned in 

Chapter 2, extraordinary transmission is attributed to SPPs since the thin perforated films 

that exhibit this behavior are optically thick. The transmission peaks are orders of 

magnitude larger than can be explained by aperture theory since the size of the holes are 

much smaller than the wavelengths of these peaks. To verify this, spectral transmission 

was measured for all five structures, shown in Figure 33. The locations of the peaks 

correspond to Equation (2.27), simplified for 0i     

 

, ,

, ,
, 2 2

( ) ( )
( ) ( )
m i j d i j

m i j d i j
i j

i j

   

   








 (4.1) 

This is the form of the SPP modes most often published, rather than the more general 

forms in Equations (2.27) and (2.31) [17, 18, 31]. 
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Spectral transmission measurements were made on the structure with a period of 

2.08μm for 2 12μm   , angles of incidence, 0 ,20 and 40i     , and un-polarized, p-

polarized and s-polarized light. The transmission of these filters at the resonant peak is 

approximately 30% which is orders of magnitude higher than the classically expected 

result [31]. In this document, all transmission measurements of SPP structures are 

normalized for comparing spectral characteristics unless otherwise noted. The results 

from these measurement are shown in Figures 34-37. The transmission spectra from these 

measurements show that for s-polarization and 0   , the spectral peaks shift with i , 

and for s-polarization, the peaks remain essentially unchanged. On the other hand, for 

45    both polarizations appear to split the spectral peak with increasing i .  

 

 

Figure 33.  Measured spectral transmission of five different SPP structures with Λ=1.79, 1.89, 2.00, 
2.08 and 2.33μm. 
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Figure 34.  Measured spectral transmission of the 2.08μm period filter with φ=0° and p-polarization 
for θi=0°, 20° and 40°. 

 

 

Figure 35.  Measured spectral transmission of the 2.08μm period filter with φ=0° and s-polarization 
for θi=0°, 20° and 40°. 
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Figure 36.  Measured spectral transmission of the 2.08μm period filter with φ=45° and p-polarization 
for θi=0°, 20° and 40°. 

 

 

Figure 37.  Measured spectral transmission of the 2.08μm period filter with φ=45° and s-polarization 
for θi=0°, 20° and 40°. 
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Polarimetric spectral transmission measurements were also made on this structure, 

giving a measured Mm. These measurements are shown in Figures 38-41. Recall 

Equations (2.54) and (2.55) for polarization preserving and depolarizing Mms. The green 

dashed lines represent a polarization preserving Mm. It can be seen that, when resonant, 

this structure is slightly depolarizing.  

To investigate if this phenomenon is apparent in reflection, AFIT post doctoral 

researcher, Dr. Stephen Nauyoks, made a polarimetric BRDF measurement for 20i   , 

4.3μm   and p-polarization. This measurement is shown in Figure 42 as the angular-

dependant reflected Stokes vectors of three different filters, the 1.79μm (sample 1), 

2.08μm (sample 2) and 2.33μm (sample 3) period structures. The s1 and s2 components 

measured and the s3 component was calculated from 

 2 2 2
3 1 2os s s s    (4.2) 

If this structure were not depolarizing, a  
T1,1,0,0  Stokes vector would be returned, 

depicted by the red lines. However, these measurements show depolarization upon 

reflection. The x-axis is centered at the specular reflection angle (20°) and scaled by 

   10log / 2 2*0.40103axis reciever stepx         (4.3) 

where reciever  is the scattered elevation angle in degrees offset by 20° and step  is the 

instrument step size at specular. This scaling makes the central "flat region" about ±1° 

around specular. The increasing depolarization at scatter angles greater than 

approximately ±1° has been associated with systematic apparent depolarization due to 

very low signal-to-noise ratio. Notice the 1.79μm period sample displays the highest 
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amount of depolarization. This is because the 1,1  mode for this periodicity is located at 

4.3μm for 20i   from Equation (2.27). 

 

Figure 38.  Measured Mm of the structure with Λ=2.08μm, φ=0° and θi=0° 

 

 

Figure 39.  Measured Mm of the structure with Λ=2.08μm, φ=45° and θi=0° 
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Figure 40.  Measured Mm of the structure with Λ=2.08μm, φ=0° and θi=20° 

 

 

Figure 41.  Measured Mm of the structure with Λ=2.08μm, φ=45° and θi =20° 
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Figure 42.  Measured polarimetric BRDF at λ=4.3μm of SPP structures with Λ=1.79μm (left), 2μm 
(middle) and 2.33μm (right). All components are normalized by dividing by s0. The horizontal axis 
scaled by Equation (4.3) and centered at the specular reflection angle (20°). The red line represents a 
polarization preserving reflector.  

Analysis 

An analytical expression for the spectral location of the SPP extraordinary 

transmission modes was developed in Equations (2.27) and (2.31), repeated here for 

convenience 

 

,

,
, 2
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 (4.4) 

where ,i j are integers, ( )m   is the permittivity of the metal film and d  is the 

permittivity of the dielectric of the interface. Also recall, if the structure coordinates are 
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aligned with spherical coordinates where the x-axis is aligned with 0inc  , then if 

45inc   , the resonant modes are 

  

,

,
, | 45 2 2

, ,

( )
2

( )

2 2 2 2sin sin
inc

m i j d

m i j d
i j inc

inc inc
i j i j

i j



  

  
 

 
 

 




   
            

 (4.5) 

 Also mentioned in Chapter 2, the Wood's anomaly may be apparent in the transmission 

spectrum, given by Equation (2.32). For this structure, the Wood's anomaly modes line 

up with the (1,0) and (2,0) modes with 0inc   .  

These analytical expressions are plotted in Figure 43. A careful comparison of the 

spectral peaks in Figures 34-37 shows that these expressions match what was measured. 

 

 

Figure 43.  Calculated SPP modes for the extraordinary transmission filter with Λ=2.08μm where 
φinc=0° (right) and φinc=45° (left). In parentheses are the mode orders (i, j) and m is the Wood's 
anomaly modes. Note that the Wood's anomaly modes line up with the SPP (1,0) and (2,0) modes and 
the resulting transmission spectrum is a superposition of these phenomena. 
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Note the resemblance of this result and that of the GMRF. A closed form 

analytical expression for the dispersion relation of SPP extraordinary transmission is 

straight forward since the phenomena result from surface waves. However, the 2-d 

GMRF dispersion relation can only be determined numerically since its behavior is due 

to coupled waves in a volume. Although the theories describing the bound electric field 

to the gratings are different, both structures have rectangular periodicity that interacts 

with an incident radiation source giving similar dispersion relation forms.  

FDTD Simulation  

Building the FDTD simulation for as SPP extraordinary transmission filter 

presented some complications that were addressed before simulations matched measured 

results. An overview of these complications and the steps taken to overcome them is 

presented to provide a reference for future implementation of Lumerical's FDTD software 

to design and analyze this type of structures. 

The FDTD model for this SPP structure has built to match the physical properties 

of the structure measured as prescribed by Dr. Ku. Initially, the model included the 5nm 

of Ti between the Au and the n-type GaAs. However, this layer did not change results. 

The mesh size was then increased such that the Ti was not recognized in the simulations, 

resulting in faster simulation run times. 

Another complication was correctly estimating the refractive index of the 

dielectric GaAs at the metal-dielectric interface. The refractive index was first defined 

using the GaAs definition in Lumerical's material database, resulting in the poor results 
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shown in Figure 44 (left). While the overall spectrum looked similar, the location of the 

specular peaks did not line up with the measurements.  

Recall Equation (2.28) from Chapter 2,  

 1,0
,

7 3.365
2.08d eff d

mn
m

 



  


 (4.6) 

This approximation defines the GaAs refractive index as un-doped as can be seen in 

Figure 44 (left) and did not produce good results.   

A third definition for the n-type GaAs refractive index was calculated from the 

relation given by Zoroofchi as 

 21 2( ) 9.6 10 /n E N nE     (4.7) 

where N is the electron concentration, n  is the refractive index of un-doped GaAs and 

E  is the photon energy [32]. This definition resulted in simulation results closer to the 

measured data, but at λ=5μm, the results still did not fit well as shown in Figure 44 

(right). 

The fourth definition was calculated for the change in refractive index given by 

Bennett as 

 
1/2 1/222

2 3/2 3/2

6.9 10 hh lh

e hh lh

m mNn P
nE m m m

    
    

  
 (4.8) 

where N is the electron concentration, P is the hole concentration, E  is the photon 

energy, em  is the effective mass of the conduction band electrons and ,hh lhm m  are the 

heavy and light hole effective masses, respectively [33]. The results of these calculations 

are also shown in Figure 44 (right). This resulted in simulation results very close to those 

from Zoroofchi's definition.  
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Figure 44.  (left) Simulated spectral extraordinary transmission compared with the measured data 
comparing the fitness of simulated data with definition for the refractive index of the GaAs from 
Lumerical. (right) Spectral refractive index of GaAs defined by Lumerical, Zoroofchi and Bennett.  

 

Finally, the GaAs refractive index was set to a constant 3.129n   in the band of 

interest which is the median of Equation (4.8) across the band. This gave the best results.  

After the correct model parameters were found, a full , i   sweep was run for 

0    and 45°, and s- and p-polarizations. The spectral transmittance and reflectance 

was collected with FDPMs and is shown in Figures 45 and 46. A comparison of these 

results to Equations (4.4) and (4.5), which are plotted in Figure 43, shows good 

agreement.  

The absorptance of this structure was calculated from Kirchhoff's law 

 ( ) 1 ( ) ( )         (4.9) 

where ρ and τ are the reflectance and transmittance and is shown in Figure 47. 

This structure also has selective emission properties at the lowest order mode; also from 

Kirchhoff's law ( ) ( )     where   is the emittance. An inspection of Figure 47 shows 
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that the directional spectral absorptance is highest at the (1,0) and (0,1) modes.  Figures 

48-51 show the simulated transmission spectrums plotted with the measured data. Shown 

previously in Figures 34-37. 

 

Figure 45.  Simulated transmittance of the SPP filter as a function of incident angle and wavelength. 
Note these values are not normalized..  
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Figure 46.  Simulated reflectance of the SPP filter as a function of incident angle and wavelength. 
Note these values are not normalized. 

 

 

Figure 47.  Simulated absorptance of the SPP filter as a function of incident angle and wavelength. 
Note these values are not normalized. 
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Figure 48.  Simulated (dashed) and measured (solid) spectral transmission for θi=0° (blue), θi=20° 
(green) and θi=40° (red) with p-polarization and φ=0°. 

 

 

Figure 49.  Simulated (dashed) and measured (solid) spectral transmission for θi=0° (blue), θi=20° 
(green) and θi=40° (red) with s-polarization and φ=0°. 
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Figure 50.  Simulated (dashed) and measured (solid) spectral transmission for θi=0° (blue), θi=20° 
(green) and θi=40° (red) with p-polarization and φ=45°. 

 

 

Figure 51.  Simulated (dashed) and measured (solid) spectral transmission for θi=0° (blue), θi =20° 
(green) and θi =40° (red) with s-polarization and φ=45°. 
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The simulated results agree spectrally and in magnitude with the measurements. 

There are some differences at the lowest order modes, (1,0) and (0,1), as is shown in 

Figures 48-51. This difference may be due to the approximation of the index of refraction 

of the GaAs as a constant. The nulls in the simulation are much deeper than the 

measurements, but this could be due to the resolution of the measurements. Overall, the 

simulations show the potential of using Lumerical to predict the extraordinary 

transmission of SPP filters.  

Simulating the Mm measurements also proved challenging in Lumerical, which 

does not have a pre-defined analysis group for a Mm measurement of a simulation. To 

define one, the analysis group that calculates the polarization ellipse was used. To solve 

for all the unknowns in the Mm (Equation (2.49)), 16 equations are required. Four known 

independent input and output vectors provide the 16 equations. For completeness, this 

simulation used six, namely, s-, p-, ±45° and right- and left-hand circular polarizations, 

i.e. 

 

1 1 1
1 0 0

p-/s-pol, 45-pol, RH-/LH-pol
0 1 0
0 0 1

     
     

        
     
     

     

 (4.10) 

The polarization ellipse represented in Figure 10 and repeated here in Figure 52 for 

convenience was used to calculate the output Stokes vectors from a simulation of one unit 

cell of the structure with Bloch boundaries in the x and y directions. This group calculates 

the grating orders' respective strengths in the far field (1 meter from structure) and 

converts the coordinate system from Cartesian to spherical. The sum of all grating orders 
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calculated is one. For each grating order, the group returns the polarization ellipse's major 

axis ( ), minor axis ( ) and axis angle ( ). 

In order to calculate the Stokes vectors from this analysis group, the relations 

 

2
0

1 0

2 0

3 0

cos(2 )cos(2 )
sin(2 )cos(2 )
sin(2 )

s G
s p s
s p s
s p s

 

 











 (4.11) 

 

were used, where 

 

1

grating orders
degree of polarization

= tan
2

G
p

 










 
  

 


 (4.12) 

 

Figure 52.  Polarization ellipse [27]. 
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The definition for the degree of polarization, p, changes depending on the polarization of 

the incident field, defined as 

 45 45
45

45 45

, , rh lh
linear circular

rh lh

I I I I I Ip p p
I I I I I I
 

 

 

 

  
  

  
 (4.13) 

where 

    

   

22

2 2

45 45

2 2

,

2 2,
2 2

2 2,
2 2rh lh

I G I G

I G G I G G

I G iG I G iG

   

   

   

 

 

   

   

 (4.14) 

and /G  is the complex grating order strength. The degree of polarization can be 

completely characterized from the linear (s and p) components of the incoming 

radiation's polarization. From Cartesian to spherical coordinates, the linear components 

are equivalent to 

 p

s

G G
G G








 (4.15) 

For each wavelength, inc , inc  and polarization, the Stokes vector for each grating 

order was calculated, weighted according to the grating order's strength, and then 

summed. By performing this type of algorithm, if a particular grating order is scattered 

into a different polarization state, then the degree of polarization for that order will be 

less than one and it will show up in the end as depolarizing contribution. To determine 

the Mm, the input and output Stokes vectors were stacked into two 4 6  matrices, and 
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the input Stokes matrix was then inverted via the Moore-Penrose pseudoinverse to give 

the Mm solution. 

0, 0, 0, 45 0, 45 0, 0, 0, 0, 0, 45 0, 45 0, 0,

1, 1, 1, 45 2, 45 1, 1, 1, 1,

2, 2, 2, 45 3, 45 2, 2,

3, 3, 3, 45 4, 45 3, 3,

p s rh lh p s rh lh

p s rh lh p s

p s rh lh

p s rh lh

s s s s s s s s s s s s
s s s s s s s s s

Mm
s s s s s s
s s s s s s

   

 

 

 

      
      
  
      

 
       

1, 45 2, 45 1, 1,

2, 2, 2, 45 3, 45 2, 2,

3, 3, 3, 45 4, 45 3, 3,

†

rh lh

p s rh lh

p s rh lh

s s s
s s s s s s
s s s s s s

Mm S S

 

 

 

 
 
 
 
 
  

 

(4.16) 

where S  is the input Stokes matrix, S   is the output Stokes matrix and †S  is the 

pseudoinverse of S .  

The simulated results of this analysis are shown in Figures 53-56 along with the 

measured results previously shown in Figures 38-41 and the representation of a 

polarization preserving Mm (from Equation (2.54)) by the green dashed line.  

 

Figure 53:  Measured (blue) and simulated (red) Mm of the SPP structure with Λ=2.08μm, 
φ=0° and θi=0° 
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Figure 54.  Measured (blue) and simulated (red) Mm of the SPP structure with Λ=2.08μm, 
φ=45° and θi =0° 

 

 

Figure 55.  Measured (blue) and simulated (red) Mm of the SPP structure with Λ=2.08μm, φ=0° 
and θi =20° 
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Figure 56.  Measured (blue) and simulated (red) Mm of the SPP structure with Λ=2.08μm, 
φ=45° and θi =20° 
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data is not known. These measurements were made by AFIT post doctoral researcher, Dr. 

Stephen Nauyoks, and PhD student, Capt Jason Vap, at Munitions Directorate, AFRL 

(AFRL/RW), Eglin AFB Florida. The advice from the AFRL/RW was to interpret the 

data as a general trend and not an exact measured data set. To gain an idea of how much 

uncertainty and variance were in the measured data, the degree of polarization, p, for six 

different Stokes vectors was examined for each measured Mm. This was calculated by 

multiplying the measured Mm by four independent polarization states, for example 

 

1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

in

out in

S

S Mm S

 
 


 
 
 

 



 (4.18) 

p can then be directly calculated from 

 2 2 3
1, 2, 3,

0,

1
i i i

i

p s s s
s

    (4.19) 

where 0, 1, 2, 3,[ , , , ]T
i i i i is s s s s and i =1-6 representing each input polarization. This 

calculation results is six ( )p   for each Mm, one for each polarization input, totaling the 

24 ( )p   shown in Figure 57. The expected result is 0 ( ) 1p   . Figure 58 shows the 

simulated p(λ) using the same calculation. Figure 59 shows the average degree of 

polarization for all four Mms as functions of wavelength for the measurement and 

simulation.  

 The depolarizing nature of this SPP extraordinary filter when resonant can be 

seen from Figure 59. Although the noise in the measured data makes this effect less 
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noticeable, both the measured and simulated data show a depolarizing effect through the 

SPP modes range of resonance (<7.5μm).  

 

Figure 57.  Calculated degree of polarization, p, of the measured Mms for 6 different polarization 
inputs. 

 

 

Figure 58.  Calculated degree of polarization, p, of the simulated Mms for 6 different polarization 
inputs. 
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Figure 59.  Average calculated degree of polarization, p, of the simulated and measured Mms. 
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Figure 60.  Average degree of linear polarization of the measured and simulated Mms for 4 different 
linear polarization inputs. 
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spectrum.  This relation can easily be extended to any SPP structure with a corrugated 

surface by adjusting the grating momentum vectors, highlighting the fact that the location 

of these modes is determined by the interaction between the grating and the incident 

electric field. Also shown was the depolarizing characteristics of SPP structures when 

resonant. 

While these results are very intuitive when explained in the framework presented 

in this chapter, at the time of this research, a similar presentation of all these concepts 

brought together could not be found. All of these phenomena need to be considered if 

integrating an SPP into an optical system, especially if off-normal incidence is a 

possibility. This chapter provides a complete compilation of analysis for off-normal 

incident light on corrugated-surface SPP structures. 
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V.  Conclusions and Recommendations 

The goal of this research was to analyze unique optical measurements of off-

normal incidence radiation upon nano-/micro-structured materials and provide insight 

into their operational characteristics. Two different types of structured materials were 

obtained and measured to determine angular and frequency spectrums. These 

measurements were then compared to rigorous EM simulation models which essentially 

duplicated the characteristic spectra. From these data, analytical theory was developed to 

describe the characteristics exhibited for off-normal incident light. The theoretical model 

yielded very good results for the SPP structure.  An approximation was also developed 

for the GMRF PC that predicted the location in angle of incidence and wavelength of the 

unique BSDF measured by Lamott. To further corroborate this result, more 

measurements are needed. 

Contributions of Research 

The GMRF showed a unique scatter pattern in the BSDF at a specific wavelength 

and angle of incidence. FDTD simulation and spectral transmission measurements 

showed that this phenomenon could not be attributed to the theoretically defined resonant 

mode typically used for a GMRF. Through a simulation-based analysis, it was 

determined that this phenomenon could be attributed any lower order coupled mode for 

off-normal incidence greater than 5°. This phenomenon scales dependent on angle of 

incidence and wavelength in simulations and is expected to in measurements. 

The SPP structure's resonant surface modes were shown to shift spectrally with 

incidence angle depending on polarization. For incident light parallel to the grating 
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periodicity, it was shown that the asymmetric modes split with incident angle for p-

polarization and remain essentially unchanged for s-polarization, while the symmetric 

modes split regardless of polarization.  When light is incident 45° from the grating 

periodicity, the symmetric modes split for p-polarization and remain unchanged for s-

polarization, while the asymmetric modes split. These results were shown in 

measurements, simulations and analytical solutions. Mm measurements and simulations 

for this structure were also presented. This structure is slightly depolarizing when the SPP 

modes are resonant. 

Conclusion of Research 

While there are many theoretical publications on the highly touted unique optical 

properties possible with nano-/micro-structured materials, it is not clear how these 

properties extend to angles of incidence off-normal. One example of this is the use of 

GMRFs as laser protection filters. Given the results of this and other research done at the 

Air Force Institute of Technology, the implications of exciting a "resonant angle" mode 

in the filter within an operational environment need to be considered. Complete 

characteristics of this particular structure were not noticed before the unique 

measurement based analysis done by the Air Force Institute of Technology. This research 

provided an approximation to predict the mode that caused the unique BSDF pattern. 

This approximation could be incorporated into a BSDF model to predict scatter from 

GMRFs.  

Even intuitive characteristics like the slightly depolarizing nature of SPP filters 

when resonant, if not considered, could impact potential design parameters. The process 
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of determining the off-normal characteristics compiled in this thesis can be extended to 

any nano-/micro-structured material. Determining the angle and polarimetric dependant 

characteristics of these materials is vital as they become incorporated into operational 

systems. 

Recommendations for Future Research 

As part of this research effort, a BSDF searching and fitting algorithm was 

developed, described in Appendix A, to fit the BSDFs of these and other nano-/micro-

structured materials to models loaded in the National Institute of Standards and 

Technology (NIST) ScatMech BSDF library. Due to time constraints and the resulting 

scope of this research, it was not included in the body of this document. This algorithm 

can be incorporated into a dynamic data driven BSDF data collection system. This system 

measures a small set of data, then uses this data to search a BSDF library for a set of 

BSDFs that best fit the data. By determining the variance between these models, it gives 

the measurement system the next best set of measurements to take. By iterating this 

process, the system converges on the best BSDF model. The development of this system 

will provide much better fits BSDF in much less data collection time. This type of BSDF 

model fitting algorithm could also be extended to defining and fitting periodic structure 

specific models to measured samples. 

The development of a BSDF model for the GMRF, SPP filter and other nano-

/micro-structured devices was an initial goal of this research effort. For the GMRF, the 

exact characteristics of the unique scatter pattern where not simulated here. The 

development of an equation that predicts this unique pattern would be key to developing 
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a BSDF model. Spectral reflection measurements could then be used to identify the 

specific angle/wavelength dependence of any unique pattern. This dependence could then 

be incorporated into a RCW effective BSDF model like those contained in ScatMech. 

Summary 

This research considered off-normal incidence of light on two separate types of 

nano-/micro-structured materials. By incorporating the methods, analyses and results 

presented, the design of future materials can be improved by considering this angular 

dependence, and the desired or undesired results. While the Air Force Institute of 

Technology continues to increase its nano-/micro-fabrication capabilities with the Air 

Force Research Laboratory, the results from this research will enable a better 

understanding of these structures and lead  to better designs. 
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Appendix A. Particle Swarm Optimization Algorithm 

 
In order to validate the need for a new BSDF model for these structure a complete 

evaluation of existing models needs to be done. Dr. Thomas Germer at The National 

Institute of Standards and Technology has developed a BSDF library in C++ called 

ScatMech, which contains multiple BSDF model classes, sub-classes and distribution 

functions. A hierarchy representation of ScatMech is shown in  Figure 61. Each model 

has multiple parameters for fitting. ScatMech was developed as a tool to model scatter 

from structures with known physical parameters, such as surface roughness, and as a 

calibration tool for use with BSDF measurement systems . To fit measured BSDFs to this 

immense search space the particle swarm optimization (PSO) algorithm was adjusted to 

fit the particulars of the search space. The basic theory for the PSO algorithm was 

initially developed to model the movement of insect swarms or bird flocks. Robinson and 

Rahnat-Samii extended the algorithm to electromagnetic optimization problems [35]. 

PSO randomly initializes a set of agents or particles at different locations or parameters 

sets within the search space, each with random velocity vectors or step sizes to the next 

set of parameters. Each particle then determines its own fitness value and the best overall 

fitness is also determined, these values are then used to determine the next velocity 

vectors for each particle defined by 
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Figure 61.  Hierarchy representation of ScatMech, a BSDF model library developed by Thomas 
Germer at The National Institute of Standards and Technology. 

 

 1 1 , 2 ,* *rand*( ) *rand*(g )n n best n n best n nv w v c p x c x       (6.1) 

where w is the inertial weight and steps from 0.9 to 0.4 linearly as the PSO runs, it 

determines the amount of time each particle explores its own location compared to the 

global search space. 1c  and 2c  are scaling factors which determine the relative pull 

between each agents personal best and the global best and rand is a randomly generated 

number between 0 and 1. At the end of each generation each particle's location is updated 

by 

 1 *n n nx x t v    (6.2) 

where t is the time step, for this research chosen to be 1. Figure 62 shows a flow 

diagram of the algorithm. When using this algorithm in physically defined problems it 

becomes imperative to set boundary conditions which constrict the movement of the  
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Figure 62.  Flow diagram of the particle swarm optimization (PSO) algorithm used to search and fit 
BSDF models to the ScatMech library. 

 

particles to physically meaningful parameters within the search space or ignoring 

solutions for those parameters. Both methods were tested in this development and it was 

found that a hybrid worked best for searching ScatMech. The parameters that represent 

lengths or areas are bounded while other parameters such as exponential variables aren't 

bounded but if they produce an unphysical solution they are ignored. The results from 

this effort are shown in Figures 67-71. 
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Figure 63.  ScatMech model fit to measurement of diffuse aluminum plate with λ=633nm and θi=18°. 

 

 

Figure 64.  ScatMech model fit to measurement of diffuse aluminum plate with λ=633nm and θi=30°. 

-20 -10 0 10 20 30 40 50 60
10

-3

10
-2

10
-1

10
0

10
1

Best ScatMech Model Fit


scattered

 [degrees]

B
R

D
F

 [
s
r-1

]

 

 

meas

best fit

-20 -10 0 10 20 30 40 50 60 70 80
10

-2

10
-1

10
0

10
1

Best ScatMech Model Fit


scattered

 [degrees]

B
R

D
F

 [
s
r-1

]

 

 

meas

best fit



 

88 

 

Figure 65.  ScatMech model fit to measurement of diffuse aluminum plate with λ=633nm and θi=50°. 

 

 

Figure 66.  ScatMech model fit (red) to measurement (blue) of SPP structure with λ=4.3μm and 
θi=55°. 
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Figure 67.  ScatMech model fit (green) to measurement (blue) of GMRF structure with λ=544nm and 
θi=25.7°, note that the θi-axis of this plot is centered at the specular angle. 
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