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1. Introduction

Investigation of anisotropic material behavior (such as aluminum alloys, single crystals,
composite materials, and laminated plates) has found significant interest in the research
community due to the widespread application of anisotropic materials in aerospace and civil
engineering problems. For example, aluminum alloys are one of the main materials in the
construction of modern aircraft and rockets. The strain-rate-dependent mechanical behavior of
anisotropic material (e.g., aluminum alloys) in air and space vehicles is important for applications
involving impact. These applications cover a wide range of situations such as crashworthiness
and protective armours in air and space vehicles and other applications. Since shock-wave and
high-strain-rate phenomena are involved in many physical phenomena, we are interested in
understanding the material mechanical properties under these non-trivial conditions. This report
presents the current state of the art in the experimental and theoretical developments of the
shock-wave propagation in anisotropic solids, and more specifically, for anisotropic elastic-plastic
solids.

This is a subject that has received considerable attention in the isotropic solid-state physics and
mechanics literature in recent decades (e.g., Wackerle [1]; Zel’dovich and Raizer [2]; Davison and
Graham [3]; Eliezer et al. [4]; Asay and Shahinpoor [5]; Meyers [6]; Drumheller [7]). The impact
loading of anisotropic materials is a subject that has received considerable attention for both low
and high velocity in the recent monographs on composite materials (e.g., Abrate [8], Reid and
Zhou [9], Ryan et al. [10]) and in recent research papers on composite materials (e.g., Hereil et

al. [11], Bordzilovsky et al. [12], Dandekar et al. [13], Espinosa et al. [14], Millett et al. [15],
Aktaş et al. [16], Hazell and Appleby-Thomas [17], García-Castillo et al. [18], Tekalur et al. [19]),
research papers on metals (e.g., Butcher [20], Johnson and Barker [21], Stevens and Tuler [22],
Rosenberg et al. [23, 24], Gray III et al. [25, 26], Rubin [27]), and research papers on single
crystals (e.g., Winey and Gupta [28–30]).

To describe the anisotropic material response under shock loading, the following general aspects
need to be investigated: appropriate constitutive equations to describe the strength effect and
equations of state (EOSs) to describe the hydrodynamic behavior. Mechanical yielding and
strength behavior in shock waves show complexities that are not understood yet, especially in
anisotropic materials. Some approaches have been made by Johnson et al. (31–33), Segletes (34),
O’Donoghue et al. (35), Anderson et al. (36), Winey and Gupta (28–30), and Lukyanov (37–41) to
describe the constitutive relationships for an anisotropic material. The determination of the EOS
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for anisotropic materials is an important problem in metallurgy, geophysics, aerospace, and also
in other areas where the behavior of anisotropic materials at high pressures is of interest.

1.1 Experimental Framework

Modern, high-resolution methods for monitoring the stress and particle velocity histories in shock
waves and equipment have been created (e.g., Barker and Hollenbach [42]; Kanel [43]; Kanel et

al. [44]; Millett and Bourne [45]; Bourne and Stevens [46]; Bourne [47]; Gu and
Ravichandran [48]); numerous investigations into the mechanical properties of different classes of
materials have been undertaken (e.g., Meyers [6]; Gu and Ravichandran [48]; Steinberg [49];
Johnson et al. [50]; Kanel et al. [51]; Millett et al. [52]; Lopatnikov et al. [53]; Zaretsky et al. [54];
Gebbeken et al. [55]; Bronkhorst et al. [56]), and numerous phenomenological as well as
microscopic models have been developed (e.g., Wallace [57]; Swegle and Grady [58];
Steinberg [49]; Meyers [6]; Kanel et al. [59]; Nellis et al. [60]; Bourne and Gray III [61]; Krüger et

al. [62]; Chijioke et al. [63]; Boidin et al. [64]; Petit and Dequiedt [65]). However, in spite of a
perfectly adequate general understanding, experimental methodology, and theory, material
models do not agree in detail, especially for anisotropic materials.

In the past, very few experimental results were published in the literature, either for anisotropic
metals or composite materials. Only a few examples can be presented. For example, Whittier
and Peck (66) measured the response due to low impact and studied the dispersion of the wave in
unbounded layered media, not a laminated plate. Tauchert and Guzelsu (67) and Asay et al. (68)
used ultrasonic methods to study dispersion and measure the “effective” elastic response of
unbounded composites. The transient strain histories measurements were performed by
Mortimer et al. (69) for fabricated graphite-epoxy plates (cross-ply layup and angle plies).
Chhabildas and Swegle (70, 71) performed pressure-shear experiments, where the coupled
longitudinal and transverse motion generated by the normal impact of Y-cut quartz is transmitted
into an X-cut quartz, X-cut quartz, and alumina-filled epoxy samples.

Jones and Mote (72) presented experimental studies on shock propagation in a single crystal in
copper including constitutive equations describing elastic precursor decay for wave propagation
in the 〈100〉, 〈110〉, and 〈111〉 directions in fcc single crystals. Johnson et al. (31) proposed
constitutive equations describing elastic precursor decay for longitudinal plane-wave propagation
in fcc, bcc, and rocksalt structures with the wave propagation in the 〈100〉, 〈110〉, and 〈111〉
directions. Calculated theoretical results (Johnson et al. [31]) are compared with the
experimental data on precursor amplitudes for single-crystal copper (fcc), tungsten (bcc), sodium
chloride (NaCl) (rocksalt), and lithium fluoride (LiF) (rocksalt). Asay et al. (73) performed
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experimental studies on shock propagation along a 〈100〉 direction in single-crystal LiF and
showed that elastic precursor decay is critically dependent on the origin of the sample. Also,
Gupta (74) presented experimental data for shock propagation along the 〈111〉 crystallographic
direction in single-crystal LiF, with the observed elastic response up to 30 kbar experimental
bounds and including shock propagation data along the 〈100〉, 〈110〉, and 〈111〉 directions
(Gupta [75]). The dynamic elevated-temperature elastic properties of single-crystals and
polycrystalline aluminum were studied by employing a laser pulse technique to produce
propagating stress pulses in slender rods (Swearengen et al. [76]). The dynamic elastic-plastic of
single crystal of the secondary explosive pentaerythritol tetranitrate (PETN) was studied by
Halleck and Wackerle (77) at input shock strengths between 0.6 GPa for crystals with surfaces cut
perpendicular to the 〈110〉 and 〈001〉 directions. Later, Dick and Ritchie (78) presented the
measurements for the elastic precursor shock strength of pentaerythritol tetranitrate explosive
crystals with 〈100〉, 〈101〉, 〈110〉, and 〈001〉 orientations. The measured precursor amplitudes
were 0.38, 0.58, 0.98, and 1.22 GPa, respectively, for the four orientations.

However, this situation has changed recently for composite materials and single crystals, i.e., a
number of monograph and research papers were published (e.g., Abrate [8]; Reid and Zhou [9];
Millett et al. [15]; Ryan et al. [10]; Aktaş et al. [16]; Hazell and Appleby-Thomas [17];
García-Castillo et al. [18]; Tekalur et al. [19]; Nurick et al. [79]; Iqbal et al. [80]; Enfedaque [81];
Panahia et al. [82]; Jackson and Shukla [83]). The major experimental methods were presented
by Zhu and Lu (84) with a brief description of the corresponding experimental devices such as
ballistic pendulums and a wide range of sensors to measure impulse, pressure, acceleration, and
displacement of structures. The energy profile diagrams and associated load-deflection curves for
a number of composite materials (e.g., unidirectional glass/epoxy laminates, carbon fiber
reinforced plastic [CFRP] laminates, woven carbon fiber/epoxy laminates) were obtained (Found
and Howard [85]; Delfosse and Poursartip [86]; David-Westa [87]; Aktaş et al. [16]; Iqbal et

al. [80]; Enfedaque [81]). New experimental data have been obtained for single crystals
(e.g., Asay [88]). A good overview of new development in the physical chemistry of shock
compression was presented by Dlott (89).

For many years, it has been assumed in the shock-wave community that the response of materials
to high intensity shock loading is isotropic, and only recently has anisotropy in the shock
response attracted the attention of researchers (e.g., Gupta [75], Dick and Ritchie [78], Gray III et

al. [25, 26]). It was shown in an investigation of cold rolled and annealed zirconium (see Gray III
et al. [25]) that the value of stresses varies in different directions in the quasi-static test and plate
impact test. Gray III et al. (26) showed that under shock loading conditions (one-dimensional
strain space), the variation of the Hugoniot elastic limit (HEL) or the yield strength of annealed
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zirconium was consistent with the quasi-static experimental data. Previously, Butcher (20)
worked on aluminum alloy 6061-T6 and predicted that spall strength should vary in accordance
with the one-dimensional yield strength depending on material orientation. Chhabildas and
Swegle (70) presented a technique to detect a 0.2 GPa shear wave in 6061-T6 aluminum alloy at
0.7 GPa longitudinal stress. Gupta (75) presented shock propagation data along the 〈100〉, 〈110〉,
and 〈111〉 directions in LiF crystals where a marked anisotropy in wave profiles and in dynamic
compressive strengths is observed. Here it is important to mention the work done by Johnson and
Barker (20), Stevens and Tuler (22), and Rubin (27) on aluminum alloy 6061-T6 and Rosenberg et

al. (23, 24) on the shock response of the alloy 2024-T86.

By their very nature, two-dimensional fiber composites are highly anisotropic. Eden et al. (90)
used high-speed photography to investigate a quartz-phenolic resin composite. Bordzilovsky et

al. (12) examined the effects of orientation to the shock axis of a unidirectional aramid
fiber-epoxy composite, with the orientation of the fibers ranging from 5◦ to 90◦ to the shock axis.
Work by Hereil et al. (11) on a three-dimensional carbon-carbon composite (in this case, the fibers
and binder are orientated orthogonally) were in agreement with previous studies of Eden et

al. (90). Millett et al. (15) studied the effect of fiber orientation on the shock response of a
two-dimensional carbon fiber-epoxy composite (through thickness [fibers normal to the impact
axis] and fiber at 0◦ [fibers parallel to the impact axis]) using the technique of plate impact.

A technique for the study of the behavior of metals under extreme conditions is the planar plate
impact test (one-dimensional plane-strain shock-wave propagation). To describe the dynamic
response of different materials under shock loading, the methodology based on the plate impact
test is fundamental in the characterization of the Mie-Grüneisen EOS for isotropic materials by
measuring shock velocity US and particle velocity up. The method was originally employed by
Walsh and Christian (91) and later by many others (e.g., McQueen and Marsh [92]; Van Thiel et

al. [93]; Marsh [94]; Steinberg [49]; Meyers [6]; Trunin et al. [95]). Using US-up experimental
data, further approximation of this experimental curve using equation 9 or 10 can be done. The
same methodology can be used to validate the modified Mie-Grüneisen EOS for anisotropic
materials; thus, a numerical simulation of the anisotropic plate impact test is considered.

In addition to its fundamental utility in characterizing the EOS, the plane shock-wave technique
provides a powerful tool for studying material properties at different strain rates (e.g., Kipp and
Grady [96]; Steinberg [49]; Meyers [6]; Johnson et al. [50]; Kanel et al. [51]; Millett et al. [52]).
Such characteristics as spall pressure, shock velocity, particle velocity, HEL, thickness of the spall
section, time to spall, and free-surface velocity of the spall section can be measured and used for
the characterization of material dynamic response (e.g., Meyers [6]; Kanel et al. [51]; Kanel [43];
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Krivtsov [97]; Millett et al. [52]; Bourne and Gray III [61]; and Stoffel [98]). In the earliest
plane-wave experiments, two parameters that could be determined were the HEL (or stress level
associated with the elastic precursor wave) and the dynamic compressibility (or bulk modulus)
associated with the following plastic wave. More complex theories of material behavior have led
to the extraction of much additional information from such experiments (definition of
non-standard parameters, e.g., Kiselev and Lukyanov [99]).

From an experimental point of view, it is clear that the production of waves in a metal target and
the measurement of their characteristics, such as speed and intensity, provide one of the most
convenient methods of investigating the physical properties of a material under high pressure. A
schematic of the plate impact test is depicted in figure 1, in which a flyer plate impacts a target
plate, which is bonded to a polymethylmethacrylate (PMMA) plate. In this report, the case is
considered where the diameters of the flyer and the target are much greater than their thicknesses
and the characteristic time of the process is the time of several runs of elastic waves across the
thickness of the target plate. In such a case, the problem may be solved using a uniaxial strain
state (one-dimensional mathematical formulation in strain space) and the adiabatic
approximation; therefore, planar impact generates two one-dimensional shock waves. One
propagates into the target and the other into the flyer plate. These shock waves reflect as
rarefaction waves from the free surfaces of the flyer and from the back of target plates connected
to the PMMA. With a thin flyer, these rarefaction waves interact inside the target, producing a
state of tension in some regions, which leads to the spallation. A large set of spall experiments
have been carried out by Kanel et al. (100, 101). In this work, the dynamic anisotropic
elasto-plastic material behavior before spallation is considered.

The shock-wave experiment has certain potential advantages associated with the level of strain
rate that can be induced and the commonly accepted belief that no geometrical dispersion effects
occur. It has frequently provided the motivation for the construction of material constitutive
relations and has been the principal means for determining material parameters for some of these
relations (Steinberg [49]; Meyers [6]; Bourne and Gray III [61]; Chijioke et al. [63]; Gu and
Ravichandran [48]).

1.2 Linear Anisotropic Constitutive Relationship

It is well known that elastic isotropic materials are characterized by two constants (Lamé
parameters). In the case of anisotropic elastic material, the stiffness matrix is required to describe
the constitutive relationship. The strain-stress constitutive relationship for any elastic material
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Figure 1. Schematic diagram of the experimental target assembly.

may be represented in contracted form as

εij = Jijklσkl , σij = Cijklεkl , Cijkl = J−1ijkl , (1)

where Cijkl are elements of the stiffness matrix and Jijkl are elements of the compliance matrix.
In this report, contraction by repeating indexes is assumed. In general, the stiffness matrix Cijkl
may be a function of σij , εij , ε̇ij and some other parameters. However, it is somewhat unwieldy
as such, and is often considered to be constructed of constants, which produces the familiar
Hooke’s Law, equation 1. One reason why the deficiency of Hooke’s Law becomes apparent
experimentally under large pressures is that the bulk modulus of the material is quite different
from the material’s stress-free value. For isotropic materials, this problem has been solved by the
introduction of conventional decomposition into two quantities: the hydrostatic stress (or
pressure), which only induces a change of scale, and the deviatoric stress, which only induces a
change of shape (e.g., Wilkins [102]). This detailed description of such well-known facts will be
used later in the construction of a generalized decomposition of the stress tensor, which will take
into account physical properties of anisotropic materials. The pressure is defined as one-third the
negative sum of the three normal stress components. For isotropic materials in the elastic region,
the pressure is directly linked with volumetric strain, and the decomposition of the stress tensor
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has the conventional form

σij = −pδij + Sij , p = −Kε , Sij = 2Gεdij , p = −1

3
(σ11 + σ22 + σ33) , (2)

where p is the hydrostatic pressure, Sij is the deviatoric part of the stress tensor, K is the
conventional bulk modulus, G is the shear modulus, δij is the Kronecker delta symbol,
εdij = εij − 1

3
εδij is the deviatoric strain tensor, and ε = ε11 + ε22 + ε33 is the volumetric part of the

strain tensor. The distortional change is represented by the deviatoric strain tensor εdij . Since
experimental evidence reveals that the compressibility of many materials changes under large
pressures, the deviatoric formulation suggests that while the simplicity of Hooke’s Law (constant
coefficients) might possibly be retained for computation of the deviatoric stresses and strains, a
more accurate scalar EOS should simultaneously be employed to account for nonlinear
compressibility effects.

2. Isotropic Shock-Wave Modeling

During moderate to high levels of shock loading, the material undergoes nonlinear behavior in
which the deformation is thermodynamically coupled with the internal energy; therefore, an EOS
is required to describe the material’s response to these conditions. It is convenient in numerical
codes to have an analytical form of the EOS, but such an analytic form is at best an approximation
to the true relationship. The EOS for the computational treatment of isotropic materials typically
defines the pressure as a function of density ρ (or specific volume, ν) and specific internal energy
e. A very popular form of EOS that is used extensively for isotropic solid continua is the
Mie-Grüneisen EOS:

p = f(ρ, e) = Pr(ν) +
Γ(ν)

ν
(e− er(ν)) , (3)

where ν is the specific volume and Γ(ν) is the Grüneisen gamma defined as

Γ(ν) =

(
∂p

∂e

)
ν

. (4)

Traditionally, Γ is taken to be constant Γ = Γ0; alternatively, it has often been assumed that
Γ0/ν0 = Γ(ν)/ν = constant in equation 3. Functions Pr(ν) and er(ν) are assumed to be known
functions of ν on some reference curve. Possible reference curves include: the shock Hugoniot
curve, a standard adiabatic curve (e.g., the adiabatic through the initial state (p0, ν0)), the 0 K
isotherm, the isobar p = 0, the curve e = 0, or some composite curve of one or more of the above
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curves to cover the complete range of interest in the parameter ν. The most commonly used form
of the Mie-Grüneisen EOS for solid materials, which uses the shock Hugoniot as the reference
curve, is obtained by combining equation 3 with the Rankine-Hugoniot equations to obtain:

p = f(ρ, e) = PH ·
(

1− Γ

2
µ

)
+ ρΓe , (5)

where PH is the Hugoniot pressure, µ = ρ/ρ0 − 1 is the relative change of volume, Γ is the
Grüneisen function, ρ is the density, ρ0 is the initial density, e is the specific internal energy, and ν
is the current specific volume. The shock Hugoniot is often preferred for the Mie-Grüneisen
reference curve, precisely because the experimental data used to fit the EOS are shock-Hugoniot
data. In this way, the Mie-Grüneisen reference curve need not be derived from the fitting data,
but literally represents that data in terms of the PH function. Furthermore, there is a perceived
comfort in knowing that the computational trajectory of pressure vs. volume for an impact
simulations will lie closer to the known reference Hugoniot curve than, for example, a cold curve.

The Rankine-Hugoniot equations for the shock jump conditions can be regarded as defining a
relation between any pair of the ρ, p, e, up variables and US (Meyers [6]). In many dynamic
experiments, up (the particle velocity directly behind the shock) and US (the velocity at which the
shock wave propagates through the medium) are measured. Generally, the shock velocity US
(and, by inference, the Hugoniot pressure) is a nonlinear function of particle velocity up and it is
sometimes fit to the following polynomial relation (Steinberg [49]):

US = c+ S1up + S2

(up
U

)
up + S3

(up
U

)2
up . (6)

This functional form is more often employed in the strictly linear form (with S2 and S3 identically
zero). Kerley (103) shows that the linear US-up relationship, because of its wide acceptance, is
often treated almost as a “law” rather than a fit. He explains that the general linearity observed in
the US-up relationship arises because it is basically a “plot of up vs. itself,” and that the linearity
disappears when plotting the difference US − up vs. up . Kerley’s notation of a “plot of up
vs. itself” refers to the fact that, considering US as the sum of up and (US − up), the magnitude of
(US − up) is significantly smaller than that of up for strong shock. Since up vs. up is
tautologically linear, the term (US − up) therefore carries more concentrated EOS information
than US alone, assuming one can measure it to as comparable an accuracy as US . Nonetheless,
most shock-Hugoniot data fits are provided in this linear US vs. up form.

According to the constraints of Grüneisen theory, the Grüneisen parameter Γ must be a function
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of volume alone. Many empirical forms have been proposed including

Γ =
γ0 + aµ

1 + µ
. (7)

This form reduces to the simpler fit, namely, ν/Γ = constant, mentioned earlier, for the case
where a is zero. One must, however, be mindful of the compatibility of fits between the
Hugoniot and Grüneisen functions. Segletes (104–106) has shown that arbitrary specification of
shock-Hugoniot fits and Grüneisen fits can lead to thermodynamic instability of the EOS model.

Nonetheless, the Grüneisen EOS, if one adopts the cubic shock-velocity relation of equation 6,
can be derived as

p =

ρ0c
2µ

[
1 +

(
1− Γ

2

)
µ− Γ

2
µ2

]
[
1− (S1 − 1)µ− S2

µ2

µ+ 1
− S3

µ3

(µ+ 1)2

]2 + (1 + µ) · Γ · E , (8)

when µ > 0, and
p = ρ0c

2µ+ (1 + µ) · Γ · E , (9)

when µ ≤ 0. In these equations, E is the internal energy per initial specific volume, c is the
intercept of the US-up curve (nominally akin to the ambient bulk sound speed of the material, c0),
S1, S2, and S3 are the coefficients of the slope of the US-up curve equation 6, γ0 is the ambient
Grüneisen gamma, and a is the first order volume correction to γ0. Parameters c, S1, S2, S3, γ0,
and a represent material properties, which define its EOS. Parameters have been defined to cover
a large number of isotropic materials (Steinberg [49]). The tensile part of the EOS, equation 9, is
outside the domain of the shock Hugoniot, but instead assumes a constant bulk modulus in the
hydrostatic portion of the equation, along with Grüneisen energy coupling.

Other forms of the Mie-Grüneisen EOS have been put forth, based upon different assumptions
regarding the reference curve and Grüneisen function, for example, a frequency-based approach
(Segletes and Walters [107]; Segletes [108, 109]), in which the Mie-Grüneisen reference curve
and the Grüneisen function are not independently specified, but rather are both interdependent
functions of the characteristic frequency of the lattice, ω:

pν/Γ− E =

(
c0

Γ0κ

)2

{ [ (ω/ω0)
κ − 1] + κ (κ− 1) (ω/ω0)

κ ln (ω/ω0)} , (10)

where the subscript 0 refers to a parameter at the ambient state, κ is a constant parameter defined
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by
κ = [Γvol0 − 1 + 3/2 · Γ0ξ]/Γ0 , (11)

c is the bulk sound speed, Γvol is the so-called “volumetric” Grüneisen parameter (i.e., the
Dugdale-MacDonald [110] definition), and the constant ξ, while defined by

ξ = 4/(3Γ0)− d(ν/Γ)/dν|0 , (12)

is generally fit directly to EOS data (since dΓ/dν is not easily measured).

Grüneisen theory indicates that the characteristic lattice vibrational frequency is related to the
Grüneisen parameter by way of Γ/ν = (∂p/∂E)ν = −(dω/dν)/ω. Thus, by employing a
preferred functional form for the volume-dependent lattice frequency,

ω/ω0 =
(

3Γ0ξ
[
(ν0/ν)1/3 − 1

]
+ 1
)1/ξ

, (13)

the volume-dependent function for Γ may be obtained directly through differentiation of ω,
thereby completely defining the EOS of equation 10 operationally in terms of p, E, and ν, given
the five material constants defining the columns of table 1.

Table 1. EOS parameters for select materials.

C0 (m/s) 1/ν0 (kg/m3) Γ0 Γvol0 ξ

Ag 3221 10490 2.22 2.29 0.500

Al 5189 2700 2.03 1.84 0.716

Cu 3995 8930 2.02 2.10 0.520

Stainless Steel 4571 7896 1.81 2.00 0.550

From the general EOS form of equation 10, expressions may be derived for the cold curve, pc,

pc = (C0/Γ0)
2 (ω/ω0)

κ ln (ω/ω0)/ψ , (14)

as well as the Hugoniot,

pH [ψ − (ν0 − ν)/2] =

(
C0

Γ0κ

)2

{ [ (ω/ω0)
κ − 1] + κ (κ− 1) (ω/ω0)

κ ln (ω/ω0)} . (15)

In both of these equations, the term ψ = ν/Γ is used as convenient shorthand. These curves may
be compared to both diamond-anvil (essentially “cold” compression) and shock-Hugoniot data.
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An example of such a comparison to aluminum, for two different levels of zoom, is given in
figure 2. As can be seen from the nature of equations 14 and 15, there is no intrinsic way,
through the selection of the parameters, to independently fit both cold and Hugoniot curves. That
both curves, nonetheless, fit the data so well (and for a variety of different materials) is indicative
of a more general suitability of the parent form described by equation 10.
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Figure 2. Cold-compression and shock-Hugoniot curves for aluminum (a) to 2.4 and (b) 11 megabars.
Note that cold-compression data are filled symbols and Hugoniot data are open symbols.
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3. Anisotropic Shock-Wave Modeling

Various models and numerical methods have been developed to simulate processes in solid media.
The choice of these methods will depend largely on the problem and the available resources. A
detailed review of the most common of these was provided by Benson (111).

3.1 Characteristics-based Solver

For modeling physical problems, such as high velocity impact and explosive loading of isotropic
and anisotropic solid materials, there is strong demand on the numerical methods to
simultaneously achieve high shock-wave resolution, maintain sharp interfaces, and accurately
impose interfacial boundary conditions subject to finite deformation. A characteristics-based
solver can be successfully used for solving the resulting hyperbolic partial differential equations
(PDEs). Depending on the constitutive assumptions regarding the stress-strain relation, the
resulting hyperbolic PDEs will have a different form (i.e., different Lagrangian). Conservative
formulations of the governing laws (PDEs) of elasto-plastic solid media have distinct advantages
when solved using high-order shock capturing methods for simulating processes involving large
deformations and shock waves. Let us define the density of Lagrangian L for our media, per unit
initial volume, as

L =
1

2
ρ0 (X)

∑
i

ẋ2i − E (x, S)

E (x, S) = E
(
X, ηeij, S

)
E (x, S) = ρ0e (x, S)

ηeij =
1

2

(∑
k

F e
kiF

e
kj − δij

)
, (16)

where ηeij = ηeij (X, t) are the elastic Lagrangian strains from X to x, ηij = ηij (X, t) are the total
Lagrangian strains from X to x, F e

kj are elements of the elastic deformation gradient, Fkj are
elements of the deformation gradient, and E (x, S) is the density of internal energy per unit initial
volume. Lagrange’s equations of motion in the absence of body forces are

d

dt

∂L

∂ẋi
+
∑
k

∂

∂Xk

∂L

∂F e
ik

= 0 (17)
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or
ρ0 (X) ẍi −

∑
k

∂

∂Xk

(
∂E

∂F e
ik

)
S

= 0 . (18)

Note that
∂ηlm
∂Fik

=
1

2
(Filδkm + Fimδkl) ,

∂ηelm
∂F e

ik

=
1

2
(F e

ilδkm + F e
imδkl) . (19)

With equation 19, and noting the symmetry of ηij and ηeij , the equation of motion equation 18 is

ρ0 (X) ẍi =
∑
k

∂

∂Xk

(∑
l

F e
il

(
∂E

∂F e
kl

)
S

)
. (20)

A characteristics-based solver can be applied when the system equation 20 is closed by analytical
formulae for the specific internal energy e (x, S). For small-amplitude elastic anisotropic wave
propagation (ηeij = ηij), specific internal energy can be written as quadratic form:

ρe (x, S) =
1

2
ηijC

S
ijklηkl + TS . (21)

For isothermal motion, the potential in the Lagrangian density L is the density of free energy
F (x, S) = F

(
X, ηeij, S

)
per unit initial density in place of E (x, S) = E

(
X, ηeij, S

)
, and the

adiabatic elastic constants CS
ijkl are then isothermal CT

ijkl. In the case of isotropy, an isentropic
hyperelastic EOS in terms of the invariants of the elastic Greens tensor was considered (Miller
and Colella [112]; Barton et al. [113]):

e (J1, J3) = −
∫ ν
ν0
P (ν) dν +

G

2ρ0

(
J1 − 3J

1/3
3

)
J1 = tr (C)

J2 =
1

2

[
(trC)2 − trC2]

J3 = det |C|

, (22)

where C = (Fe)TFe is the elastic Green’s tensor. The quantity P (ν) can be described by any
form of isotropic EOS. Another form of the isotropic hyperelastic EOS has been put forth
(Dorovskii et al. [114]; Barton et al. [113]; Barton and Drikakis [115]):

e (J1, J2, J3, S) =
K0

2α2

(
J
α/2
3 − 1

)2
+cνT0J

γ/2
3 (exp [S/cv]− 1)+

B0

2
J
β/2
3

(
J2
1/3− J2

)
, (23)
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where J1 = tr (CF ), J2 = 1
2

[
(trCF )2 − trC2

F

]
, and J3 = det |CF | are the invariants

corresponding to the elastic Finger tensor CF = (Fe)−T (Fe)−1. The parameters
K0 = c20 −

(
4
3

)
b20, B0 = b20 are the squared bulk speed of sound and the squared speed of shear

waves, respectively; cv is the heat capacity at constant volume; and α, β, γ are constants
characterizing the nonlinear dependence of sound speeds and temperature on the mass density.
The specific internal energy can be decomposed into potentials describing the cold compression,
ec (ρ, S); thermal energy density, et (ρ, S); and the contribution due to shear strain, es (Fe, S). A
more general function might also include a contribution due to changes in dislocation density,
eh (Fe, S) (Schreyer and Maudlin [116]). Thus, a general form could be written

e (Fe, S) = ec (ρ, S) + et (ρ, S) + es (Fe, S) + eh (Fe, S) . (24)

High-order shock capturing methods, based upon solving Riemann problems locally at each cell
edge throughout a computational domain, have emerged as a favorable approach to meeting the
shock-wave modeling requirements. Recently, a high-order shock capturing scheme was
proposed for solid dynamics where Godunov’s method was applied to an Eulerian model
(Godunov and Romenskii [117]) in conservative form using fixed Cartesian grids (Miller and
Colella [112]; Barton et al. [113]; Barton and Drikakis [115]). Application of these numerical
methods to solid mechanics has been made possible by formulations of the governing theory as
first-order hyperbolic systems of conservation laws in the Eulerian frame (Godunov and
Romenskii [117]; Kondaurov [118]; Plohr and Sharp [119]; Godunov and Romenski [120]).
Introducing the vector of primitive variables W , equation 20 can be rewritten as a quasi-linear
system naturally suitable for a characteristics-based solver:

∂W

∂t
+ Aα

∂W

∂xα
= Qp , (25)

where Qp is the vector related to irreversible processes within the system. In the ensuing
computational method, the convective flux terms in equation 20 are usually discretized using the
well-known method of Godunov. The solution is therefore required of a local Riemann problem
at the boundaries of each cell in the computational mesh. The solution is found using an
approximate method based upon the characteristic tracing and thus requires detailed knowledge
of the eigen-values and the eigenvectors of equation 20.

The method of characteristics was successfully used to demonstrate the accuracy of the
lamination theory (Whitney and Pagano [121]) in transient wave propagation problems for
anisotropic materials. This method is adequate for stiff materials or weak shocks where the
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compression is small and the elastic response is nearly linear. The laminated plate equations used
in this report are those derived by Whitney and Pagano (121), which are considered as a
representative “first-order” laminated plate theory. Note that several analytical and numerical
solutions to the laminated plate equations were constructed in the past. For example, Wang and
Tuckmantal (122), and Moon (123) have discussed the wave surface based on the laminated plate
equations due to abrupt change in stress. Also, Chow (124) applied the Laplace transform
technique and calculated the deflection of a laminated plate under a concentrated load.
Moon (123) solved the problem of one-dimensional wave propagation due to a prescribed line
load by the fast Fourier transform technique. Furthermore, Sun and Lai (125) analyzed the
response of a unidirectional fiber-reinforced layer subjected the response of a unidirectional
fiber-reinforced layer subject to the laminated plate equations and exact equations. For
symmetric cross-ply, or balanced angle-ply, laminated plates under one-dimensional in plate
impact, the resulting hyperbolic partial differential equations (Whitney and Pagano [121]) reduce
to (Mortimer et al. [69])

A11∇2u0 (x, t) = M
∂2u0 (x, t)

∂t2
, (26)

where x represents the spatial coordinate in the direction of wave propagation, t the time
coordinate, u0 (x, t) the mid-plane displacements in the x-direction, and M the plate mass term.
This is a simple wave equation with wave velocity c0 = (A11/M)1/2. For a finite length striker
plate of the same material as the specimen, the response in the specimen is simply a rectangular
wave of amplitude ε0 = V0/(2c0) and pulse length t0 = 2l/c0, where ε0 is the strain, V0 the initial
velocity of the striker, and l is the length of the striker.

For symmetric cross-ply, or balance angle-ply, laminated plates under one-dimensional transverse
shear-bending impact, the governing equations (without surface tractions) reduce to

kA55

(
∇ψx +∇2w

)
= M

∂2w

∂t2
, (27)

D11∇2ψx +D16∇2ψy − kA55 (ψx +∇w) = I
∂2ψx
∂t2

, (28)

D16∇2ψx +D66∇2ψy − kA44ψy = I
∂2ψy
∂t2

, (29)

where the Aij , Dij , and I are plate coefficients as defined in Whitney and Pagano (121); w, ψx, ψy
the specimen deflection and rotations, respectively; and k the shear correction factor. These
equations 27–29 are a set of totally hyperbolic partial differential equations and were successfully
solved by a numerical method of characteristics by Mortimer et al. (69).
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3.2 Nonlinear Anisotropic Elastic Incremental Formalism

In the early 1970s, Johnson et al. (31–33) developed a continuum framework for describing the
rate dependent elastic-plastic response of single crystals to shock-wave loading. Their tensor
formulation coupled linear elastic response to a dislocation dynamics model that incorporated the
appropriate slip system in the shocked crystals. In this framework, both elastic and plastic
anisotropy were explicitly accounted for. This approach, similar to the above method of
characteristics, is adequate for stiff materials or weak shocks, where the compression is small and
the elastic response is nearly linear. However, for more compliant materials, crystals, or stronger
shocks, several factors must be accounted for: (1) large compressions lead to a nonlinear elastic
response, (2) low yield stresses lead to large deformations, and (3) large compressions and large
plastic deformations lead to a significant temperature increase. As a result, to address these
complications, Winey and Gupta (28–30) developed a consistent Lagrangian thermomechanical
framework for modeling the response of a single crystal under shock loading. This framework is
also applicable for anisotropic materials, highly anisotropic materials such as molecular crystals,
and strong shocks in other single crystals. The Winey and Gupta (28–30) approach is constructed
on the thermodynamic approach of Wallace (126, 127), which couples nonlinear elasticity within
a thermodynamically consistent incremental formalism. In this method, the incremental
displacement from some intermediate configuration xni at time n to the next configuration xn+1

i at
time n+ 1,

(ui)
n+1
n = xn+1

i − xni , (30)

where (ui)
n+1
n denotes the displacement at time n+ 1 relative to time n. The incremental strains

(negative in compression), given by

∆εij =
1

2

[
∂ (ui)

n+1
n

∂xnj
+
∂ (uj)

n+1
n

∂xni

]
, (31)

are measured relative to the configuration at time n. The reference configuration is updated from
the current configuration to the next configuration after every strain increment. The incremental
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equations for internal energy (Gibbs equality) are

En+1 − En =
1

ρn
(tij)

n+1/2
n ∆εij + T n+1/2∆S

(tij)
n+1/2
n =

1

2

[
(tij)

n+1
n + (tij)

n
n

]
T n+1/2 =

1

2

[
T n+1 + T n

]
, (32)

where ρn is the density for the reference configuration at time n; T n+1 and T n are the temperature
of the configuration at time n+ 1 and n, respectively; and (tij)

n+1
n and (tij)

n
n are the

thermodynamic stresses for configuration at time n+ 1 and n, respectively. The thermodynamic
definitions of temperature and stress tensor are defined by

T n =

[
∂En

∂S

]
εij

, (tij)
n+1
n = ρn

[
∂En+1

∂εij

]
S

. (33)

Similar to Wallace (126), the anisotropic Grüneisen tensor was defined by Winey and
Gupta (28–30):

(Γij)
n
n = − 1

ρnT n

[
∂ (tij)

n+1
n

∂S

]
S

. (34)

Therefore, the incremental change in the thermodynamic stresses, using the EOS equation 34, is

(tij)
n+1
n − (tij)

n
n = (Cijkl)

n+1/2
n ∆εkl − ρn (Γij)

n+1/2
n T n+1/2∆S , (35)

where the linear elastic coefficients are defined by

(Cijkl)
n
n =

[
∂ (tij)

n
n

∂εkl

]
S

. (36)

In the Winey and Gupta (28) approach, the elastic coefficients in equation 36 are functions of
strain and entropy. As a result, the incremental change from configuration at time n to
configuration at time n+ 1 is

(Cijkl)
n+1
n − (Cijkl)

n
n =

[(
∂Cijkl
∂εmn

)
S

]n+1/2

n

·∆εmn +

[(
∂Cijkl
∂S

)
εij

]n+1/2

n

·∆S

(Cijklmn)nn =

[(
∂Cijkl
∂εmn

)
S

]n
n

, (37)
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where nonlinear elastic coefficients Cijklmn are assumed to be independent of strain and entropy
in this formulation, so that (Cijklmn)n+1

n = (Cijklmn)nn. To maintain thermodynamic consistency,
the Winey and Gupta (28) approach assumes for derivatives that[

∂Cijkl
∂S

]
εij

= −ρ
[
∂ (TΓij)

∂εkl

]
S

. (38)

In general, Γij is a function of entropy and strain. However, for simplicity, the Winey and
Gupta (28) approach assumes Γij to be constant. Hence,[

∂Cijkl
∂S

]
εij

= −ρΓij

[
∂T

∂εkl

]
S

= ρTΓijΓkl (39)

When equation 39 is substituted into equation 37, the incremental change in the linear elastic
coefficients under the Winey and Gupta (28) assumptions can be written as

(Cijkl)
n+1
n − (Cijkl)

n
n = (Cijklmn)n+1/2

n ·∆εmn + ρnT n+1/2 (Γij)
n+1/2
n (Γkl)

n+1/2
n ·∆S . (40)

To complete the thermodynamic description, the temperature increment from configuration at
time n to configuration at time n+ 1 is given by

T n+1 − T n = −T n+1/2 (Γij)
n+1/2
n ∆εij +

(
T

cε

)n+1/2

∆S , (41)

where cε is the specific heat capacity at constant elastic configuration. To maintain consistency
with constant Γij , it is assumed that cε is to be constant as well. It is important to note that in this
formulation, the thermodynamic stresses, elastic coefficients, and other tensor properties must be
updated during the incremental calculation so that they are referred to the configuration at time n.

Using the above framework, the propagation of large amplitude stress waves along the arbitrary
directions in quartz, sapphire, LiF, copper single crystal, and unreacted PETN are performed by
Winey and Gupta (28–30). Measured (Asay et al. [73]) and simulated (Winey and Gupta [29])
longitudinal stress histories for LiF single crystals shocked along the 〈100〉 orientation are
presented in figure 3. They have also discussed differences between pure mode wave propagation
for linear and nonlinear elastic deformation.

3.3 Conventional Decomposition of Anisotropic Equations

Speaking generally, any second-order tensor can be decomposed into the spherical part and the
deviatorical part. In the case of continuum mechanics, the decomposition of the stress tensor and
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Figure 3. Measured (solid lines) and simulated (dashed lines) longitudinal stress histories for
LiF single crystals shocked along the 〈100〉 orientation. The experimental data
(Asay et al.) (73) and simulations (Winey and Gupta) (29) are for a 6061-T6
aluminum plate impacting the LiF crystals at a velocity of ca. 0.34 km/s, where the
target crystals are backed by a quartz stress gauge. The stress is measured at the
interface between the LiF crystal and the quartz gauge. The numbers above the
curves indicate the sample thickness in mm. Time is relative to the moment of
impact. Reprinted with permission from Winey, J.M., Gupta, Y. M.,
J. Appl. Phys. 99, 023510, (2006). Copyright 2006, American Institute of Physics.
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the strain tensor into their volumetric and deviatoric components (e.g., Wilkins [102]) has certain
physical justification. This step is done in order to distinguish between thermodynamic (EOS)
response and the ability of the material to carry shear loads (strength). For anisotropic materials,
the decomposition of the stress and strain tensors into spherical and deviatoric parts in stress
space and strain space results in stress and strain components that do not correspond to each other
due to the material properties’ anisotropy. For example, using the stress-strain relation for an
orthotropic material, the hydrostatic pressure can be rewritten as

p =
−1

9β
{E1(1− ν23ν32) + E2(1− ν13ν31) + E3(1− ν12ν21)

+2 · [E1(ν21 + ν31ν23) + E1(ν31 + ν21ν32) + E2(ν32 + ν31ν12)]} · ε

− 1

3β
{E1(1− ν23ν32) + E1(ν21 + ν31ν23) + E1(ν31 + ν21ν32)} · εd11

− 1

3β
{E1(ν21 + ν31ν23) + E2(1− ν13ν31) + E2(ν32 + ν12ν31)} · εd22

− 1

3β
{E1(ν31 + ν21ν32) + E2(ν32 + ν12ν31) + E3(1− ν12ν21)} · εd33

, (42)

where β = 1− ν12ν21 − ν13ν31 − ν23ν32 − 2ν21ν32ν13, E1, E2, E3 are the Young’s moduli, and νij
are the six Poisson ratios. Hence, for an anisotropic material in general, the mean stress depends
on the deviatoric strains and, as a result, the decomposition used for isotropic materials is not
applicable.

3.4 Deviatoric Constitutive Relationship for Anisotropic Materials

While the mathematics and physics of the constant coefficient constitutive relationship for
isotropic materials was well understood, the casting of these rules into an anisotropic framework
was not a straightforward task. In particular, the difficulties were associated with two primary
differences in the behavior of anisotropic materials with respect to that of isotropic materials:
(1) under hydrostatic pressure, strain is not uniform in all three directions of the material
coordinates, and (2) except under restrictive modulus conditions, deviatoric stress will produce
volumetric dilatation. As a solution of these difficulties, the elastic generalized deviatoric
anisotropy decomposition was proposed by Segletes (34). While his arguments were applied to
the case of transversely isotropic materials, the generalization to orthotropy is straightforward and
is shown directly. Decomposition of the stress and strain tensors into their hydrostatic and
generalized deviatoric components yields (Segletes [34])

Sij = σij − σδij , Sijδij = 0 , σ =
1

3
(σ11 + σ22 + σ33) , (43)

eij = εij − ε̄ij , (44)
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ε̄ij = σJijklδkl , (45)

eijδij = ē 6= 0 ,
3δij Cijkl ε

d
ij

δij Cijkl δkl
= ε̄ 6= 0 . (46)

where σ is the hydrostatic stress, ε̄ij represents the normal strains due to hydrostatic stress, ē is the
dilation of generalized deviatoric strain, and ε̄ is the excess anisotropic dilation. One may acquire
upon substitution into equations 43–45

Sij + σδij = Cijklekl + Cijklε̄kl . (47)

Unlike the isotropic materials in which a hydrostatic pressure produces a uniform dilatation in all
three coordinate directions, hydrostatic strain for an anisotropic material is non-uniform.
Therefore, if one defines the deviatoric components of stress and strain to be the total stress /
strain components decremented by an amount that would result from a hydrostatic stress state,
one can conclude (per condition (1) above) that there is a unique hydrostatic strain component
associated with all three directions in the material coordinates (the coordinate system that
produces no shear coupling). Equation 47 may be decoupled to give a hydrostatic equation,

σδij = Cijklε̄kl , (48)

and a deviatoric relationship void of hydrostatic terms

Sij = Cijklekl . (49)

Under the influence of a purely hydrostatic stress state (and assuming the moduli to be constant),
there will be constant ratios between the components of normal strains ε̄ij due to hydrostatic
stress. Defining the ratios in terms of material compliances Jijkl, it follows from equation 45 that

ε̄11
ε̄22

= Kε
12 =

J1111 + J1122 + J1133
J2211 + J2222 + J2233

,
ε̄33
ε̄22

= Kε
32 =

J3311 + J3322 + J3333
J2211 + J2222 + J2233

. (50)

Recall from equation 46 that the sum of the three normal deviatoric strain increments is not
generally zero, but rather equals a deviatoric dilatation, ē . The significance of this term is that a
state of stress whose average normal value is zero can produce volumetric change on an element
with respect to that element’s stress free volume. We may substitute the normal components of
equation 44 into equation 46 and, with the aid of equation 50, develop a relation between ē and
ε̄22:

ε̄22 =
(ε11 + ε22 + ε33)− ē
Kε

12 + 1 +Kε
32

. (51)
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Likewise, one may employ the condition of uniform strain (ε11 = ε22 = ε33) into the deviatoric
constitutive relation, equation 49, to acquire constant ratios between the components of normal
stresses resulting from the uniform strain state:

σ11
σ22

= Kσ
12 =

C1111 + C1122 + C1133

C2211 + C2222 + C2233

,
σ33
σ22

= Kσ
32 =

C3311 + C3322 + C3333

C2211 + C2222 + C2233

. (52)

So as to insure that the deviatoric stress has no hydrostatic component, substitute equation 49 into
equation 43, in light of equation 52, to show that

Kσ
12e11 + e22 +Kσ

32e33 = 0 . (53)

From this equation, e11 + e22 + e33 may be isolated and replaced with ē, and the remaining eij
terms eliminated via equation 44, eventually producing a second relation between ē and ε̄22:

ε̄22 =
ē+ (Kσ

12 − 1)ε11 + (Kσ
32 − 1)ε33

Kε
12(K

σ
12 − 1) +Kε

32(K
σ
32 − 1)

. (54)

The ε̄22 term may be eliminated between equations 51 and 54 to produce a closed-form for ē in
terms of the current strain state εij and the material parameters Kσ

ij and Kε
ij . Once ē is obtained,

ε̄22 follows from either equation 51 or 54. The other ε̄ij components follow from equation 50,
and finally, from equation 44, the deviatoric strain terms eij follow. All unknown deviatoric
strains are now solved. As an aside, to recreate the transversely isotropic condition described by
Segletes (34), the terms Kσ

32 and Kε
32 need merely be set equal to unity.

Summing the three equations for normal stress equation 48 subject to equations 44 and 46 yields
upon reduction

σ = K̃σ (ε11 + ε22 + ε33 + ε̄) , (55)

where K̃σ is a true material property, which is called the first effective bulk modulus of the
material (Lomakin [128]). This modulus equals one ninth the sum of the nine normal stiffness
matrix components Cijkl:

K̃σ =
1

9
δijCijklδkl =

1

9

3∑
i=1

3∑
j

Cij , (56)

where Cij are elements of the stiffness matrix (written in Voigt notation).

Alternately, the use of the deviatoric constitutive relation, equation 49, hinged upon the
satisfaction of equation 48. Inverting equation 49 into compliance form and summing the three
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equations for normal strain yields upon reduction

σ = K̃ε (ε11 + ε22 + ε33 − ē) , (57)

where K̃ε is a true material property, which is called the second effective bulk modulus of the
material (Segletes [34]). This modulus equals the reciprocal of the sum of the nine normal
compliance matrix components Jijkl:

K̃ε =
1

δijJijklδij
=

1
3∑
i=1

3∑
j=1

Jij

, (58)

where Jij are elements of the compliance matrix (written in Voigt notation). These effective
moduli, unlike the bulk modulus, are independent of deviatoric stress in anisotropic materials.
The first and second bulk moduli reduce to the conventional bulk modulus in the limit of isotropy.
Once σ is known, the deviatoric stresses follow from equation 43.

It was mentioned previously that, for real materials under large compression, the empirical
relation between dilatation and pressure is not a linear one and at high pressures is
thermodynamically coupled to internal energy. One advantage of this deviatoric formulation lies
in the ability to arbitrarily make the hydrostatic relations equations 57 and 58 nonlinear while
retaining the linear simplicity of Hooke’s Law for the deviatoric portion of the constitutive
relation. Though this ad hoc procedure does not theoretically follow as an extension to Hooke’s
Law, it does permit the code user to more flexibly model the empirical EOS behavior of the
material, as −σ = p (ν/ exp(ē), E). These tensors differ from the absolute stress / strain tensors
in that the normal components of stress and strain are decremented by the hydrostatic values of
the normal stresses and strains, respectively. In this way, the deviatoric quantities represent
deviation from a hydrostatic condition, while the relationship existing between the average stress
(negative of pressure) and hydrostatic strain (volumetric dilatation) is an EOS.

The approach proposed by Segletes (34), which was implemented as the transversely isotropic
model in CTH (Taylor [129]), has found reflection in the modeling of an EOS for orthotropic
materials proposed by Anderson et al. (36). At this point, the approach to describe an EOS for
orthotropic materials proposed by Anderson et al. (36) is discussed. The final expression for the
EOS (for the general orthotropic case) based on equations 5, 42, and 55, and proposed by
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Anderson et al. (36), can be written in the following form:

p = PA
H ·
(

1− Γ

2
µ

)
+ ρΓe

− 1

3β
{Ex(1− νyzνzy) + Ex(νyx + νzxνyz) + Ex(νzx + νyxνzy)} · εdxx−

− 1

3β
{Ex(νyx + νzxνyz) + Ey(1− νxzνzx) + Ey(νzy + νxyνzx)} · εdyy−

− 1

3β
{Ex(νzx + νyxνzy) + Ey(νzy + νxyνzx) + Ez(1− νxyνyx)} · εdzz

, (59)

where PA
H is the anisotropic Hugoniot pressure. The first important difference between

Anderson’s and the conventional isotropic approach is in the way the Hugoniot pressure is
approximated. The conventional approximation of the Hugoniot pressure PH may assume cubic
least squares curve fit in µ as

PH =

{
A1µ+ A2µ

2 + A3µ
3 , µ > 0

A1µ , µ < 0
, (60)

where parameters Ai, i = 1, 2, 3 are determined by fit to experimental shock compression
(Hugoniot) data. Note that for an isotropic material, A1 is the bulk modulus. Anderson et

al. (36) proposed that in order to have consistency and correct stresses in the elastic regime for an
orthotropic material, the Hugoniot pressure PA

H should be approximated as

PA
H =

{
A′1µ+ A2µ

2 + A3µ
3 , µ > 0

A′1µ , µ < 0
, (61)

where A′1 is defined by the following quantity (Lomakin [128]; Anderson et al. [36]):

A′1 =
1

9β
(Ex(1− νyzνzy) + Ey(1− νxzνzx) + Ez(1− νxyνyx)

+ 2 · [Ex(νyx + νzxνyz) + Ex(νzx + νyxνzy) + Ey(νzy + νzxνxy) ] )
, (62)

where β = 1− νxyνyx − νxzνzx − νyzνzy − 2νyxνzyνxz. Anderson et al. (36) interpreted A′1 as an
“effective” or “average” bulk modulus K̃σ (first effective bulk modulus equation 56). It is
important to note that expression for the EOS can likewise be obtained using equation 57,
interpreting A′1 as the second effective bulk modulus. The A2, A3 parameters are determined
from the fitting of the experimental data in all cases. This provides an appropriate description of
material behavior at high pressures and reduces to the correct relations at small volumetric strains.
Alternatively, A′1, A2, A3 can be analytically determined through a Taylor’s series expansion of
the Hugoniot pressure P . Assume that the linear approximation between the shock velocity US
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and particle velocity up (equation 6, S2 = S3 = 0) exists, and that the US-up intercept c equals the
ambient bulk speed of sound c0. It follows that the Hugoniot curve and Taylor’s series expansion
of the Hugoniot pressure P with respect to µ can be written in the form

PA
H =

ρ0 · c20 · µ · (1 + µ)

[1− µ · (S − 1)]2
, (63)

A′1 = ρ0c
2
0

A2 = A′1 · [1 + 2(S − 1)]

A3 = A′1 · [2(S − 1) + 3(S − 1)2]

U = c0 + Sup

, (64)

where c0, the ambient bulk speed of sound, has the following definition

c0 =

√
K̃σ

ρ0
. (65)

Some attempts to use Anderson’s model to simulate the behavior of composite materials under
shock loading have been made by Chen et al. (130), Hayhurst et al. (131–133), and Hiermaier et

al. (134). The work of Hayhurst et al. (131–133) was directed towards numerical model
development for the Nextel and Kevlar/Epoxy materials subject to hypervelocity impact. They
also performed the experimental inverse flyer test (IFPT) for Nextel and Kevlar/Epoxy. Their
models were to be macro-mechanically based and suitable for implementation into a hydrocode
coupled with EOS. Each layer/weave of the material was not to be modeled explicitly but
represented by an equivalent volume with properties on a macroscale, which are representative of
the combined micro-mechanical response of the volume of the material under the loading
conditions considered. The Kevlar/Epoxy IFPT experimental data and simulation results are
presented in figure 4. A polynomial EOS, equations 59 and 60, was used in conjunction with
damageable orthotropic stiffness. The samples recovered from impact tests gave evidence of
phase changes during the impact events (figure 4). The Kevlar/Epoxy samples recovered after an
impact at 572 m/s showed a reduced thickness with a residual bending strength. Separate Kevlar
sheets were found in the impact vessel during impact test at 788 m/s. These Kevlar sheets
showed a vanishing bending strength with all Epoxy impregnation to be evaporated. Impact test
at 1015 m/s produced a fine Kevlar dust all over the impact vessel. At this impact velocity, Kevlar
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Figure 4. The Kevlar/Epoxy IFPT simulated and experimental back surface velocities for 572, 788,
and 1015 m/s. The experimental data Kevlar/Epoxy materials recovered after flyer plate
testing were taken from C. J. Hayhurst, Multi-Physics Analysis of Hypervelocity Impact:
Successes and Challenges, FENET Presentation (Noordwjik, 2003) (133).

also undergoes a phase change of thermal decomposition. The weave and yarns decompose into
a dark, wool-like material. It is important to note that the average slope of the initial rise in back
surface velocity is well represented along with the sharp rise in velocity (figure 4) for all three
impact velocities. The observed differences between the simulations and experiments can be
attributed partly to the selected EOS approach and corresponding damage model (i.e., compaction
behavior and initial density). However, Hayhurst et al. (131, 132) models provide a significant
improvement over the simulation with the standard orthotropic material models.

It was mentioned previously that in the case of an isotropic material, the hydrostatic stress (or
pressure) induces a change of scale, while the deviatoric stress only induces a change of shape. It
is obvious that in order to keep this property for anisotropic materials (e.g., for orthotropic
materials), the definition of “pressure” needs to be generalized, because a hydrostatic pressure
(isotropic state of stress) applied to an anisotropic material results in an anisotropic state of strain.
In other words, this loading will result not only in a change of scale, but also in change of shape.
This is inconsistent with the definition of the “generalized pressure.”
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3.5 Generalized Decomposition of Anisotropic Constitutive Relationship Suitable for
Shock-Wave Modeling

The definition of pressure equation 2 leads to the invariant quantity (the contraction of the stress
tensor and the unit tensor is divided by the norm of the unit tensor). This is not the case when the
pressure is defined as the portion of the mean stress that varies directly with the volumetric strain,
which is not an invariant quantity (i.e., this quantity cannot be expressed as contraction of the
stress tensor and another second order tensor). However, the high-pressure thermodynamic EOS
of anisotropic materials must be modified to account correctly for the elastic behavior at small
volumetric strain. The generalized decomposition of the stress tensor was constructed by
Lukyanov (37–41, 135, 136), assumed and given by the following theorem:

Theorem: For anisotropic materials of any symmetry, where stress state and strain state are

coupled via the generalized Hooke’s law σij = Cijklεij , εij = Jijklσij subject to the constraints

for elements of stiffness and compliance matrixes (written in Voigt notation) such as

3∑
k=1

(Ck1 + Ck2 + Ck3)
2 6= 0 ,

3∑
k=1

(Jk1 + Jk2 + Jk3)
2 6= 0 , (66)

there is one and only one state of stress, σ̃ij = pαij , that results in only volumetric deformation,

εij = εvδij , as defined by the following decomposition:

σij = −p∗αij + S̃ij , p∗αijS̃ij = 0 , αijαij = 3 , αij = 0 ∀ i 6= j , (67)

p∗ = p+ pS̃ , p = − βijσij
βklαkl

, pS̃ =
βijS̃ij
βklαkl

, σ̃ij = pαij , (68)

where αij and βij are the first and second generalizations of the Kronecker delta symbol, p is the

pressure related to the volumetric deformation, pS̃ is the pressure related to the generalized

deviatoric stress, p∗ is the total generalized pressure, S̃ij is the generalized deviatoric stress

tensor, εv = εijδij is the volumetric deformation, Cijkl is the stiffness matrix, Jijkl is the

compliance matrix, Cij = Cji are elements of the stiffness matrix (written in Voigt notation), and

Jij = Jji are elements of the compliance matrix (written in Voigt notation).

It is important to note that some attempts to construct generalized decomposition of stress tensor
were made by Lomakin (128) and Sawyer (137). For anisotropic materials, the total hydrostatic
“pressure” has been defined (37–41, 135, 136) and given as

p∗ = p+
βijS̃ij
αijβij

, p = −βijσij
αijβij

, (69)
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where p is the pressure related to the volumetric deformation and S̃ij is the generalized deviatoric
part of the stress tensor. The relation equation 69 is the correct generalized “pressure” for the
elastic regime. To provide an appropriate description of behavior for general anisotropic
materials at high pressures, an EOS for p (pressure related to the volumetric deformation) has to
be defined. The Mie-Grüneisen EOS equations 8 and 9 was used for pEOS by
Lukyanov (37–41, 135, 136) to describe the thermodynamic (EOS) material response, which also
describes correctly the material’s behavior at small volumetric strains. Therefore, an appropriate
description of general hydrostatic “pressure” at high pressures has the following form:

p∗ = pEOS +
βijS̃ij
αijβij

. (70)

Note that the methodology described above can be applied for all anisotropic materials and
represents a mathematically consistent generalization of the conventional isotropic case. The
methodology for calculation of components of the tensor αij has been previously
defined (37–41, 135, 136). The elements of tensor αij can be written in the following form:

α11 = (C11 + C12 + C13) · 3K̄C

α22 = (C12 + C22 + C23) · 3K̄C

α33 = (C13 + C23 + C33) · 3K̄C

(71)

K̄C = 1/
√

3 ·
[
(C11 + C12 + C13)

2 + (C12 + C22 + C23)
2 + (C13 + C23 + C33)

2]
KC =

1

9K̄C

(72)

αijαij =‖α‖2= 3 , (73)

where Cij is the stiffness matrix (written in Voigt notation). The relation equation 73 describes
the norm of tensor αij , which reduces to Kroncker’s delta symbol norm in the limit of isotropy.
Therefore, the norm of αij is taken to be

√
3. Furthermore, the following set of equations for the
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components of the tensor βij can be written (Lukyanov [37–41, 135, 136]):

β11 = (J11 + J12 + J13) · 3KS

β22 = (J12 + J22 + J23) · 3Ks

β33 = (J13 + J23 + J33) · 3Ks

Ks = 1/
√

3 ·
[
(J11 + J12 + J13)

2 + (J12 + J22 + J23)
2 + (J13 + J23 + J33)

2]
βijβij =‖β ‖2= 3

, (74)

where Jij are elements of compliance matrix (written in Voigt notation). To be consistent with
the definition of the bulk speed of sound c for isotropic material, the following definition

c =

√
KC

ρ0
= c0 (75)

is assumed for anisotropic bulk speed of sound. Here the first generalized bulk modulus KC is
defined according to equation 72. Based on methodology previously described, we can conclude
that the two fundamental tensors αij and βij , which represent material properties, have been
defined. Both of them can be considered as generalizations of the Kronecker delta symbol, which
plays the main role in the theory of isotropic materials. Using two fundamental tensors αij and
βij , the definitions of “total pressure” and pressure corresponding to the volumetric deformation
can be defined. In the limit of isotropy, tensors αij andβij have the following values
α11 = α22 = α33 = 1, β11 = β22 = β33 = 1 and the proposed generalization returns to the
traditional classical case, where tensors αij and βij equal δij and equations 67, 68, and 69 take the
following form:

p∗ = −αijσij
αijαij

= −σkk
3

, p = −βijσij
βijαij

= −σkk
3

, p∗ = p , Sij = S̃ij = σij−δij ·
σkk
3

. (76)

Here, p∗ = p is the conventional hydrostatic pressure and Sij is the conventional deviatoric stress
tensor. Also, the two parameters Kc and Ks were considered as the first and second generalized
bulk moduli. In the limit of isotropy they reduce to the well-known expression for the
conventional bulk modulus K = E/[3(1− 2ν)].

Most of the work discussing the response of composites to shock loading has examined the
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material with the fiber plane normal to the loading axis (e.g., Dandekar et al. [13], Zhuk et

al. [138], Riedel et al. [139], Zaretsky et al. [140]). Overall, when shocked in this orientation,
fiber-based composites appear to behave in a manner similar to monolithic polymers (e.g., Carter
et al. [141], Millett et al. [142]), indeed Zaretsky et al. (140) have made this point. The
experimental study of a carbon fiber epoxy composite, shocking along the through-thickness
orientation axis, showed no evidence of an inelastic deformation. Therefore, using an anisotropic
nonlinear continuum framework and generalized decomposition of a stress tensor
equations 66–73, shock-wave propagation in CFC materials was examined (Lukyanov [41]). The
results of comparison between experimental data and numerical simulation are shown in the
figure 5. The important characteristic, the arrival time to the Hugoniot stress level at the 0 mm
position and back surface are in good correlation with experimental data. Further comparison
shows that the pulse width and the reloading trace are in good agreement with the experimental
data. The maximum difference between the experimental data and new proposed model for the
plateau stress was 6%.

Figure 5. Representative experimental gauge traces from the through-thickness orientation at the
0 mm position and at the back surface, respectively (see Millett et al.) (15). The specimen
was 3.8 mm thick. The impact conditions were a 5 mm dural flyer at V = 504 m/s. The
dotted curve is the numerical data obtained using proposed damage model; the solid curve is
the experimental data.

These experimental results show that the relationship between shock velocity and particle velocity
through the thickness orientation is linear, yielding the relation (Millett et al. [15]):
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UL
S = CL

0 + SL1 up, where CL
0 = 3230 m/s, SL1 = 0.92. The experimental data in figure 6 are

obtained for target plate thicknesses in the range between 2.3 and 5.7 mm (see Millett et al. [15]).
It can be seen that there is a degree of scatter in this data. It was noticed that EOS data CL

0 and
SL1 are insensitive to thickness of the target plate over experimental range of the investigation (see
Millett et al. [15]).

Figure 6. Experimental data ULS -up for the carbon-fiber-composite material, showing the variation with
specimen thickness (experimental data obtained by Millett et al.) (15). The dotted curve is
calculated using experimental data for ULS -up; the solid curve is calculated using numerical
simulation based on the material model equations 66–73.

However, it would be expected that when the fiber direction is orientated along the impact axis,
the response would be quite different. The results of Eden et al. (90) clearly differentiated
between the response of the fibers and the matrix, indicating that the individual fibers were acting
as wave-guides. Bordzilovsky et al. (12) examined the effects of orientation, with the orientation
of the fibers ranging from 5◦ to 90◦ to the shock axis. Where the mis-orientation between fibers
and the loading axis was small, a distinct low amplitude precursor wave was observed before
arrival of the main shock. As the angle increased, the duration of this precursor decreased until it
disappeared at 90◦. This was interpreted as an elastic wave. Hereil et al. (11) observed similar
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behavior in a three-dimensional carbon-carbon composite, with a low amplitude ramp preceding a
much more quickly rising shock front. However, their interpretation suggested that this precursor
was due to a high velocity wave transmitted along the fibers orientated in the shock axis, while the
main shock was transmitted through the “matrix” (figure 7). Millett et al. (15) examined the
carbon fiber-epoxy composite and obtained that the trace clearly has a ramped nature (figure 7), in
common with the observations of Eden et al. (90) when using quartz stress gauges to measure the
shape of the stress pulse in a similar orientation. This is qualitatively similar to the traces
observed by Hereil et al. (11) and Bordzilovsky et al. (12), respectively.

Figure 7. Representative experimental gauge traces from the fiber 0◦ orientation (see Millett et al.) (15).
The specimen was 10 mm thick. The impact conditions were a 5 mm copper flyer at
V = 936 m/s. According to Hereil et al. (11), the precursor was due to a high velocity wave
transmitted along the fibers orientated in the shock axis, while the main shock was transmitted
through the matrix.

It was pointed out by Bethe (143) that, for stable shock waves, the shock velocity must increase
with pressure. This means that if the shock velocity should decrease with pressure, then the
shock front would break up into two or more waves, or possibly one wave with a continuously
smeared front. Note that the experimental data for the through thickness orientation (see,
Lukyanov [135]) can be fitted by a linear relation, and there is no explicit evidence of the shock
front breaking up; however, the analysis of the experimental data of Millett et al. (15) for selected
CFC material shows that the shock velocity along the fiber 0◦ orientation decreases with
pressure—therefore, a two-wave structure is proposed for describing the experimental data.
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Furthermore, as the severity of the shock increases, the Hugoniot stress levels of the two
orientations converge. This fact demonstrates that the selected CFC material shows isotropic
behavior at high shock intensities, and can be described as an isotropic mixture of epoxy binder
and fractured fibers (see, Lukyanov [135]). This is qualitatively similar to the Kevlar-Epoxy
behavior observed by Hayhurst et al. (131–133) and Hiermaier et al. (134) (figure 4).

4. Anisotropic Plasticity Flow

The anisotropic material response under shock loading often shows inelastic (e.g., plastic)
deformation. The ability to predict inelastic response can be important for both ductile metals
and relatively brittle composite materials. Note that even though composite materials are
generally considered to be brittle, it is often prudent to use a small value for the equivalent plastic
strain as a failure criterion (i.e., that point at which the material can no longer support shear and
tensile stresses). Traditionally, the incremental strain of a material element is written as the sum
of elastic and inelastic (e.g., plastic) strains ∆εij = ∆εeij + ∆εinij . Two types of inelastic
deformation models, which do not result in loss of cohesion, are considered in the shock-wave
modeling in anisotropic materials: an anisotropic-yield-criteria-based plasticity model
(associated and non-associated) and a dislocation-based plasticity model.

4.1 Associated and Non-associated Anisotropic Plasticity

The main aspects of a phenomenological constitutive model can be characterized by a yield
criterion representing a surface that separates the elastic and plastic regions of the stress space, a
flow potential gradient that represents the direction of plastic strain rate, and a strain hardening
rule. Generally, a yield function, a flow rule, and a set of evolution equations for M state
variables are required to fully describe the constitutive relations of a plastic material. The yield
function F for an anisotropic material in classical formulation can be expressed in the following
general form:

F̂ (σij, γk) = 0, k = 1, ...,M . (77)

Here σij are the stress components and γk represents a set of state variables. The subscript k is
introduced to indicate that there may be several state variables including the hardening
parameters. When the material deforms plastically, the inelastic part of deformation (plastic
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deformation) is defined by the flow rule

dεpij = dλ
∂g

∂σij
, (78)

where g = g(σij, γk) is the plastic potential, dεpij are the differentials of the plastic strain
components, and dλ is a positive scalar. In this study, we consider the associated plasticity flow
models (i.e., F̂ = g) and non-associated plasticity flow models (i.e., F̂ 6= g). Finally, the
evolution of M state variables can be described by

αk = Ak(dε
p
ij, σij, γl) , k = 1, ...,M ; l = 1, ...,M . (79)

For complex plasticity models, several evolution equations may be defined and the forms of these
equations can be very complex.

Several anisotropic yield criteria and their associated yield surfaces have been developed in the
past. These criteria have included a maximum stress law, a maximum strain law, and quadratic
laws. One of the first yield conditions proposed for the anisotropic material is the quadratic yield
criterions proposed by Dorn (144) and von Mises (Hill [145]) for plastically incompressible metal
crystals with different lattice symmetry. In the theory of anisotropic yield criteria, the most
well-known work is Hill’s quadratic formulation (Hill [145]), which contains six parameters
specifying the state of anisotropy, but is similar in form to the Mises’s criterion for isotropic
metals. From the literature review, a general group of anisotropic yield criteria suitable for
anisotropic metals can be found. This group includes the yield conditions proposed by
Bassani (146) and Hosford (147); the yield surface of four degrees specified by Gotoh (148) and
Arminjon et al. (149); as well as yield surfaces of k degrees analyzed by Barlat and Lian (150),
Barlat et al. (151, 152), Karafillis and Boyce (153), Barlat et al. (154, 155), Bron and
Besson (156), Darrieulat and Montheillet (157), Stoughton and Yoon (158), Kowalczyk and
Gambin (159), Hu (160), Hashiguchi (161), Hu (162, 163), and Barlat et al. (164). The quadratic
laws are robust and are particularly well suited to multiaxial stress state. In particular, the
Tsai-Hill theory (Hill [145]; Tsai and Hahn [165]) was considered by Segletes (34), Anderson et

al. (36), and De Vuyst et al. (166).

Several models for inelastic deformation have been proposed based on generalized decomposition
of stress tensor by Lomakin (128) and Sawyer (137). The mathematically consistent yield
function of a fully anisotropic material based on generalized decomposition of the stress tensor
into generalized spherical part (generalized hydrostatic pressure) and generalized deviatoric stress
tensor equation 67 was proposed by Lukyanov (37–41). Based on research of Spitzig and
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Richmond (167), Stoughton and Yoon (158) and generalized decomposition equation 67, the
following yield function was used for modeling anisotropic elastic-plastic shock waves:

F̂ (S̃ij) = Ψ(S̃ij)(1 + χp̄∗) ≤ Y (ε̄p) , p̄∗ =
σijαij
αklαkl

=
1

‖α‖2
σijαij , p̄∗ = −p∗ , (80)

where p̄∗ is the generalized hydrostatic stress and Ψ(S̃ij) is described by generalized Hill’s yield
function:

Ψ2(S̃ij) = F (α33S̃yy − α22S̃zz)
2 +G(α11S̃zz − α33S̃xx)

2 +H(α22S̃xx − α11S̃yy)
2

+ 2NS̃2
xy + 2LS̃2

yz + 2MS̃2
xz

. (81)

The material constantsχ, F , G, H , N , L, and M are specified in terms of selected initial yield
stresses in uniaxial tension, compression, and equibiaxial tension. It is worth noting that
plasticity model equation 78 is naturally independent from the generalized hydrostatic stress
p̄∗ = (σijαij)/(αijαij), and therefore, the following equality can be written:

Ψ2(S̃ij) ≡ Ψ2(σij) , σij = p̄∗αij + S̃ij , p̄∗ 6= 0 , (82)

where S̃ij is the generalized deviatoric stress tensor and σij is the stress tensor. This yield
function was validated for a number of materials, e.g., AA2008 T4, AA2090 T3, AA7108 T1, and
AA6063 T1 (Lukyanov [40]). The shock-wave propagation in the anisotropic aluminum alloy
7010-T6 using the yield function equation 78 was performed by Lukyanov (39).

The experimental values, 0.39 and 0.33 GPa, for elastic response from the longitudinal and short
transverse directions, respectively (figures 8 and 9), are in good correlation with the modeled
values of the HEL longitudinal, 0.395 GPa, and short transverse, 0.333 GPa. The errors with
respect to the experimental values are 1.4% and 0.9%, respectively, to the longitudinal and short
transverse directions. Besides, other important characteristics, the arrival time to the HEL and
the plastic wave velocity, are in good correlation with experimental data. Further comparison
shows that the pulse width and the reloading trace are in good agreement with the experimental
data (figures 8 and 9). The main conclusion obtained from these results is that the non-associated
anisotropic plasticity model, as it stands, is suitable for simulating elasto-plastic wave
propagation in anisotropic solids. Besides, different HELs are obtained when the material is
impacted in different directions; their excellent agreement with the experiment demonstrates that
the anisotropic plasticity model is adequate.

However, further work is required both in the experimental and constitutive modeling areas to
find a better description of anisotropic material behavior.
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Figure 8. Back-surface gauge stress traces (longitudinal direction) from plate-impact
experiments vs. numerical simulation of stress (PMMA) waves for plate impact
tests (impact velocities 450 and 895 m/s) - target AA7010 T6.
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Figure 9. Back-surface gauge stress traces (transverse direction) from plate-impact
experiments vs. numerical simulation of stress (PMMA) waves for plate impact
tests (impact velocities 450 and 895 m/s) - target AA7010 T6.
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4.2 Dislocation-based Plasticity

Much of the dislocation theory is now well established and is attributed to the early efforts of
Taylor (168), Orowan (169), Gillis and Gilman (170, 171), and Gilman (172, 173). To incorporate
dislocation-based plasticity, the Orowan equation (Gilman [173]; Winey and Gupta [28, 29]) is
used to relate the motion of dislocations on a slip plane (denoted by α) to the plastic shear strain
rate on that plane:

γ̇pα = Nα
mb

αV̄ α , (83)

where Nα
m is the mobile dislocation density operative on the slip plane, bα is the magnitude of the

Burgers vector, and V̄ α is the average dislocation velocity. The incremental plastic strains in the
coordinate system used to describe wave propagation are calculated by appropriately
transforming and summing the plastic shear strains from all the individual slip systems (Winey
and Gupta [28–30]):

∆εpij =
1

2

∑
α

(
aα1ia

α
3j + aα3ia

α
1j

)
γ̇pα∆t , (84)

where ∆t is the time step encountered in wave propagation calculation, and aαij is the rotation
matrix relating the coordinate system used to describe wave propagation to the slip plane
coordinates. The resolved shear stress τα causing dislocation motion for a given slip system is
determined by transforming the Cauchy stress from the coordinate system used to describe wave
propagation to the slip plane coordinates system:

τα = σα13 = aα1ia
α
3jσij . (85)

To account for the rotation of slip planes due to finite elastic strains, the rotation matrices aαij are
updated each moment of time through a transformation that depends on the incremental elastic
deformations (Winey and Gupta [28–30]). The dislocation-based models produce only shear
strains, resulting in plastic incompressibility Dεpkk = 0. The mobile dislocation density Nα

m and
the average dislocation velocity V̄ α must be defined in order to perform numerical simulations
using equation 77. Winey and Gupta (28–30) employed a model (Gilman [173]) in which
dislocations undergo regenerative multiplication under shock loading via a multiple cross glide
mechanism. With this mechanism, the dislocation density is linearly related to the accumulated
plastic shear strain γpα (assumed positive)

Nα
m = Nm0 +Mγpα , (86)

where Nm0 is the initial density of mobile dislocations and M is the multiplication parameter.
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The model also incorporates a stress-dependent dislocation velocity

V̄ α = V̄0 exp [−D/ (τα − τ0)] , (87)

where D is the drag stress parameter, τα is the resolved shear stress, τ0 is the threshold stress for
dislocation motion, and V̄0 is the shear wave speed. The dislocation-based plasticity model was
used by Winey and Gupta (29) for a 6061-T6 aluminum plate impacting the LiF crystals at a
velocity of ca. 0.34 km/s, where the target crystals are backed by a quartz stress gauge.

5. Early Anisotropic Implementations in Hydrocodes

Computational methods, as proposed by von Neumann (Clippinger [174]) came to the forefront
with the advent of computers, beginning with the ENIAC, designed and built by the University of
Pennsylvania (dedicated 1946) and installed at the United States Ballistic Research Laboratory in
1947 for the calculation of projectile trajectories (Bergin [175]). By the mid 1950s, newer
generations of computers were fully engaged in computational fluid dynamics, e.g., the
particle-in-cell method (Evans and Harlow [176]).

By the early 1960s, the hydrocodes had evolved to model elasticity and radial-return (isotropic)
plasticity (Wilkins [102]). It was not until the 1970s, though, that elastic and plastic
transverse-isotropy were computationally implemented in the hydrocode framework of the HELP
code (Sedgwick et al. [177]). Their formulation, however, cannot be termed deviatoric. The
form of the relation used in HELP is

∆Sij = Cijkl∆εkl −K(∆V/V )δij , (88)

where K is the bulk modulus, which presumably can be made dependent on dilatation (and
therefore hydrostatic stress). In this way, the formulation may also provide the flexibility akin to
a truly deviatoric formulation. However, equation 88 is not a deviatoric relation, since the
deviatoric stress increment is not related to deviatoric strain increment, but rather is expressed in
terms of the total strain increment. Similarly, the bulk modulus (as opposed to the effective bulk
moduli derived in equations 56 and 58) is functionally dependent on deviatoric stress, and in this
sense, equation 88 exhibits flawed behavior if the deviatoric variation in bulk modulus is not
modeled. Finally, the flexibility afforded in equation 88 by allowing the bulk modulus to vary
with hydrostatic stress has the disturbing effect that the resulting sum of the normal stress
deviators is not generally zero. Thus, the use of the term “stress deviators” to describe the
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left-hand side of equation 88 does not even seem justified.

The EPIC code added anisotropy in 1980 (Johnson et al. [178]) and uses a form similar to
equation 88 except that K is defined in such a way as to force the sum of the normal stress
deviators to zero. This ad hoc procedure will coincidentally mimic the behavior of equation 49,
though the formulation is in error during the subsequent hydrostatic stress calculation by not
accounting for the deviatorically induced dilatation ē (see equation 46). In this sense, both the
algorithms of HELP and EPIC introduced errors that were sensitive to the size of the hydrostatic
strain increment (i.e., the computational timestep) if variable compressibility were employed in
the EOS. This problem was alleviated by the algorithm proposed by Segletes in 1987 (34), as
described in section 3.4 of this report. Segletes’ model was implemented into the Lagrangian
DEFEL code and was used to study the effects of shear forming of copper liners upon the collapse
of shaped-charge warheads (179, 180).

Some early computational implementations of anisotropy restricted themselves to linear elastic
anisotropy, thereby limiting their application to dynamic problems involving gentle non-plastic
impact. For example, the TIP code of Zak and Pillasch (181) is in this category, as well as the
anisotropic implementation for the TOODY code by Swegle and Hicks (182). Zak (183)
introduced anisotropic plasticity into the SANX code, thereby allowing calculation of a wider
class of impact problems. With SANX, while the plasticity was anisotropic, the elasticity
appears to be treated in an isotropic fashion. Later, the orthotropic elastic model was
implemented into Lawrence Livermore National Laboratory (LLNL) DYNA3D and NIKE3D
public domain codes (Hallquist and Whirley [184]; Maker et al. [185]), and in LS-DYNA
commercial code (Hallquist [186]). In 1995, the CTH code of Sandia National Laboratories
(Taylor [129]) incorporated the transversely isotropic model of Segletes (34) as its “TI model.”

Nowadays, some models incorporate a user-defined subroutine within the commercial software
(e.g., ABAQUS) to take into account either a homogenous orthotropic model that examines the
bulk macroscopic deformation response or the discrete non-homogeneous material distribution
(Pankow et al. [187]). In such models, EOS does not even play a role. Rather, the volumetric
treatment is one of a constant bulk modulus, insensitive to thermal effects.

Only recently, some attempts were made to properly account for nonlinear shock effects, energy
dependence, and anisotropic stiffness in the existing hydrocodes. The approach, based on that by
Anderson (36), has been incorporated into the AUTODYN hydrocode (Hayhurst [131]). The
generalized decomposition of anisotropic constitutive relationship and EOS suitable for
shock-wave modeling in anisotropic materials have been incorporated into the DYNA3D
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hydrocode (Lukyanov [38]).

6. Conclusion

In the area of studies of materials under shock loading, barring a few, most of the studies are of a
continuum nature. Therefore, the questions as to how shocks propagate and what the state of
matter is immediately behind the shock front are pretty much open questions for anisotropic
materials, though a few attempts have been made. It is expected that more experiments of
shock-wave propagation will provide very valuable information. The plate impact tests in
different directions at low and high intensities hold significant promise, particularly because of
their one-dimensional planar shock-wave propagation and their time-resolved nature. Interaction
of theory and experiment in this region may provide insight into the dynamic stress relation
processes behind the shock front. The fact that the shock jump in pressure is essentially a
nonequilibrium phenomenon may also play a deciding role. In the context of general shock-wave
research, the measurement of precise temperature is a crying need. Presently, even the improved
pyrometric method gives temperatures that are substantially higher than expected even at low
pressure ranges. The area of study of kinetics of phase transitions of anisotropic materials under
shocks is an interesting and challenging one, and some information could be derived from
accurate experimental measurements. On the theoretical side, first-principle molecular dynamic
calculation for anisotropic materials may contribute significantly to the understanding of shock
propagation at high pressures. It can be hoped that this interaction of theory and experiments will
open up new vistas in the area of high-pressure physics of anisotropic materials. Besides, there is
an interesting possibility that the strain-rate sensitivity is itself orientation dependent in
anisotropic materials. It has been noted for some anisotropic metals that the spall strengths are
similar in both orientations at lower impact stresses, while at higher levels, the spall strength is
higher in the longitudinal direction. This would seem to indicate a higher degree of strain-rate
sensitivity in the longitudinal orientation, and would seem to agree with the observations made
with the HELs for some anisotropic materials. Therefore, further development of the constitutive
equations taking into account strain rate sensitivity is required.

Modern hydrocode shock modeling capabilities are confined almost exclusively to isotropic
media; little provision has been made for anisotropic materials. In order to make numerical
simulations of a hypervelocity impact on the reference configuration possible in terms of
computation times, a macroscopic continuum model for the involved materials had to be
developed. Due to the experimentally observed behavior of anisotropic materials, new
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orthotropic hydrocode models were developed from the theoretical basis. This was necessary
because total generalized pressure or conventional pressure inside these materials depends on
deviatoric strain components as well as volumetric strain. Nonlinear effects, such as shock
effects, can be incorporated through the volumetric straining in the material. Thus, a basis was
found to couple the anisotropic material stiffness and strength with an anisotropic shock effects,
associated energy dependence, and damage softening process. To our knowledge, this report
presents the current state of the art in the experimental and theoretical developments of this
fascinating field.
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